
Characterizing Temperature, Power, and Soft-Error

Behaviors in Data Center Systems:

Insights, Challenges, and Opportunities

Bin Nie∗, Ji Xue∗, Saurabh Gupta†, Christian Engelmann‡, Evgenia Smirni∗, and Devesh Tiwari§
∗ College of William and Mary ({bnie, xuejimic, esmirni}@cs.wm.edu)

† Intel Labs (saurabg@gmail.com)
‡ Oak Ridge National Laboratory (engelmannc@ornl.gov)
§ Northeastern University (tiwari@northeastern.edu)

Abstract— GPUs have become part of the mainstream high
performance computing facilities that increasingly require more
computational power to simulate physical phenomena quickly and
accurately. However, GPU nodes also consume significantly more
power than traditional CPU nodes, and high power consumption
introduces new system operation challenges, including increased
temperature, power/cooling cost, and lower system reliability. This
paper explores how power consumption and temperature char-
acteristics affect reliability, provides insights into what are the
implications of such understanding, and how to exploit these
insights toward predicting GPU errors using neural networks.

I. INTRODUCTION

Graphics processing units (GPUs) while traditionally de-

signed for gaming and graphics applications, are now in-

tensively adopted to accelerate scientific applications that

require high throughput and extensive parallel computational

resources [17, 21, 39]. The powerful parallelism provided by

general-purpose GPUs enables scientists to simulate physical

phenomena more quickly and accurately, but at the expense of

higher computational power. Moreover, the reliability of GPUs

cannot be overlooked because most scientific applications are

long-running, taking several hours or even days to complete.

Consequently, unreliable GPUs will lead to significant loss in

research time and increase overall cost.

An initial step of any reliability study is to develop a deep

understanding on GPU errors in the field. Tiwari et al. [35]

study the characteristics of various errors on the Titan super-

computer at Oak Ridge National Laboratory. They demon-

strate that GPU errors correlate with temperature and show

early quantitative evidences. El-Sayed et al. [9] investigate

the impact of high temperature on system performance and

failures and reveal the presence of a non-trivial relationship

between temperature and hardware reliability. A host of prior

This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-00OR22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

works study the impact of temperature on device reliability,

but they mainly focus on hard disk drives, solid state drives,

and CPUs [4, 9, 15, 29, 32, 34].

Unlike previous work, we conduct an in-depth study on

the GPU nodes in the Titan supercomputer to understand the

interplay between temperature and GPU reliability, and more

specifically GPU soft-errors. We also investigate how different

levels of power consumption affect the data centers operations

and reliability . We believe that a thorough understanding on

the relationship between temperature, power consumption and

GPU errors is key to improving the operational efficiency of

data centers. Beyond characterizing the conditions that may

lead to GPU errors, we also exploit the observed insights

and implications for error prediction. This paper makes the

following three contributions:

First, we analyze large amounts of measured system data to

understand the characteristics of the temperature distribution

on the Titan. In particular, we investigate how the GPU temper-

ature distribution varies in time and space across the system.

Furthermore, we compare GPUs with other components, such

as CPU and DIMM, and study how their temperature distri-

butions differ from one another over time. We also study how

frequently Titan nodes become extremely hot and for how long

they stay in such a hot state.

We discovered that the retention time histogram in the hot

state and in the normal state varies significantly between CPUs

and GPUs. We also found that GPUs switch in and out of the

hot and cold states more frequently compared to CPUs and

stay in these states for a shorter period of time. We observe

that, surprisingly, the retention time in the hot state remains

similar for cabinets from different temperature zones.

Second, we show that there exists an interconnection be-

tween temperature, power consumption, and GPU soft-errors.

It is challenging to quantitatively exhibit and exploit this rela-

tionship. We point out that predicting future GPU soft errors

based on past temperature and power is simply inconclusive

as contrasting conclusions may be reached.

Third, we elaborate on how to exploit the above observa-

tions for GPU soft-error prediction. We propose a machine-

learning-based technique that leverages observations of past

system measurements to predict soft errors in GPUs. We show

2017 IEEE 25th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems

2375-0227/17 $31.00 © 2017 IEEE

DOI 10.1109/MASCOTS.2017.12

22

that temperature and power consumption are of almost equal

importance in GPU soft-error prediction, and together with

a host of other factors including resource utilization, node

location, and application type, may determine whether an

upcoming application execution on a set of nodes will result

in soft GPU errors. We evaluate our technique under various

scenarios to demonstrate its effectiveness and robustness.

This paper is organized as follows. Section II introduces

background and data collection methodology. In Section III,

we investigate the temperature behavior on the Titan. Then, we

discuss the relationship between SBEs and temperature/power

consumption in Section IV. With the discovered observations,

we design a novel algorithm to address the imbalanced dataset

challenge and neural-network-based solutions for SBE oc-

currence prediction, and evaluate our method in Section V.

We discuss open problems and challenges in Section VI and

present related work in Section VII. Section VIII concludes

the paper.

II. BACKGROUND AND METHODOLOGY

Oak Ridge National Laboratory holds America’s fastest

supercomputer – the Titan supercomputer, which provides

powerful computational ability for scientific projects. This

4352 square feet supercomputer is organized as a 25× 8 grid,

resulting in a total of 200 cabinets. In each cabinet, there are

3 cages, each of which is composed of 8 slots. Each slot

has 4 nodes and 2 high-speed interconnect Gemini routers

(two nodes share one router). Every Titan compute node is

equipped with an AMD Opteron 6274 16-core CPU (with

32GB DDR3 memory) and an NVIDIA Tesla K20X GPU

(with 6 GB GDDR5 memory). There are 18,688 GPUs in

the entire Titan supercomputer, which together with the same

amounts of CPUs, provide a theoretical peak speed of 27

petaFLOPS. K20X GPU [1] is specially designed for general-

purpose computation on high-performance computing system.

