
112 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

Efficient Deep Neural Network Serving:

Fast and Furious
Feng Yan , Member, IEEE, Yuxiong He, Member, IEEE, Olatunji Ruwase, Member, IEEE,

and Evgenia Smirni, Senior Member, IEEE

Abstract—The emergence of deep neural networks (DNNs) as a
state-of-the-art machine learning technique has enabled a vari-
ety of artificial intelligence applications for image recognition,
speech recognition and translation, drug discovery, and machine
vision. These applications are backed by large DNN models run-
ning in serving mode on a cloud computing infrastructure to
process client inputs such as images, speech segments, and text
segments. Given the compute-intensive nature of large DNN mod-
els, a key challenge for DNN serving systems is to minimize the
request response latencies. This paper characterizes the behav-
ior of different parallelism techniques for supporting scalable
and responsive serving systems for large DNNs. We identify and
model two important properties of DNN workloads: 1) homoge-
neous request service demand and 2) interference among requests
running concurrently due to cache/memory contention. These
properties motivate the design of serving deep learning systems
fast (SERF), a dynamic scheduling framework that is powered
by an interference-aware queueing-based analytical model. To
minimize response latency for DNN serving, SERF quickly iden-
tifies and switches to the optimal parallel configuration of the
serving system by using both empirical and analytical methods.
Our evaluation of SERF using several well-known benchmarks
demonstrates its good latency prediction accuracy, its ability
to correctly identify optimal parallel configurations for each
benchmark, its ability to adapt to changing load conditions, and
its efficiency advantage (by at least three orders of magnitude
faster) over exhaustive profiling. We also demonstrate that SERF
supports other scheduling objectives and can be extended to
any general machine learning serving system with the similar
parallelism properties as above.

Index Terms—Deep learning, DNN serving, scheduling, paral-
lelism, performance, analytical model, interference-aware.

I. INTRODUCTION

T
HE RECENT advance in Deep Neural Network (DNN)

models have enabled state-of-the-art accuracy on impor-

tant yet challenging artificial intelligence tasks, such as image

recognition [1]–[3] and captioning [4], [5], video classifica-

tion [6], [7] and captioning [8], speech recognition [9], [10],

Manuscript received May 4, 2017; revised September 22, 2017; accepted
November 4, 2017. Date of publication February 21, 2018; date of current
version March 9, 2018. This work is supported by NSF grant CCF-1218758,
CCF-1649087, and CCF-1756013. The associate editor coordinating the
review of this paper and approving it for publication was Yixin Diao.
(Corresponding author: Feng Yan.)

F. Yan is with the Department of Computer Science and Engineering,
University of Nevada at Reno, Reno, NV 89557 USA (e-mail: fyan@unr.edu).

Y. He and O. Ruwase are with Microsoft Research, Redmond, WA 98052
USA (e-mail: yuxhe@microsoft.com; olruwase@microsoft.com).

E. Smirni is with the Department of Computer Science, College of William
and Mary, Williamsburg, VA 23187 USA (e-mail: esmirni@cs.wm.edu).

Digital Object Identifier 10.1109/TNSM.2018.2808352

and text processing [11]. These advancements by DNNs have

enabled a variety of new applications, including personal dig-

ital assistants [12], real-time natural language processing and

translation [13], photo search [14] and captioning [15], drug

discovery [16], and self-driving cars [17].

A key driver of these recent improvements in DNN

performance is the ability to train large DNN models, con-

taining billions of neural connections, using large amounts

of training data [1], [3], [16], [18]. Once trained, these big

DNN models are deployed in a serving mode to process

application inputs, such as images, voice commands, speech

segments, handwritten text. However, big DNN models require

significant compute cycles and memory bandwidth to process

each input, and are therefore impractical to run on battery-

powered and small form-factor hardware devices, such as

laptops, tablets, and mobile phones. Consequently, big DNN

models are typically deployed as client-server applications,

with the client running on a mobile device, and the server,

including the model, running as a serving system on the cloud

(e.g., Cortana, Siri, and Google Now). This paper presents how

to build a scalable and responsive serving systems for these

large DNN models.

Like other interactive online services, such as Web search

and online gaming, DNN serving requires consistently low

response times to attract and retain users. Computing the

answer for a user request using large DNN models may

take seconds and even minutes to complete when running

sequentially on a single machine.

One promising approach for reducing the DNN serv-

ing latency is to parallelize computation. There are three

complementary ways to achieve large-scale parallelism in

DNN serving systems. First, the DNN model, which consists

of billions of neurons and connections, can be partitioned

across multiple servers. Each request is processed concur-

rently with communications across these servers (inter-node

parallelism). Second, at each server, a request can be fur-

ther parallelized using multiple threads exploiting multicore

architecture of modern hardware (intra-node parallelism).

Finally, multiple requests can be processed concurrently

within each multicore server to exploit service parallelism

among requests (service parallelism). However, this service

parallelism does not reduce the latency of an individual

query. Nonetheless, processing multiple requests in paral-

lel is valuable because it improves the server’s throughput

and potentially reduces the time that a request waits for

execution.

1932-4537 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



YAN et al.: EFFICIENT DNN SERVING: FAST AND FURIOUS 113

Fig. 1. Latency under low load (left plot) and high load (right plot) using
different configurations (inter-node parallelism is set to 1) for ImageNet-22K.

While these parallelism techniques present opportunities

to reduce DNN serving latency, deciding optimal parallelism

choice is challenging. Applying parallelism degrees blindly

could harm performance. For example, service parallelism may

increase memory system contention to the point of prolonging

request processing time; inter-node parallelism may prolong

request processing if the cross-machine communication over-

head exceeds the computation speedup. Figure 1 shows the

latency of serving the ImageNet-22K workload [19] under dif-

ferent combinations of service and intra-node parallelisms on

an 8-core machine (refer to Section V-A for detailed exper-

imental setup). The left and right scatter plots represent low

and high load conditions (request arrival rate) respectively.

Each point represents one parallel configuration, and the size

of the point indicates its latency value. The figure demonstrates

that: (1) Many parallel configurations are possible, even with

only 8 cores and without considering inter-node parallelism.

(2) The latency difference between the best parallel configura-

tion and the worst parallel configuration can be significant, i.e.,

by orders of magnitudes. This gap grows further under higher

loads. (3) The latency values and the best parallel configuration

changes as a function of the load.

We propose SERF, a framework for serving deep learn-

ing systems fast which integrates light-weight profiling with a

queueing-based prediction model to quickly find optimal par-

allel configurations for DNN serving. SERF exploits three key

intuitions to address the three challenges. First, it employs a

dynamic scheduler that determines online the ideal parallelism

configuration based on the system load. Second, as it is hard

to accurately estimate the impact of a parallel configuration

on the latency, SERF leverages light-weight profiling to mea-

sure workload latencies of a few key configurations on the

hardware of interest. Third, instead of an exhaustive profiling

over all configurations under all loads, which is unavoidably

very slow and not practical, we develop the core component of

SERF — a queuing-based analytical model for performance

prediction — which uses only limited simple profiling (that

can be done very fast) to record essential system and work-

load information that is used as input to the model. Using this

input, the model achieves remarkably accurate predictions of

the request latency of any parallel configuration under any

given load, thus can be used online in a dynamic workload

setting.

We implement SERF in the context of an image classifi-

cation service based on the image classification module of

the Adam distributed deep learning framework [3]. We stress

that SERF is not limited to the Adam architecture, but also

applicable to serving systems based on other DNN frameworks

(e.g., Caffe [20], Theano [21], and Torch7 [22]) as similar par-

allelism decisions and configuration knobs are also available

there. Our current prototype includes implementations of our

parallelism techniques, as well as a load generator for sim-

ulating arrival process. We evaluate its performance using a

20-machine cluster and conduct vast experiments by running

several state-of-the-art classification benchmarks, including

ImageNet [19] and CIFAR [23]. We demonstrate the accu-

racy of our queueing-based prediction model by comparing

its prediction results with testbed measurements. Moreover,

we show that, comparing to using static parallel configura-

tions, SERF swiftly recommends the optimal configuration

under various loads. Comparing to exhaustive profiling, SERF

adapts three orders of magnitude faster under dynamic and

ever-changing environments.

We also demonstrate that SERF supports different schedul-

ing objectives, e.g., finding the minimum amount of required

resources to meet a target latency SLO (service level

objective) and can be extended to support any general

machine learning serving system with similar character-

istics as DNN serving system. We summarize the main

contributions of the paper as follows: (1) We conduct a

comprehensive workload characterization of a DNN serv-

ing system, highlighting the opportunities and challenges

of using different parallelism techniques to reduce response

latency (Section III). (2) We propose the SERF schedul-

ing framework, which integrates lightweight profiling and

queueing-based latency prediction model to find best parallel

configurations effectively and efficiently (Section IV). (3) We

implement SERF and evaluate it on a cluster of machines.

