
COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY–JUNE 2018

Efficient In-Memory Processing Using Spintronics
Zamshed Chowdhury, Jonathan D. Harms, S. Karen Khatamifard, Masoud Zabihi, Yang Lv, Andrew P. Lyle,

Sachin S. Sapatnekar, Ulya R. Karpuzcu, Jian-Ping Wang
University of Minnesota, Twin Cities

Abstract—As the overhead of data retrieval becomes forbidding, bringing processor logic to the memory where the data reside
becomes more energy-efficient. While traditional CMOS structures are unsuited to the tight integration of logic and memory, emerging
spintronic technologies show remarkable versatility. This paper introduces a novel spintronics-based processing-in-memory (PIM)
framework called computational RAM (CRAM) to solve data-intensive computing problems.

Index Terms—CRAM, MTJ, processing-in-memory, spintronics, STT-MRAM.

F

1 INTRODUCTION

TODAY’S processors are inadequately equipped to address
the computational demand of big data analytics as data set

sizes grow exponentially with time. Hardware paradigms have
moved towards greater specialization to handle this challenge,
and specialized units for memory-centric computing are vital to
any future solution. Technology scaling has further enhanced
the need for memory-centric computing as it has improved
logic efficiency more than data communication. As a result,
communication energy dominates computation energy and
even the cleverest latency-hiding techniques cannot conceal the
overhead of communication.

An effective way to overcome this bottleneck and maintain
data locality is to embed compute capability into the main
memory: Processing in-memory (PIM) can effectively address the
communication bottleneck through distributed processing of
data at the source, obviating the need for intensive energy-
hungry communication. PIM features a rich design space,
which spans full-fledged processors and co-processors residing
in memory [1]. However, until recently, such promising studies
could not render practical prototype designs due to the incom-
patibility of the state-of-the-art logic and memory technologies.
The emergence of 3D-stacked architectures solved this problem
partially by enabling processing near-memory, PNM [2], [3], [4],
but genuine processing in-memory has remained elusive.

This paper introduces a high-density reconfigurable
spintronics-based platform providing true processing-in-memory
semantics, as opposed to most CMOS-based solutions which
only deliver processing-near-memory, leaving the highly
demanded potential in energy-efficiency untapped. The
resulting Computational RAM, CRAM, platform can configure
logic blocks of different functionality within a RAM array with
rows which can be accessed in parallel. Thus, a CRAM-based
solution not only meets true PIM semantics, but also facilitates
reconfigurability which enables tailoring computational and
memory resources to the demands of different algorithms or
working sets.

A CRAM array can serve as both, a stand-alone full-
fledged processor or a domain-specific co-processor attached to
a host processor. From an application standpoint, algorithms
are evolving, and such evolution may render very different
requirements for hardware acceleration than imposed by the
previous generation algorithms the hardware is tailored to. The
reconfigurability of CRAM helps it sidestep the inflexibility
of any non-reconfigurable design. The key characteristic of
emerging application domains is data-intensity.

This work is supported by DARPA Non-Volatile Logic program, NSF SPX
grant no. 1725420, and by C-SPIN, one of the six SRC STARnet Centers,
sponsored by MARCO and DARPA. Chowdhury and Harms equally con-
tributed to this work.

Our preliminary analysis indicates that CRAM can out-
perform CMOS solutions in energy efficiency with competi-
tive throughput: CRAM can deliver higher throughput at iso-
energy, or lower energy consumption at iso-throughput. The
idea of the CRAM has been proposed in a brief description
in [5], but as we show, substantial refinement is necessary to
take this idea to a practical implementation across the system
stack.

2 COMPUTATIONAL RANDOM ACCESS MEMORY

Although several methods for building spintronic logic have
been proposed in the past, none can be easily integrated with
memory because their structural difference from memory cells
would cause a break in memory regularity. In contrast, CRAM
uses a small modification to the magnetic tunnel junction (MTJ)
based memory cell [6], [7] to enable logic operations. A major
advantage over conventional PNM is that multiple operations
can proceed in parallel within the memory array, which is
particularly visible for computations such as dot products with
many independent operations.

