2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks

Machine Learning Models for GPU Error Prediction
in a Large Scale HPC System

Bin Nie*, Ji Xue*, Saurabh GuptaT, Tirthak Patel}, Christian Engelmann§, Evgenia Smirni*, and Devesh Tiwarit
* College of William and Mary ({bnie, xuejimic, esmirni}@cs.wm.edu)
T Intel Labs (saurabg@gmail.com)
§ Oak Ridge National Laboratory (engelmannc@ornl.gov)
1 Northeastern University (patel.ti@husky.neu.edu, tiwari@northeastern.edu)

Abstract—GPUs are widely deployed on large-scale HPC sys-
tems to provide powerful computational capability for scientific
applications from various domains. As those applications are
normally long-running, investigating the characteristics of GPU
errors becomes imperative for reliability. In this paper, we first
study the system conditions that trigger GPU errors using six-
month trace data collected from a large-scale, operational HPC
system. Then, we use machine learning to predict the occurrence
of GPU errors, by taking advantage of temporal and spatial
dependencies of the trace data. The resulting machine learning
prediction framework is robust and accurate under different
workloads.

I. INTRODUCTION

Over the past decade, GPUs have become an integral part
of mainstream high performance computing facilities thanks
to the fact that they allow to simulate physical phenomena
more quickly and accurately (i.e., at a finer granularity) [1-3].
As GPUs are more widely adopted in scale-out computing
architectures, GPU soft errors become a critical challenge.
Reliable execution of applications can lead to higher produc-
tivity and lower I/O overhead. However, understanding the
source of GPU soft errors itself is challenging. Past work has
shown evidence that indicates a plausible relationship between
power/cooling infrastructure and GPU errors, but there exists
no clear understanding on the exact conditions that trigger
faults [4].

The key to improving GPU reliability is to understand
the relationship among GPU soft errors and different factors
including power consumption, temperature, and workload be-
havior. The goal of this paper is to explore the interaction
among temperature, power consumption, workload character-
istics, and GPU soft errors, and to exploit these interactions
toward GPU soft error prediction in a large scale HPC system.

Previous works have investigated the interplay between
temperature and device reliability on hard disk drives,
solid state drives, and CPUs [5-8]. In contrast, our work

This manuscript has been authored by UT-Battelle, LLC under Contract No.
DE-AC05-000R22725 with the U.S. Department of Energy. The United States
Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-
up, irrevocable, world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access
Plan (http://energy.gov/downloads/doe-public-access-plan).

focuses on understanding the interplay between work-
load/temperature/power consumption and GPU soft errors on
the Titan, America’s fastest supercomputer for open sci-
ence [9].

In this paper, we discover that workload characteristics,
certain GPU cards, temperature and power consumption could
be indicative of GPU errors, but it is non-trivial to exploit
them for error prediction. Motivated by these observations and
challenges, we explore machine-learning-based error predic-
tion models that capture hidden interactions among system
and workload properties. Such models are useful in guiding
flexible error protection schemes for GPU nodes, e.g., by dy-
namically turning on/off error protection based on prediction.

One may argue that completely turning off error protection
may be too risky. However, it is important to notice that the
impact of error-correcting code (ECC) overhead on real-world
computational science applications can be as high as 10% on
GPUs [10]. In fact, the decreased memory bandwidth caused
by ECC overhead can result in larger performance degradation
than the decreased fraction of bandwidth itself due to queuing
ramifications. In fact, computational scientists already naively
turn off ECC for their application runs [11]. In such cases, a
prediction model would be useful instead of always turning
off ECC.

Acknowledging the necessity of an error predictor, this
paper elaborates on the challenges, process, and solutions in-
volved in building effective machine-learning-based prediction
models. We show how to systematically select features by
categorizing them into spatial and temporal dimensions. We
illustrate how to overcome the imbalanced dataset challenge
and trade-offs by taking advantage of the inherent features
of the dataset. We use the selected features to train various
machine learning models, including Logistic Regression (LR),
Gradient Boosting Decision Tree (GBDT), Support Vector
Machine (SVM), and Neural Network (NN).

Finally, we evaluate the machine learning models via dif-
ferent metrics and under diverse testing scenarios. Our results
indicate that the proposed models achieve high prediction qual-
ity and are robust. In particular, the GBDT-based prediction
achieves an F1 score of 0.81, significantly outperforming other
models. The corresponding high recall (i.e., 0.87) and good
precision (i.e., 0.76) indicate that the GBDT-based model is
conservative in identifying as many SBE cases as possible.
This is preferable as the aftermath of missing an SBE occur-

2158-3927/18/$31.00 A©2018 TEEE
DOI 10.1109/DSN.2018.00022

95 IEEE
@) computer
psoaety



rence is likely to be more severe than mislabeling a non-SBE
occurrence. Our evaluation also uncovers interesting insights
from comparison across different models, training/testing data,
and feature combinations. We show that the proposed pre-
diction models impose moderate overhead and are practically
feasible for GPU soft error prediction.

II. BACKGROUND

The Titan supercomputer is one of the fastest supercom-
puters for open science [9]. The basic block is a node, that
consists of one AMD Opteron 6274 CPU and one NVIDIA
K20X GPU. Four nodes make up one slot. In each slot,
there are two high-speed interconnect Gemini routers, each
shared by two nodes. The next granularity level is one cage,
which is composed of 8 slots. Three cages form one cabinet.
There are 200 cabinets, organized as a 25 x 8 grid, and a
total of 18,688 GPUs on the Titan. Major memory struc-
tures in K20X GPUs are protected by error-correcting codes
(ECC). Device memory, L2 cache, instruction cache, register
files, shared memory, and L1 cache are protected by Single
Error Correction Double Error Detection ECC, while read-
only data cache is parity protected. Non-memory structures
such as logic, thread schedulers, instruction dispatch unit, and
interconnection network are not protected.

Various types of GPU errors occur on the system including
hardware failures. NVIDIA provides a list of XID errors and
documents their possible causes [12]. In this study, we focus
on GPU soft errors. Particularly, we target single bit errors
(SBEs), as they occur most frequently on Titan GPUs. Other
errors, i.e., double bit errors (DBEs), are less frequent and
statistically unsuitable for prediction. The ECC mechanism
is typically turned on to detect SBEs. However, ECC incurs
significant overhead to storage and memory bandwidth. If the
impact of SBEs could be understood well with predictive
capability, turning-off ECC could improve performance and
reduce associated overhead.

Our traces contain GPU-error related data from February
2015 to June 2015 (more than 60 million node hours). SBEs
are collected via the nvidia-smi utility. This utility provides
snapshot information, i.e., it does not timestamp individual
SBEs, but records SBEs before and after each batch job.
This enables to perform data analytics on SBEs, albeit at
the granularity of a “batch job”. We denote a batch job as
a set of applications that are submitted simultaneously by the
same user. Applications (also referred as “apruns”) can run
within a submitted batch job (also referred as “job”). The SBE
count is collected at the start and end of a batch job. The
tracing framework can identify the node location on which
SBEs occur. We collect GPU resource utilization information
such as GPU core-hours, maximum memory consumption, and
total memory consumption on a per application basis. We
collect the temperature and power consumption information in
out-of-band manner without instrumenting applications. This
information is approximately collected every minute for every
node.