The experimental results verify its effectiveness and efficiency

(Section V).

II. BACKGROUND

DNNs consist of large numbers of neurons with multiple

inputs and a single output called an activation. Neurons are

connected hierarchically, layer by layer, with the activations

of neurons in layer l−1 serving as inputs to neurons in layer l.

This deep hierarchical structure enables DNNs to learn com-

plex tasks, such as image recognition, speech recognition, and

text processing.

A DNN service platform supports training and serving.

DNN training is offline batch processing that uses learning

algorithms, such as stochastic gradient descent (SGD) [24]

and labeled training data to tune the neural network param-

eters for a specific task. DNN serving is instead interactive

processing requiring fast response per request, e.g., within 7-

10 milliseconds for speech application [25], and within 200 -

300 milliseconds even for challenging large-scale models like

ImageNet-22K. It deploys the trained DNN models in serv-

ing mode to answer user requests, e.g., for a dog recognition

application, a user request provides a dog image as input and

receives the type of the dog as output. The response time

of a request is the sum of its service time (execution time)

and waiting time. An important common performance metric



114 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

Fig. 2. Service time comparison under different parallelism techniques using ImageNet-22K. Each plot reports the speedup when increase the degree at only
one parallelism (fix the other two parallelisms).

for interactive workloads is the average request response time

(average latency), which we adopt in our work.

In DNN serving, each user input, which we refer to as a

request, is evaluated layer by layer in a feed-forward manner

where the output of a layer l − 1 becomes the input of layer l.

More specifically, define ai as the activation (output) of neu-

ron i in layer l. The value of ai is computed as a function

of its J inputs from neurons in the preceding layer l − 1 as:

ai = f ((
∑J

j=1 wij×aj)+bi) , where wij is the weight associated

with the connection between neuron i at layer l and neuron

j at layer l − 1, and bi is the bias term associated with neu-

ron i. The activation function f , associated with all neurons in

the network, is a pre-defined non-linear function, typically a

sigmoid or hyperbolic tangent. Therefore, for a given request,

its main computation at each layer l is a matrix-vector multi-

plication of the weight of the layer with the activation vector

from layer l − 1 (or the input vector if l = 0).

Inter-node, intra-node, and service-level parallelisms are

well-supported among various DNN models and applica-

tions [1], [3], [26]. Inter-node parallelism partitions the neural

network across multiple node/machines, with activations of

neural connections that cross node/machine boundaries being

exchanged as network messages. Intra-node parallelism uses

multi-threading to parallelize the feed-forward evaluation of

each input image using multiple cores. As the computation

at each DNN layer is simply a matrix-vector multiplication,

it can be easily parallelized using parallel libraries such as

OpenMP [27] or TBB [28] by employing a parallel for loop.

Service-level parallelism is essentially admission control that

limits the maximum number of concurrent running requests.

We define a parallelism configuration as a combination of the

intra-node parallelism degree, inter-node parallelism degree,

and maximum allowed service parallelism degree. Note the

service parallelism is defined as a maximum value instead of

the exact value due to the random request arrival process, e.g.,

at certain moments, the system may have less requests than

the defined service parallelism degree.

III. WORKLOAD CHARACTERIZATION

In this section, we present comprehensive workload charac-

terization that shows the opportunities and challenges of using

the various parallelism techniques to reduce DNN serving

latency, as well as their implications on the design of SERF.

We make four key observations: (1) Parallelism impacts ser-

vice time in complex ways, making it difficult to model service

times without workload profiling. (2) DNN workloads have

homogeneous requests, i.e., service times under the same par-

allelism degree exhibit little variance, which allows SERF to

measure request service time with affordable profiling cost.

(3) DNN workloads exhibit interference among concurrent

running requests, which motivates a new model and solution

of SERF. (4) DNN workloads show load-dependent behavior,

which indicates the importance of accurate latency estimation

and parallel configuration adaptation according to system load.

We present workload characterization results of two well-

known image classification benchmarks, CIFAR-10 [2] and

ImageNet-22K [19], on servers using Intel Xeon E5-2450

processors. Each processor has 8 cores, with private 32KB

L1 and 256KB L2 cache, and shared 20MB L3 cache. The

detailed experimental set up for both workloads and hardware

is provided in Section V.

A. Impact of Parallelism on Service Time

Modeling the impact of parallelism on DNN serving with-

out workload profiling is challenging because parallelism

has complex effects on the computation and communication

components of request service time (shown in Figures 2 and 3).

Figure 2 shows the DNN request service speedup for differ-

ent degrees of intra-node, inter-node, and service parallelism.

For intra-node parallelism, the speedup is close to linear up to

3 cores, but slows down beyond 4 cores. This effect is due to

the limited memory bandwidth. When the total memory band-

width demands are close to or exceed the available bandwidth,

the bandwidth per core reduces, decreasing speedup. For inter-

node parallelism, increasing the parallelism degree from 1 to

2 yields a 2X service time speedup because the computation

time, which is dominant, is halved, while communication time

grows marginally; increasing from 2 to 4 results in super-linear

speedup due to caching effects, as the working set fits in the

L3 cache; increasing from 4 to 8 results in smaller speedup

increase as communication starts to dominate service time. For

service parallelism, parallelism degrees > 2 result in increased

service time due to memory interference among concurrently

serviced requests. These results are indicative of the impact

of different parallelism on service time. Speedups can vary

a lot, depending on many factors, including DNN size, the

ratio of computation and communication, cache size, memory

bandwidth.

Figure 3 demonstrates the relationship between inter-node

and intra-node parallelism: the results indicate that the degree



YAN et al.: EFFICIENT DNN SERVING: FAST AND FURIOUS 115

Fig. 3. Relationship between inter-node and intra-node parallelism using
ImageNet-22K.

Fig. 4. CDH (Cumulative Data Histogram) of service times. The left plot is
with parallelism degree tuple (2, 1, 4) and the right plot is with (4, 4, 2).

of one parallelism technique can affect the behavior of another.

More precisely, intra-node parallelism speedup depends on

the degree of inter-node parallelism: speedup reduces with

larger inter-node parallelism. This is because communication

time is increasingly the dominant portion of service time with

larger degrees of inter-node parallelism, therefore the com-

putation time improvements of intra-node parallelism become

less important to overall service time.

In summary, since parallelism efficiency depends on various

factors (e.g., workload and hardware properties) and since one

parallelism technique can affect the behavior of others, it is dif-

ficult to accurately model service time. SERF circumvents this

by incorporating workload profiling to predict request service

time.

B. Homogeneous Requests

We observe that for a given parallelism degree tuple,1

defined as (service parallelism degree, inter-node parallelism

degree, intra-node parallelism degree), the service times of

DNN requests exhibit very little variance because the same

amount of computation and communication is performed for

each request. Thus, we refer to DNN requests as being homo-

geneous. Figure 4 shows two examples corresponding to two

representative cases of parallelism degrees. The first exam-

ple as shown in the left plot of Figure 4 is with parallelism

degree tuple of (2, 1, 4), where the majority of requests are

in the range of 330ms to 340ms and the SCV (squared coeffi-

cient of variation) is only 0.03. The second example as shown

in the right plot of Figure 4 is under parallelism (4, 4, 2),

1Note that parallelism degree tuple is different from parallelism config-
uration. In parallelism degree tuple, each parallelism is set exactly to the
degree value while in parallelism configuration, max service parallelism is
an admission policy that defines the maximum allowed degree of service
parallelism.

Fig. 5. Service time comparison with different number of concurrent requests.

where most requests are in the range of 130ms to 160ms

with the SCV of 0.09. The slightly larger variance can be

attributed to variations in the cross-machine communication

delays caused by inter-node parallelism. The magnitude of

these variations is consistent with what is normally expected

in computer communication systems while running a request

multiple times [29].

This unique property of homogeneous requests for DNN

workloads empowers lightweight profiling: the cost of mea-

suring the service time is low, i.e., for a given parallelism

degree tuple, running one or a few input requests is sufficient.

In comparison, many other online services have requests with

heterogeneous demands [30], [31] and require to execute many

more input samples to collect service time distributions.