We next outline the hardware structure of CRAM and its
reconfiguration to build logic functions. The CRAM concept
is unique in its ability to reconfigure memory as logic with
minimal changes to a standard spintronic memory array. This
is in contrast with competing approaches (e.g., [8], [9]) that
embed dedicated processing elements in a memory array or
near its periphery, or utilize expensive table look-up operations
to implement logic functions. In principle, a memory array
could perform logic in much the same way as an FPGA [10],
but the additional overhead required to access look-up tables
could compromise the regularity and/or density of the memory
array.
CRAM in memory mode: CRAM uses the 2T(ransistor) 1M(TJ)
cell architecture shown in Fig. 1a. This is similar to the stan-
dard 1T1M magneto-resistive RAM (MRAM) cell in terms of
memory function, except that the CRAM cell features a second
transistor that allows for logic operations to be performed
within the array. When the wordline for memory (WLM) is
logic high, the cell operates as a standard MTJ memory cell,
i.e., it behaves identically to the 1T1M MRAM cell. The MTJ
is accessible for read/write operations over bitline (BL) and
bitline bar (BLB).
CRAM in logic mode: For the logic mode, we show the
operation of a two-input CRAM gate in Fig. 1b. For a two-
input logic operation, the first two cells are loaded with the
input data, either by retrieving the result of a previous CRAM
operation or by writing the data to RAM using the memory
mode. The bitline for logic (BLL) is enabled for these cells,
which connects all of them to the shared logic line (LL), and a
voltage pulse is applied to BL2 while BL[0:1] are grounded. The
three MTJs are now reconfigured into the circuit in Fig. 1c [6],



COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY–JUNE 2018

(a) (b) (c) (d)
Fig. 1: (a) CRAM cell in (default) memory mode. (b) 2-input CRAM gate in logic mode. An implementation of (c) 2-input NAND,
(d) inverting 3-input MAJ, using MTJs.

communicating through LL. The initial states of the three MTJs
determine the current through the output MTJ. If this current
is large enough, the state of the output MTJ switches. Thus,
computation entails switching the state of one (output) MTJ by
passing currents through the input MTJs.

CRAM supports true in-memory computing by reconfiguring
cells as logic gates within the memory array. Further, because
all cells in the array are identical, the order of applied voltage
pulses (as opposed to the physical layout) determines inputs
and outputs. This allows great flexibility in reconfiguring the
CRAM array as memory or as various types of logic gates.

In logic mode, CRAM facilitates two types of reconfigurabil-
ity: (i) each MTJ can serve as an input or as an output in a logic
gate, as a function of evolving computational demands of the
workload over time; (ii) for a fixed input-output assignment,
the logic configuration is reprogrammable and can realize dif-
ferent logic functions by selecting the proper voltage pulses. For
a fixed input-output assignment, the two input configuration
can implement NOT, AND, NAND, NOR, and OR functions;
and a three-input configuration, all of these as well as the
majority function, MAJ. Reconfiguration (considering a fixed
input-output assignment) entails, first, setting the output to a
known initial state, and then, applying a fixed voltage pulse
(specific to the logic function to be implemented). For each
configuration, the final output state depends on the input MTJ
states.

For an MTJ, the free layer direction with respect to the fixed
layer, i.e., antiparallel (AP) and parallel (P), defines logic 1 and
0, respectively. For a two-input gate, logic state 00 corresponds
to both input MTJs being P; 01 or 10, to one of the MTJs being
AP; and 11, to both being AP. To evaluate a NAND, the output
MTJ is set to P. Next, CRAM is configured as shown in Fig. 1b
to derive the structure in Fig. 1c. Since the P configuration has
a lower resistance than AP, the parallel resistance of the two
input MTJs varies with the input logic state, implying that the
current flow through the output MTJ depends on the inputs.
The current is the smallest for the 11 case where both inputs are
in the AP state. By optimizing the applied voltage pulse, we
can ensure that this current is inadequate to switch the output
MTJ (but the currents for the 00, 01, and 10 cases are sufficient
for switching the output), such that the output remains in the
preset state of 0. Thus, the NAND function is implemented.
Other gates can be implemented similarly. Fig. 1d shows the
structure for a three-input majority gate (MAJ3) that sets the
output to the majority state of the three inputs. If the resistance
of two or more inputs is low enough (i.e., if two or more inputs
are in P state), the current becomes sufficient to switch the
output.

