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Abstract— GPUs have become part of the mainstream high
performance computing facilities that increasingly require more
computational power to simulate physical phenomena quickly and
accurately. However, GPU nodes also consume significantly more
power than traditional CPU nodes, and high power consumption
introduces new system operation challenges, including increased
temperature, power/cooling cost, and lower system reliability. This
paper explores how power consumption and temperature char-
acteristics affect reliability, provides insights into what are the
implications of such understanding, and how to exploit these
insights toward predicting GPU errors using neural networks.

[. INTRODUCTION

Graphics processing units (GPUs) while traditionally de-
signed for gaming and graphics applications, are now in-
tensively adopted to accelerate scientific applications that
require high throughput and extensive parallel computational
resources [17, 21, 39]. The powerful parallelism provided by
general-purpose GPUs enables scientists to simulate physical
phenomena more quickly and accurately, but at the expense of
higher computational power. Moreover, the reliability of GPUs
cannot be overlooked because most scientific applications are
long-running, taking several hours or even days to complete.
Consequently, unreliable GPUs will lead to significant loss in
research time and increase overall cost.

An initial step of any reliability study is to develop a deep
understanding on GPU errors in the field. Tiwari et al. [35]
study the characteristics of various errors on the Titan super-
computer at Oak Ridge National Laboratory. They demon-
strate that GPU errors correlate with temperature and show
early quantitative evidences. El-Sayed et al. [9] investigate
the impact of high temperature on system performance and
failures and reveal the presence of a non-trivial relationship
between temperature and hardware reliability. A host of prior
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works study the impact of temperature on device reliability,
but they mainly focus on hard disk drives, solid state drives,
and CPUs [4, 9, 15, 29, 32, 34].

Unlike previous work, we conduct an in-depth study on
the GPU nodes in the Titan supercomputer to understand the
interplay between temperature and GPU reliability, and more
specifically GPU soft-errors. We also investigate how different
levels of power consumption affect the data centers operations
and reliability . We believe that a thorough understanding on
the relationship between temperature, power consumption and
GPU errors is key to improving the operational efficiency of
data centers. Beyond characterizing the conditions that may
lead to GPU errors, we also exploit the observed insights
and implications for error prediction. This paper makes the
following three contributions:

First, we analyze large amounts of measured system data to
understand the characteristics of the temperature distribution
on the Titan. In particular, we investigate how the GPU temper-
ature distribution varies in time and space across the system.
Furthermore, we compare GPUs with other components, such
as CPU and DIMM, and study how their temperature distri-
butions differ from one another over time. We also study how
frequently Titan nodes become extremely hot and for how long
they stay in such a hot state.

We discovered that the retention time histogram in the hot
state and in the normal state varies significantly between CPUs
and GPUs. We also found that GPUs switch in and out of the
hot and cold states more frequently compared to CPUs and
stay in these states for a shorter period of time. We observe
that, surprisingly, the retention time in the hot state remains
similar for cabinets from different temperature zones.

Second, we show that there exists an interconnection be-
tween temperature, power consumption, and GPU soft-errors.
It is challenging to quantitatively exhibit and exploit this rela-
tionship. We point out that predicting future GPU soft errors
based on past temperature and power is simply inconclusive
as contrasting conclusions may be reached.

Third, we elaborate on how to exploit the above observa-
tions for GPU soft-error prediction. We propose a machine-
learning-based technique that leverages observations of past
system measurements to predict soft errors in GPUs. We show
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that temperature and power consumption are of almost equal
importance in GPU soft-error prediction, and together with
a host of other factors including resource utilization, node
location, and application type, may determine whether an
upcoming application execution on a set of nodes will result
in soft GPU errors. We evaluate our technique under various
scenarios to demonstrate its effectiveness and robustness.

This paper is organized as follows. Section II introduces
background and data collection methodology. In Section III,
we investigate the temperature behavior on the Titan. Then, we
discuss the relationship between SBEs and temperature/power
consumption in Section IV. With the discovered observations,
we design a novel algorithm to address the imbalanced dataset
challenge and neural-network-based solutions for SBE oc-
currence prediction, and evaluate our method in Section V.
We discuss open problems and challenges in Section VI and
present related work in Section VII. Section VIII concludes
the paper.

II. BACKGROUND AND METHODOLOGY

Oak Ridge National Laboratory holds America’s fastest
supercomputer — the Titan supercomputer, which provides
powerful computational ability for scientific projects. This
4352 square feet supercomputer is organized as a 25 x 8 grid,
resulting in a total of 200 cabinets. In each cabinet, there are
3 cages, each of which is composed of 8 slots. Each slot
has 4 nodes and 2 high-speed interconnect Gemini routers
(two nodes share one router). Every Titan compute node is
equipped with an AMD Opteron 6274 16-core CPU (with
32GB DDR3 memory) and an NVIDIA Tesla K20X GPU
(with 6 GB GDDRS5 memory). There are 18,688 GPUs in
the entire Titan supercomputer, which together with the same
amounts of CPUs, provide a theoretical peak speed of 27
petaFLOPS. K20X GPU [1] is specially designed for general-
purpose computation on high-performance computing system.
It contains 14 streaming multiprocessors (SMs), sharing the
1.5MB L2 cache and 6GB GDDR5 memory. Every SM
contains 192 CUDA cores, and is allocated with 64K 32-bit
registers, 64KB of combined shared memory and L1 cache,
48KB read-only data cache. Major memory components (i.e.,
register files, cache, and DRAM) are protected by single-error-
correction-double-error-detection (SECDED) error-correcting
codes (ECC). Read-only data cache is parity-protected. There
is no ECC protection for non-storage components, such as
logic units, thread schedulers, instruction dispatch unit, and
interconnection network.