C. Interference Among Concurrent Requests

For small DNNs like CIFAR-10 (the left plot of Figure 5),

request service time remains almost constant when run-

ning requests concurrently under different service parallelism

degrees, because there is little interference among requests due

to cache/memory contention. The interference becomes more

obvious for large DNNs. The right plot in Figure 5 shows the

request service time of ImageNet-22K when running different

number of requests. It is clear that when running more than

2 requests concurrently, the interference becomes severe. To

explain performance interference, it is important to understand

the working set of DNN serving that comprises activations

and weights of the neural connections (the core operation is

a matrix-vector multiplication of the weight matrix and the

activation vector). Activations are derived from request input,

while weights represent the model parameters and are shared

by all requests. When there are no more than 2 concurrent

requests, the working sets of both fit into L3 cache. If more

than three requests run concurrently, then the footprint of acti-

vations increases and the aggregate working set no longer fits

in the L3 cache, resulting in more L3 cache misses, thus pro-

longing the request service time. This is also why large DNNs

like ImageNet-22K are more likely to have interference than

small ones, such as CIFAR-10. Note that even with the com-

pression techniques and more powerful hardware, the working

set cannot always fit into L3 cache as there can be more com-

plex and larger models/data being used, so such interference

behavior is ubiquitous.

Interference makes modeling average service time and wait-

ing time for a given parallelism configuration much more

challenging. In particular, under the same parallelism configu-

ration, the number of running requests can vary from 0 to the



116 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

Fig. 6. Service time, waiting time, and latency under different loads using different configurations for ImageNet-22K.

TABLE I
PARALLEL CONFIGURATIONS

maximum service parallelism of the configuration. Therefore,

the service time of a particular request depends on the number

of concurrent running requests at the moment of its execution,

and the average service time depends on the probability distri-

bution of the concurrency levels. The waiting time estimation

is even more complex. The existing queueing and scheduling

models [32] are no longer applicable as they assume indepen-

dence among requests: request service time remains constant

regardless of the number of concurrent requests. This property

of DNN motivates us to develop new model and solution of

SERF to accurately model the waiting time and latency impact

of interference.

D. Load-Dependent Behavior

In serving systems, load (request arrival rate) changes

dynamically over time. For a given parallel configuration, both

request service time and waiting time could change under

different loads. To illustrate the load-dependent behavior of

different parallelism approaches, we use 6 distinctive config-

urations and conduct experiments under different load levels,

see Table I.

The left plot in Figure 6 shows the service time of using

the 6 configurations under different loads, the middle plot

in Figure 6 shows their waiting time, and the right plot in

Figure 6 shows their latency. The results demonstrate that for

the same configuration, service time, waiting time, and latency

can vary under different loads. Therefore, the ability to esti-

mate the latency impact according to the load and a scheduler

that can change the parallel configurations based on load are

two necessary and important features.

IV. SERF: A FRAMEWORK FOR DNN SERVING

In this section, we present the scheduling framework SERF.

SERF applies a hybrid approach that integrates lightweight

profiling and a queueing-based prediction model to find best

parallel configurations for any given load (request arrival rate)

effectively and efficiently, achieving the benefits of both empir-

ical and analytical methods. We first discuss the scheduling

Fig. 7. Overview of SERF.

objective and give an overview of SERF (Section IV-A).

Then we answer the two important questions raised in the

Introduction: (1) What should be profiled for accuracy yet

can be profiled quickly (Section IV-B)? (2) How to model the

rest and predict request latency (Section IV-C)? Finally, we

discuss how to use the prediction results to change the paral-

lelism configurations online with varying loads (Section IV-D)

and its support for other scheduling objectives (Section IV-E).

A. Overview

Scheduling Objective: Common objectives for scheduling

interactive serving systems are (1) to minimize response

latency using a given amount of resources [30], [31] or

(2) to minimize resource consumption while meeting latency

SLO [33], [34]. Our scheduling framework supports both. We

use the first objective of minimizing response latency as exam-

ple to develop the key components of the framework, then

we discuss how to extend the proposed approach for the sec-

ond objective. We choose to optimize average latency because

DNN requests are homogeneous and have similar service time,

reducing average latency also reduces the tail latency.

Framework Overview: Figure 7 presents an overview of

SERF, which consists of three main modules: prediction

model, profiler, and scheduler. The modules are connected by

the configuration reference table, which maps different load

levels (represented by request arrival rate) to their correspond-

ing best parallel configurations. For example, at arrival rate of

2 requests/second, the best configuration is with a max service

parallelism 4, inter-node parallelism of 2, and intra-node par-

allelism of 4. The profiler takes the system information (e.g.,

the number of machines and cores, and workload) as input and

conducts lightweight profiling and feeds the profiling results

to the prediction model. The prediction model is the key com-

ponent of the framework. It utilizes the profiling results to

predict the latency of all combinations of parallelism under

different load levels and populates the configuration reference

table. This table only needs to be built once, provided that



YAN et al.: EFFICIENT DNN SERVING: FAST AND FURIOUS 117

DNN workload characteristics and system hardware remain

the same. The scheduler uses the current system load as index

to search the configuration reference table, find and adapt to

the best parallel configurations.

B. Profiler

An easy but inefficient way to achieve the scheduling objec-

tive is via exhaustive profiling: execute all possible parallelism

configurations for all possible loads and find the best par-

allel configuration for each load. The shortcoming of such

exhaustive profiling is its high cost. Assuming that there are P

different configurations and there are L load levels, one needs

to conduct P × L profiling experiments. In addition, measur-

ing average latency requires a relatively long time span (to

measure enough samples) to achieve statistical stability due to

the stochastic queuing behaviors. Experimenting with lighter

load levels requires even longer time for profiling because the

large idle intervals between requests increase the duration of

the experiment. Let T be the average cost to achieve statis-

tical stability in profiling, which makes the overall cost of

exhaustive profiling P × L × T .

SERF conducts lightweight profiling by measuring the

request service time for each parallelism degree tuple of

(service parallelism degree, inter-node parallelism degree,

intra-node parallelism degree). For example, with the tuple

(2, 4, 3), we measure the request service time by running two

requests concurrently, each request across 4 server nodes and

with 3 cores on each server node. Let E denote the cost of

profiling request service time for a given parallelism degree

tuple, the total profiling cost of SERF is P×E, where P is the

total number of parallelism degree combinations. The profil-

ing of SERF has two key differences compared to exhaustive

profiling, resulting in significantly lower profiling cost: (1)

SERF measures the request service time instead of latency, and

(2) SERF measures each parallelism degree tuple instead of

each parallel configuration. Benefit of these profiling choices

is two-fold: (1) the service time of different parallelism con-

figurations under different loads can be computed by SERF,

saving a multiplicative cost factor along the load dimension L.

(2) As requests have almost deterministic service time under

the same parallelism degree tuple and profiling the service

time is independent of the queueing delays, a few profiling

samples are sufficient, i.e., the value of E is small. In contrast,

exhaustive profiling measures latency for each parallelism con-

figuration, which requires running many samples to achieve

statistical stability for queuing delays, i.e., T is much more

costly than E, by up to 3 orders of magnitude. Therefore,

SERF profiling is much more efficient than exhaustive profil-

ing, and P × E $ P × L × T . We feed these profiling results

to the prediction model of SERF to estimate the latency under

different load levels, which is introduced next.

C. Queueing-Based Prediction Model

We develop a queueing model that takes profiling results

as input and predicts request latency under different load and

parallelism configurations. The key challenge and novelty of

the model is its interference-awareness, effectively quantifying

the latency impact of request interference due to cache and

memory contention.

1) Problem Formulation: We define the problem as

predicting DNN request latency for any given parallel config-

uration under any given load. We denote parallelism configu-

ration with (maximum service parallelism Cservice, inter-node

parallelism Cinter, and intra-node parallelism Cintra). The

inputs of the model are:

• Load in terms of inter-arrival rate: λ, here we assume

Poisson arrivals for a short period, i.e., exponential inter-

arrival times with mean rate λ, which is typical for online

services [35], [36]. Such assumption does not contra-

dict the bursty and long-range dependence characteristics

in [37]. SERF continuously monitors the incoming work-

load and periodically updates its observed load (arrival

rate).

• Profiling results: µi (i = 1 . . . c) represents the average

service rate when i requests are running concurrently, i.e.,

the average service rate of the parallelism degree tuple

(i, Cinter, Cintra).

The output of the model is the average latency for the

parallelism configuration under any given load.

We model DNN serving as an interference-aware deter-

ministic service process and formulate the problem as a

M/Dinterf /c queue. Here, M represents exponential inter-

arrival times. Dinterf represents two distinctive properties of

DNN workload: (1) Deterministic service times, modeling

homogeneous requests that exhibit little service time vari-

ance for any given parallelism degree tuple (as shown

in Section III-B). (2) Interference-awareness, modeling the

interference among requests due to cache and memory con-

tention (as shown in Section III-C). c stands for the maximum

service parallelism, equal to Cservice.