A basic set of computational functions can be implemented
by combining a set of universal NAND or MAJ gates. The volt-
age pulse applied on the BL lines (through appropriate voltage
multiplexers) varies with the logic function. Reconfiguring cells
to perform a new operation requires the application of voltage
pulses to BL and BLL, and turning off WLM. This is easy
to accomplish since it has a similar complexity as addressing
elements of the memory array. We omit further circuit details
as they are not the focus of this paper. We next overview proof-

of-concept implementations of a basic set of computational
functions; others can be realized similarly.

3 IMPLEMENTING COMPUTATIONAL FUNCTIONS

A full adder takes inputs A, B, and C and provides two output
bits, the sum S = A ⊕ B ⊕ C, and the output carry Cout

= MAJ(A,B,C). This function (like any other) can clearly be
implemented using a set of universal NAND gates, but is built
more compactly using a pair of MAJ evaluations [11]. A full
adder computation proceeds in three (sequentially dependent)
steps, as shown in Fig. 2:
Step 1: Compute the output carry Cout = MAJ(A,B,C).
Step 2: Compute D = E = INV(Cout).
Step 3: Compute the sum S = MAJ(A,B,C,D,E).

This implementation uses two MAJ gates in two stages and
an inversion stage to obtain INV(Cout). In contrast, a NAND
gate implementation can be shown to use 9 logic stages. Since
each stage of logic requires the evaluation of a configuration
similar to Fig. 1b, the computation time depends on the number
of stages, implying that the MAJ-based full adder is preferable.
Multi-bit adders can be derived from full adders using standard
techniques, ranging from ripple-carry adders to various faster
schemes that speed up the carry chain.

The problem of performing computations in the CRAM
array has both a temporal aspect, to avoid data conflicts, and
a spatial aspect, where data layout is optimized to maximize
parallelism and to ensure that the latency of transmitting data
within a configured “gate” is modest. To illustrate this, we
consider the scheduling of operations of a ripple-carry adder
(similar considerations hold for other types of adders with
faster carry chains), consisting of MAJ-based full adders. For an
n-bit adder, if all operands are stored within the same row, they
must share the same LL. This induces a sequential dependence,
requiring 3n steps to perform n-bit addition.

TABLE 1: Scheduling operations for a ripple-carry adder.
Time 1 2 3 4 5 6
Bit 0 Cout,1 – D0, E0 S0 – –
Bit 1 Cout,2 – D1, E1 S1 –
Bit 2 Cout,3 – D2, E2 S2

If the operands lie in different (e.g., adjacent) rows whose
LLs can (dis)connect by switching (off) on a communicating
transistor, switch, computations in separate rows can proceed
in parallel, or be pipelined by turning on the corresponding
switch. Orchestrating computations in CRAM hence requires
careful temporal and spatial scheduling of operations (the latter,
by data layout optimization). One of the major advantages of
CRAM is that similar independent operations can proceed in
parallel along different LLs. This is different from most of the
PNM, where the need to perform computations at the periphery
inherently introduces a serial bottleneck.

Table 1 illustrates the sequence of pipelined computations
for the first few bits of an n-bit adder, where each bit is
placed in a separate row, and the LLs are isolated using a
switch. We assume unit delays for each step to enable lock-step
computation, completing an n-bit addition in n + 3 steps. The



COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY–JUNE 2018

(a) Step 1: Cout = MAJ(A,B,C) (b) Step 2: D = E = INV(Cout) (c) Step 3: S = MAJ(A,B,C,D,E)

Fig. 2: Executing a full adder operation on the CRAM array. The inputs are shown in green and the output in blue.