96

We do recognize that this work is subject to assumptions
and limitations. This study assumes apruns having the same
binary name are of the same type, as user codes and workflow
execution practices are unknown to us. Batch jobs may contain
multiple apruns, but we cannot tell which apruns encounter
SBEs. Therefore, we conservatively assume that SBEs occur
in all those apruns. Finally, a large-scale HPC facility is often
dynamic with respect to software stack changes and opera-
tional practices. Hence, correctly including the impact of these
factors in the data analysis is onerous. Moreover, soft errors
can be trigged by transient bit-flips due to external charge-
carrying particles or device failures, i.e., variations, yield,
aging effects, or electron migration. We cannot distinguish
soft errors by their root causes in this work due to lack of
information.

III. GPU ERROR CHARACTERIZATION

Soft errors may occur during an application execution on
GPUs for multiple reasons, i.e., cosmic ray strikes, voltage
fluctuations, elevated temperature, manufacturing defects, and
complex workload-hardware interaction. However, pinpointing
the root cause of soft errors is challenging and cannot be
easily used to predict soft error occurrences. While soft error
occurrences have limited predictability, we find that not all soft
error occurrences are random. Our results reveal that certain
system and workload properties may have hidden correlations
with GPU soft errors, albeit such correlations can not be
attributed as causations. In particular, we show that certain
GPU cards, workload behavior, GPU temperature, and GPU
power consumption may have complex interactions with GPU
soft error occurrences.

A. SBE Offender Nodes

012345678 9101112131415161718192021222324
X

Fig. 1. Non-uniform distribution of GPU error offender nodes at the cabinet
level.

We start by investigating how GPU errors are distributed
across the entire system. Since the 200 cabinets on the Titan
are organized as a 25 x 8 grid, we present the normalized
average value of SBE-affected nodes at the cabinet level in
Fig. 1. Clearly, GPU errors are not uniformly distributed. The
number of SBE-affected GPU cards are not the majority of
all cards in the system either. As shown later in Section VII,
exploiting this observation in isolation is not likely to yield
good prediction of future SBEs. For example, if we predict
that all applications executing on these SBE offender nodes
will experience errors, it results in a high false positive
rate because SBE offender nodes do not experience errors
uniformly over all days either. Actually, 80% of error offender
nodes experience a soft error on less than 20% of the total



n "

ocrNWa VO

012345678 9101112131415161718192021222324
X

Fig. 2. Non-uniform distribution of SBE-affected application runs at the
cabinet level.

days over the trace period. Nevertheless, the non-uniform
distribution of soft error offender nodes in the space and time
domains open the possibility for learning-based predictions.

B. Application

It is also important to analyze the impact of various work-
loads on GPU soft error occurrences. As a first step, we
explore the spatial distribution of SBE-affected applications
and observe the non-uniform distribution across the Titan
system (see Fig. 2). Next, we look at the severity of SBE-
affected applications by analyzing their SBE count (application
and SBE correlation is normalized by the GPU core hours,
i.e., runtime X number of nodes). Fig. 3(a) shows that a
smaller set of workloads, less than 20% of all applications,
experience the majority of errors (> 90%). However, Fig. 3(b)
shows that even SBE-affected applications do not experience
SBEs uniformly across all application runs. The top 20% of
the SBE affected workloads experience all their share of soft
errors during 60% of their total application executions, while
the lower 20% of the SBE affected workloads experience all
their share of soft errors during less than 10% of their total
application executions. We further investigate the relationship
between the severity of SBE-affected application runs and their
GPU utilization, i.e., core-hours and memory, see Fig. 4. The
high Spearman coefficient values (see inset in each figure for
the exact values) indicate that applications with more SBEs
tend to utilize more GPU memory and for longer duration.

100% 100%

w
=4
£ 80% 2 80%
] &
S 60% w 60%!
@ 3
O 40% 5 40%
©
& 20%f § 20%
=
0% . E 0% : . . .
ol 10010 N @n;e %qu \/@ah P &l 100]0 P P %th \,@qo
SBE-affected application SBE-affected application
(a) Total SBE count (b) Fraction of SBE apruns
Fig. 3. Workload and GPU error distribution: a small set of workloads

experience most of the soft errors (a), and fraction of executions affected
by SBEs for SBE-affected application runs (b).

The above observations imply that application related mea-
surements such as utilization, are good indicators for SBE
occurrences. While these observations provide useful ground
truth for error prediction, simple prediction strategies based on
these findings alone lead to low prediction quality (we address
this issue in Section VII).

97

v 10? 5, 10°
é 10t E v et E 10t E ¥
T 100 E of oty
O ot g 10 .
o 3 3 10—1 L
(v} 2F 1 >
10 2
=R o 102L
o 103} 1 (U]
o 104 E 1 - 107 |
: v €
E 105 £ 5 107} . — 1
o 10 * correl. coefficient=0.89 Z s correl. coefficient=0.70
10" 102 102 10% 10° 10' 102 10* 102 102 10% 10° 10' 102

Norm. SBE count

(b) GPU memory

Norm. SBE count

(a) GPU core-hours

Fig. 4. Scatter plot of SBE count of SBE-affected application runs and their
GPU utilization: core-hours (a) and memory (b).

C. Temperature and Power Consumption

Consistent with previous studies on GPU errors [4, 13-15],
we analyze the potential relationship between GPU tempera-
ture/power consumption and GPU errors.

1) A bird’s eye view

We first explore whether GPU temperature/power consumption
correlate with soft error occurrences. Fig. 5 shows the cumula-
tive temperature/power consumption over the entire sampling
period of every cabinet in the Titan. We observe that the
temperature distribution is non-uniform in space, i.e., cabinets
in the upper left corner and lower right corner tend to be
hotter than the rest. In contrast, power consumption is more
evenly spread, implying that the Titan is intensively utilized
both time-wise and space-wise.

mE n ¢
1.06 §
I I I 1045
1025
I || 100 &

| N

012345678 9101112131415161718192021222324
X

orNWs U

(a) Temperature distribution

7 1.08 &
6 104 3
5 1.00 5
2 0.96 &
3 092 ¢
2 0.88 G
1 084 ¢
0 080 &

012345678 9101112131415161718192021222324

Y

(b) Power consumption distribution

Fig. 5. Distribution of temperature (a) and power consumption (b) accumu-
lative over the whole period at the cabinet level.

Next, we compare the non-uniform temperature distribution
with the SBE-affected nodes distribution (Fig. 1) by calculat-
ing Spearman correlation coefficient at the node level. The low
value (0.07) implies that the accumulative temperature distri-
bution is not related to the SBE offender nodes distribution
in space. The same observation is reached when comparing
the temperature distribution and the SBE-affected application
distribution (the Spearman correlation coefficient is only 0.15).
Similar analysis is conducted for power consumption, which
also shows weak correlation between power consumption and
SBE-affected nodes or SBE-affected application runs. In sum-
mary, the effect of temperature on SBEs may not be entirely



avg=31.71
std=4.81

0.00,
10 20 30 40 50 60 70
Temperature(°C)

(b) SBE-affected period

0
10 20 30 40 50 60 70
Temperature(°C)

(a) SBE-free period

012 55.79 012 ! 72.63
avg=55. avg=72.

0.10 std=22.68 | 0.10¢ . std=31.55 |
Z0.08 1 Z0.08 ' 1
8 0.06 ‘8 0.06 1
Qo Q 1
S 0.04  0.04 '
o o ]

0.02 0.02 !

0.00 0.00

0 50 100 150 200 0 50 100 150 200

Power (watt)

(a) SBE-free period

Power (watt)

(b) SBE-affected period

Fig. 6. Temperature distribution of SBE offender nodes during SBE-free
periods (a) and SBE-affected periods (b). Vertical lines represent mean values.

captured by SBE offender nodes or workload characteristics
only.