2) Technical Challenges and Key Ideas: The M/Dinterf /c

queue does not have a closed-form solution. In fact,

even for the simpler problems: the interference-oblivious

M/D/c queue that assumes deterministic service time with-

out any interference among concurrent running requests, or

interference-aware M/Minterf /c queue that assume exponential

distributed service times with interference among concurrent

running requests, there is no closed-form solution. Intuitively,

one may want to use M/Minterf /c queue, M/D/c queue, or

M/M/c queue to approximate the M/Dinterf /c queue, but

such approximation has the potential of achieving bad accu-

racy. To illustrate why these simpler approaches can not

model DNN workload, we implement these approximation

methods and conduct experiments using ImageNet-22K. We

compare the latency results of best configurations under differ-

ent loads between testbed measurements and prediction results

from M/Minterf /c queue, M/D/c queue, and M/M/c queue

in Figure 8. The results clearly shows that the prediction

from these approaches is poor. This large discrepancy shows

the importance of incorporating interference and deterministic

service times into SERF prediction model and solution.

Our solution is inspired by Cosmetatos’ approximation [38]

that estimates M/D/c model using the M/M/c model with

adjustment and correction, where M/M/c model is a standard

multi-server queue model with Poisson arrival and exponential



118 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

Fig. 8. Latency comparison of best configurations between measurement and
standard prediction under different load.

Fig. 9. State transition diagram for the M/Minterf /c queue. Each state
represents the number of requests in the node.

service time. We extend the approximation approach to the

interference-aware case and solve M/Dinterf /c queue in two

steps. (1) Solve M/Minterf /c queue that has interference-aware

exponential service time. (2) Utilize the approximation method

proposed in Cosmetatos’ approximation to adjust the results of

M/Minterf /c queue to approximate the M/Dinterf /c queue. We

estimate the waiting time and service time separately. Latency

is estimated as the sum of these two measures.

3) Solving M/Dinterf /c Queue: Waiting time estimation:

We follow the two steps described in Section IV-C2 to solve

for the waiting time.

(1) Solving M/Minterf /c queue: Recall that µi (i = 1 . . . c)

is provided by profiling and represents the average service rate

when i requests are concurrently running, pi is the probability

of i requests in the system. Let ρi =
λ
µi

and ρ =
ρc

c
=

λ
c·µc

.

Based on the state transition diagram shown in Figure 9 and

global balance equations [39], we obtain:

pn =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

n
∏

i=1

ρi

n!
· p0 (0 ≤ n ≤ c − 1)

ρn−c
·

c
∏

i=1

ρi

c!
· p0 (n ≥ c),

(1)

where pn is the steady-state probability of state n, which rep-

resents n requests in the system (sum of requests in the queue

and in service). p0 represents the probability that the system

is idle, i.e., no request is in the system. Since all probabilities

sum to 1 and
∑∞

k=0 ρk
=

1
1−ρ

for ρ < 1:

∞
∑

k=0

pk = p0 ·

⎛

⎜

⎜

⎜

⎝

1 +

c−1
∑

k=1

k
∏

i=1

ρi

k!
+

c
∏

i=1

ρi

c!
·

∞
∑

k=c

ρk−c

⎞

⎟

⎟

⎟

⎠

= p0 ·

⎛

⎜

⎜

⎜

⎝

1 +

c−1
∑

k=1

k
∏

i=1

ρi

k!
+

c
∏

i=1

ρi

c! · (1 − ρ)

⎞

⎟

⎟

⎟

⎠

= 1, (2)

where ρ < 1.

Let H = 1 +
∑c−1

k=1

∏k
i=1 ρi

k!
+

∏c
i=1 ρi

c!·(1−ρ)
, then:

p0 = H−1. (3)

Assume that Lq(λ) is the average number of requests waiting

in the queue, by definition we have:

Lq(λ) =

∞
∑

k=c

(k − c) · pk, (4)

together with Eq. (1) and based on
∑∞

k=0 kρk
=

ρ

(1−ρ)2 for

ρ < 1, we have:

Lq(λ) =

p0 ·

c
∏

i=1

ρi

c!
·

∞
∑

k=c

(k − c) · ρk−c

=

p0 ·

c
∏

i=1

ρi

c!
·

ρ

(1 − ρ)2
, (5)

where ρ < 1. Using Little’s law [40], the waiting time in the

queue can be computed as:

W
M/Minterf /c
q (λ) =

Lq(λ)

λ
=

p0 ·

c
∏

i=1

ρi

λ · c!
·

ρ

(1 − ρ)2
, (6)

(2) Approximating M/Dinterf /c using M/Minterf /c:

Cosmetatos’ approximation proposed in [38] states that the

waiting time in the queue can be approximated as:

WM/D/c
q ≈

1

2
(1 + f (c) · g(ρ)) · WM/M/c

q , (7)

where

f (c) =
(c − 1) ·

(√
4 + 5c − 2

)

16c
, (8)

g(ρ) =
1 − ρ

ρ
, (9)

ρ =
λ

c·µ
, λ is the average arrival rate, and µ is the aver-

age service rate. This approximation can be adjusted for the

interference-aware case: we use the M/Minterf /c queue with

the same correction terms as f (c) and g(ρ) as above to approx-

imate the M/Dinterf /c queue as follows (using Eq. (6) and

Eq. (7)):

W
M/Dinterf /c
q (λ) ≈

1

2
(1 + f (c) · g(ρ)) ·

p0 ·

c
∏

i=1

ρi

λ · c!
·

ρ

(1 − ρ)2
.

(10)

Service time estimation: Although service time under the

same parallelism degree tuple is deterministic and can be

profiled, the service time under a given parallel configu-

ration could change with load and needs to be predicted.

This is because of the random requests arrival process and

interference, e.g., at different moments, the system may have

different number of concurrent running requests (ranging

from 0 to the defined maximum service parallelism), which



YAN et al.: EFFICIENT DNN SERVING: FAST AND FURIOUS 119

results in different interference and therefore different ser-

vice times. We use the PASTA (Poisson Arrivals See Time

Averages) property [41] to compute the average service time

SM/Dinterf /c(λ) under arrival rate λ as follows:

SM/Dinterf /c(λ) =
1

µ1
· p0 +

1

µ2
· p1 +

1

µ3
· p2 + . . .

+
1

µc

· pc−1 +
1

µc

·

∞
∑

i=c

pi

=

c
∑

i=1

pi−1

µi

+

p0 ·

c
∏

i=1

ρi

µc · c! · (1 − ρ)
. (11)

Latency estimation: The average latency WM/Dinterf /c equals

to the average time spent in waiting in queue W
M/Dinterf /c
q plus

the average time spent in execution SM/Dinterf /c:

WM/Dinterf /c(λ) ≈
c

∑

i=1

pi−1

µi

+

p0 ·

c
∏

i=1

ρi

µc · c! · (1 − ρ)

+
1

2
(1 + f (c) · g(ρ)) ·

p0 ·

c
∏

i=1

ρi

λ · c!

×
ρ

(1 − ρ)2
. (12)

In the above formula, recall that µi is an input from profil-

ing, λ is affected by inter-node parallelism Cinter as it defines

how many machines to serve each request, c equals to the

maximum allowed service parallelism Cservice, and the intra-

node parallelism is restricted by F/c, where F is the number

of cores in a node. Therefore, for a given system and work-

load, latency can be computed under different combinations

of service parallelism, inter-node parallelism, and intra-node

parallelism. Eq. (12) is used to populate the configuration

reference table that is the core of SERF.

The above solution is derived for a single serving unit (with

Cinter number of machines). For a cluster, the cluster can be

divided into serving units based on the inter-node parallelism

Cinter, e.g., for a cluster with N machines, there are N/Cinter

units and each unit has an arrival rate of λ =
λall

N/Cinter
, where

λall is the request arrival rate at the cluster.

D. Scheduler

The scheduler takes the current system load as input,

searches the configuration reference table, finds and adapts to

the best parallelism configuration. To enable quick configura-

tion switching, the entire DNN model is pre-installed on each

server, and each input is sent to the server with a mapping of

servers to input partitions. This informs the server of which

partition of the DNN model to use to process the input, and

which servers to communicate with for cross-machine neural

connections.

To sum up, we explore two distinctive properties of DNN

workload — homogeneous requests with interference — to

develop SERF. SERF combines lightweight profiling with an

interference-aware queueing model to predict DNN serving

latency. It finds the best parallel configuration for any given

load and then deploys a dynamic scheduler to adapt to varying

loads online nearly instantly.

E. Meeting SLO With Minimum Resources

This section demonstrates another usage scenario of

SERF, meeting SLO (service level objective) with minimum

resources, which is an important objective for many online

services and cloud applications [33], [34]. To meet latency

SLOs for a given load (request arrival rate), SERF uses the

prediction model to compute the minimum resources (e.g.,

the number of machines) required by each parallelism con-

figuration and chooses the best configuration that requires the

least resources. To compute the minimum resource for a given

load, SERF searches through all possible parallelism configu-

rations starting from the least amount of total resources. If

none of the parallelism configurations can achieve latency

SLO, we increase the amount of total resources and search

again all possible parallelism configurations. We repeat such

process until we find a configuration that can achieve latency

SLO. Similar process is repeated for other load levels for

finding the optimal configurations. Then we build the configu-

ration reference table with these optional configurations so that

SERF can adapt the parallelism configuration with the change

of load.