computation of Bit 0 starts at time 0 when its Step 1 is initiated.
Step 1 of Bit 1 can start at time 1, as all of Bit 1’s operands
(specifically, Cout,1) are ready. However, Step 2 of Bit 0 also
requires Cout,1 to compute D0 and E0. Note that the CRAM
computation in Fig. 1b only allows an MTJ to participate in
one gate at any given time (otherwise it would effectively short-
circuit the involved gates by connecting their LL lines). The best
schedule in this case begins the computation of (Step 1 of) Bit
1 at time 1, pauses the computation of Bit 0 for one time slot,
and then resumes the computation of (Step 2 of) Bit 0 at time
2. Similarly, a waiting period is inserted after Cout,1 and Cout,2

are computed, as illustrated in the table.
A multiplier can be implemented efficiently using arrays of

full adders arranged as Wallace/Dadda trees using 3-to-2 com-
pression schemes [12]. An alternative structure for a multiplier,
which trades space efficiency for a longer computation time, is
a multiply-accumulate structure in which partial products are
successively generated and added to a set of memory cells that
function as an accumulator for the sum of such products.

The above operations lay the groundwork for more complex
computations. For example, the dot product of two integer
vectors X = [x1, · · · , xm] and Y = [y1, · · · , ym], where all xis and
yis are n-bit integers, is given by

∑m
i=1 xi · yi. Viewing this as a

sum of multiply operations, and a multiplier as a computation
that adds a set of partial products, it is easy to see that the
operation can be performed similar to multiplication: in effect,
a dot product involves the addition of all the partial products
generated in multiplying the integers xis and yis.

4 EVALUATION

We continue with an end-to-end quantitative characterization
of CRAM’s energy efficiency potential. We choose an emerg-
ing application domain, bioinformatics, which can benefit from
CRAM. Bioinformatics constitutes a major class of memory-
intensive big-data applications, where hardware platforms that
collocate logic and memory to avoid the latency and energy
overhead of expensive data transfers with the potential to en-
hance energy efficiency significantly. These applications process
long text strings representing biological sequence data and
require fast pattern matching in very large databases resid-
ing in memory. The computations are dominated by integer
arithmetic and comparison operations – excellent acceleration
targets for CRAM as indicated in Sections 2 and 3. Table 2
lists the benchmark applications from the BioBench suite [13]
deployed for this study.

TABLE 2: Bioinformatics benchmarks deployed.
Benchmark Description
blastn (bl), fasta dna (fdna) DNA Sequence Searching
blastp (bl-p), fast prot (fprot) Protein Sequence Searching
clustalw (cl) Multiple Sequence Alignment
hmmer (hm) Sequence Profile Searching
mummer (mm) Genome-Level Alignment
protpars (pr) Phylogenetic Analysis
tigr Sequence Assembly
plsa Parallel Linear Space Alignment
geneNet (gn) Sequence Search
semphy (sm) Phylogenetic Tree Construction
snp Single Nucleotide Polymorphism
svm Recursive Feature Elimination

Our comparisons are made against a state-of-the-art com-
peting solution. Due to recent advances in 3D stacking, practical
implementations that catalyze processing near-memory have been
rendered practical. These solutions include the Hybrid Memory
Cube (HMC) [2], Hybrid Bandwidth Memory (HBM) [3], and

Active Memory Cube (AMC) [4], and previous studies report
by up-to 15× improvement in energy efficiency due to 3D stack-
ing, when compared to conventional, classic execution [14].
While these approaches represent the best PNM solutions, they
still require data to be brought to the periphery of the memory
for processing. To quantify the advantage of PIM using the
CRAM approach, for representative bioinformatics applications
from Table 2, we compare the energy efficiency in terms of
energy-delay product (EDP) [15] of CRAM to a hypothetical,
HMC-based conventional (CMOS) PNM-based accelerator. To
this end, we obtained instruction (i.e., operation) mixes of
the benchmark applications using Pin [16], and derived the
overall energy efficiency using per operation estimates (we de-
ployed the peak energy efficiency and throughput reported for
HMC [2] in estimating energy and delay per operation, not to
favor CRAM). CRAM memory interface is modeled using [17].
For the specific technology used for individual memory cells,
we consider two potential candidates for implementing CRAM
in a 10nm technology:
• A near-term STT-MRAM technology, with an MTJ tunneling
magnetoresistance ratio (TMR) of 100%, a parallel resistance,
RP , of the MTJ of 2KΩ, and a transistor resistance of 4KΩ. The
critical switching current, Jc0, is taken to be 13.5MA/cm2, and
the MTJ switching time is set to 0.5ns.