A. GPU Errors and Data Collection

The Titan supercomputer is extensively used by scientific
applications from different domains. Everyday this large-
scale system observes various failures and errors, including
hardware failures and soft-errors. NVIDIA documents a list
of GPU XID errors and their causes in [2]. In this paper, we
focus on the most commonly observed error — single bit error
(SBE). Its large amount makes SBE an appropriate candidate
to perform statistically solid analysis on GPU reliability.
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Though SBEs are correctable, the ECC protection overhead is
significant from the viewpoint of the entire system, in terms
of both storage and memory bandwidth. Therefore, it is of
great importance to study the characteristics of SBEs and seek
opportunities to perhaps reduce ECC overhead.

Towards this goal, we collect GPU error related information
from February 2015 to June 2015 (more than 60 million node
hours). We leverage the nvidia-smi utility to collect SBEs
on every GPU node. This utility only provides snapshots
of SBE counts before and after every executed application,
which means that we cannot associate a timestamp with an
individual SBE. Hence, we have to perform data analysis at
the granularity of one “batch job” (also referred to as “job”
or “batch”). We denote a batch job as a set of applications
(also referred as “apruns”) that are submitted by the same
user. The SBE count is collected at the start and end of the
batch job and the difference is used to represent the number
of SBE experienced by this job. Our tracing framework is
also able to identify the node location for SBEs. Besides
error information, we collect GPU resource utilization data
such as GPU core-hours, maximum memory consumption, and
total memory consumption for every aprun. Temperature and
power consumption information is collected every minute on
every node in an out-of-band manner without instrumenting
applications.

B. Limitations and Scope

We also recognize the limitations and assumptions applica-
ble in this study. First, we distinguish applications based on
their binary names as we do not have the complete access to or
knowledge about the users’ code and their work flow execution
practices. Secondly, the error collection is performed at the
batch level. We conservatively assume that SBEs occur in all
apruns of one SBE-affected batch. Finally, we also recognize
that it is hard to accurately identify and model the effects of
software stack changes or operational practices. Therefore, our
data characterization and analysis does not explicitly model
these effects.

III. TEMPERATURE BEHAVIOR CHARACTERISTICS

Before exploring the relationship between temperature,
power consumption, and SBEs, we would like to develop
a deep understanding of the temperature behavior on the
Titan. Note that power consumption is highly correlated with
temperature, i.e., the Spearman correlation coefficient is as
high as 0.5. Consequently, we primarily show analysis for
temperature. Similar analysis (and conclusions) can also be
applied to power consumption. There are two major questions
we want to address for the temperature characteristics: (1)
what are the GPU temperature characteristics at the node
level, and how do these characteristics compare against other
components in the system such as CPU and DIMM? (2)
what are the GPU temperature characteristics at a coarser
granularity such as at the cabinet level, and how do these
characteristics differ from CPU and DIMM?
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Fig. 1. (a) Histogram of temperature for GPUs, CPUs, and DIMMs. The Fig. 2. hot state: retention time histogram for (a) GPU and (b) CPU. (Note

average temperature of GPU, CPU and DIMM are 28.1°C, 28.3°C' and
26.1°C, respectively. The standard deviation of GPU, CPU and DIMM are
6.1, 9.4 and 2.6, respectively. (b) Monthly Histogram of GPU temperature.

We first show a general view of the temperature on the
Titan supercomputer. Figure 1(a) presents the empirical pdf
of temperature for different components (GPU, CPU, and
DIMM) cumulated over the whole sampling period on the
entire system. Each Titan node contains one CPU, one GPU,
and four DIMMs. Due to space limitation, we only show the
histogram of DIMM A, since all four DIMMs expose similar
behavior. We observe that the GPU temperature histogram
is fairly spread. While the mean is similar, the variance of
the GPU temperature histogram is significantly different from
the variance of the CPU and DIMM temperature histograms.
This implies that all components attain a range of temperature
values over time, and variance may vary from one component
to another. Then, we show the monthly empirical pdf for
temperature in Figure 1(b) and find that the temperature
distribution remains steady over time. While the temperature
distribution itself may not be used for SBE prediction, such
high similarity in temperature distribution over time makes it
amenable to learn and exploit it for other purposes by system
administrators and facility operators.