V. EXPERIMENTAL EVALUATION

We present experimental results demonstrating how SERF

improves DNN serving performance with respect to minimiz-

ing response latency. Specifically, we evaluate the following

properties of SERF: (i) identify configurations under the same

load level, (ii) latency change trend when load level changes,

(iii) accuracy of the latency prediction model, (iv) adapt-

ability to load dynamism compared to a static configuration,

(v) efficient best configuration search compared to exhaustive

profiling, (vi) another usage scenario of SERF on minimizing

resources for meeting latency SLO, and (vii) how SERF works

in other machine learning serving systems.

A. Experimental Setup

System Overview: We prototyped SERF based on the Adam

distributed DNN system [3], which supports service par-

allelism through admission control, intra-node parallelism

using OpenMP [27], and inter-node parallelism by partition-

ing the model across different machines. In order to quickly

switch the configurations, the entire model parameter is pre-

installed on each server, and each input is augmented to

the server with a mapping of servers to input partitions. As

most distributed DNN serving platforms support part or all

of these parallelisms, SERF can be used in other systems

as well.

Workload: We evaluate SERF using 3 popular image recog-

nition tasks of varying complexity with Poisson request

arrivals:

• CIFAR-10 [2]: classifies 32×32 color images into 10 cat-

egories. The DNN is moderately-sized, containing about



120 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

Fig. 10. Identify configurations under the same load level for different service
and intra-node parallelism of ImageNet-22K. Inter-node parallelisms of 1 and
4 are demonstrated (top two, bottom two plots).

28.5 million connections in 5 layers: 2 convolutional lay-

ers with pooling, 2 fully connected layers, and a 10-way

output layer.

• ImageNet-1K [19]: classifies 256 × 256 color images

into 1, 000 categories. The DNN is moderately large,

containing about 60 million connections in 8 layers:

5 convolutional layers with pooling, 3 fully connected

layers, and a 1, 000-way output layer [2].

• ImageNet-22K [19]: the largest ImageNet task, which is

to classify 256x256 color images into 22, 000 categories.

This DNN is extremely large, containing over 2 billion

connections in 8 layers: 5 convolutional layers with pool-

ing, 3 fully connected layers, and a 22, 000-way output

layer [3].

Hardware Environment: Experiments are run on a comput-

ing cluster of 20 identically configured commodity machines,

communicating over Ethernet through a single 10Gbps

Fig. 11. Identify configurations under the same load level for different service
and intra-node parallelism of CIFAR-10. Inter-node parallelisms of 1 under
three different loads are demonstrated: low (top), moderate (middle), high
(bottom).

(bidirectional) NIC. Each machine is dual-socket, with an Intel

Xeon E5-2450 processor of 8 cores running at 2.1GHz on each

socket. Each machine has 64 GB of memory and a 268.8

GFLOP/s SIMD FPU.

B. Identify Configurations Under the Same Load Level

We visualize the configuration identification by showing

the results of all parallel configurations under the same load

level. We select load levels of 1 and 2.5 requests/second/node

as demonstration cases, representing low and moderate load

levels respectively. Results are presented in Figure 10. We

organize the results based on the inter-node parallelism of 1

(upper two plots) and 4 (bottom two plots). For each inter-

node parallelism, we show the two selected load cases (low

and moderate). For each load case, we enumerate all combi-

nations of service parallelism and intra-node parallelism. Note

that combinations are restricted by the total number of cores

in each server node, i.e., 8 cores in our testbed. Figure 10

indicates that the prediction is consistently accurate across all

parallelism configurations.2

2We show the latency up to 1500ms for a clear presentation. A configuration
with latency beyond 1500ms is not usable in practice.



YAN et al.: EFFICIENT DNN SERVING: FAST AND FURIOUS 121

TABLE II
COST COMPARISON BETWEEN EXHAUSTIVE PROFILING AND SERF FOR DIFFERENT BENCHMARKS

Fig. 12. Latency trend change prediction under different loads for ImageNet-
22K. Inter-node parallelism of 1 and 4 are considered (top, bottom plots).

We also show the results of a much smaller application

CIFAR-10, see Figure 11. Because CIFAR-10 is very small,

we set inter-node parallelism to 1 and show three differ-

ent load levels (low (25 requests/second/node), moderate (67

requests/second/node), and high (100 requests/second/node)).

Due to the interest of space, we skip the results for ImageNet-

1K, which is a similar but smaller workload compared to

ImageNet-22K, but we emphasize that we can correctly

identify configurations across all cases.

C. Latency Change Trend When Load Level Changes

We show here the prediction results of our model against

the testbed measurement results for the parallel configura-

tions defined in Table I. Figure 12 shows that model and

experimental data are in excellent agreement. Even though the

average latency of different parallel configurations have quite

different trends, the prediction results can capture well these

trends. Note that some parallel configurations result in system

overload, i.e., an unstable system where the queue length accu-

mulation grows to infinity and system utilization is 100%. No

model can capture the behavior of an unstable system, so we

do not plot points that approach the asymptote, e.g., config-3

in Figure 12.

D. Accuracy of Latency Prediction Model

This section evaluates the accuracy of the latency prediction

model, based on Eq. (12), by comparing predicted values

to measured values. Figure 13 shows for each workload the

average and distribution of prediction errors for all relevant

prediction cases. A relevant prediction case is a combination

of a parallel configuration that has performance impact for a

workload and a load level. For example, CIFAR-10 has 20

parallel configurations because inter-node parallelism degrees

> 1 do not make sense for its small size. The larger ImageNet-

1K and ImageNet-22K have 40 and 80 parallel configurations

because inter-node parallelism degrees of up to 2 and 4 are rel-

evant, respectively. For each benchmark we consider 10 load

levels evenly spread across low load to high load, so that there

are 200, 400, and 800 relevant prediction cases for CIFAR-10,

ImageNet-1K, and ImageNet-22K, respectively. The results

show that the prediction is accurate and the errors are insignif-

icant: the average error is 2-4%, the 90th percentile is < 10%,

and the 95th percentile is < 12%.

E. Benefits Over Exhaustive Profiling

We evaluate SERF here against exhaustive profiling for

identifying the best parallel configurations under different

load levels. The experimental results verified both SERF and

exhaustive profiling always correctly identifies the best config-

uration. However, the cost of SERF is significantly lower than

exhaustive profiling. Assume that the system has 80 differ-

ent parallel configurations and the performance reference table

has 10 entries (e.g., 10 different load levels). SERF requires

only 80 quick profiling experiments while exhaustive profil-

ing requires 800 expensive profiling experiments to build the

performance reference table. The time for each profiling exper-

iment and the total time to build the performance reference

table is shown in Table II. Note SERF requires much less

time for each profiling experiment because it only samples

the service time and the service time is deterministic without

load impact (i.e., sample the service time of only 10 requests)

while each exhaustive profiling experiment needs to measure

the average latency, which needs many samples to achieve sta-

tistical stability (e.g., when measuring latency less than 5000

sample requests, the results become very unstable). The results

suggest that the time cost of SERF is more than 3 orders of

magnitudes lower than exhaustive profiling, and the time sav-

ings grows with the size of the DNN workload and the number

of performance reference table entries. Even if compared to

lightweight profiling, e.g., only do profiling under high load,

the cost of SERF is still more than 2 orders of magnitudes

lower.



122 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

Fig. 13. CDF (Cumulative Distribution Function) and DDH (Data Density Histogram) of prediction errors for different workloads.

Fig. 14. Latency comparison under dynamic load environment for different
scheduling approaches.

F. Benefits Over Static Configuration

Request arrival rate and system load changes dynamically

for online services [36]. In this section, we demonstrate how

SERF outperforms fixed configurations by adapting to load

changes. We use three baseline cases for comparison. Fixed-

low is a best configuration in low load and Fixed-mod is a

best configuration in moderate load. Fixed-other is another

configuration that performs better than Fixed-low in moderate

loads and better than Fix-mod in low loads. We compare the

performance of SERF and these baseline cases in a dynamic

user environment with load changes from moderate to low

and then back to moderate, see Figure 14. The y-axis is

the latency measured in ms, the x-axis represents the experi-

ment’s elapsed time. Fixed-low and Fixed-mod perform well

under the loads that they are optimized for, but perform

poorly when load changes. Fixed-other achieves more sta-

ble performance, but not best under any load levels. SERF

outperforms all these baseline scheduling methods and con-

sistently adapts to the load change to achieve lowest latency.