• A projected long-term STT-MRAM technology, with an MTJ
TMR of 600%, as experimentally demonstrated in [18] (this is
possibly conservative, since TMRs of 1000% have been pro-
jected within the next decade [19], but is adequate to show the
promise of CRAM). The value of Jc0 is reduced to 1MA/cm2,
which is realistically achievable. The MTJ switching time is
0.5ns, RAP is 5KΩ, and the transistor resistance remains at
4KΩ.

We implement a carry lookahead-adder based on the MAJ-
based full adder from [11], and a multiplier based on a Wal-
lace tree structure [12]. The energy and delay per operation
estimates for CRAM come from these implementations. Fig. 3
shows the results of this comparison when all computation
is performed near-memory using HMC vs. in-memory using
CRAM. We analyze both 2D and 3D-stacked implementations
of the CRAM co-processor, and report the energy efficiency
under current and projected CRAM technologies. Overall, we
observe that
• In the near-term technology, the 2D CRAM implementation
can improve the energy efficiency by about 1.8×; the 3D-
stacked correspondent, by up to 11×.

• In the projected technology, the CRAM array can unlock more
than 2.2 (2.8)× energy efficiency in 2D (3D), above and beyond
the near-term number. For both technologies, the energy per
operation of the CRAM memory cell is dominated by the
overhead of the memory periphery. Therefore, the 3D-stacked
CRAM implementation can significantly reduce this cost by
reducing array interconnect overheads.

CRAM also incurs a latency overhead per basic operation,
due to the sequencing of low-level computations. This prelim-
inary study is incomplete and is an indicator of the potential
benefits of CRAM. Further exploration of temporal and spatial
scheduling techniques can mask this overhead by exploiting
fine grain parallelism in computational steps at the level of
individual operations.

5 CONCLUSION & DISCUSSION
This paper introduces Computational RAM, CRAM, a high-
density reconfigurable spintronics-based platform facilitat-



COMPUTER ARCHITECTURE LETTERS, VOL. 17, NO. 1, JANUARY–JUNE 2018

HMC CRAM-2D Normalized CRAM-3D Normalized EDP CRAM+2D CRAM+3D

Benchmark % mem HMC-Energy [nJ] HMC-Delay [ns] HMC-EDP CRAM-Energy [nJ] CRAM-Delay [ns] CRAM-EDP-abs CRAM-EDP CRAM-3D-Energy 
[nJ]

CRAM-3D-Delay 
[ns]

CRAM-3D-EDP-
abs

CRAM 3D CRAM 2D CRAM+3D CRAM+2D CRAM+2DEnergy 
[nJ]

CRAM+2DDelay 
[ns]

CRAM+2DEDP-
abs

CRAM+3DEnergy 
[nJ]

CRAM+3DDelay 
[ns]

CRAM+3DEDP-
abs

blastn 56.00 1.693682 0.527000 0.892570 0.037401 18.709778 0.699760 0.783983 0.007559 17.997956 0.136047 6.560769 1.275537 19.552732 3.503389 0.037303 6.829778 0.254773 0.007462 6.117956 0.045649

blastp 61.00 1.739400 0.502625 0.874266 0.040720 16.764222 0.682641 0.780817 0.008214 15.988844 0.131331 6.656964 1.280710 19.705353 3.451233 0.040634 6.234222 0.253320 0.008128 5.458844 0.044367

clustalw 54.00 1.675395 0.536750 0.899268 0.036073 19.488000 0.702991 0.781737 0.007297 18.801600 0.137196 6.554623 1.279202 19.584830 3.537027 0.035971 7.068000 0.254244 0.007195 6.381600 0.045917