2) Considering the time dimension

We turn the focus to SBE offender nodes and temperature
characteristics across time. We divide the time dimension
in two parts: (1) the time during which a soft error occurs
(SBE-affected period) and (2) the time during which no soft
error occurs (SBE-free period). Fig. 6 shows the empirical
temperature distribution of SBE offender nodes during these
two periods. The distribution for GPU power consumption is
presented in Fig. 7.

We observe that the SBE offender nodes are relatively
hotter during the SBE-affected period by more than 3°C on
average, compared to SBE-free period (Fig. 6(a) vs. 6(b)).
The SBE offender nodes also consume relatively higher power
during the SBE-affected period by more than 15 watts on
average, compared to the SBE-free period (Fig. 7(a) vs. 7(b)).
Note that higher power consumption likely contributes to
increased temperature. However, due to varying cooling ef-
ficiency and workload characteristics, temperature elevation
may be caused by other factors too. The above observation
implies that SBEs are more likely to happen during periods of
elevated temperature. Our measured data do not conclusively
indicate that SBEs definitely occur above a certain threshold
of temperature/power consumption. Sometimes even during
the SBE-free period, temperature can be significantly high
(see Fig. 6(a)), making the SBE occurrence prediction non-
trivial. Nevertheless, these observations are encouraging as
they demonstrate a relationship between temperature/power
consumption and SBE occurrences, which can be potentially
used for prediction.

3) Considering the space dimension

Besides the time domain, it is natural to also explore whether
similarities exist across space. In fact, our measured data
indicate that GPU power consumption and temperature profile
can change for the same workload across runs, possibly due to
effects from neighboring nodes (i.e., spatial effects). We first
investigate how the temperature profile changes when the same
workload is executed repeatedly on the same node. Intuitively,
one does not expect the temperature profile to change. To test
this, we select a computational chemistry application that is

98

Fig. 7. Power consumption distribution of SBE offender nodes during SBE-
free periods (a) and SBE-affected periods (b). Vertical lines represent mean
values.

executed multiple times on the same node at different times.
Fig. 8 shows the temperature and power profiles of GPU
during two different runs on different days, but on the same
node to avoid location specific power/cooling side-effects. We
plot the average temperature and power values for all other
nodes in the same slot or cage, as well as the temperature
profile of the CPU in the same target node. For the power
profile, we do not have the ability to measure CPU power
consumption out-of-the-band. We include the 30 min time
window before and after the application run to evaluate the
results in context.

—— node_gpu +* slot_avg —— node_gpu « slot_avg
- - node_cpu * cage_avg - - node_cpu ~ cage_avg
55 55 =
OS50, | comcvean = o= O 50t —ravo ==
s - - g -
T4 % 3 45 s
4 < n- -
2 40 - 1 2 40
£ 35f e 1 S 351 ]
a a
£ 30 e 1 £ 30 ’A SINUP—
Q250 8 Q25 Ha==
20 . . 20 . .
0 40 80 120 160 40 80 120 160
Time(min) Time(min)

—— node - - slot_avg —— node - - slot_avg

40

80
Time(min)
(b) Temperature and

power from second run

80 40
Time(min)
(a) Temperature and

power from first run

20 120 120 160

Fig. 8. Effect of neighboring components on temperature/power of an
application over two runs on the same node overtime. Vertical solid lines
represent the start and end of the aprun execution.

From Fig. 8, we observe that the temperature profile changes
from one run to another and that it is not necessarily correlated
to fluctuations in the power profile. The result indicates that
changes in the temperature/power consumption of neighboring
nodes and the CPU in the same target node may contribute
to the variation in the temperature profile of the target node.
Other factors such as change in power/cooling efficiency in
the spatial region may also contribute to variation in the
temperature profile, although these factors are hard to detect
and quantify. Motivated by the above evidence, we argue that
temperature and power consumption from neighboring nodes
in the same slot, as well as the temperature of the CPU on the



same node, may also help with SBE occurrence prediction.
Still, it is non-trivial to understand whether or how much the
behavior of neighboring nodes can actually improve the error
prediction capabilities. In Section VII, we will quantify the
impact of these features on prediction effectiveness.

In summary, our analysis reveals that certain GPU cards,
workload, and GPU temperature/power consumption could
have predictive or associative capabilities with GPU errors,
but it is non-trivial to exploit them for error prediction. In
Section VII, we demonstrate that simple schemes based on
these observations lead to poor prediction effectiveness, while
machine-learning-based approaches capture hidden interac-
tions and significantly outperform simplistic predictions.

IV. OVERVIEW OF THE METHODOLOGY

In the previous section, we illustrate that GPU errors are
potentially correlated with different system and workload
characteristics. Formally, we are interested in finding a math-
ematical function that maps these properties (features) to the
probability of GPU error occurrence. If we express system and
workload dependent properties as features xg, 1,2, ..., Tn,
there exists a function Fj,,.q, such that the probability of GPU
error occurrence during program execution is expressed by:

Probe,, = pred(x07-r17w2v--~7$n) . (D
Note that, many such functions can exist with varying
accuracy-levels because the probability of GPU error occur-
rence during program execution may not always be dependent
on the value of different features only. It is possible that
a mathematical function can not fully capture the behavior
because of inherent randomness involved with soft error oc-
currences. Therefore, the goal is to “learn” a classification
function, Fj,.q, that provides high accuracy based on the
available features. Given this, we take the following steps:

Step 1: Feature selection and engineering. We select a
set of features as input to the desired function. We elaborate
the process, challenges, and solutions involved in selecting a
useful set of features (Section V).

Step 2: Function discovery. We discuss how to learn the
desired classification function in a generic yet meaningful
way. We provide details on the challenges in learning the
classification function (Section VI).

Step 3: Analysis of the learned function. We investigate
the usefulness of the learned function and analyze the function
to assess if it can provide meaningful results under different
circumstances (Section VII).

We emphasize that these steps are means to show that
such a problem can be solved with reasonable accuracy and
under practical constraints. The rest of the paper demonstrates
the execution of these steps. We note that deep learning
approaches are not covered in this work due to their typical
high overhead and limited suitability to the nature of our
problem.

V. FEATURE SELECTION

Determining an effective set of features to learn the desired
function is challenging. First, measuring and collecting plausi-

99

ble features correlated with GPU errors is not always possible.
For example, the memory access pattern could be associated
with SBEs. However, the overhead to collect this information
in a production system with dynamically changing workloads
is cost prohibitive. Second, selecting features from what can
be measured and collected is taxing. One can conservatively
collect data from all instrumentation sources, but it may
result in excessive storage and processing overhead without
clear understanding if they are indeed related to the final
outcome. Consequently, feature selection is a critical aspect
toward learning the desired function. We refer to the process
of transforming the selected features into quantifiable and
meaningful representation as feature engineering.

These challenges are addressed by following the observa-
tions discussed in Section III. We identify the features that
have correlations with GPU soft errors and organize them
into time and space dimensions. The key premise is that soft
errors are not an outcome that can be predicted by observing
the instantaneous values of features. Therefore, it is important
to include both temporal and spatial dimensions. Next, we
list different features and their corresponding quantifiable
representation.

A. Temporal Features

Application: As discussed in Section III-B, some applica-
tions experience higher number of soft errors than others, indi-
cating that application-specific features could be useful toward
soft error prediction. We use application-specific features that
can be obtained in non-intrusive manner, including the appli-
cation binary name, total execution time (from past runs), and
GPU resource utilization. GPU resource utilization includes
the aggregate GPU core time, aggregate GPU memory, and
maximum GPU memory. To capture the temporal behavior,
we also use the application name that ran before this execution
to account for post-effects of an application run.