Beyond the overall temperature distribution, we are also
interested in how frequently Titan nodes become extremely
hot and for how long they stay in such a hot state. Prior
works [9, 27, 35] suggest that high temperature values are
more likely to have high impact on errors. Here we choose
(mean+2std.) as the hot state threshold. That is, a node enters
a hot state if its temperature value exceeds (mean+2std.); oth-
erwise, it stays in the normal state. Note that the temperature
threshold for GPUs (Thr_GPU=40°) is different from that
for CPUs (Thr_CPU=47°) as the temperature distributions of
the two components are different (see Figure 1). We define
the continuous period during which a node stays in the hot
state or normal state as the retention time. Note that we
experiment with different temperature thresholds and find that
observed trends and insights remain largely similar. Due to
space constraints, we do not present these results. We also
clarify that these thresholds do not have correlations with
utilization levels, i.e., staying in normal state does not imply
that the component is idle.

Figure 2(a) and (b) shows the retention time histogram for
the hot state (for GPU and CPU components, respectively),
while histograms for the normal state are presented in Fig-
ure 3(a) and (b). We make several interesting observations.
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Fig. 3. normal state: retention time histogram for (a) GPU and (b) CPU.
(Note that the long tail is truncated at 140min in both figures.)

First, the retention time histogram in the hot state and in the
normal state varies significantly between CPUs and GPUs,
implying a difference in their utilization patterns. Second,
GPUs stay in the hot state for a shorter period compared to
CPUs (i.e., when GPUs get relatively hotter, they are likely to
remain in that state for a shorter period compared to CPUs).
Recall that the absolute temperature thresholds for entering
the hot state are different for GPUs and CPUs. At the same
time, GPUs stay in normal state for shorter time too (i.e., when
GPUs get relatively colder, they are likely to remain in that
state for a shorter period as compared to CPUs). This indicates
that GPUs switch in and out of the two states more frequently
compared to CPUs and stay in these states for a shorter period
of time.

Next, we look at the temperature distribution at the cabinet
level (our previous analysis is at the node level). We investigate
if the retention time for hot and normal states varies across
cabinets with different relative hotness. To achieve this, we
first rank all cabinets according to their cumulative temperature
over every node. Then, we divide cabinets into three temper-
ature zones based on their cumulative temperature values. We
pick the 10 hottest cabinets (HotCabs), 10 coldest cabinets
(ColdCabs), and 10 cabinets ranking in the middle (MidCabs),
as representatives of the cabinets in each temperature zone.
Table I shows the average retention time of the selected
cabinets in each temperature zone for both hot and normal
states (for GPU and CPU, respectively).

We observe that, surprisingly, the retention time in the hot
state remains similar for cabinets from all three temperature
zones. Notice that this is not an artifact of the cooling
mechanism since it is not a reactive measure that kicks in after
a threshold. In contrast, as expected, the normal state retention
time of cabinets in ColdCabs is significantly greater than that
of cabinets in HotCabs. In other words, cabinets in HotCabs



TABLE I
GPU AND CPU TEMPERATURE MEAN RETENTION TIME FOR CABINETS IN
DIFFERENT TEMPERATURE ZONES.

GPU CPU
hot state | normal state | hot state | normal state
HotCabs 10.9min 2.7h 34.6min 22.0h
MidCabs 11.0min 4.2h 31.6min 56.0h
ColdCabs 10.5min 4.9h 31.9min 50.5h
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Fig. 4. Weekly ranking for five hottest (a) and five coldest (b) cabinets.

enter a hot state more frequently, which holds for both GPUs
and CPUs. While comparing GPUs and CPUs, we notice that
the hot/normal state switch is more frequent for GPUs than for
CPUs in all three temperature zones (consistent with Figures 2
and 3).

The preceding analysis is performed over the entire sam-
pling period. It is also interesting to break down the time
domain by looking into the dynamic nature of temperature
distribution week by week. Towards this goal, we first rank all
200 cabinets according to their cumulative temperature over
the entire sampling period. Note that a higher rank indicates
a hotter cabinet, i.e., the hottest cabinet ranks 200 while the
coldest one ranks 1. We present the weekly ranking over the
entire period (19 weeks in total) for the 5 hottest and 5 coldest
cabinets, see Figure 4. The 5 hottest and 5 coldest cabinets
exhibit dramatic variation in their relative hotness ranking
over the period. That is, the hot/cold ranking of cabinets
changes significantly and frequently over time. We observe
similar trends for other cabinets as well. This observation
is particularly interesting because it suggests that although
there are hotspot cabinets, these hotspots keep changing over
time. Hence, to exploit the correlation between SBEs and
temperature for SBE prediction, we must learn and capture
this dynamic behavior accurately.

IV. UNDERSTANDING SBE, TEMPERATURE, AND POWER

In Section III, we uncover several characteristics of the
temperature on the Titan supercomputer. Here, we specifically
look at the complex and obscure interplay between GPU
soft-errors and temperature/power consumption. Our study
reveals that different methodologies can lead to contrasting
conclusions, sometimes even misleading ones.