fasta_dna 64.00 1.766831 0.488000 0.862213 0.042712 15.596889 0.666170 0.772628 0.008607 14.783378 0.127238 6.776356 1.294283 19.969719 3.441371 0.042632 5.876889 0.250544 0.008527 5.063378 0.043176

fasta_prot 52.00 1.657108 0.546500 0.905609 0.034745 20.266222 0.704156 0.777549 0.007035 19.605244 0.137924 6.565985 1.286092 19.668656 3.578351 0.034639 7.306222 0.253080 0.006929 6.645244 0.046043

hmmer 57.00 1.702826 0.522125 0.889088 0.038065 18.320667 0.697370 0.784366 0.007690 17.596133 0.135314 6.570552 1.274916 19.556236 3.489355 0.037969 6.710667 0.254800 0.007595 5.986133 0.045463

mummer 56.00 1.693682 0.527000 0.892570 0.037401 18.709778 0.699760 0.783983 0.007559 17.997956 0.136047 6.560769 1.275537 19.552732 3.503389 0.037303 6.829778 0.254773 0.007462 6.117956 0.045649

protpars 28.00 1.437661 0.663500 0.953888 0.018812 29.604889 0.556939 0.583862 0.003892 29.248978 0.113822 8.380493 1.712735 26.057311 5.030930 0.018653 10.164889 0.189605 0.003732 9.808978 0.036607

tigr 49.00 1.629677 0.561125 0.914452 0.032754 21.433556 0.702028 0.767703 0.006642 20.810711 0.138227 6.615564 1.302587 19.892393 3.655705 0.032641 7.663556 0.250144 0.006529 7.040711 0.045970

plsa 85.00 1.958845 0.385626 0.755381 0.056653 7.425602 0.420682 0.556914 0.011357 6.345159 0.072065 10.481940 1.795608 29.063630 3.952310 0.056620 3.375570 0.191124 0.011324 2.295127 0.025991

geneNet 65.50 1.780549 0.480686 0.855885 0.043708 15.013117 0.656189 0.766679 0.008803 14.180535 0.124837 6.856048 1.304326 20.156522 3.442549 0.043631 5.698190 0.248620 0.008727 4.865609 0.042462

semphy 60.80 1.737569 0.503601 0.875042 0.040587 16.842125 0.683575 0.781192 0.008188 16.069292 0.131570 6.650748 1.280096 19.692556 3.452464 0.040500 6.258069 0.253454 0.008101 5.485236 0.044435

snp 45.11 1.594092 0.580097 0.924729 0.030170 22.947883 0.692339 0.748694 0.006132 22.374507 0.137209 6.739566 1.335659 20.366718 3.786657 0.030048 8.127107 0.244207 0.006011 7.553732 0.045404

svm 43.39 1.578362 0.588484 0.928841 0.029028 23.617276 0.685562 0.738083 0.005907 23.065768 0.136251 6.817152 1.354860 20.648166 3.857042 0.028903 8.332016 0.240817 0.005782 7.780507 0.044984

CRAM-2D

Energy [nJ] Time [ns]

Main memory access 0.0666111111111111 1.58888888888889

Basic compute 2.24E-04 40.5

wr time=0.5ns, rd time=0.25ns

144ns and 1.85e-4nJ for 32-bit RCA

NMP (HMC)

Energy [nJ] Time [ns]

Main memory access 2.096 0.3125

Basic compute 1.18164096 0.8

mem tCLK: 1.25ns

10.48-13.7pJ/bit HMC vs. 70pJ/bit DDR3 or 40pJ/bit LPDDR

Compute logic replicates Xeon Phi

HMC: 3.2G 32 bit operations per second —> 1/3.2G s per op = 0.3125 max

Compute: derived from mem energy following Keckler et al.