It contains 14 streaming multiprocessors (SMs), sharing the

1.5MB L2 cache and 6GB GDDR5 memory. Every SM

contains 192 CUDA cores, and is allocated with 64K 32-bit

registers, 64KB of combined shared memory and L1 cache,

48KB read-only data cache. Major memory components (i.e.,

register files, cache, and DRAM) are protected by single-error-

correction-double-error-detection (SECDED) error-correcting

codes (ECC). Read-only data cache is parity-protected. There

is no ECC protection for non-storage components, such as

logic units, thread schedulers, instruction dispatch unit, and

interconnection network.

A. GPU Errors and Data Collection

The Titan supercomputer is extensively used by scientific

applications from different domains. Everyday this large-

scale system observes various failures and errors, including

hardware failures and soft-errors. NVIDIA documents a list

of GPU XID errors and their causes in [2]. In this paper, we

focus on the most commonly observed error – single bit error

(SBE). Its large amount makes SBE an appropriate candidate

to perform statistically solid analysis on GPU reliability.

Though SBEs are correctable, the ECC protection overhead is

significant from the viewpoint of the entire system, in terms

of both storage and memory bandwidth. Therefore, it is of

great importance to study the characteristics of SBEs and seek

opportunities to perhaps reduce ECC overhead.

Towards this goal, we collect GPU error related information

from February 2015 to June 2015 (more than 60 million node

hours). We leverage the nvidia-smi utility to collect SBEs

on every GPU node. This utility only provides snapshots

of SBE counts before and after every executed application,

which means that we cannot associate a timestamp with an

individual SBE. Hence, we have to perform data analysis at

the granularity of one “batch job” (also referred to as “job”

or “batch”). We denote a batch job as a set of applications

(also referred as “apruns”) that are submitted by the same

user. The SBE count is collected at the start and end of the

batch job and the difference is used to represent the number

of SBE experienced by this job. Our tracing framework is

also able to identify the node location for SBEs. Besides

error information, we collect GPU resource utilization data

such as GPU core-hours, maximum memory consumption, and

total memory consumption for every aprun. Temperature and

power consumption information is collected every minute on

every node in an out-of-band manner without instrumenting

applications.

B. Limitations and Scope

We also recognize the limitations and assumptions applica-

ble in this study. First, we distinguish applications based on

their binary names as we do not have the complete access to or

knowledge about the users’ code and their work flow execution

practices. Secondly, the error collection is performed at the

batch level. We conservatively assume that SBEs occur in all

apruns of one SBE-affected batch. Finally, we also recognize

that it is hard to accurately identify and model the effects of

software stack changes or operational practices. Therefore, our

data characterization and analysis does not explicitly model

these effects.

III. TEMPERATURE BEHAVIOR CHARACTERISTICS

Before exploring the relationship between temperature,

power consumption, and SBEs, we would like to develop

a deep understanding of the temperature behavior on the

Titan. Note that power consumption is highly correlated with

temperature, i.e., the Spearman correlation coefficient is as

high as 0.5. Consequently, we primarily show analysis for

temperature. Similar analysis (and conclusions) can also be

applied to power consumption. There are two major questions

we want to address for the temperature characteristics: (1)

what are the GPU temperature characteristics at the node

level, and how do these characteristics compare against other

components in the system such as CPU and DIMM? (2)

what are the GPU temperature characteristics at a coarser

granularity such as at the cabinet level, and how do these

characteristics differ from CPU and DIMM?

23

(a) (b)

Fig. 1. (a) Histogram of temperature for GPUs, CPUs, and DIMMs. The
average temperature of GPU, CPU and DIMM are 28.1◦C, 28.3◦C and
26.1◦C, respectively. The standard deviation of GPU, CPU and DIMM are
6.1, 9.4 and 2.6, respectively. (b) Monthly Histogram of GPU temperature.

We first show a general view of the temperature on the

Titan supercomputer. Figure 1(a) presents the empirical pdf

of temperature for different components (GPU, CPU, and

DIMM) cumulated over the whole sampling period on the

entire system. Each Titan node contains one CPU, one GPU,

and four DIMMs. Due to space limitation, we only show the

histogram of DIMM A, since all four DIMMs expose similar

behavior. We observe that the GPU temperature histogram

is fairly spread. While the mean is similar, the variance of

the GPU temperature histogram is significantly different from

the variance of the CPU and DIMM temperature histograms.

This implies that all components attain a range of temperature

values over time, and variance may vary from one component

to another. Then, we show the monthly empirical pdf for

temperature in Figure 1(b) and find that the temperature

distribution remains steady over time. While the temperature

distribution itself may not be used for SBE prediction, such

high similarity in temperature distribution over time makes it

amenable to learn and exploit it for other purposes by system

administrators and facility operators.

Beyond the overall temperature distribution, we are also

interested in how frequently Titan nodes become extremely

hot and for how long they stay in such a hot state. Prior

works [9, 27, 35] suggest that high temperature values are

more likely to have high impact on errors. Here we choose

(mean+2std.) as the hot state threshold. That is, a node enters

a hot state if its temperature value exceeds (mean+2std.); oth-

erwise, it stays in the normal state. Note that the temperature

threshold for GPUs (Thr GPU=40◦) is different from that

for CPUs (Thr CPU=47◦) as the temperature distributions of

the two components are different (see Figure 1). We define

the continuous period during which a node stays in the hot

state or normal state as the retention time. Note that we

experiment with different temperature thresholds and find that

observed trends and insights remain largely similar. Due to

space constraints, we do not present these results. We also

clarify that these thresholds do not have correlations with

utilization levels, i.e., staying in normal state does not imply

that the component is idle.

Figure 2(a) and (b) shows the retention time histogram for

the hot state (for GPU and CPU components, respectively),

while histograms for the normal state are presented in Fig-

ure 3(a) and (b). We make several interesting observations.

(a) GPU (b) CPU

Fig. 2. hot state: retention time histogram for (a) GPU and (b) CPU. (Note
that the long tail is truncated at 140min in both figures.)

(a) GPU (b) CPU

Fig. 3. normal state: retention time histogram for (a) GPU and (b) CPU.
(Note that the long tail is truncated at 140min in both figures.)