We start from a coarse-grained overall viewpoint, by com-
paring the relationship between the number of SBE offender
nodes and cumulative temperature over the whole sampling
period at the cabinet level. Recall that the Titan is organized
as a 25 by 8 grid of cabinets. For each cabinet, we count
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the number of SBE offender nodes, and then normalize the
count by the average number. Figure 5 shows the normalized
count of SBE offender nodes for every cabinet. Note that the
cabinets are sorted by increasing count along the x-axis. The
figure illustrates that SBE offenders are unevenly distributed
across the system. In other words, some cabinets contain more
SBE-affected nodes than others. Consequently, it is natural
to ask whether the spatial distribution of temperature and
power consumption correlates with the SBE count distribution.
To this end, we collect aggregated temperature and power
consumption over the whole sampling period for each cabinet,
but we fail to observe any significant correlation with the SBE
count distribution at the cabinet level. We caution that such a
first order analysis may lead to premature conclusions since
it only considers the cumulative value of temperature, power,
and SBEs at a coarse granularity, i.e., at the cabinet level.

As a follow up, we investigate the issue at a finer granularity.
We focus on the Titan compute nodes, more specifically SBE
offender nodes only. We also incorporate the time dimension
by dividing time in two parts: (1) time during which a SBE
may have occurred, denoted as SBE-affected period, and (2)
time during which no SBE occurs, denoted as SBE-free period.
Figure 6 shows the cumulative distribution function of the
temperature and power consumption on SBE offender nodes
during these two periods.

We make a few important observations. First, Figure 6 (a)
shows that the SBE offender nodes are relatively hotter during
the SBE-affected period as compared to the SBE-free period.
Similarly, the SBE offender nodes consume relatively higher
power during the SBE-affected period than during the SBE-
free period, see Figure 6(b). The observation is consistent with
the calculated mean values shown in Table II. This indicates
that SBEs are more likely to happen during time periods of
elevated temperature. Note that high power consumption is



TABLE II
STATISTICS OF TEMPERATURE AND POWER ON SBE OFFENDERS.

TABLE III
STATISTICS OF TEMPERATURE AND POWER ON NON-SBE OFFENDERS.

Temperature (°C) Power (watt)

Mean Std. Mean Std.

SBE-affected Time | 35.02 6.42 72.63 | 31.55
SBE-free Time 31.71 4.81 55.79 | 22.68

likely to be a contributing factor toward increased temperature.
But, due to varying cooling efficiency and workload character-
istics, temperature elevation could be caused by other factors
as well. In general, our measured data do not conclusively
show that above a certain threshold of temperature/power con-
sumption, SBEs definitely occur — making the SBE occurrence
prediction non-trivial. Our results also show that temperature
can be significantly high, sometimes even during the SBE-free
period. In Table II, we also show standard deviation values.
Temperature varies more dramatically during SBE-affected
periods, possibly implicating that variance in temperature may
be a contributing factor besides elevated temperature. A similar
pattern can be also found for power consumption.

To summarize, we first show that one may prematurely
conclude that SBE occurrence has almost no correlation
with temperature or power consumption based on cumula-
tive characteristics. However, when we go beyond simple
cumulative behavior, we find evidence of correlation between
SBE occurrence and temperature/power consumption. Our
results indicate that SBE offender nodes typically consume
more power and remain hotter during SBE-affected periods as
opposed to SBE-free periods.

We caution that the effect of temperature or power consump-
tion on SBEs is still not conclusive. The preceding analysis
only considers SBE offender nodes — providing limited view
of the whole system. For example, our previous analysis
does not show that non-SBE offender nodes consistently
attain lower temperature than SBE offender nodes during the
SBE-affected period. So temperature and power consumption
characteristics of non-SBE offender nodes should also be con-
sidered. Unfortunately, performing a meaningful and accurate
data analysis on non-SBE offender nodes is challenging for
multiple reasons. First, the number of non-SBE offender nodes
is large (> 17,000 nodes) as compared to SBE-offender nodes
(< 700 nodes). Second, the long observation period of this
study induces difficulties in analyzing temperature and power
consumption data in a meaningful and representative manner.

An intuitive solution to this problem is to randomly sample
a subset of non-SBE offender nodes and perform compar-
isons with SBE-offender nodes. Unfortunately, this method
leads to inaccurate conclusions. Random sampling of non-
SBE offender nodes may include idle time at certain GPUs
and hence, may likely result in lower average temperature
and power consumption values. An alternative method is to
sample only active GPUs at a given time. However, we found
two issues that impede the practicality of this solution. First,
current GPU resource utilization monitoring tools can not be
used at runtime to monitor GPU utilization without imposing
significant overhead on production systems. Second, sampled
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Temperature (°C) Power (watt)

Mean Std. Mean Std.

SBE-affected Time | 34.30 6.76 68.22 | 33.09
SBE-free Time 30.44 5.21 48.17 | 23.79

GPUs can execute workloads that finish at different times than
the SBE-affected period on SBE offender nodes. To mitigate
these challenges, we find that comparing against the other
nodes in the same cage for a given SBE offender node result
in consistent comparisons. The reasons are: (1) the nodes
in the same cage are likely to be active at the same time
due to the scheduling policy which is likely to pack one job
in the same cage, (2) nodes in the same cage are likely to
show similar variation in temperature due to power/cooling
and spatial locality.

Table III shows the mean and standard deviation of the
temperature and power consumption for non-SBE offenders
in the same cage during SBE-affected and SBE-free period as
observed on the SBE offender node (see Figure 6). We observe
that even non-SBE offender nodes are relatively hotter during
SBE-affected period compared to SBE-free period. Note that
non-SBE offender nodes do not experience any SBE during
an SBE-affected period or an SBE-free period. In addition,
while non-SBE offender nodes are relatively hotter during the
SBE-affected period, the SBE offender node is on average
hotter than non-SBE offender nodes in the same cage. Similar
observations can be drawn for power consumption.