Temperature/power consumption: We have shown ev-
idence that temperature may be correlated with soft error
occurrences (Section III-C2). However, capturing this com-
plex correlation is non-trivial. We propose the following
four temperature features to capture temporal aspects. First,
we use the mean and standard deviation of the temperature
during the current application run as two input features. In
addition, to capture the dynamic behavior during a run, we
use the mean and standard deviation of the difference between
two consecutive temperature measurements as two additional
input features. The above four features do not account for
recent historical temperature behavior. To address this, we use
temperature characteristics before the execution of a current
application on the node. Specifically, we use the mean and
standard deviation of the temperature series and the mean
and standard deviation of the difference between two consec-
utive temperature measurements on the same node before the
execution of the current application. We consider four time
windows: 5min, 15min, 30min, and 60min prior to the start
of the current execution to calculate the aforementioned four



temperature features. Similarly, we apply the above described
metrics for GPU power consumption.

B. Spatial Features

Node location: Our characterization results indicate that
error offender nodes are not uniformly distributed in space,
and some error offenders experience SBEs repeatedly (Sec-
tion III-A). Therefore, node location is used as a feature to
capture node-specific and location-specific correlations.

Temperature/power consumption: In Section III-C3, we
show the prediction capabilities with temperature and power
consumption on neighboring nodes. Similar to the represen-
tations of temperature and power consumption used in the
temporal feature set, we leverage the mean and standard
deviation of temperature and power consumption, as well as
the mean and standard deviation of the difference between
two consecutive measurements for (1) the temperature of the
CPU on the same node and (2) the temperature and power
consumption of the GPU nodes in the same slot, as parts of
the spatial feature set.

SBE history: We include the error frequency in order
to capture non-uniform temporal distribution of SBEs (Sec-
tion III). Specifically, we use the total error count over the
preceding day i.e., in the past 24 hours, at the node-level
and for the whole machine as features to capture the spatial
behavior of error occurrence. We refer to this information
as SBE rate history at the local (node) and global (whole
machine) level. We also include the SBE rate in the past 24
hours of the given application and the nodes allocated to it as
additional history features.

VI. MACHINE LEARNING FRAMEWORK AND MODEL

In this section, we focus on the discovery of the function
that captures the relationship between input features and GPU
soft error occurrences. To this end, we use several widely-used
machine learning models including Logistic Regression (LR),
Gradient Boosting Decision Tree (GBDT), Support Vector
Machine (SVM), and Neural Network (NN). Our goal is to
understand how the classification function can be learned
effectively via carefully choosing a combination of features
and an appropriate learning model, as well as what insights
can be learned from evaluating such models.

A. Overview

The first step of the machine learning framework requires
building the training dataset by collecting input features.
In our case, we periodically collect information on input
features for jobs running on the Titan. As a second step,
this training dataset is used to build the machine learning
model. The chosen model outputs the desired classification
function that can be used for GPU soft error prediction. The
desired classification function is a two-class classifier (i.e.,
whether an error occurs or not during the target program
execution), and is dependent on the training dataset and the
selected model. Building the training dataset and estimating
the classification function is an iterative process that aims to

100

refine the learned classification function as time passes. Here,
the model construction is relatively less frequent (i.e., once
every two weeks). The final step is to feed the features of the
target program into the models to predict error occurrence.

Some input features for the target application run can be
collected prior to execution (e.g., machine-level error rate,
node specific characteristics), while certain program specific
features such as GPU power and temperature profiles can not
always be known a priori. We experiment with two approaches
and achieve similar results. In the first approach, the prediction
can be done at the end of the application execution, and
a possible re-execution may be required depending on the
program’s resilience needs. In this case, all input features are
known correctly. The second approach is that certain input
features are learned using statistical models and are fed into
the learned function. Note that, this approach can not guarantee
that all input feature values are 100% accurate. Fortunately,
HPC workloads are fairly repetitive. It is possible to effectively
learn and accurately predict program specific features, i.e.,
their temperature and power profile, by leveraging time-series
prediction tools, e.g., [16].

B. Challenge: Imbalanced Dataset

It is desired to select the training and testing data so that
they cover a wide variety of workload and system properties,
and are also representative of a real-world scenario. In our
approach, any workload execution that uses GPU resources is
a qualified sample. This ensures that our dataset corresponds
to different kinds of workloads distributed over both time
and space dimensions. However, this data collection approach
results in a challenging problem: a highly imbalanced dataset.
The problem stems for the fact that only a limited number
(< 2% in our case) of application runs encounter SBEs. This
makes the size of majority class (SBE-free samples) much
larger than that of the minority class, which is our focus.

Mitigating the imbalanced dataset challenge usually has two
solutions. The first one is over-sampling the minority class,
i.e., by generating synthetic samples [17, 18]. The other solu-
tion is to under-sample the majority class, i.e., by randomly
choosing a subset of samples [19] or control under-sampling
via clustering algorithms such as k-means [20]. Note that, none
of the above methods takes the inherent dataset features into
consideration. In the following section, we propose a two-
stage method, which first leverages the dataset characteristics
to mitigate the challenge of the imbalanced dataset and then
apply machine learning models to predict SBE occurrences.

C. Two-Stage Machine Learning Models
1) Leveraging dataset characteristics

In Section III, we observe that a small fraction of GPU
nodes and workloads are responsible for a large number
of SBEs. It is intuitive to think that previous SBE-affected
nodes/workloads may continue seeing SBEs while those SBE-
free nodes/workloads are likely to remain in “safe status”
in the future. Accordingly, we consider three basic schemes:
Basic A predicts that any application run involving a SBE



offender node will result in a SBE-affected run. Basic B
predicts that previously SBE-affected applications will result
in future SBE-affected runs. Basic C predicts that top SBE-
affected applications will result in a future SBE-affected run.
Top SBE affected applications are defined as the top 20%
applications that encounter SBEs in the training phase in terms
of their total number of SBEs.

Table I presents the prediction effectiveness of the above
three basic schemes, compared to a trivial random classifier
that assumes the probability of encountering SBEs is 0.5.
Precision is defined as the percentage of correct predictions
in all predictions:

. True Positives
Precision =

(@)

True Positives + False Positives ’
while recall reveals the ratio of identified samples to the
ground truth, expressed by the following formula:

Recall — True Positives 3)
"~ True Positives + False Negatives

The random classifier achieves a mere 0.5 recall. Due to the
high imbalance between the two classes, the random classifier
achieves very low precision for the SBE class prediction. Basic
A significantly outperforms the random classifier and the other
two basic schemes, achieving a high SBE prediction recall
(0.94), albeit at fairly low precision (0.40). This indicates that
the scheme Basic A could capture most SBE cases but still
over-predicts the SBE class, implying that this scheme alone
is insufficient for robust prediction.

TABLE I
PRECISION AND RECALL FOR BASIC SCHEMES.

SBE Sample Non-SBE Sample
Scheme | Precision | Recall | Precision | Recall
Random 0.02 0.50 0.98 0.50
Basic A 0.40 0.94 0.99 0.98
Basic B 0.02 0.69 0.98 0.24
Basic C 0.00 0.06 0.98 0.76

2) TwoStage method

Inspired by Basic A, which achieves a reasonable prediction
quality, we derive a TwoStage method. This method leverages
the inherent temporal dependency of our dataset and takes
advantage of the power of machine learning techniques. Unlike
Basic A, the TwoStage method is able to accurately predict
the samples from SBE offenders, instead of blindly assuming
them to always encounter SBEs in the future. During training,
we train the model solely on samples from SBE offender
nodes. The prediction flow is presented in Fig. 9. At the
first stage, samples are checked to see if they come from
SBE or non-SBE offender nodes. They are passed to the
second stage only if they come from SBE offender nodes. The
advantages of this method are three-fold: (1) the number of
SBE offender nodes is much smaller than the number of non-
SBE offender nodes. Therefore, this step automatically reduces

101

Stage 2

node saw
SBE before?