First, the retention time histogram in the hot state and in the

normal state varies significantly between CPUs and GPUs,

implying a difference in their utilization patterns. Second,

GPUs stay in the hot state for a shorter period compared to

CPUs (i.e., when GPUs get relatively hotter, they are likely to

remain in that state for a shorter period compared to CPUs).

Recall that the absolute temperature thresholds for entering

the hot state are different for GPUs and CPUs. At the same

time, GPUs stay in normal state for shorter time too (i.e., when

GPUs get relatively colder, they are likely to remain in that

state for a shorter period as compared to CPUs). This indicates

that GPUs switch in and out of the two states more frequently

compared to CPUs and stay in these states for a shorter period

of time.

Next, we look at the temperature distribution at the cabinet

level (our previous analysis is at the node level). We investigate

if the retention time for hot and normal states varies across

cabinets with different relative hotness. To achieve this, we

first rank all cabinets according to their cumulative temperature

over every node. Then, we divide cabinets into three temper-

ature zones based on their cumulative temperature values. We

pick the 10 hottest cabinets (HotCabs), 10 coldest cabinets

(ColdCabs), and 10 cabinets ranking in the middle (MidCabs),

as representatives of the cabinets in each temperature zone.

Table I shows the average retention time of the selected

cabinets in each temperature zone for both hot and normal

states (for GPU and CPU, respectively).

We observe that, surprisingly, the retention time in the hot

state remains similar for cabinets from all three temperature

zones. Notice that this is not an artifact of the cooling

mechanism since it is not a reactive measure that kicks in after

a threshold. In contrast, as expected, the normal state retention

time of cabinets in ColdCabs is significantly greater than that

of cabinets in HotCabs. In other words, cabinets in HotCabs

24

TABLE I
GPU AND CPU TEMPERATURE MEAN RETENTION TIME FOR CABINETS IN

DIFFERENT TEMPERATURE ZONES.

GPU CPU

hot state normal state hot state normal state

HotCabs 10.9min 2.7h 34.6min 22.0h

MidCabs 11.0min 4.2h 31.6min 56.0h

ColdCabs 10.5min 4.9h 31.9min 50.5h

(a) Top 5 hottest cabinets (b) Top 5 coldest cabinets

Fig. 4. Weekly ranking for five hottest (a) and five coldest (b) cabinets.

enter a hot state more frequently, which holds for both GPUs

and CPUs. While comparing GPUs and CPUs, we notice that

the hot/normal state switch is more frequent for GPUs than for

CPUs in all three temperature zones (consistent with Figures 2

and 3).

The preceding analysis is performed over the entire sam-

pling period. It is also interesting to break down the time

domain by looking into the dynamic nature of temperature

distribution week by week. Towards this goal, we first rank all

200 cabinets according to their cumulative temperature over

the entire sampling period. Note that a higher rank indicates

a hotter cabinet, i.e., the hottest cabinet ranks 200 while the

coldest one ranks 1. We present the weekly ranking over the

entire period (19 weeks in total) for the 5 hottest and 5 coldest

cabinets, see Figure 4. The 5 hottest and 5 coldest cabinets

exhibit dramatic variation in their relative hotness ranking

over the period. That is, the hot/cold ranking of cabinets

changes significantly and frequently over time. We observe

similar trends for other cabinets as well. This observation

is particularly interesting because it suggests that although

there are hotspot cabinets, these hotspots keep changing over

time. Hence, to exploit the correlation between SBEs and

temperature for SBE prediction, we must learn and capture

this dynamic behavior accurately.

IV. UNDERSTANDING SBE, TEMPERATURE, AND POWER

In Section III, we uncover several characteristics of the

temperature on the Titan supercomputer. Here, we specifically

look at the complex and obscure interplay between GPU

soft-errors and temperature/power consumption. Our study

reveals that different methodologies can lead to contrasting

conclusions, sometimes even misleading ones.

We start from a coarse-grained overall viewpoint, by com-

paring the relationship between the number of SBE offender

nodes and cumulative temperature over the whole sampling

period at the cabinet level. Recall that the Titan is organized

as a 25 by 8 grid of cabinets. For each cabinet, we count

Fig. 5. CDF of normalized SBE node count at the cabinet level.

(a) (b)

Fig. 6. CDF of temperature (a) and power (b) distribution of SBE offender
nodes during SBE-affected period and SBE-free period.

the number of SBE offender nodes, and then normalize the

count by the average number. Figure 5 shows the normalized

count of SBE offender nodes for every cabinet. Note that the

cabinets are sorted by increasing count along the x-axis. The

figure illustrates that SBE offenders are unevenly distributed

across the system. In other words, some cabinets contain more

SBE-affected nodes than others. Consequently, it is natural

to ask whether the spatial distribution of temperature and

power consumption correlates with the SBE count distribution.

To this end, we collect aggregated temperature and power

consumption over the whole sampling period for each cabinet,

but we fail to observe any significant correlation with the SBE

count distribution at the cabinet level. We caution that such a

first order analysis may lead to premature conclusions since

it only considers the cumulative value of temperature, power,

and SBEs at a coarse granularity, i.e., at the cabinet level.

As a follow up, we investigate the issue at a finer granularity.

We focus on the Titan compute nodes, more specifically SBE

offender nodes only. We also incorporate the time dimension

by dividing time in two parts: (1) time during which a SBE

may have occurred, denoted as SBE-affected period, and (2)

time during which no SBE occurs, denoted as SBE-free period.

Figure 6 shows the cumulative distribution function of the

temperature and power consumption on SBE offender nodes

during these two periods.

We make a few important observations. First, Figure 6 (a)

shows that the SBE offender nodes are relatively hotter during

the SBE-affected period as compared to the SBE-free period.

Similarly, the SBE offender nodes consume relatively higher

power during the SBE-affected period than during the SBE-

free period, see Figure 6(b). The observation is consistent with

the calculated mean values shown in Table II. This indicates

that SBEs are more likely to happen during time periods of

elevated temperature. Note that high power consumption is

25

TABLE II
STATISTICS OF TEMPERATURE AND POWER ON SBE OFFENDERS.

Temperature (◦C) Power (watt)

Mean Std. Mean Std.