The above observations imply that temperature and power
consumption may have some effect on SBE occurrence, but,
it is challenging to quantify the correlation due to monitoring
limitations and interaction of other possible factors.

V. PREDICTING SBES

Our characterization results reveal a relationship among
temperature, power, and SBE occurrence, but not a clear one.
It is unclear how to accurately predict SBE occurrence simply
based on the statistical properties of temperature and power. In
this section, we resort to neural networks to explore whether
the time series of temperature, power, and other features can
be used to predict SBE occurrence.

Artificial neural networks are inspired by biological neural
networks and are composed of many interconnected neu-
rons [3]. The weights associated with the neurons are used
to approximate non-linear functions of the input features and
are tuned during training. Training enables neural networks
to capture the complex pattern between features and targets.
Our purpose here is to use neural networks to explore hidden
relationships among the selected features (e.g., temperature,
power, utilization) and upcoming SBE occurrences.

First, we discuss how to select features that are potentially
related to an SBE occurrence. The characterization analysis
in the previous section shows that temperature and power
are likely to be related to SBEs. Previous work has shown
that spatial locality is another important feature for SBE



occurrence [12]. In addition, job log analytics indicate that
different applications experience different rates of bit flips
in hardware, possibly due to their data access pattern and
interaction with hardware. Thus, application related infor-
mation could provide potential features for SBE occurrence
prediction, including aprun duration, memory utilization, and
application type. Selected features are summarized as below:

o Temperature: We use the mean and standard deviation
of temperature during an aprun as input features. To
account for dynamic temperature behavior, the mean and
standard deviation of the temperature difference between
two consecutive minutes are also selected.

o Power: Similar to temperature, four metrics are selected
for power: mean and standard deviation of consumed
power during the aprun, and mean and standard deviation
of the power difference between two consecutive power
measurements.

¢ Node location: Row, column, and cage indices for each
node are included (recall that the Titan is organized as
a two-dimensional grid of cabinets, with each cabinet
consisting of three cages).

o Memory utilization: GPU memory utilization for every
node that the application is assigned to.

o Application: The aprun execution time and the applica-
tion vector are also considered as features. The walltime
of the aprun is the value normalized by the total number
of nodes launched by this aprun, while the application
vector represents which application is executed.

After discussing the feature selection process, we provide
details on the training data set for the neural network. We
collect data for all apruns during the sampling period. For
apruns executing on SBE offender nodes, we divide the node’s
busy time into two parts: (1) SBE-affected time, if the aprun
sees at least one SBE; otherwise, (2) SBE-free time. Busy time
is defined as the time when a given GPU node is not idle.
By definition, for non-SBE nodes, the busy time is always
SBE-free time. We use the first three and half months of our
entire sampling data as the training data set, this encompasses
about 70,000 apruns (i.e., 6 million samples). Each sample is
identified by <aprun_id,node_id>. For example, an aprun
launching on 5 nodes will produce 5 samples. Note that
the number of apruns per month are not the same across
each month. We select the first three and half months to
collect enough observation samples. Indeed, as shown later in
Section V-B, the testing data set contains the samples in the
following two weeks, which encompass 16,000 apruns, such
that the testing data is about 23% of the size of the training
data, which is around the rule-of-thumb ratio of the testing
data set to the training data set [13].

A. Challenge: Imbalanced Data Set

Our first effort is to use the raw samples as input to train
the neural network. Unfortunately, both precision and recall
for SBE occurrence is as low as 0.01, while the precision and
recall for non-SBE occurrence prediction is as high as 0.95.
Precision is defined as the ratio of correct predictions (true
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positives) to all predictions (true positives and false positives).
Recall is the ratio of the number of correct predictions (true
positives) to the true positives and false negatives. Clearly, the
low precision and recall values for SBE occurrences imply that
such a naive model is not useful as it mislabels all samples as
non-SBE.

Looking into the training data set, we find that the raw
training data set is extremely imbalanced: almost 98% of
all training data are non-SBE occurrence samples, which
results in a highly biased model. Imbalanced data sets is a
noteworthy difficulty to machine learning models [28] as the
resulted models favor the majority class and almost ignore
the minority class, which is exactly what we observe here. To
mitigate the imbalanced data problem, there are two common
solutions [28]: (1) over-sample the minority class or (2) under-
sample the majority class. Over-sampling replicates samples
by creating synthetic minority samples based on nearest neigh-
bors [6]. Here, we opt for under-sampling of the majority class,
since this allows us to work with real rather than synthetic data.

Algorithm 1 Select representative samples for one aprun based

on feature correlation.