CRAM-3D

Energy [nJ] Time [ns]

Main memory access 0.01332222222222220.317777777777778

Basic compute 2.24E-04 40.5

wr time=0.5ns, rd time=0.25ns

144ns and 1.85e-4nJ for 32-bit RCA

CRAM+2D

Energy [nJ] Time [ns]

Main memory access 0.0666111111111111 1.58888888888889

Basic compute 2.5E-06 13.5

wr time=0.5ns, rd time=0.25ns

Updated

CRAM+3D

Energy [nJ] Time [ns]

Main memory access 0.01332222222222220.317777777777778

Basic compute 2.5E-06 13.5

wr time=0.5ns, rd time=0.25ns

Updated

ED
P 

G
ai

n 
w.

r.t
. H

M
C

0

5

10

15

20

25

30

bl bl-p cl fdna fprot hm mm pr tigr plsa gn sm snp svm

CRAM 2D CRAM 2D Projected
CRAM 3D CRAM 3D Projected

�1

Fig. 3: EDP gain of CRAM w.r.t. HMC [2] for a representative set of bioinformatics applications.

ing logic and memory. CRAM features true processing-in-
memory semantics, and by that differs from most CMOS-based
processing-near-memory solutions.

CRAM is unique in combining multi-grain (possibly dy-
namic) reconfigurability with true processing in memory se-
mantics. The resistive element based Associative Processor [20]
and the DRAM technology based DRAF [21] on the other
hand, both represent look-up-table based solutions which can
support reconfigurable fabrics like FPGA. A similar concept to
CRAM based on resistive RAMs is introduced in [22], but not a
practical implementation. The SRAM-based Compute Cache [23]
can carry out different vector operations such as copy, search,
comparison in the cache, but CRAM can perform a wider range
of computations in the memory array. Furthermore, maintain-
ing data coherence among cores which constitute PNM logic
is an issue [24], [25] which is not the case for CRAM due
to the absence of dedicated cores (with full-fledged memory
hierarchies) to implement logic operations.

This paper proposes a method for performing true in-
memory computation using STT-MRAMs. The CRAM design is
based on configuring segments of the memory array as resistive
dividers, since the state of an STT-MRAM cell is expressed
as one of two resistance values. This idea does not directly
extend to DRAMs, where the state is stored as a charge, and
the problems with performing similar computations involve
charge sharing, loss of state, etc. In fact, to the best of our
knowledge, there is no true in-memory approach available
for DRAM structures as prior methods (e.g., [26]) perform
computations at the edge of memory. This implies that the
bitlines required to transport data to the edge of memory
constitute a serial bottleneck. On the other hand, in CRAM,
it is possible to simultaneously perform multiple operations
in parallel in multiple rows. A comparable design based on
memristor-based technologies, MAGIC [27], also uses resistive
division. However, this work does not go into a system-level
evaluation of applications running on this platform, as we do in
this paper. At the same time, such arrays suffer from significant
endurance issues as compared to STT-MRAMs.

The CRAM architecture can perform computations locally
within the array for any intermediate operation, where major
data movement tasks are generally only required for input data
and the eventual output data. In other words, over an n-step
operation where n is sufficiently large, the cost of performing
these write operations can be amortized. In contrast, in a
conventional PNM architecture, data must be taken out to the
periphery of the memory array on every operation, and then
the result must be brought back to an array location, incurring
this type of overhead in each of the intermediate steps.

Furthermore, the conventional PNM structure suffers from
an inherent serial bottleneck in that while one data set is being
taken to the periphery, no other operation may be performed
within the array because the bit lines are shared over all rows
in the array. The CRAM array, on the other hand, can perform
operations in parallel in every row of the array because the logic
lines for each row are separate.

Based on the encouraging preliminary analysis from Sec-
tion 4, our future work is directed to enable CRAM’s energy
efficiency potential by bridging the gap between the current
and projected gains in energy efficiency.

REFERENCES

[1] G. H. Loh et al., “A Processing in Memory Taxonomy and a
Case For Studying Fixed-function PIM,” in Workshop on Near-Data
Processing in conjunction with MICRO, 2013.

[2] [Online]. Available: http://www.hotchips.org/wp-content/
uploads/hc archives/hc23/HC23.18.3-memory-FPGA/HC23.18.
320-HybridCube-Pawlowski-Micron.pdf

[3] [Online]. Available: http://www.amd.com/en-us/innovations/
software-technologies/hbm

[4] R. Nair et al., “Active Memory Cube: A Processing-in-Memory
Architecture for Exascale Systems,” IBM Journal of R.&D., vol. 59,
no. 2/3, 2015.