SBE-affected Time 35.02 6.42 72.63 31.55

SBE-free Time 31.71 4.81 55.79 22.68

likely to be a contributing factor toward increased temperature.

But, due to varying cooling efficiency and workload character-

istics, temperature elevation could be caused by other factors

as well. In general, our measured data do not conclusively

show that above a certain threshold of temperature/power con-

sumption, SBEs definitely occur – making the SBE occurrence

prediction non-trivial. Our results also show that temperature

can be significantly high, sometimes even during the SBE-free

period. In Table II, we also show standard deviation values.

Temperature varies more dramatically during SBE-affected

periods, possibly implicating that variance in temperature may

be a contributing factor besides elevated temperature. A similar

pattern can be also found for power consumption.

To summarize, we first show that one may prematurely

conclude that SBE occurrence has almost no correlation

with temperature or power consumption based on cumula-

tive characteristics. However, when we go beyond simple

cumulative behavior, we find evidence of correlation between

SBE occurrence and temperature/power consumption. Our

results indicate that SBE offender nodes typically consume

more power and remain hotter during SBE-affected periods as

opposed to SBE-free periods.

We caution that the effect of temperature or power consump-

tion on SBEs is still not conclusive. The preceding analysis

only considers SBE offender nodes – providing limited view

of the whole system. For example, our previous analysis

does not show that non-SBE offender nodes consistently

attain lower temperature than SBE offender nodes during the

SBE-affected period. So temperature and power consumption

characteristics of non-SBE offender nodes should also be con-

sidered. Unfortunately, performing a meaningful and accurate

data analysis on non-SBE offender nodes is challenging for

multiple reasons. First, the number of non-SBE offender nodes

is large (≥ 17, 000 nodes) as compared to SBE-offender nodes

(≤ 700 nodes). Second, the long observation period of this

study induces difficulties in analyzing temperature and power

consumption data in a meaningful and representative manner.

An intuitive solution to this problem is to randomly sample

a subset of non-SBE offender nodes and perform compar-

isons with SBE-offender nodes. Unfortunately, this method

leads to inaccurate conclusions. Random sampling of non-

SBE offender nodes may include idle time at certain GPUs

and hence, may likely result in lower average temperature

and power consumption values. An alternative method is to

sample only active GPUs at a given time. However, we found

two issues that impede the practicality of this solution. First,

current GPU resource utilization monitoring tools can not be

used at runtime to monitor GPU utilization without imposing

significant overhead on production systems. Second, sampled

TABLE III
STATISTICS OF TEMPERATURE AND POWER ON NON-SBE OFFENDERS.

Temperature (◦C) Power (watt)

Mean Std. Mean Std.

SBE-affected Time 34.30 6.76 68.22 33.09

SBE-free Time 30.44 5.21 48.17 23.79

GPUs can execute workloads that finish at different times than

the SBE-affected period on SBE offender nodes. To mitigate

these challenges, we find that comparing against the other

nodes in the same cage for a given SBE offender node result

in consistent comparisons. The reasons are: (1) the nodes

in the same cage are likely to be active at the same time

due to the scheduling policy which is likely to pack one job

in the same cage, (2) nodes in the same cage are likely to

show similar variation in temperature due to power/cooling

and spatial locality.

Table III shows the mean and standard deviation of the

temperature and power consumption for non-SBE offenders

in the same cage during SBE-affected and SBE-free period as

observed on the SBE offender node (see Figure 6). We observe

that even non-SBE offender nodes are relatively hotter during

SBE-affected period compared to SBE-free period. Note that

non-SBE offender nodes do not experience any SBE during

an SBE-affected period or an SBE-free period. In addition,

while non-SBE offender nodes are relatively hotter during the

SBE-affected period, the SBE offender node is on average

hotter than non-SBE offender nodes in the same cage. Similar

observations can be drawn for power consumption.

The above observations imply that temperature and power

consumption may have some effect on SBE occurrence, but,

it is challenging to quantify the correlation due to monitoring

limitations and interaction of other possible factors.

V. PREDICTING SBES

Our characterization results reveal a relationship among

temperature, power, and SBE occurrence, but not a clear one.

It is unclear how to accurately predict SBE occurrence simply

based on the statistical properties of temperature and power. In

this section, we resort to neural networks to explore whether

the time series of temperature, power, and other features can

be used to predict SBE occurrence.

Artificial neural networks are inspired by biological neural

networks and are composed of many interconnected neu-

rons [3]. The weights associated with the neurons are used

to approximate non-linear functions of the input features and

are tuned during training. Training enables neural networks

to capture the complex pattern between features and targets.

Our purpose here is to use neural networks to explore hidden

relationships among the selected features (e.g., temperature,

power, utilization) and upcoming SBE occurrences.

First, we discuss how to select features that are potentially

related to an SBE occurrence. The characterization analysis

in the previous section shows that temperature and power

are likely to be related to SBEs. Previous work has shown

that spatial locality is another important feature for SBE

26

occurrence [12]. In addition, job log analytics indicate that

different applications experience different rates of bit flips

in hardware, possibly due to their data access pattern and

interaction with hardware. Thus, application related infor-

mation could provide potential features for SBE occurrence

prediction, including aprun duration, memory utilization, and

application type. Selected features are summarized as below:

• Temperature: We use the mean and standard deviation

of temperature during an aprun as input features. To

account for dynamic temperature behavior, the mean and

standard deviation of the temperature difference between

two consecutive minutes are also selected.

• Power: Similar to temperature, four metrics are selected

for power: mean and standard deviation of consumed

power during the aprun, and mean and standard deviation

of the power difference between two consecutive power

measurements.

• Node location: Row, column, and cage indices for each

node are included (recall that the Titan is organized as

a two-dimensional grid of cabinets, with each cabinet

consisting of three cages).

• Memory utilization: GPU memory utilization for every

node that the application is assigned to.

• Application: The aprun execution time and the applica-

tion vector are also considered as features. The walltime

of the aprun is the value normalized by the total number

of nodes launched by this aprun, while the application

vector represents which application is executed.