Predict as
BE sample?

Sample:
<app, node>

SBE-Free

Fig. 9. TwoStage method: prediction flow.

the training data size, resulting in less training overhead (both
in terms of time and storage). (2) As discussed previously, the
relationship between SBEs and different features is complex.
By focusing on SBE offender nodes only, we avoid the noise
and interference from error-free samples. (3) Most importantly,
this approach solves the problem of data imbalance. Now,
after the first stage, the ratio between SBE-free samples
and SBE-affected ones is roughly 2 : 1 (Consider that the
original ratio is almost 50 : 1). The downside is that this
method always misses SBE occurrences on previously error-
free nodes. Fortunately, on the Titan, such probability is low
and frequent periodic training of the model resolves this issue.
Section VII shows that TwoStage introduces low overhead and
can be trained periodically to provide high prediction quality.

D. Machine Learning Model Selection

We select four widely used machine learning models that
provide a wide variety of trade-offs and advantages. Logistic
Regression (LR) is a simple and fast model for understanding
the influence of several independent variables but limited by
the linear function between inputs and outputs. Gradient
Boosting Decision Tree (GBDT) is a boosting-based model
that is essentially an ensemble of weak models, that is effective
in tackling the variance-bias problem, but is computationally
expensive. Support Vector Machine (SVM) is designed to
solve this problem by performing non-linear classification
using a kernel. Artificial Neural Networks (NN) are inspired
by biological neural networks and are composed of many in-
terconnected neurons. The weights associated with the neurons
are used to approximate non-linear functions of the input.
Neural networks capture the complex pattern between features
and targets.

In the evaluation section (Section VII), we incorporate the
aforementioned models to the TwoStage method and compare
their effectiveness.

VII. EVALUATION AND ANALYSIS

Before discussing the prediction results, we describe the
data used for model training and testing, as well as the
evaluation metrics.

A. Data Description and Evaluation Metrics

We collect all the features discussed in Section V over the
entire sampling period (from January to June, 2015) for both
SBE-affected and SBE-free periods. We divide this dataset into
three pairs of training and testing sub-datasets based on the
time dimension. In each sub-dataset, the training dataset con-
sists of 3.5-month samples, and the samples in the following



two weeks are used for testing. Each sample is identified as the
pair of the application name and the node ID. For example, our
first training dataset (i.e., DS1) corresponds to 6.7 thousand
application executions, with roughly 5 million samples. Note
that each application run may produce multiple number of
samples depending on the number of nodes allocated during
the execution. For determining the length of the training and
testing datasets, we follow the rule-of-thumb ratio of the
testing data size to the training data size (20% — 25%) [21].
We also ensure that the three testing datasets cover diverse
workloads and have different compositions of samples.

In order to meaningfully evaluate the results, it is important
to choose the most appropriate metric. Accuracy is a simple
and widely used metric to assess the effectiveness of pre-
dictions. However, it is misleading for evaluating imbalanced
datasets. In our testing datasets, around 98% of the application
executions (samples) fall into the majority class (i.e., non-SBE
class). For example, a naive method, such as always predicting
each sample as non-SBE case, will lead to an accuracy of
98%. Other commonly used metrics include precision and
recall, see Section VI-C1. The main goal of any prediction
mechanism is to improve precision without sacrificing recall.
However, precision and recall sometimes can be conflicting,
as while increasing the true positives, the false positives may
also increase [22]. Consequently, we use the FI Score [23],
the harmonic mean of precision and recall (see Eq. 4),

F1 Seore — 2 X Precision x Recall

4

Precision + Recall @
as the evaluation metric to capture such trade-off between
prediction and recall. In general, higher F1 score indicates
better prediction quality.

B. Machine Learning Model Comparison

As stated in Section VI-D, we apply four machine learning
models (i.e., LR, GBDT, SVM, and NN) on the second stage
of the TwoStage method. Here, we discuss which machine
learning model works most efficiently.

1) Accuracy and robustness comparison

Across machine learning models: Choosing an effective
model is one of the key challenges. Fig. 10 reveals the F1
score of SBE class using the first dataset (DS1) for the four
machine learning models. Note that the result of SBE-free
class is not shown here (also in later evaluation parts)
because all models are able to achieve high prediction quality
for the SBE-free cases (i.e., the majority class) due to the
highly imbalanced nature of our testing samples. We notice
that applying machine learning models always significantly
surpasses the Basic A scheme, with at least 0.1 improvement
for the F1 score. Applying GBDT model achieves the highest
F1 score (0.81), outperforming the least effective one (LR) by
0.14. To investigate why GBDT works better than the other
models, we also look at the precision and recall values. We
find that all four models are able to achieve a similar precision

102

values (around 0.8), but GBDT is able to achieve a much
higher recall value (0.87) than the other three models (around
0.6). High recall value implies that the boosting nature of
GBDT enables it to identify more SBE samples, while similar
precision across four different learning models indicates that
GBDT also conservatively predicts SBE occurrences as the
other three models. This result suggests that GBDT achieves
the most accurate prediction of SBE occurrences among the
four machine learning models.

[ BasicA LR =3 GBDT E3 svM™ 3 NN

F1 Score Precision Recall

Fig. 10. Comparison of SBE occurrence prediction across different models
for DSI.

Across different datasets: We have shown that applying
GBDT yields to the best prediction result for the first dataset.
Here we validate whether GBDT works best for other datasets
(i.e., DS2 and DS3). Note that these testing and training
datasets are disjoint and the machine learning models are
trained independently for each dataset. Table II summarizes
the F1 scores of applying different models on the other two
datasets. The table shows that applying machine learning
models almost always leads to improvement in the F1 score,
compared with Basic A. Secondly, using GBDT results in
satisfactory prediction quality (F1 score) across different
datasets and significantly outperforms all the other three
models. Even for the most tough-to-predict dataset (DS3),
applying GBDT within TwoStage improves the F1 score
to 0.71. The above observations confirm the efficiency and
robustness of GBDT.

TABLE II
F1 SCORE FOR SBE OCCURRENCE PREDICTION.
Dataset | Basic A | LR | GBDT | SVM | NN
DSI 0.56 0.67 0.81 0.70 | 0.69
DS2 0.75 0.80 0.81 0.79 | 0.77
DS3 0.55 0.52 0.71 0.55 | 0.51

2) Model overhead comparison

In the previous subsection, we have illustrated that the
TwoStage method with GBDT is effective and robust. Here,
we evaluate its training overhead, especially since the Titan
operation would require re-training to occur periodically. The
comparison of the training time of the four machine learning
models is presented in Table III. Note that all experiments



are conducted on an Intel Xeon server (Intel E5-4627v2) with
512GB RAM. The training time is the longest for SVM and
is approximately one hour. This is due to the computationally
expensive quadratic RBF kernel used in the SVM model.
LR consumes the least amount of time, but it also fails
to provide a guaranteed prediction quality (see Fig. 10 and
Table II). Considering both prediction quality and overhead,
GBDT is superior as it strikes a good balance between these
two measures. Note that since the training process can be
done offline and periodically (e.g., repeated every two weeks),
the relative model re-training time is truly negligible. Overall,
GBDT’s small training time would allow re-training to happen
even several times during the day if needed. In addition, the
data movement overhead for storing and preprocessing the data
is of the order of minutes.