[5] J.-P. Wang and J. Harms, “General Structure for Computational
Random Access Memory (CRAM),” 2015, US Patent 9224447 B2.

[6] A. Lyle et al., “Direct Communication between Magnetic Tunnel
Junctions for Nonvolatile Logic Fanout Architecture,” Applied
Physics Letters, vol. 97, no. 152504, 2010.

[7] J. Wang et al., “Programmable Spintronics Logic Device Based on a
Magnetic Tunnel Junction Element,” Applied Physics Letters, vol. 97,
no. 10D509, 2005.

[8] S. A. Wolf et al., “The Promise of Nanomagnetics and Spintronics
for Future Logic and Universal Memory”,” Proc. of IEEE, vol. 98,
no. 12, 2010.

[9] T. Hanyu et al., “Spintronics-based Nonvolatile Logic-in-Memory
Architecture Towards an Ultra-Low-Power and Highly Reliable
VLSI Computing Paradigm,” in DATE, 2015.

[10] O. Goncalves et al., “Non-volatile FPGAs Based on Spintronic
Devices,” in DAC, 2013.

[11] C. Augustine et al., “Low-power Functionality Enhanced Com-
putation Architecture Using Spin-based Devices,” in International
Symposium on Nanoscale Architectures, 2011.

[12] B. Parhami, Computer Arithmetic: Algorithms and Hardware Designs,
2nd ed. New York, NY: Oxford University Press, 2010.

[13] A. Jaleel et al., “Last Level Cache (LLC) Performance of Data Min-
ing Workloads on a CMP: A Case Study of Parallel Bioinformatics
Workloads.” HPCA, 2006.

[14] C. Weis et al., “Design Space Exploration for 3D-stacked DRAMs.”
DATE, 2011.

[15] R. Gonzalez and M. Horowitz, “Energy Dissipation in General
Purpose Microprocessors,” The Energy Journal, vol. 31, no. 9, 1996.

[16] C.-K. Luk et al., “Pin: Building Customized Program Analysis
Tools with Dynamic Instrumentation,” in PLDI, 2005.

[17] X. Dong et al., “Circuit and Microarchitecture Evaluation of 3D
Stacking Magnetic RAM (MRAM) as a Universal Memory Re-
placement,” in DAC, 2008.

[18] S. Ikeda et al., “Tunnel Magnetoresistance of 604% at 300K by
Suppression of Ta Diffusion in CoFeBMgOCoFeB Pseudo-spin-
valves Annealed at High Temperature,” Applied Physics Letters,
vol. 93, no. 082508, 2008.

[19] A. Hirohata et al., “Roadmap for Emerging Materials for Spintronic
Device Applications,” IEEE Transactions on Magnetics, vol. 51,
no. 10, 2015.

[20] L. Yavits et al., “Resistive Associative Processor,” CAL, vol. 14,
no. 2, 2015.

[21] M. Gao et al., “DRAF: A Low-power DRAM-based Reconfigurable
Acceleration Fabric,” ISCA, 2016.

[22] D. Strukov, “Hybrid CMOS/Nanodevice Circuits with Tightly
Integrated Memory and Logic Functionality,” in Nanotech, 2011.

[23] S. Aga et al., “Compute Caches,” HPCA, 2017.
[24] A. Boroumand et al., “LazyPIM: An Efficient Cache Coherence

Mechanism for Processing-in-Memory,” CAL, vol. 16, no. 1, Jan
2017.

[25] M. Gao et al., “Practical Near-Data Processing for In-Memory
Analytics Frameworks,” in PACT, 2015.

[26] S. Jeloka et al., “A 28 nm Configurable Memory (TCAM/BCAM/S-
RAM) Using Push-Rule 6T Bit Cell Enabling Logic-in-Memory,”
IEEE JSSCC, vol. 51, no. 4, April 2016.

[27] S. Kvatinsky et al., “Magic: Memristor-aided logic,” IEEE Transac-
tions on Circuits and Systems II: Express Briefs, vol. 61, no. 11, Nov
2014.