1: procedure SIMILARITY_REDUCTION(S, phres)
high_corr_samples <— hashtable(sid, {});
for s; in S do

feature; < feature list of sample s;;

2
3
4:
5: for s; in S do
6
7
8
9

feature; < feature list of sample s;;

corr < pearson_corr(feature;, feature;);

if corr > pinres then
high_corr_samples(s;) < sj;

end if
11 end for
12: end for
13:
14: //sorted in descending order
15: Sorted_S < sort(size(high_corr_samples(sid)));
16:
17: selected < {};
18: avail < Sorted_S;
19: for s; in Sorted_S do
20: if size(avail) # O then
21: selected < s;;
22: avail.remove(s;);
23: for s; in high_corr_samples(s;) do
24: avail.remove(s;);
25: end for
26: end if
27: end for
28: return selected;

29: end procedure

One method for under-sampling is to reduce similar samples
in the majority class. Here, we propose a customized under-
sampling method, which is based on similarity comparison
of the feature sets among different training samples from the
same aprun in the majority class. Algorithm 1 shows how we
select representative samples for one aprun. The key idea is
that if two feature sets are highly correlated, we only select
one of them for training. The algorithm inputs are: 1) the
normalized features of all training samples for this aprun,
denoted by S, and 2) a threshold p¢pes, used to determine
whether the Pearson correlation of the feature sets is strong
enough. The larger the pip,es, the stronger the similarity
between the samples. Sample thinning is based on pypres as
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Fig. 7. SBE occurrence prediction at the cabinet level.

smaller values for p;,cs force more aggressive data reduction.
We repeat the algorithm for every aprun in the training data
set for the majority class. Several correlation threshold values
for pipres can be used. With pypres less than 0.7, the data
set reduction is too aggressive and too few representatives are
left for the majority class when compared with the original
minority class. This confirms our assumption that there are
plenty of redundant training samples in the majority class.
We select pipres = 0.9 as the threshold value, this selection
reduces the raw data satisfactory sufficiently.

Note that pip.es = 0.9 is a choice that achieves good
reduction of the dataset but certainly not the only one that
can be used. Experimentation shows that various p¢p,.s values
close to 0.9 are also effective. Moreover, to avoid favoring
some apruns (we certainly want to avoid an imbalanced data
set for apruns), we guarantee that for each aprun we select
at least 2 training samples. The above efforts result in a
significant data set reduction to a total of 0.2 million samples
of which 60% are non-SBE occurrences and 40% are SBEs.

B. Evaluation with Oracle Data

For the testing data set, we choose two weeks after the train-
ing period (2015/5/16-2015/5/29), containing 16,000 apruns,
i.e., 0.5 million samples, bringing the ratio of apruns of testing
versus training to 23%. Some of the selected features are
known prior to the aprun execution (i.e., node location and
application information), while some are not (i.e., tempera-
ture/power and memory utilization). In this subsection, we
assume that we know a priori future temperature, power,
and utilization to test the neural network model. In the next
subsection, we will discuss how to predict future data and
compare with the results shown here.

TABLE IV
PRECISION AND RECALL FOR THREE NEURAL NETWORKS.
Non-SBE SBE
Precision | Recall | Precision | Recall
All Features 0.76 0.70 0.71 0.78
No Power 0.78 0.69 0.71 0.80
No Temperature 0.77 0.69 0.70 0.78

Table IV shows the precision and recall of non-SBE and
SBE occurrence for the testing data set using three different
neural networks: one with all features described in Section V,
one with all features except power, and one with all features
except temperature. All three models have similar prediction
quality, while the one without power is slightly better than the
rest two. Precision and recall are higher than 0.69 for all three
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cases, suggesting that all models can identify most of SBE
occurrences. Besides, we notice that the model without power
and the one without temperature expose similar prediction
ability. It is understandable since temperature and power
consumption are highly correlated as stated previously. In the
remaining of this section we focus on the neural network
model that is trained without the power data. Note that we
conducted experiments with all three neural networks and the
results are indeed very close to each other and not reported
here due to lack of space.

Precision and recall give an overview of the goodness of
prediction. Figure 7 shows how many SBEs are predicted
at the cabinet level throughout the Titan layout. Figure 7(a)
corresponds to the ground truth, Figure 7(b) shows the raw
predictions (true positives), and Figure 7(c) presents all pre-
dictions (true positives plus false positives) per cabinet. For
most cabinets, prediction is quite close to ground truth with
the exception of the middle upper part of Titan’s layout.

To deliver a better overview of prediction, we compare the
cumulative distribution plots of SBEs across the entire system
to the ground truth, all predictions (true positives plus false
positives), and true positives, see Figure 8. The three CDFs
are close to each other, which further confirms that the neural
network prediction is overall successful.

In addition, we observe that there are around 5% of cabinets
where the neural network underestimates SBEs. These cabinets
correspond to the ones in the upper middle part (9 < X < 16
and 5 < Y < 7) of the cabinet layout, see Figure 7. To
better understand why the neural network sometimes fails, we
focus on two cabinets with underestimates and two cabinets
with good predictions. For each SBE occurrence sample in the
testing data set, we compute the correlation of feature sets,
with every SBE sample and non-SBE sample in the training
data set. We find that in the two cabinets with poor prediction
59% SBE occurrence samples in the testing data set have
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similar features to non-SBE samples in the training data set.
This number is dramatically low (only 5%) for the cabinets
where the prediction is good. Essentially, it is not possible for
the neural network to perform well for the cabinets with such
close feature similarities. Perhaps more features for training
are needed to increase prediction robustness to cover such
situations.