TABLE III
MEAN TRAINING TIME FOR VARIOUS MODELS.

Model
Mean Time

LR
4.81 s

GBDT
40.53 s

SVM
1.04 h

NN
20.01 min

The aforementioned evidence supports that TwoStage with
GBDT is practically feasible for error prediction. In the later
sections, we show prediction results based on this model only.

C. Feature Analysis

Besides choosing an appropriate machine learning model,
the selection of features is another key to achieving high-
quality of prediction. In Section V, we illustrate several
features from temporal and spatial perspectives, which may
contribute to the SBE occurrence prediction. This does not
imply that all features are needed for training the most
effective model. Nonetheless, it is non-trivial to discover and
engineer the feature set resulting in the highest prediction
quality. In this section, we explain how to perform the feature
discovery process.

The large number of features and complexity of advanced
learning models make it challenging to meaningfully under-
stand the impact of each feature. Consequently, we simplify
this problem by grouping features into categories (feature
groups) and train the machine learning models with each
feature group. The goal is to see which feature group con-
tributes most to the prediction quality. We also train one model
with all features. Fig. 11 shows the effect of different feature
groups on the prediction quality, in the form of the percentage
improvement for the F1 score comparing to Basic A. The labels
in the figure legend indicate the corresponding feature groups
used in each experiment.

We observe that almost all models trained with any feature
group positively contribute to the SBE occurrence prediction,
but with different degrees of improvement. Meanwhile, no
single feature group is the winner across all datasets. For
example, Hist is the most effective feature group for DSI,
but it negatively impacts prediction quality in DS2. However,
in all datasets, using the combination of all features always

103

50%

ET3 Hist E= App
€ 40%1  — == All
2 30% [

2 20%
S 10% ]
£ —el]
- 0% =
-10% T r -
DS1 DS2 DS3
Fig. 11. Effect of different feature groups on F1 score, in terms of

the improvement over Basic A. All means using all features discussed in
Section V. Hist, TP, and App correspond to SBE history, temperature/power
consumption, and application-related features, respectively.

results in the biggest improvement, implying that all features
are valuable and needed for achieving good prediction.

Besides feature grouping, it is also interesting to conduct a
deeper and more fine-grained investigation on input features.
We start by quantifying the impact of various types of tem-
perature/power consumption features. As stated in Section V,
temperature and power consumption features are collected
from both temporal and spatial perspectives, on the targeted
node and other neighboring nodes in the same slot. Therefore,
we conduct experiments with various combination of tem-
perature and power consumption features to see their impact
on SBE occurrence prediction, see Table IV. Cur refers to
using temperature and power consumption data collected only
from the targeted node during the application run, together
with all other groups of features mentioned in Section V. In
addition to the features used in Cur, CurPrev also leverages
temperature and power consumption data prior to the execution
of application on the targeted node (in four time windows,
up to one hour). Similarly, CurNei adds the temperature
and power consumption data on neighboring nodes (i.e., in
the same slot as the targeted node). CurPrevNei leverages
all temperature and power consumption features discussed
above. Interestingly, we notice that the prediction quality is
not significantly affected by the various feature combinations.
Looking at F1 score, CurPrev and CurPrevNei work
worse than Cur. In contrast, CurNei achieves slightly better
prediction quality, but it also leverages more features which
means it introduces more overhead in terms of data collection
and model training. Cur exhibits high recall and good preci-
sion. Consequently, we select Cur as an effective and light-
weight representation of temperature and power consumption
information for model training.

TABLE IV
EFFECT FROM TEMPORAL AND SPATIAL ASPECTS OF TEMPERATURE AND
POWER FEATURES.

Feature Set | Precision | Recall | F1 Score
Cur 0.764 0.865 0.820
CurPrev 0.801 0.830 0.815
CurNei 0.815 0.838 0.826
CurPrevNei 0.807 0.829 0.818

As a next step, we analyze the impact of various types of



history features on the SBE occurrence prediction. Unlike the
aforementioned experiments, here we conduct the experiment
by removing one type of history features and see the decrease
in F1 score. First, we compare the effects from global (overall
information collected from the whole system) and local (infor-
mation collected from the targeted node) SBE history on SBE
occurrence prediction, see Fig. 12(a). Interestingly, removing
global and local history even increases the F1 score in DS2,
which is consistent with the observation in Fig. 11, where
SBE history features contribute negatively in DS2. However,
if we focus on DS1 and DS3, we notice that local history
information plays a more important role in prediction, i.e.,
removing these features leads to 15% to 25% loss in F1 score.
The impact of history length on prediction quality is presented
in Fig. 12 (b). From this figure, we observe that the importance
of SBE history generally increases as it is closer to the current
time. Note also that there is no particular length (i.e., today,
yesterday, or full history) that is always effective across all
datasets. This illustrates the importance of inclusion of all SBE
history features.

10%

10%

= 5% = 5%
T 0%/ = g 0% = _B
£ 5% £ 5% !
> -10% > -10%
2 -15% 2 -15%
g'-zo%— = Global g--zo%— =1 Before == Today
= -25%+ 3 Local — -25% 1 3 Yesterday

-30% T T T -30%

DS1 DS2 DS3 DS1 DS2 DS3

(a) Global vs. Local (b) Length of history

Fig. 12. Decrement on F1 score if removing a certain feature set from the
original feature combination: global vs local (a), and different length of SBE
history (b).

D. Prediction Analysis

In the previous sections, we have determined that GBDT is
the best machine learning model for the TwoStage method, and
the most effective feature combination for its training. Here,
we conduct an evaluation on the prediction quality of this
model with the most efficient feature combination as inputs.
Due to the space constraints, we illustrate the analysis on the
results of using the first dataset only. The quality of prediction
for the two other datasets is similar to that of DSI.

1) Spatial robustness

We investigate if TwoStage performs well spatially across the
entire Titan system. Fig. 13(a) shows the proximity of the
cumulative distribution plots of SBE predictions across the
entire system for the ground truth, prediction (true positives
plus false positives) and true positives. We then present the
absolute difference between the number of SBE affected
application runs (ground truth) and the prediction for the
testing period at the cabinet level, see Fig. 13(b). For over 95%
of cabinets, the error difference is relatively small, ranging in
[—15, 13]. In fact, there are only 3 (out of 200) cabinets where
the prediction overestimates SBE affected application runs by

104

more than 25. This is encouraging as thousands of applications
are executed over each cabinet. We also perform such analysis
at the node level and observe accurate prediction for more than
99% of nodes (result not shown due to space constraint).

100% 100%

8% A 80%
60% ]
40% |

60%

CDF
CDF

—— Ground Truth
Prediction
—=—- True Positives

40%
(N F T
20% 20%

0%

0%

O 20 10 ¢ ¢® {000
Num. of SBE Occurrences

-30 -20 -10 0 10
Ground Truth - Prediction

(a) Comparison of CDFs (b) Diff. from prediction

Fig. 13. Comparison between SBE occurrence prediction and ground truth
at the cabinet level.

We also investigate how the choice of optimal model
changes across the various cabinets. We find that TwoStage
with GBDT remains the close-to-the-best choice among all
models for all cabinets. The number of cabinets where this
scheme is not the optimal choice is limited across the machine
in all three datasets. In fact, we find that even if the prediction
model is chosen with the apriori knowledge (oracle) on the
optimal model, the overall F1 score improves only by 0.01,
0.02, and 0.001 for the three datasets, respectively. Overall,
our results indicate that TwoStage with GBDT delivers robust
and consistent results across the whole machine and it is not
restricted to performing well only in selected sections of the
machine.