This experiment validates the need for adaptivity of SERF

in a dynamic workload environment, where, for example, a

best configuration for high loads could be sub-optimal for

low loads. In addition, the profiling cost of these fixed con-

figurations is more than 2 orders of magnitude higher than

SERF, e.g., for ImageNet-22K, it takes nearly 2 days to iden-

tify Fixed-low or Fixed-mod configuration by profiling, and it

takes even longer for Fix-other as profiling needs to be done

for multiple loads. In comparison, SERF only takes a few

minutes for identifying the best parallel configurations under

various loads.

Fig. 15. Resource usage comparison between static configurations and
SERF under different loads. The parameters of static configurations in the
legend follows (max service parallelism, inter-node parallelism, intra-node
parallelism).

G. Meeting SLO With Minimum Resources

To demonstrate the advantage of SERF over the static con-

figurations selected based on heuristics, e.g., with minimum

resource usage for certain loads, we compare their correspond-

ing normalized resource usage required to meet the average

latency SLO of 280 ms in Figure 15. Figure 15 suggests

static configurations are best under certain loads, but become

suboptimal for other loads while SERF always finds the best

configurations that minimize the resource usage under differ-

ent loads. In addition, the results also suggest that the resource

usage gap between suboptimal configurations and best config-

uration is high, up to one order of magnitude, demonstrating

the importance and effectiveness of using SERF.

H. Scalability and Applicability

When SERF works in large systems, the number of profiling

experiments scales linearly with the total number of paral-

lelism combinations. Because each profiling takes less than a

few seconds, even for large systems running large and scal-

able applications with thousands of parallelism combinations,

the profiling takes no more than a few hours. This profil-

ing time can be further reduced to a few minutes if profiling

experiments are conducted in parallel or in coarser granularity.

In addition, the computation of the queueing model is effi-

cient, i.e., constant with respect to the cluster size. Therefore,

SERF is scalable to schedule large systems. We also stress that

SERF is not limited to the CPU based system, it also works

with systems using other architectures, e.g., GPUs, FPGAs,

and ASICs. SERF can be used in different systems because it



YAN et al.: EFFICIENT DNN SERVING: FAST AND FURIOUS 123

Fig. 16. CDH of service times (left) and service times under different number
of concurrent running requests (right).

takes the basic system information as an input through simple

profiling.

I. Generalization to Other Workloads

In this section, we demonstrate how SERF performs in

general machine learning serving systems with similar work-

load characteristics (i.e., requests are homogeneous and there

is interference among concurrent running requests). We use

Web-search ranking [42] as an example for evaluation as it

represents a typical supervised machine learning problem. In

Web-search ranking, there is a query-document pair presented

by a high-dimensional feature vector and the learning algo-

rithm is to train a model to predict the relevance of a document

to a query. In the serving stage, query-document pairs are

requests sent to the serving system and the output is the rele-

vance that is ranked based on the predictions from the trained

model. We instrument the implementation in [42] to simu-

late a serving system. The original codes for computing the

ranking is sequential, so we implement the service parallelism

by using OpenMP. We did not implement the inter-node and

intra-node parallelism as the request size is very small - the

communication and synchronization overhead overcomes the

benefits. We use Dataset 2 from Yahoo Ranking Challenge [43]

as the workload. The testbed is a Dell PowerEdge R320 server

with an Intel Xeon E5-2407 processor of 4 cores running

at 2.2GHz and with 8 GB memory. The profiling results of

service times indicate that the Web-search ranking serving

system has similar workload characteristics as the DNN serv-

ing system, see Figure 16. The left plot in Figure 16 suggests

that requests are homogeneous as the majority of requests are

in the range of 700 ns to 1000 ns and their SCV is only 0.29.

The right plot in Figure 16 shows very obvious interference

among concurrent running requests as when the service

parallelism increases, the average service time increases

significantly.

We run extensive experiments with various load levels

using different paralellism configurations and plot the aver-

age and distribution of the prediction errors in Figure 17.

The results show SERF is quite accurate as the average

error is only 1.07%, the 90th percentile is < 3%, and

the 95th percentile is < 5%. We also show the prediction

results of SERF for best parallelism configuration against

the ground truth of measurement results in Figure 18. The

results show that SERF always identifies the best configuration

correctly.

Fig. 17. CDF and DDH of prediction errors.

Fig. 18. Best configurations and according latency under different loads.

VI. RELATED WORK

DNN Serving: The state-of-the-art accuracy of DNNs

on important artificial intelligence tasks, such as image

recognition [1]–[3], speech recognition [9], [10], and text pro-

cessing [11] has made the end-to-end latency of large-scale

DNN serving systems an important research topic. Parallelism

has been shown to be critical for good DNN performance at

scale. Prior work [1], [3] has shown that parallel training on a

cluster of commodity CPU machines achieves high throughput

thus can train big DNN models (billions of connections) in a

reasonable amount of time (days instead of months). Although

these training platforms focus on improving system through-

put instead of request latency, the parallelism mechanisms

proposed there are directly translated to serving platforms

as inter-node, intra-node and service parallelisms. Several

recent work on DNN serving investigate hardware accelera-

tion using GPUs [44], FPGAs [45], and ASICs [26]. They

focus on mapping DNN computation to customized hard-

ware, but parallelism has also been shown critical to offer

low latency. For larger models that exceed on-chip RAM, [26]

exploits inter-node parallelism across 64 ASIC chips with

high-speed interconnect to achieve good performance. All

these prior studies develop DNN serving platforms that sup-

port all or a subset of the parallelism mechanisms exploited

in our paper. However, none of them investigates schedul-

ing frameworks that make parallelism configuration choices

based on DNN characteristics, hardware characteristics, and

system load, which is the focus of SERF. Therefore, none

of them quantifies the interference among concurrent running

requests or various parallelism degree based on system load.

Instead, they simply apply static partitioning of resources and

use the maximum service parallelism available by the hard-

ware [44]–[46]. SERF is complementary to the above work



124 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

and can be used as a scheduling framework for these serv-

ing platforms to identify best parallelism configurations and

maximize their parallelism benefits.

While much of the recent work has focused on hardware

acceleration using GPUs [20], [44], FPGAs [45], [46], and

ASICs [26], [47], parallelism has being shown to be critical

for good DNN serving performance at scale. For models that fit

into on-chip RAM, service parallelism is exploited to improve

serving throughput on FPGA [45], [46] and GPU [44]. For

larger models that exceed on-chip RAM, the above special-

ized hardware that are significantly faster than CPU may not

provide better performance. Reference [26] exploits inter-node

parallelism across 64 ASIC chips with commodity high-speed

interconnect to achieve good performance for larger models

that exceed on-chip RAM. Compared to SERF, these prior

work either do not consider the impact of request load and

interference, or assume static partitioning of resources [44],

therefore their performance and system utilization could ben-

efit from SERF techniques.

Interactive Serving: There is a host of research in par-

allelizing request processing to reduce latency, and request

scheduling in a multiprocessor environment to reduce latency.

Here, we give a brief overview of systems that aim at quality

of service and different parallelism options when resources are

shared by many user requests. There has been a lot of work on

measuring and mitigating interference among co-located work-

loads [48], [49]. The main theme is to predict performance

interference among workloads and discover optimal work-

load co-locations to improve system utilization while meeting

user performance goals. These studies treat each workload as

a blackbox, and they do not consider solutions that involve

modifying the workload (e.g., changing parallelism degree).

Adaptive allocation for server systems [50], [51] focuses

on allocating resources dynamically to different components

of the server, while executing each request sequentially, i.e.,

they consider service parallelism only. Adaptive parallelism

for interactive server systems uses intra-node and service par-

allelism to reduce request latency. Recent work reduces request

latency of interactive server systems using intra-node and ser-

vice parallelism. Raman et al. [31] propose an API and runtime

system for dynamic parallelism, where developers express par-

allelism options and goals, such as minimizing mean response

time. Jeon et al. [30] propose a dynamic parallelization algo-

rithm to decide the degree of request parallelism in order to

reduce the average response time of Web search queries. Both

approaches assume independent service time among requests,

thus they do not consider interference among concurrent run-

ning requests, which is a key property of DNN workload

supported by SERF. Another line of work [52] proposes to

use parallelism to reduce tail latency based on the observa-

tion that requests exhibit large variability on service time, and

therefore they use prediction [53] or dynamic parallelism [52]

to execute long requests in parallel but short request sequen-

tially. DNN requests, however, are homogeneous with similar

service time, making these techniques ineffective. Moreover,

none of these studies considers inter-node parallelism. Finding

best parallel configurations has also been studied on other

applications and systems, such as database, data analytics,

MapReduce [54]–[56]. However, none of these prior work

leverages the distinctive properties of DNN workloads to

exploit request homogeneity and interference awareness as

SERF does.