After discussing the feature selection process, we provide

details on the training data set for the neural network. We

collect data for all apruns during the sampling period. For

apruns executing on SBE offender nodes, we divide the node’s

busy time into two parts: (1) SBE-affected time, if the aprun

sees at least one SBE; otherwise, (2) SBE-free time. Busy time

is defined as the time when a given GPU node is not idle.

By definition, for non-SBE nodes, the busy time is always

SBE-free time. We use the first three and half months of our

entire sampling data as the training data set, this encompasses

about 70, 000 apruns (i.e., 6 million samples). Each sample is

identified by <aprun id, node id>. For example, an aprun

launching on 5 nodes will produce 5 samples. Note that

the number of apruns per month are not the same across

each month. We select the first three and half months to

collect enough observation samples. Indeed, as shown later in

Section V-B, the testing data set contains the samples in the

following two weeks, which encompass 16,000 apruns, such

that the testing data is about 23% of the size of the training

data, which is around the rule-of-thumb ratio of the testing

data set to the training data set [13].

A. Challenge: Imbalanced Data Set

Our first effort is to use the raw samples as input to train

the neural network. Unfortunately, both precision and recall

for SBE occurrence is as low as 0.01, while the precision and

recall for non-SBE occurrence prediction is as high as 0.95.

Precision is defined as the ratio of correct predictions (true

positives) to all predictions (true positives and false positives).

Recall is the ratio of the number of correct predictions (true

positives) to the true positives and false negatives. Clearly, the

low precision and recall values for SBE occurrences imply that

such a naive model is not useful as it mislabels all samples as

non-SBE.

Looking into the training data set, we find that the raw

training data set is extremely imbalanced: almost 98% of

all training data are non-SBE occurrence samples, which

results in a highly biased model. Imbalanced data sets is a

noteworthy difficulty to machine learning models [28] as the

resulted models favor the majority class and almost ignore

the minority class, which is exactly what we observe here. To

mitigate the imbalanced data problem, there are two common

solutions [28]: (1) over-sample the minority class or (2) under-

sample the majority class. Over-sampling replicates samples

by creating synthetic minority samples based on nearest neigh-

bors [6]. Here, we opt for under-sampling of the majority class,

since this allows us to work with real rather than synthetic data.

Algorithm 1 Select representative samples for one aprun based

on feature correlation.
1: procedure SIMILARITY REDUCTION(S, ρthres)

2: high corr samples ← hashtable(sid, {});

3: for si in S do

4: featurei ← feature list of sample si;

5: for sj in S do

6: featurej ← feature list of sample sj ;

7: corr ← pearson corr(featurei, featurej);

8: if corr ≥ ρthres then

9: high corr samples(si) ← sj;

10: end if

11: end for

12: end for

13:
14: //sorted in descending order

15: Sorted S ← sort(size(high corr samples(sid)));
16:
17: selected ← {};

18: avail ← Sorted S;

19: for si in Sorted S do

20: if size(avail) ̸= 0 then

21: selected ← si;

22: avail.remove(si);

23: for sj in high corr samples(si) do

24: avail.remove(sj);

25: end for

26: end if

27: end for

28: return selected;

29: end procedure

One method for under-sampling is to reduce similar samples

in the majority class. Here, we propose a customized under-

sampling method, which is based on similarity comparison

of the feature sets among different training samples from the

same aprun in the majority class. Algorithm 1 shows how we

select representative samples for one aprun. The key idea is

that if two feature sets are highly correlated, we only select

one of them for training. The algorithm inputs are: 1) the

normalized features of all training samples for this aprun,

denoted by S, and 2) a threshold ρthres, used to determine

whether the Pearson correlation of the feature sets is strong

enough. The larger the ρthres, the stronger the similarity

between the samples. Sample thinning is based on ρthres as

27

Fig. 7. SBE occurrence prediction at the cabinet level.

smaller values for ρthres force more aggressive data reduction.

We repeat the algorithm for every aprun in the training data

set for the majority class. Several correlation threshold values

for ρthres can be used. With ρthres less than 0.7, the data

set reduction is too aggressive and too few representatives are

left for the majority class when compared with the original

minority class. This confirms our assumption that there are

plenty of redundant training samples in the majority class.

We select ρthres = 0.9 as the threshold value, this selection

reduces the raw data satisfactory sufficiently.

Note that ρthres = 0.9 is a choice that achieves good

reduction of the dataset but certainly not the only one that

can be used. Experimentation shows that various ρthres values

close to 0.9 are also effective. Moreover, to avoid favoring

some apruns (we certainly want to avoid an imbalanced data

set for apruns), we guarantee that for each aprun we select

at least 2 training samples. The above efforts result in a

significant data set reduction to a total of 0.2 million samples

of which 60% are non-SBE occurrences and 40% are SBEs.

B. Evaluation with Oracle Data

For the testing data set, we choose two weeks after the train-

ing period (2015/5/16-2015/5/29), containing 16, 000 apruns,

i.e., 0.5 million samples, bringing the ratio of apruns of testing

versus training to 23%. Some of the selected features are

known prior to the aprun execution (i.e., node location and

application information), while some are not (i.e., tempera-

ture/power and memory utilization). In this subsection, we

assume that we know a priori future temperature, power,

and utilization to test the neural network model. In the next

subsection, we will discuss how to predict future data and

compare with the results shown here.

TABLE IV
PRECISION AND RECALL FOR THREE NEURAL NETWORKS.

Non-SBE SBE

Precision Recall Precision Recall

All Features 0.76 0.70 0.71 0.78

No Power 0.78 0.69 0.71 0.80

No Temperature 0.77 0.69 0.70 0.78

Table IV shows the precision and recall of non-SBE and

SBE occurrence for the testing data set using three different

neural networks: one with all features described in Section V,

one with all features except power, and one with all features

except temperature. All three models have similar prediction

quality, while the one without power is slightly better than the

rest two. Precision and recall are higher than 0.69 for all three

Fig. 8. Comparison between CDFs of ground truth, all prediction, and true
positives for SBE occurrences at the cabinet level.

cases, suggesting that all models can identify most of SBE

occurrences. Besides, we notice that the model without power

and the one without temperature expose similar prediction

ability. It is understandable since temperature and power

consumption are highly correlated as stated previously. In the

remaining of this section we focus on the neural network

model that is trained without the power data. Note that we

conducted experiments with all three neural networks and the

results are indeed very close to each other and not reported

here due to lack of space.