2) Effect of application runtime

We look into whether the quality of the prediction is
significantly impacted by the length of the application
execution. In other words, do short-running and long-running
applications attain comparable prediction quality? We classify
an application as “short-running” if its runtime falls in the
bottom 25 percentile range and as “long-running” if its
runtime falls in the top 25 percentile range. Table V confirms
that both types of application achieve high prediction quality
with comparable F1 scores. Moreover, “long-running”
applications achieve better prediction quality than “short-
running” ones. This is quite favorable since the cost of
mislabeling a “long-running” application would be higher,
e.g., if re-execution is needed.

TABLE V
SBE OCCURRENCE PREDICTION FOR “SHORT-RUNNING” AND
“LONG-RUNNING” APPLICATIONS.

Application | Precision | Recall | F1 Score
All 0.76 0.87 0.81
Short 0.77 0.94 0.84
Long 0.93 0.90 0.92




3) Effect of SBE severity

An error predictor that is able to label more severe application
runs (i.e., with a higher number of SBEs) as SBE-affected is
desirable. Towards this goal, we first group application runs
into four levels of SBE severity (25 percentile per level), i.e.,
the bottom 25 percentile applications with the least number of
SBEs are in level Light while the top 25 percentile ones are in
level Extreme. Table VI presents the percentage of correctly
classified SBE-affected runs in each level. Our results indicate
that as the number of SBEs increases among application
runs in our dataset, the effectiveness of the TwoStage method
grows. For example, 74% of the application runs in level
Light are already correctly predicted to be SBE-affected cases.
The percentage number increases as the SBE severity level
goes higher, becoming 95% for Extreme application runs. The
results show that TwoStage is able to achieve high prediction
quality for SBE occurrences, especially for those applications
affected by more SBEs.

TABLE VI
PERCENTAGE OF CORRECTLY CLASSIFIED SBE-AFFECTED APPLICATION
RUNS IN FOUR SEVERITY LEVELS.

Moderate
38%

Extreme
95%

Severe
93%

Severity
PCT.

Light
74%

VIII. DISCUSSION

Time Series-based Feature Prediction. As stated in Sec-
tion VI, some input features into the TwoStage method cannot
be known before the execution of application, such as the
temperature and power consumption during the application
run. Therefore, we need to leverage time-series prediction
tools to forecast those features. Fortunately, there is a rich
body of works on time-series prediction. ARMA/ARIMA [24]
have been widely used for time series prediction in several
systems areas. Tran and Reed [25] use ARIMA to improve
block prefetching for scientific applications. Neural networks
have been shown effective in capturing temporal and spatial
dependencies within time series of data center resource us-
age [16, 26, 27]. Generally speaking, we can take advantage
of these prediction tools to first forecast features based on time
series, and then plug them into the TwoStage method for SBE
occurrence prediction.

Application of SBE Prediction. Intuitively, GPU soft error
prediction can work together with system scheduling. For
example, based on the prediction result of SBE occurrences,
one can dynamically turn on or turn off the ECC protection
on targeted nodes and applications for the sake of lower ECC
overhead. One may argue that the aftermath of mislabeling a
SBE sample can be too much given the fact that no prediction
technique can guarantee 100% accuracy. Several prior works
indicate that this standpoint is too conservative. First, some
hardware errors (i.e., transient bit flips) occurring during
application runs can be masked in the final output, meaning
that these errors are imperceptible by the end users [28—
31]. Moreover, even those corrupted outputs are not always

105

got rejected as long as the severity level of corruption is
below a certain user-acceptable threshold [32] . For instance,
in the field of approximate computing, users are willing to
trade accuracy with better performance [33-37]. Similarly, it
is desirable under certain situations to sacrifice accuracy for
lower reliability overhead. In fact, due to the prohibitively high
error protection overhead, computational scientists may opt to
naively off error protection for their application runs [11]. The
proposed error predictor allows to strike a balance between
performance, overhead, and reliability.

IX. RELATED WORK

Characterizing system failures in HPC systems has been
an important topic for decades [5, 38—40]. Oliner et al. [41]
analyze logs collected from five HPC systems. Researchers
have also looked specifically into DRAMs and HDDs and
demonstrate pitfalls in error studies and their impact on system
reliability assessment [5—7, 38, 42]. Unfortunately, there are
relatively limited studies on GPU reliability of large scale
systems. One reason is that the GPU architecture is relatively
recently deployed in large-scale HPC systems, comparing
to other components such as disks and CPUs. Martino et
al. [43] investigate GPU errors in Blue Waters at the National
Center for Supercomputing Applications, while recent efforts
present GPU error characterization for the Titan supercom-
puter [4, 14]. Those studies point to spatial and temporal
locality, resource utilization, workload type, error frequency,
and correlation with jobs for various types of GPU errors.
None of the above works look into the complex interplay of
temperature, power consumption, and GPU SBE:s. Close to the
work presented in this paper, the impact of temperature and
power consumption on GPU soft errors is examined in [15]
and a neural-network-based model is proposed to predict the
occurrences. In contrast to [15], we use a host of features from
both the temporal and spatial perspectives and evaluate their
effectiveness across multiple machine learning models.

CONCLUSION

In this paper, we analyzed large amounts of measured
system related data to understand the characteristics of
temperature, power, workload type, and SBE distribution
across space and time. We propose several machine learning-
based models that use workload and system features as
input for GPU soft-error prediction. We examined their
effectiveness under various scenarios and in multiple aspects
including its accuracy, robustness, overhead, and model
interpretations.

Acknowledgment We thank reviewers for their constructive feed-
back. The work was supported by in part through NSF grants
CCF-1649087, CCF-1717532, Northeastern University, and by the
U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, program manager Lucy Nowell. This
work also used in part the resources of, the Oak Ridge Leadership
Computing Facility, located in the National Center for Computational
Sciences at ORNL, which is managed by UT Battelle, LLC for the
U.S. DOE under contract number DE-AC05-000R22725.



[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

J. S. Vetter, R. Glassbrook et al., “Keeneland: Bringing heterogeneous
GPU computing to the computational science community,” Computing
in Science & Engineering, vol. 13, no. 5, pp. 90-95, 2011.

D. Kothe and R. Kendall, “Computational science requirements for lead-
ership computing,” Oak Ridge National Laboratory, Technical Report,
2007.

C. L. Mendes, B. Bode et al., “Deploying a large petascale system:
The blue waters experience,” Procedia Computer Science, vol. 29, pp.
198-209, 2014.

D. Tiwari, S. Gupta et al., “Understanding GPU errors on large-scale
HPC systems and the implications for system design and operation,”
in High Performance Computer Architecture (HPCA), 2015 IEEE 21st
International Symposium on. 1EEE, 2015, pp. 331-342.

V. Sridharan, J. Stearley ef al., “Feng shui of supercomputer memory
positional effects in DRAM and SRAM faults,” in High Performance
Computing, Networking, Storage and Analysis (SC), 2013 International
Conference for. IEEE, 2013, pp. 1-11.

B. Schroeder and G. A. Gibson, “Disk failures in the real world: What
does an MTTF of 1, 000, 000 hours mean to you?” in FAST, vol. 7,
no. 1, 2007, pp. 1-16.

L. N. Bairavasundaram, A. C. Arpaci-Dusseau et al., “Characteristics,
impact, and tolerance of partial disk failures,” Ph.D. dissertation, Uni-
versity of Wisconsin—-Madison, 2008.