C. PRACTISE for Feature Prediction

In order to predict future SBE occurrence, we need to
predict the input features. Location, memory utilization, and
application related features are constant overtime, thus we
use the average of recent observations as input. Temperature
and power are not constant but rather fluctuate across time.
To solve the challenge of temperature/power prediction, we
leverage PRACTISE [40], which is a neural network prediction
tool for time series data that is publicly available.

For PRACTISE to be successful, the time series needs to
show temporal dependency. Autocorrelation is a mathematical
representation of the degree of similarity in a time series
and a lagged version of itself [18]. As such, it is ideal for
discovering repeating patterns by quantifying the relationship
between different points of a time series as a function of the
time lag. The autocorrelation metric is in the range of [-1, 1].
Higher positive values indicate that the two points between the
computed lag distance are “similar”, i.e., have stronger correla-
tion. Zero values suggest no periodicity. Negative values show
that the two points that are lag elements apart are diametrically
different. Figure 9(a) shows the autocorrelation of temperature
for a random node in the training data set. The lag granularity
is one minute. The vertical dashed line indicates the mean
aprun duration, i.e., 2.3 hour. The autocorrelation value of
lag=2.3h for the temperature series is 0.5 while autocorrelation
values are much stronger for smaller lags. This implies the
temperature series have strong temporal dependency.

29

Figure 9(c) shows the comparison between real values and
PRACTISE-predicted temperature series of the node shown in
Figure 9(a). The temperature prediction is very close to the
actual values. Yet, this is just the prediction across a short
time window. Figure 9(b) illustrates the CDF of the absolute
prediction error (APE) for the temperature data for the entire
prediction week. APE is the absolute difference between actual
value and prediction value divided by the actual value.

|Actual — Prediction)|
Actual
The smaller the APE, the better the accuracy of prediction.

Figure 9(b) shows that for more than 90% of time, the APE
is below 10%.

APE = (1

D. SBE Prediction with PRACTISE

The above illustrates that PRACTISE can predict future
temperature series accurately. As a next step, we apply the
predicted temperature features to the neural network model,
to test whether we can achieve good prediction of future
SBE occurrences or not. All other features of the neural
network model (node location, application) are known as well
as duration and memory utilization (we use the average values
from past runs of this application). Since we are interested in a
fine granularity of prediction, i.e., on the specific node where
the SBE may occur, we focus on a small set of cabinets. We
choose 4 cabinets (384 nodes in total) in the upper left area
(row 0 and 1 and column 6 and 7), which account for 10.4%
of the total number of SBE occurrences in the entire sampling
period.

TABLE V
SBE OCCURRENCE PREDICTION: ORACLE VS. PRACTISE.
Non-SBE SBE
Precision | Recall | Precision | Recall
Oracle 0.86 0.72 0.82 0.92
PRACTISE 0.88 0.62 0.82 0.95

Table V shows the precision and recall for SBE occurrence
prediction using real values (i.e., if we know the future tem-
perature features) and PRACTISE-predicted temperatures. We
observe that it is effective to leverage PRACTISE-predicted
temperature values for prediction. The similar precision values
indicate that using PRACTISE is able to achieve the same level
of correctness in prediction. While comparing recall values,
the one with PRACTISE plugged-in is more conservative,
reflected by the higher SBE recall and lower non-SBE recall.

Similarly to Section V-B (see Figure 8), we compare the
CDFs of SBE predictions per-node: ground truth, all predic-
tions, and true positive predictions, see Figure 10(a). We can
barely distinguish the three lines from one another, indicating
that the prediction is remarkably accurate. Figure 10(b), shows
the CDFs of the difference between ground truth and all
predictions. For less than 20% of nodes, we over predict
their SBE occurrences, but over-prediction is small (less than
2), especially comparing to the maximum number of SBE



100%

7 100%
98% e 80%
H
v 96% H w 60%
a 1
O o
94% : — Ground Truth 40%
929% i1 = = Prediction 20%
: +we True Positive 0%
9 . n n n n
0% 16 15 20 25 2 -1 0

Ground Truth - Prediction
(b) Difference from
Prediction

Num. of SBE Occurrence
(a) Prediction vs. Ground
Truth

Fig. 10. Prediction for SBE occurrence at node level with PRACTISE.

occurrences per node, which is around 25. 90% of predictions
are exactly accurate.

In sum, we have shown that it is possible to accurately
predict future SBE occurrences on specific nodes. This could
have multiple applications including tuning the ECC turn
on/off period on selected nodes and for selected applications,
resulting in significantly reducing memory space and memory
bandwidth overheads for many applications.

VI. DISCUSSION

In this section, we discuss the applications of the proposed
SBE occurrence prediction tool. Meanwhile, we will also
demonstrate several open questions and challenges in this
study and plans for future work.

A. Application of SBE Prediction.

An intuitive application of SBE prediction could be dynam-
ically turning on/off the ECC mechanism on certain nodes for
certain applications based on the prediction result. However,
one may argue that it is too risky to completely turn off
the ECC protection, especially for long-running scientific
applications, as the aftermath of even a small probability of
false positives is much more severe than the overhead of
wastefully turning on ECC for a large portion of true negatives
across the entire system.