Precision and recall give an overview of the goodness of

prediction. Figure 7 shows how many SBEs are predicted

at the cabinet level throughout the Titan layout. Figure 7(a)

corresponds to the ground truth, Figure 7(b) shows the raw

predictions (true positives), and Figure 7(c) presents all pre-

dictions (true positives plus false positives) per cabinet. For

most cabinets, prediction is quite close to ground truth with

the exception of the middle upper part of Titan’s layout.

To deliver a better overview of prediction, we compare the

cumulative distribution plots of SBEs across the entire system

to the ground truth, all predictions (true positives plus false

positives), and true positives, see Figure 8. The three CDFs

are close to each other, which further confirms that the neural

network prediction is overall successful.

In addition, we observe that there are around 5% of cabinets

where the neural network underestimates SBEs. These cabinets

correspond to the ones in the upper middle part (9 ≤ X ≤ 16

and 5 ≤ Y ≤ 7) of the cabinet layout, see Figure 7. To

better understand why the neural network sometimes fails, we

focus on two cabinets with underestimates and two cabinets

with good predictions. For each SBE occurrence sample in the

testing data set, we compute the correlation of feature sets,

with every SBE sample and non-SBE sample in the training

data set. We find that in the two cabinets with poor prediction

59% SBE occurrence samples in the testing data set have

28

(a) Autocorrelation of temp.

in the training set.
(b) PRACTISE prediction

accuracy for temperature.

0 1 2 3 4 5

Time (hour)

25

30

35

40

45

50

Te
m
p
e
ra
tu
re
(◦
C
) Real PRACTISE

(c) PRACTISE temperature prediction overtime.

Fig. 9. Autocorrelation and PRACTISE prediction for temperature.

similar features to non-SBE samples in the training data set.

This number is dramatically low (only 5%) for the cabinets

where the prediction is good. Essentially, it is not possible for

the neural network to perform well for the cabinets with such

close feature similarities. Perhaps more features for training

are needed to increase prediction robustness to cover such

situations.

C. PRACTISE for Feature Prediction

In order to predict future SBE occurrence, we need to

predict the input features. Location, memory utilization, and

application related features are constant overtime, thus we

use the average of recent observations as input. Temperature

and power are not constant but rather fluctuate across time.

To solve the challenge of temperature/power prediction, we

leverage PRACTISE [40], which is a neural network prediction

tool for time series data that is publicly available.

For PRACTISE to be successful, the time series needs to

show temporal dependency. Autocorrelation is a mathematical

representation of the degree of similarity in a time series

and a lagged version of itself [18]. As such, it is ideal for

discovering repeating patterns by quantifying the relationship

between different points of a time series as a function of the

time lag. The autocorrelation metric is in the range of [-1, 1].

Higher positive values indicate that the two points between the

computed lag distance are “similar”, i.e., have stronger correla-

tion. Zero values suggest no periodicity. Negative values show

that the two points that are lag elements apart are diametrically

different. Figure 9(a) shows the autocorrelation of temperature

for a random node in the training data set. The lag granularity

is one minute. The vertical dashed line indicates the mean

aprun duration, i.e., 2.3 hour. The autocorrelation value of

lag=2.3h for the temperature series is 0.5 while autocorrelation

values are much stronger for smaller lags. This implies the

temperature series have strong temporal dependency.

Figure 9(c) shows the comparison between real values and

PRACTISE-predicted temperature series of the node shown in

Figure 9(a). The temperature prediction is very close to the

actual values. Yet, this is just the prediction across a short

time window. Figure 9(b) illustrates the CDF of the absolute

prediction error (APE) for the temperature data for the entire

prediction week. APE is the absolute difference between actual

value and prediction value divided by the actual value.

APE =
|Actual − Prediction|

Actual
(1)

The smaller the APE, the better the accuracy of prediction.

Figure 9(b) shows that for more than 90% of time, the APE

is below 10%.

D. SBE Prediction with PRACTISE

The above illustrates that PRACTISE can predict future

temperature series accurately. As a next step, we apply the

predicted temperature features to the neural network model,

to test whether we can achieve good prediction of future

SBE occurrences or not. All other features of the neural

network model (node location, application) are known as well

as duration and memory utilization (we use the average values

from past runs of this application). Since we are interested in a

fine granularity of prediction, i.e., on the specific node where

the SBE may occur, we focus on a small set of cabinets. We

choose 4 cabinets (384 nodes in total) in the upper left area

(row 0 and 1 and column 6 and 7), which account for 10.4%

of the total number of SBE occurrences in the entire sampling

period.

TABLE V
SBE OCCURRENCE PREDICTION: ORACLE VS. PRACTISE.

Non-SBE SBE

Precision Recall Precision Recall

Oracle 0.86 0.72 0.82 0.92

PRACTISE 0.88 0.62 0.82 0.95

Table V shows the precision and recall for SBE occurrence

prediction using real values (i.e., if we know the future tem-

perature features) and PRACTISE-predicted temperatures. We

observe that it is effective to leverage PRACTISE-predicted

temperature values for prediction. The similar precision values

indicate that using PRACTISE is able to achieve the same level

of correctness in prediction. While comparing recall values,

the one with PRACTISE plugged-in is more conservative,

reflected by the higher SBE recall and lower non-SBE recall.

Similarly to Section V-B (see Figure 8), we compare the

CDFs of SBE predictions per-node: ground truth, all predic-

tions, and true positive predictions, see Figure 10(a). We can

barely distinguish the three lines from one another, indicating

that the prediction is remarkably accurate. Figure 10(b), shows

the CDFs of the difference between ground truth and all

predictions. For less than 20% of nodes, we over predict

their SBE occurrences, but over-prediction is small (less than

2), especially comparing to the maximum number of SBE

29

(a) Prediction vs. Ground

Truth

(b) Difference from

Prediction

Fig. 10. Prediction for SBE occurrence at node level with PRACTISE.

occurrences per node, which is around 25. 90% of predictions

are exactly accurate.