Queueing Models: There is a vast area of research on queue-

ing models, here we outline some Queueing models have been

well studied, and here we outline some results that are related

to the M/D/c queue abstraction used in our work. While the

solution of the M/M/c system is exact [39], there are no exact

solutions for M/D/c systems. We note the existence of the

Allen-Cunnen approximation formula for GI/G/c [40] and

Kimura’s approximation [57], both of which can also apply

to M/D/c since M is a special case of GI. Franx [58] pro-

vides an explicit expression for the waiting time distributions

using probabilistic analysis while Cosmetatos [38] provides an

approximate formula for M/D/c that we use here. We enrich

this approximation to account for the case where the service

process is deterministic but also load dependent. Alternatively,

an M/D/c system can be approximated using an n-stage

Erlang for the service process, essentially by approximating

the system using a M/Ph/1 queue. While the M/Ph/1 queue

can be solved using the matrix-geometric method [59], [60],

the M/Ph/c suffers from the well known problem of state

space explosion. We direct the interested reader to [32] for

an overview of various results on the M/D/c queue that have

been developed since the early 1930s. However, none of the

above approximation methods for M/D/c systems can be eas-

ily adapted to estimate latency of M/Dinterf /c systems. Here

we extend the approximation by Cosmetatos to achieve this

goal.

In [61], the basic idea of SERF that combines lightweight

profiling with an interference-aware queueing-based prediction

model is outlined and some initial evaluation results are

presented. The current extended version of this paper pro-

vides a more detailed description of the SERF frame-

work and presents a comprehensive performance evaluation

study.

VII. CONCLUSION

In this work, we proposed a scheduling framework SERF

for DNN serving systems that offers an automated way to opti-

mally schedule serving requests, guaranteeing request serving

that is done as fast as possible. A M/Dload/c queueing system

is at the heart of SERF: it is easily parameterized with

limited workload profiling and it can provide a nearly instan-

taneous evaluation of many scheduling alternatives. SERF

provides superior flexibility thanks to the following features:

it provides adaptivity to load variations by quickly adapt-

ing scheduling parameters after changes in load are detected,

it provides a mechanism to evaluate how changes in dif-

ferent parallelism can affect performance (and the related

performance interference), and it quickly adapts to changes

in user workload.

As service migrates to new clusters with different hardware,

SERF offers again significant advantages to exhaustive profil-

ing. Furthermore, thanks to the load dependent approach, the

model can be easily adjusted for systems with heterogeneous



YAN et al.: EFFICIENT DNN SERVING: FAST AND FURIOUS 125

nodes: different M/Dload/c models can be used for differ-

ent hardware. Finally, SERF can support different scheduling

objectives.

As future work, we plan to support more advanced con-

trol knobs, such as batching, in our framework. We also plan

to make the framework accommodate orphan resource and

straggler problem.

REFERENCES

[1] J. Dean et al., “Large scale distributed deep networks,” in Proc. NIPS,
2012, pp. 1223–1231.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Proc. NIPS, 2012,
pp. 1097–1105.

[3] T. Chilimbi, J. Apacible, K. Kalyanaraman, and Y. Suzue, “Project
Adam: Building an efficient and scalable deep learning training system,”
in Proc. OSDI, Broomfield, CO, USA, 2014, pp. 571–582.

[4] J. Mao, W. Xu, Y. Yang, J. Wang, and A. L. Yuille, “Explain images
with multimodal recurrent neural networks,” CoRR, vol. abs/1410.1090,
2014. [Online]. Available: http://arxiv.org/abs/1410.1090

[5] H. Fang et al., “From captions to visual concepts and back,” in Proc.

CVPR, Boston, MA, USA, 2015, pp. 1473–1482.

[6] A. Karpathy et al., “Large-scale video classification with convolu-
tional neural networks,” in Proc. CVPR, Columbus, OH, USA, 2014,
pp. 1725–1732.

[7] J. Y. Ng et al., “Beyond short snippets: Deep networks for video
classification,” in Proc. CVPR, Boston, MA, USA, 2015, pp. 4694–4702.

[8] S. Venugopalan et al., “Translating videos to natural language using
deep recurrent neural networks,” in Proc. NAACL HLT, Denver, CO,
USA, 2015, pp. 1494–1504.

[9] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large-vocabulary speech recogni-
tion,” IEEE Trans. Audio, Speech, Language Process., vol. 20, no. 1,
pp. 30–42, Jan. 2012.

[10] A. Y. Hannun et al., “Deep speech: Scaling up end-to-end speech
recognition,” CoRR, vol. abs/1412.5567, 2014. [Online]. Available:
http://arxiv.org/abs/1412.5567

[11] D. C. Ciresan, U. Meier, L. M. Gambardella, and J. Schmidhuber, “Deep
big simple neural nets excel on handwritten digit recognition,” CoRR,
vol. abs/1003.0358, 2010.

[12] D. Talbot. How Microsoft Cortana Improves Upon Siri and

Google Now. Accessed: Nov. 20, 2015. [Online]. Available: http://
www.tomshardware.com/news/microsoft-cortana-unique-
features,26506.html

[13] R. Mcmillan. How Skype Used AI to Build Its Amazing New Language

Translator. Accessed: Nov. 20, 2015. [Online]. Available: http://
www.wired.com/2014/12/skype-used-ai-build-amazing-new-language-
translator/

[14] C. Rosenberg. Improving Photo Search: A Step Across the

Semantic Gap. Accessed: Nov. 20, 2015. [Online]. Available: http://
googleresearch.blogspot.com/2013/06/improving-photo-search-step-
across.html

[15] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. A Picture

Is Worth a Thousand (Coherent) Words: Building a Natural

Description of Images. Accessed: Nov. 20, 2015. [Online].
Available: http://googleresearch.blogspot.com/2014/11/a-picture-is-
worth-thousand-coherent.html

[16] B. Ramsundar et al., “Massively multitask networks for drug
discovery,” CoRR, vol. abs/1502.0207, 2015. [Online]. Available:
http://arxiv.org/abs/1502.02072

[17] F. Nelson. Nvidia Demos a Car Computer Trained With

Deep Learning. Accessed: Nov. 20, 2015. [Online]. Available:
http://www.technologyreview.com/news/533936/

[18] A. Coates, B. Huval, T. Wang, D. J. Wu, and A. Y. Ng, “Deep learning
with COTS HPC systems,” in Proc. ICML, Atlanta, GA, USA, 2013,
pp. 1337–1345.

[19] J. Deng et al., “ImageNet: A large-scale hierarchical image database,”
in Proc. CVPR, Miami, FL, USA, 2009, pp. 248–255.

[20] Y. Jia et al., “Caffe: Convolutional architecture for fast
feature embedding,” in Proc. ACM Int. Conf. Multimedia

(MM), Orlando, FL, USA, Nov. 2014, pp. 675–678.
[Online]. Available: http://doi.acm.org/10.1145/2647868.2654889,
doi: 10.1145/2647868.2654889.

[21] F. Bastien et al., “Theano: New features and speed improve-
ments,” CoRR, vol. abs/1211.5590, 2012. [Online]. Available:
http://arxiv.org/abs/1211.5590

[22] R. Collobert, K. Kavukcuoglu, and C. Farabet, “Torch7: A MATLAB-
like environment for machine learning,” in Proc. BigLearn, 2011.

[23] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
M.S. thesis, Comput. Sci. Dept., Univ. Toronto, Toronto, ON, Canada,
2009.

[24] L. Bottou, “Large-scale machine learning with stochastic gradient
descent,” in Proc. COMPSTAT, 2010, pp. 177–186.

[25] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor pro-
cessing unit,” in Proc. 44th Annu. Int. Symp. Comput. Architect. (ISCA),
Toronto, ON, Canada, 2017, pp. 1–12.

[26] Y. Chen et al., “DaDianNao: A machine-learning supercomputer,” in
Proc. MICRO, Cambridge, U.K., 2014, pp. 609–622.

[27] L. Dagum and R. Menon, “OpenMP: An industry standard API for
shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1,
pp. 46–55, Jan./Mar. 1998.

[28] A. D. Robison, Intel Threading Building Blocks (TBB), 2011,
pp. 955–964.

[29] C. Demichelis and P. Chimento, “IP packet delay variation metric for
IP performance metrics (IPPM),” IETF, Fremont, CA, USA, RFC 3393,
2002.

[30] M. Jeon, Y. He, S. Elnikety, A. L. Cox, and S. Rixner, “Adaptive par-
allelism for Web search,” in Proc. EuroSys, Prague, Czech Republic,
2013, pp. 155–168.