Fortunately, there are several opportunities for bypassing
this risk. First, we can leverage the fact that not all hardware
errors will be reflected in the application outputs, which means
that some of the errors are masked. Several show this by
evaluating the impact of soft-errors, especially single bit errors,
on GPU architecture with various fault-injection models and
frameworks [10, 14, 19, 42]. For example, Hari et al. [14]
build a compiler-based error injection, SASSIFI, and show
that on average 80% of the injected single bit errors are
actually masked in the output and thus are not perceived by
the end user. Moreover, in [38], the authors claim that even for
those corrupted outputs, there are chances that the outputs are
acceptable by the end users. Though this work is done in the
CPU domain, it is reasonable to assume that similar opportu-
nities exist for GPU-accelerated applications. Note that, this
idea of not-accurate but acceptable output is consistent with
the goal pursued by scientists in approximate computing, in-
cluding domains such as bioinformatics [16, 23], performance
analysis [37], data mining [24], and image recognition [22].
Consequently, for those applications that do not require very
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strict accuracy, we can dynamically decide whether to turn on
or turn off ECC protection based on our prediction results.
Clearly, we can always keep ECC on for those applications
that need high-level of ECC protection. Therefore, by taking
advantages of these opportunities, we are able to strike the
balance between performance, overhead, and reliability.

B. Open Problems and Challenges

There are still several interesting open problems and chal-
lenges that are worthy of more detailed discussions. First,
in this paper, we perform feature selection based on the
conclusions derived from the characterization section, as well
as previous observations made by related works [12, 25, 35].
We demonstrate that the selected features all together are
effective for SBE occurrence prediction. But it is also interest-
ing to investigate which features or combinations of features
play an irreplaceable role in prediction. Here, we leverage
a neural network because of its powerful learning ability.
Neural networks also require a lot of computational capability
and sometimes are prone to overfitting. Comparing our neural
network solution with other machine learning models, such as
SVM and decision trees, needs to be explored. Finally, SBEs
show apparent spatial and temporal locality, which can also be
leveraged by the prediction model. We will investigate those
aforementioned issues extensively in future work.

VII. RELATED WORK

Nowadays, large-scale supercomputers are extensively used
by scientists to derive scientific insights. Consequently, it is
of great importance to build a steady and reliable system.
Many prior works have investigated and analyzed the impact
of failures and errors on large-scale computer systems [15,
31, 34]. Oliner et al. [26] study raw system logs from 5
real deployed supercomputers, including Blue Gene/L, Red
Storm, Thunderbird, Spirit and Liberty, and provide directions
for future reliability researches. Schroeder et al. [30] analyze
the statistics and root causes of several kinds of failures
collected from two HPC systems. There are also works that
point out pitfalls in error studies and uncover valuable insights
especially for DRAM and HDD failures [4, 15, 29, 32, 34].

However, comparing to CPUs and disks, GPUs are recently
largely deployed on large-scale systems, resulting in limited
studies that look specifically into GPU errors in the field.
Martino et al. [8] and Tiwari et al. [35] statistically analyze
GPU failures and errors on the Blue Waters supercomputer
at the University of Illinois and the Titan supercomputer at
Oak Ridge National Laboratory, respectively. They uncover
several previously unknown characteristics for various GPU
errors, including spatial and temporal locality and their rela-
tionship to resource utilization. Nie et al. [25] take a specific
look at the GPU soft-errors on the Titan supercomputer. We
stress that no prior work has studied the complex impact of
temperature/power consumption on GPU errors, nor proposed
any predictive capabilities that leverage the observed charac-
teristics.



Time series prediction tools (i.e., ARMA/ARIMA [5] and
Holt-Winters exponential smoothing [11]) have been widely
applied to quantify the impact of workload changes to appli-
cation and/or system performance [33, 36, 41, 43]. Tran et
al. [36] leverage ARIMA to improve block prefetching for
scientific applications while Zhuang et al. [43] use ARIMA
for effective user traffic prediction for capacity planning. Com-
pared to traditional models, neural networks have shown to be
efficient in capturing irregular patterns in data center resource
usage [40], effective characterization of TCP/IP [7], and web
server views [20]. In this work, we use neural networks to
successfully predict the number of SBE occurrences at the
node level and at the cabinet level in a large-scale HPC
system. The use of neural networks is necessary for predicting
SBE occurrences as the statistical analysis that has been used
for prediction [12] is insufficient here. The proposed neural
network combines a set of features that can be used as a whole
for SBE prediction and shows that in addition to node location,
utilization and workload type, temperature is also important
for future SBE prediction.

VIII. CONCLUSION

In this paper, we reveal several interesting and useful
insights obtained via studying the complex interplay be-
tween GPU soft-errors and temperature/power consumption.
We analyze large amounts of measured system related data
to understand the characteristics of temperature, power, and
SBE distribution. Finally, we propose a machine learning
based technique to exploit these insights for GPU soft-error
prediction in an effective manner. Our technique also discovers
several additional interesting findings that could not be easily
derived otherwise. We evaluate our technique and demonstrate
that it performs effectively under various scenarios.
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