In sum, we have shown that it is possible to accurately

predict future SBE occurrences on specific nodes. This could

have multiple applications including tuning the ECC turn

on/off period on selected nodes and for selected applications,

resulting in significantly reducing memory space and memory

bandwidth overheads for many applications.

VI. DISCUSSION

In this section, we discuss the applications of the proposed

SBE occurrence prediction tool. Meanwhile, we will also

demonstrate several open questions and challenges in this

study and plans for future work.

A. Application of SBE Prediction.

An intuitive application of SBE prediction could be dynam-

ically turning on/off the ECC mechanism on certain nodes for

certain applications based on the prediction result. However,

one may argue that it is too risky to completely turn off

the ECC protection, especially for long-running scientific

applications, as the aftermath of even a small probability of

false positives is much more severe than the overhead of

wastefully turning on ECC for a large portion of true negatives

across the entire system.

Fortunately, there are several opportunities for bypassing

this risk. First, we can leverage the fact that not all hardware

errors will be reflected in the application outputs, which means

that some of the errors are masked. Several show this by

evaluating the impact of soft-errors, especially single bit errors,

on GPU architecture with various fault-injection models and

frameworks [10, 14, 19, 42]. For example, Hari et al. [14]

build a compiler-based error injection, SASSIFI, and show

that on average 80% of the injected single bit errors are

actually masked in the output and thus are not perceived by

the end user. Moreover, in [38], the authors claim that even for

those corrupted outputs, there are chances that the outputs are

acceptable by the end users. Though this work is done in the

CPU domain, it is reasonable to assume that similar opportu-

nities exist for GPU-accelerated applications. Note that, this

idea of not-accurate but acceptable output is consistent with

the goal pursued by scientists in approximate computing, in-

cluding domains such as bioinformatics [16, 23], performance

analysis [37], data mining [24], and image recognition [22].

Consequently, for those applications that do not require very

strict accuracy, we can dynamically decide whether to turn on

or turn off ECC protection based on our prediction results.

Clearly, we can always keep ECC on for those applications

that need high-level of ECC protection. Therefore, by taking

advantages of these opportunities, we are able to strike the

balance between performance, overhead, and reliability.

B. Open Problems and Challenges

There are still several interesting open problems and chal-

lenges that are worthy of more detailed discussions. First,

in this paper, we perform feature selection based on the

conclusions derived from the characterization section, as well

as previous observations made by related works [12, 25, 35].

We demonstrate that the selected features all together are

effective for SBE occurrence prediction. But it is also interest-

ing to investigate which features or combinations of features

play an irreplaceable role in prediction. Here, we leverage

a neural network because of its powerful learning ability.

Neural networks also require a lot of computational capability

and sometimes are prone to overfitting. Comparing our neural

network solution with other machine learning models, such as

SVM and decision trees, needs to be explored. Finally, SBEs

show apparent spatial and temporal locality, which can also be

leveraged by the prediction model. We will investigate those

aforementioned issues extensively in future work.

VII. RELATED WORK

Nowadays, large-scale supercomputers are extensively used

by scientists to derive scientific insights. Consequently, it is

of great importance to build a steady and reliable system.

Many prior works have investigated and analyzed the impact

of failures and errors on large-scale computer systems [15,

31, 34]. Oliner et al. [26] study raw system logs from 5

real deployed supercomputers, including Blue Gene/L, Red

Storm, Thunderbird, Spirit and Liberty, and provide directions

for future reliability researches. Schroeder et al. [30] analyze

the statistics and root causes of several kinds of failures

collected from two HPC systems. There are also works that

point out pitfalls in error studies and uncover valuable insights

especially for DRAM and HDD failures [4, 15, 29, 32, 34].

However, comparing to CPUs and disks, GPUs are recently

largely deployed on large-scale systems, resulting in limited

studies that look specifically into GPU errors in the field.

Martino et al. [8] and Tiwari et al. [35] statistically analyze

GPU failures and errors on the Blue Waters supercomputer

at the University of Illinois and the Titan supercomputer at

Oak Ridge National Laboratory, respectively. They uncover

several previously unknown characteristics for various GPU

errors, including spatial and temporal locality and their rela-

tionship to resource utilization. Nie et al. [25] take a specific

look at the GPU soft-errors on the Titan supercomputer. We

stress that no prior work has studied the complex impact of

temperature/power consumption on GPU errors, nor proposed

any predictive capabilities that leverage the observed charac-

teristics.

30

Time series prediction tools (i.e., ARMA/ARIMA [5] and

Holt-Winters exponential smoothing [11]) have been widely

applied to quantify the impact of workload changes to appli-

cation and/or system performance [33, 36, 41, 43]. Tran et

al. [36] leverage ARIMA to improve block prefetching for

scientific applications while Zhuang et al. [43] use ARIMA

for effective user traffic prediction for capacity planning. Com-

pared to traditional models, neural networks have shown to be

efficient in capturing irregular patterns in data center resource

usage [40], effective characterization of TCP/IP [7], and web

server views [20]. In this work, we use neural networks to

successfully predict the number of SBE occurrences at the

node level and at the cabinet level in a large-scale HPC

system. The use of neural networks is necessary for predicting

SBE occurrences as the statistical analysis that has been used

for prediction [12] is insufficient here. The proposed neural

network combines a set of features that can be used as a whole

for SBE prediction and shows that in addition to node location,

utilization and workload type, temperature is also important

for future SBE prediction.

VIII. CONCLUSION

In this paper, we reveal several interesting and useful

insights obtained via studying the complex interplay be-

tween GPU soft-errors and temperature/power consumption.

We analyze large amounts of measured system related data

to understand the characteristics of temperature, power, and

SBE distribution. Finally, we propose a machine learning

based technique to exploit these insights for GPU soft-error

prediction in an effective manner. Our technique also discovers

several additional interesting findings that could not be easily

derived otherwise. We evaluate our technique and demonstrate

that it performs effectively under various scenarios.