N. El-Sayed, I. A. Stefanovici et al., “Temperature management in data
centers: Why some (might) like it hot,” ACM SIGMETRICS Performance
Evaluation Review, vol. 40, no. 1, pp. 163-174, 2012.

“Top500 list,” https://www.top500.0rg/list/2016/06/, 2016.

R. M. Betz, N. A. DeBardeleben et al., “An investigation of the effects
of hard and soft errors on graphics processing unit-accelerated molecular
dynamics simulations,” Concurrency and Computation: Practice and
Experience, vol. 26, no. 13, pp. 2134-2140, 2014.

A. W. Gotz, M. J. Williamson et al., “Routine microsecond molecular
dynamics simulations with AMBER on GPUs. 1. generalized born,”
Journal of Chemical Theory and Computation, vol. 8, no. 5, pp. 1542—
1555, 2012.

“Understanding XID errors,” http://docs.nvidia.com/deploy/xid-errors/
index.html, 2015.

S. Gupta, D. Tiwari et al., “Understanding and exploiting spatial
properties of system failures on extreme-scale HPC systems,” in De-
pendable Systems and Networks (DSN), 2015 45th Annual IEEE/IFIP
International Conference on. 1EEE, 2015, pp. 37-44.

B. Nie, D. Tiwari et al., “A large-scale study of soft-errors on GPUs in
the field,” in High Performance Computer Architecture (HPCA), 2016
IEEE International Symposium on. 1EEE, 2016, pp. 519-530.

B. Nie, J. Xue er al., “Characterizing temperature, power, and soft-
error behaviors in data center systems: Insights, challenges, and op-
portunities,” in Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2017 IEEE 25th International
Symposium on. 1EEE, 2017, pp. 22-31.

J. Xue, F. Yan et al., “PRACTISE: Robust prediction of data center
time series,” in Network and Service Management (CNSM), 2015 11th
International Conference on. 1EEE, 2015, pp. 126-134.

F. Provost, “Machine learning from imbalanced data sets 101,” in
Proceedings of the AAAI’2000 Workshop on Imbalanced Data Sets,
2000, pp. 1-3.

N. V. Chawla, K. W. Bowyer et al., “SMOTE: synthetic minority over-
sampling technique,” Journal of Artificial Intelligence Research, vol. 16,
pp. 321-357, 2002.

R. Sipos, D. Fradkin et al., “Log-based predictive maintenance,” in
Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2014, pp. 1867-1876.
M. M. Botezatu, I. Giurgiu et al., “Predicting disk replacement towards
reliable data centers,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2016, pp. 39-48.

I. Guyon, “A scaling law for the validation-set training-set size ratio,”
AT&T Bell Laboratories, pp. 1-11, 1997.

N. V. Chawla, “Data mining for imbalanced datasets: An overview,” in
Data Mining and Knowledge Discovery Handbook. Springer, 2009, pp.
875-886.

D. M. Powers, “Evaluation: from precision, recall and F-measure to
ROC, informedness, markedness and correlation,” Journal of Machine
Learning Technologies, 2011.

106

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

G. E. Box, G. M. Jenkins et al., Time series analysis: forecasting and
control. John Wiley & Sons, 2015.

N. Tran and D. A. Reed, “Automatic ARIMA time series modeling
for adaptive I/O prefetching,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 15, no. 4, pp. 362-377, 2004.

J. Xue, B. Nie et al., “Fill-in the gaps: Spatial-temporal models for
missing data,” in 2017 13th International Conference on Network and
Service Management (CNSM). 1EEE, 2017, pp. 1-9.

J. Xue, R. Birke et al., “Spatial-temporal prediction models for active
ticket managing in data centers,” IEEE Trans. Network and Service
Management, vol. 15, no. 1, pp. 39-52, 2018. [Online]. Available:
https://doi.org/10.1109/TNSM.2018.2794409

K. S. Yim, C. Pham et al., “Hauberk: Lightweight silent data corruption
error detector for GPGPU,” in Parallel & Distributed Processing Sym-
posium (IPDPS), 2011 IEEE International. 1EEE, 2011, pp. 287-300.
B. Fang, K. Pattabiraman et al., “GPU-Qin: A methodology for eval-
uating the error resilience of GPGPU applications,” in Performance
Analysis of Systems and Software (ISPASS), 2014 IEEE International
Symposium on. 1EEE, 2014, pp. 221-230.

S. K. S. Hari, T. Tsai et al., “SASSIFI: Evaluating resilience of GPU
applications,” in Proceedings of the Workshop on Silicon Errors in
Logic-System Effects (SELSE), 2015.

G. Li, K. Pattabiraman et al., “Understanding error propagation in
GPGPU applications,” in High Performance Computing, Networking,
Storage and Analysis, SC16: International Conference for. 1EEE, 2016,
pp. 240-251.

R. Venkatagiri, A. Mahmoud et al., “Approxilyzer: Towards a systematic
framework for instruction-level approximate computing and its applica-
tion to hardware resiliency,” in Microarchitecture (MICRO), 2016 49th
Annual IEEE/ACM International Symposium on. 1EEE, 2016, pp. 1-14.
S. Mitra and Y. Hayashi, “Bioinformatics with soft computing,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 36, no. 5, pp. 616-635, 2006.

R. K. Jena, M. M. Agel et al., “Soft computing methodologies in
bioinformatics,” European Journal of Scientific Research, vol. 26, no. 2,
pp. 189-203, 2009.

H.-L. Truong and T. Fahringer, “Soft computing approach to perfor-
mance analysis of parallel and distributed programs,” Euro-Par 2005
Parallel Processing, pp. 622-622, 2005.

S. Mitra, S. K. Pal er al., “Data mining in soft computing framework:
a survey,” IEEE Transactions on Neural Networks, vol. 13, no. 1, pp.
3-14, 2002.

J. Meng, S. Chakradhar et al., “Best-effort parallel execution framework
for recognition and mining applications,” in Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on.
IEEE, 2009, pp. 1-12.

A. A. Hwang, 1. A. Stefanovici et al., “Cosmic rays don’t strike twice:
understanding the nature of DRAM errors and the implications for
system design,” in ACM SIGPLAN Notices, vol. 47, no. 4. ACM,
2012, pp. 111-122.

B. Schroeder, R. Lagisetty et al., “Flash reliability in production:
The expected and the unexpected,” in I4th USENIX Conference on
File and Storage Technologies, FAST 2016, Santa Clara, CA, USA,
February 22-25, 2016., A. D. Brown and F. I. Popovici, Eds. USENIX
Association, 2016, pp. 67-80. [Online]. Available: https://www.usenix.
org/conference/fast16/technical-sessions/presentation/schroeder

B. Schroeder and G. Gibson, “A large-scale study of failures in high-
performance computing systems,” IEEE Transactions on Dependable
and Secure Computing, vol. 7, no. 4, pp. 337-350, 2010.

A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in Dependable Systems and Networks, 2007. DSN’07. 37th
Annual IEEE/IFIP International Conference on. 1EEE, 2007, pp. 575—
584.

B. Schroeder, E. Pinheiro et al., “DRAM errors in the wild: a large-scale
field study,” in ACM SIGMETRICS Performance Evaluation Review,
vol. 37, no. 1. ACM, 2009, pp. 193-204.

C. Di Martino, Z. Kalbarczyk et al., “Lessons learned from the analysis
of system failures at petascale: The case of blue waters,” in Dependable
Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP Interna-
tional Conference on. IEEE, 2014, pp. 610-621.