[31] A. Raman, H. Kim, T. Oh, J. W. Lee, and D. I. August, “Parallelism
orchestration using DoPE: The degree of parallelism executive,” in Proc.

PLDI, San Jose, CA, USA, 2011, pp. 26–37.
[32] H. Tijms, “New and old results for the M/D/c queue,” AEU Int. J.

Electron. Commun., vol. 60, no. 2, pp. 125–130, 2006.
[33] C. Mega, T. Waizenegger, D. Lebutsch, S. Schleipen, and J. Barney,

“Dynamic cloud service topology adaption for minimizing resources
while meeting performance goals,” IBM J. Res. Develop., vol. 58,
nos. 2–3, pp. 1–10, Mar./May 2014.

[34] Z. Zhang, L. Cherkasova, and B. T. Loo, “Optimizing cost and
performance trade-offs for MapReduce job processing in the cloud,”
in Proc. NOMS, Kraków, Poland, 2014, pp. 1–8.

[35] J. Cao, W. S. Cleveland, D. Lin, and D. X. Sun, “On the nonstationarity
of Internet traffic,” in Proc. SIGMETRICS, Cambridge, MA, USA, 2001,
pp. 102–112.

[36] M. F. Arlitt and C. L. Williamson, “Internet Web servers: Workload char-
acterization and performance implications,” IEEE/ACM Trans. Netw.,
vol. 5, no. 5, pp. 631–645, Oct. 1997.

[37] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido, “A nonstationary
Poisson view of Internet traffic,” in Proc. INFOCOM, Hong Kong, 2004,
pp. 1558–1569.

[38] G. P. Cosmetatos, “Notes approximate explicit formulae for the average
queueing time in the processes (M/D/r) and (D/M/r),” INFOR Inf. Syst.

Oper. Res., vol. 13, no. 3, pp. 328–331, 1975.
[39] L. M. Leemis and S. K. Park, Discrete-Event Simulation: A First Course.

Upper Saddle River, NJ, USA: Pearson, 2006.
[40] L. A. Baxter, “Probability, statistics, and queueing theory with computer

sciences applications,” Technometrics, vol. 34, no. 2, pp. 240–241, 1992.
[41] R. W. Wolff, “Poisson arrivals see time averages,” Oper. Res., vol. 30,

no. 2, pp. 223–231, 1982.
[42] A. Mohan, Z. Chen, and K. Q. Weinberger, “Web-search ranking

with initialized gradient boosted regression trees,” in Proc. Yahoo

Learn. Rank Challenge (ICML), 2011, pp. 77–89. [Online]. Available:
http://www.jmlr.org/proceedings/papers/v14/mohan11a.html

[43] Yahoo. Yahoo! Learning to Rank Challenge. Accessed: Nov. 20, 2015.
[Online]. Available: https://webscope.sandbox.yahoo.com/
catalog.php?datatype=c

[44] J. Hauswald et al., “DjiNN and Tonic: DNN as a service and its impli-
cations for future warehouse scale computers,” in Proc. ISCA, Portland,
OR, USA, 2015, pp. 27–40.

[45] C. Zhang et al., “Optimizing FPGA-based accelerator design for deep
convolutional neural networks,” in Proc. FPGA, 2015, pp. 161–170.

[46] K. Ovtcharov et al. (2015). Accelerating Deep Convolutional Neural

Networks Using Specialized Hardware. [Online]. Available: http://
research.microsoft.com/apps/pubs/default.aspx?id=240715

[47] T. Chen et al., “Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” in Proc. ASPLOS, Salt Lake City, UT,
USA, 2014, pp. 269–284.

[48] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Souffa, “Bubble-up:
Increasing utilization in modern warehouse scale computers via sensible
co-locations,” in Proc. ISCA, Porto Alegre, Brazil, 2011, pp. 248–259.



126 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

[49] R. Kettimuthu, G. Vardoyan, G. Agrawal, P. Sadayappan, and I. T. Foster,
“An elegant sufficiency: Load-aware differentiated scheduling of data
transfers,” in Proc. SC, Austin, TX, USA, 2015, pp. 1–12.

[50] G. Upadhyaya, V. S. Pai, and S. P. Midkiff, “Expressing and exploiting
concurrency in networked applications with aspen,” in Proc. PPoPP,
San Jose, CA, USA, 2007, pp. 13–23.

[51] M. Welsh, D. Culler, and E. Brewer, “SEDA: An architecture for well-
conditioned, scalable Internet services,” in Proc. SOSP, Banff, AB,
Canada, 2001, pp. 230–243.

[52] M. E. Haque et al., “Few-to-many: Incremental parallelism for reducing
tail latency in interactive services,” in Proc. ASPLOS, Istanbul, Turkey,
2015, pp. 161–175.

[53] M. Jeon et al., “Predictive parallelization: Taming tail latencies in
Web search,” in Proc. SIGIR, Gold Coast, QLD, Australia, 2014,
pp. 253–262.

[54] X. Liu and B. Wu, “Scaanalyzer: A tool to identify memory scalability
bottlenecks in parallel programs,” in Proc. SC, Austin, TX, USA, 2015,
pp. 1–12.

[55] R. Susukita et al., “Performance prediction of large-scale parallel system
and application using macro-level simulation,” in Proc. SC, Austin, TX,
USA, 2008, pp. 1–9.

[56] M. Sarwat, S. Elnikety, Y. He, and M. F. Mokbel, “Horton+: A dis-
tributed system for processing declarative reachability queries over par-
titioned graphs,” Proc. VLDB Endowment, vol. 6, no. 14, pp. 1918–1929,
2013.

[57] T. Kimura, “Approximating the mean waiting time in the GI/G/s queue,”
J. Oper. Res. Soc., vol. 42, no. 11, pp. 959–970, 1991.

[58] G. J. Franx, “A simple solution for the M/D/c waiting time distribution,”
Oper. Res. Lett., vol. 29, no. 5, pp. 221–229, 2001.

[59] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models—An

Algorithmic Approach. New York, NY, USA: Dover, 1994.
[60] A. Riska and E. Smirni, “ETAQA solutions for infinite Markov processes

with repetitive structure,” Int. J. Comput., vol. 19, no. 2, pp. 215–228,
2007.

[61] F. Yan, Y. He, O. Ruwase, and E. Smirni, “SERF: Efficient schedul-
ing for fast deep neural network serving via judicious parallelism,”
in Proc. Int. Conf. High Perform. Comput. Netw. Storage Anal. (SC),
Salt Lake City, UT, USA, Nov. 2016, pp. 300–311.

Feng Yan received the B.S. degree in computer sci-
ence from Northeastern University in 2008 and the
M.S. and Ph.D. degree in computer science from
the College of William and Mary in 2011 and 2016,
respectively. He is an Assistant Professor of com-
puter science and engineering with the University of
Nevada Reno, Reno, NV, USA. His current research
interests include big data, deep learning/machine
learning, cloud computing, workload characteriza-
tion, resource management, performance models and
tools, scheduling, and storage systems. He is a
member of ACM.

Yuxiong He received the B.Eng. degree in computer
engineering from Nanyang Technological University
in 2003 and the Ph.D. degree in computer sci-
ence from Singapore-MIT Alliance, which is a
joint graduate program of Massachusetts Institute of
Technology, Nanyang Technological University, and
National University of Singapore, in 2008. She is a
Researcher with Microsoft Research, Redmond, WA,
USA. Her current research interests include deep
learning/machine learning, resource management,
algorithms, modeling, and performance evaluation of

parallel and distributed systems. She is a member of ACM.

Olatunji Ruwase received the B.S. degree in com-
puter science from the University of Ibadan, the
M.S. degree in computer science from Stanford
University, and the Ph.D. degree in computer sci-
ence from Carnegie Mellon University. He is a
Senior RSDE with Microsoft Research, Redmond,
WA, USA. His research interests include some
combination of compiler, operating systems, and
computer architecture techniques for understand-
ing performance and reliability issues and crafting
effective and practical solutions. He is a member
of ACM.

Evgenia Smirni received the Diploma degree
in computer science and informatics from the
University of Patras, Greece, in 1987 and the Ph.D.
degree in computer science from Vanderbilt
University in 1995. She is the Sidney P. Chockley
Professor of computer science with the College of
William and Mary, Williamsburg, VA, USA. Her
research interests include queuing networks, stochas-
tic modeling, Markov chains, resource allocation
policies, Internet and multi-tiered systems, storage
systems, data centers and cloud computing, work-

load characterization, and models for performance prediction of of distributed
systems and applications. She has served as the Program Co-Chair of
QEST’05, ACM Sigmetrics/Performance’06, HotMetrics’10, ICPE’17, and
DSN’17. She also served as the General Co-Chair of QEST’10 and NSMC’10.
She is an ACM Distinguished Scientist.