ACKNOWLEDGMENT

This material is based upon work supported by NSF grant

CCF-1649087 and by the U.S. Department of Energy, Office of

Science, Office of Advanced Scientific Computing Research,

program manager Lucy Nowell, under contract number DE-

AC05-00OR22725. Saurabh Gupta performed this work while

employed at the Oak Ridge National Laboratory. The work is

also partially supported by Northeastern University.

REFERENCES

[1] “Tesla K20X GPU accelerator,” http://www.nvidia.com/content/pdf/
kepler/tesla-k20x-bd-06397-001-v07.pdf.

[2] “XID errors,” https://docs.nvidia.com/deploy/xid-errors/.
[3] N. K. Ahmed et al., “An empirical comparison of machine learning

models for time series forecasting,” Econometric Reviews, 2010.
[4] L. N. Bairavasundaram, Characteristics, impact, and tolerance of partial

disk failures. ProQuest, 2008.
[5] G. E. Box et al., Time series analysis: forecasting and control. John

Wiley & Sons, 2015.
[6] N. V. Chawla et al., “SMOTE: synthetic minority over-sampling tech-

nique,” Journal of artificial intelligence research, 2002.
[7] P. Cortez et al., “Multi-scale internet traffic forecasting using neural

networks and time series methods,” Expert Systems, 2012.
[8] C. Di Martino et al., “Lessons learned from the analysis of system

failures at petascale: The case of blue waters,” in DSN, 2014.
[9] N. El-Sayed et al., “Temperature management in data centers: why some

(might) like it hot,” SIGMETRICS, 2012.

[10] B. Fang et al., “Gpu-qin: A methodology for evaluating the error
resilience of GPGPU applications,” in ISPASS, 2014.

[11] P. Goodwin et al., “The holt-winters approach to exponential smoothing:
50 years old and going strong,” Foresight, 2010.

[12] S. Gupta et al., “Understanding and exploiting spatial properties of
system failures on extreme-scale HPC systems,” in DSN, 2015.

[13] I. Guyon, “A scaling law for the validation-set training-set size ratio,”
AT&T Bell Laboratories, 1997.

[14] S. K. S. Hari et al., “SASSIFI: Evaluating resilience of GPU applica-
tions,” in SELSE, 2015.

[15] A. A. Hwang et al., “Cosmic rays don’t strike twice: understanding the
nature of DRAM errors and the implications for system design,” in ACM

SIGPLAN Notices, 2012.
[16] R. K. Jena et al., “Soft computing methodologies in bioinformatics,”

European Journal of Scientific Research, 2009.
[17] D. Kothe et al., “Computational science requirements for leadership

computing,” ORNL Technical Report, 2007.
[18] L. M. Leemis et al., Discrete-event simulation: A first course. Pearson

Prentice Hall, 2006.
[19] G. Li et al., “Understanding error propagation in GPGPU applications,”

in SC, 2016.
[20] J. Li et al., “Forecasting web page views: Methods and observations,”

Journal of Machine Learning Research, 2008.
[21] C. L. Mendes et al., “Deploying a large petascale system: The blue

waters experience,” Procedia Computer Science, 2014.
[22] J. Meng et al., “Best-effort parallel execution framework for recognition

and mining applications,” in IPDPS, 2009.
[23] S. Mitra et al., “Bioinformatics with soft computing,” IEEE Transactions

on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
2006.

[24] S. Mitra et al., “Data mining in soft computing framework: a survey,”
IEEE Trans. Neural Networks, 2002.

[25] B. Nie et al., “A large-scale study of soft-errors on GPUs in the field,”
in HPCA, 2016.

[26] A. Oliner et al., “What supercomputers say: A study of five system
logs,” in DSN, 2007.

[27] M. K. Patterson, “The effect of data center temperature on energy
efficiency,” in ITHERM, 2008.

[28] F. Provost, “Machine learning from imbalanced data sets 101,” in
AAAI’2000 workshop on imbalanced data sets, 2000.

[29] B. Schroeder et al., “Disk failures in the real world: What does an MTTF
of 1, 000, 000 hours mean to you?” in FAST, 2007.

[30] B. Schroeder et al., “A large-scale study of failures in high-performance
computing systems,” IEEE Trans. Dependable Sec. Comput., 2010.

[31] B. Schroeder et al., “Flash reliability in production: The expected and
the unexpected,” in FAST, 2016.

[32] B. Schroeder et al., “DRAM errors in the wild: A large-scale field study,”
in ACM SIGMETRICS Performance Evaluation Review, 2009.

[33] M. Shokouhi, “Detecting seasonal queries by time-series analysis,” in
SIGIR, 2011.

[34] V. Sridharan et al., “Feng shui of supercomputer memory positional
effects in DRAM and SRAM faults,” in SC, 2013.

[35] D. Tiwari et al., “Understanding GPU errors on large-scale HPC systems
and the implications for system design and operation,” in HPCA, 2015.

[36] N. Tran et al., “Automatic ARIMA time series modeling for adaptive
I/O prefetching,” IEEE Trans. Parallel Distrib. Syst., 2004.

[37] H. L. Truong et al., “Soft computing approach to performance analysis
of parallel and distributed programs,” in Euro-Par, ser. Lecture Notes in
Computer Science. Springer, 2005.

[38] R. Venkatagiri et al., “Approxilyzer: Towards a systematic framework for
instruction-level approximate computing and its application to hardware
resiliency,” in MICRO, 2016.

[39] J. S. Vetter et al., “Keeneland: Bringing heterogeneous GPU computing
to the computational science community,” Computing in Science and

Engineering, 2011.
[40] J. Xue et al., “PRACTISE: Robust prediction of data center time series,”

in CNSM, 2015.
[41] J. Xue et al., “Proactive management of systems via hybrid analytic

techniques,” in ICCAC, 2015.
[42] K. S. Yim et al., “Hauberk: Lightweight silent data corruption error

detector for GPGPU,” in IPDPS, 2011.
[43] Z. Zhuang et al., “Capacity planning and headroom analysis for taming

database replication latency: experiences with linkedin internet traffic,”
in ICPE, 2015.

31

