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Abstract—GPUs are widely deployed on large-scale HPC sys-
tems to provide powerful computational capability for scientific
applications from various domains. As those applications are
normally long-running, investigating the characteristics of GPU
errors becomes imperative for reliability. In this paper, we first
study the system conditions that trigger GPU errors using six-
month trace data collected from a large-scale, operational HPC
system. Then, we use machine learning to predict the occurrence
of GPU errors, by taking advantage of temporal and spatial
dependencies of the trace data. The resulting machine learning
prediction framework is robust and accurate under different
workloads.

I. INTRODUCTION

Over the past decade, GPUs have become an integral part

of mainstream high performance computing facilities thanks

to the fact that they allow to simulate physical phenomena

more quickly and accurately (i.e., at a finer granularity) [1–3].

As GPUs are more widely adopted in scale-out computing

architectures, GPU soft errors become a critical challenge.

Reliable execution of applications can lead to higher produc-

tivity and lower I/O overhead. However, understanding the

source of GPU soft errors itself is challenging. Past work has

shown evidence that indicates a plausible relationship between

power/cooling infrastructure and GPU errors, but there exists

no clear understanding on the exact conditions that trigger

faults [4].

The key to improving GPU reliability is to understand

the relationship among GPU soft errors and different factors

including power consumption, temperature, and workload be-

havior. The goal of this paper is to explore the interaction

among temperature, power consumption, workload character-

istics, and GPU soft errors, and to exploit these interactions

toward GPU soft error prediction in a large scale HPC system.

Previous works have investigated the interplay between

temperature and device reliability on hard disk drives,

solid state drives, and CPUs [5–8]. In contrast, our work
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focuses on understanding the interplay between work-

load/temperature/power consumption and GPU soft errors on

the Titan, America’s fastest supercomputer for open sci-

ence [9].

In this paper, we discover that workload characteristics,

certain GPU cards, temperature and power consumption could

be indicative of GPU errors, but it is non-trivial to exploit

them for error prediction. Motivated by these observations and

challenges, we explore machine-learning-based error predic-

tion models that capture hidden interactions among system

and workload properties. Such models are useful in guiding

flexible error protection schemes for GPU nodes, e.g., by dy-

namically turning on/off error protection based on prediction.

One may argue that completely turning off error protection

may be too risky. However, it is important to notice that the

impact of error-correcting code (ECC) overhead on real-world

computational science applications can be as high as 10% on

GPUs [10]. In fact, the decreased memory bandwidth caused

by ECC overhead can result in larger performance degradation

than the decreased fraction of bandwidth itself due to queuing

ramifications. In fact, computational scientists already naively

turn off ECC for their application runs [11]. In such cases, a

prediction model would be useful instead of always turning

off ECC.

Acknowledging the necessity of an error predictor, this

paper elaborates on the challenges, process, and solutions in-

volved in building effective machine-learning-based prediction

models. We show how to systematically select features by

categorizing them into spatial and temporal dimensions. We

illustrate how to overcome the imbalanced dataset challenge

and trade-offs by taking advantage of the inherent features

of the dataset. We use the selected features to train various

machine learning models, including Logistic Regression (LR),

Gradient Boosting Decision Tree (GBDT), Support Vector

Machine (SVM), and Neural Network (NN).

Finally, we evaluate the machine learning models via dif-

ferent metrics and under diverse testing scenarios. Our results

indicate that the proposed models achieve high prediction qual-

ity and are robust. In particular, the GBDT-based prediction

achieves an F1 score of 0.81, significantly outperforming other

models. The corresponding high recall (i.e., 0.87) and good

precision (i.e., 0.76) indicate that the GBDT-based model is

conservative in identifying as many SBE cases as possible.

This is preferable as the aftermath of missing an SBE occur-
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rence is likely to be more severe than mislabeling a non-SBE

occurrence. Our evaluation also uncovers interesting insights

from comparison across different models, training/testing data,

and feature combinations. We show that the proposed pre-

diction models impose moderate overhead and are practically

feasible for GPU soft error prediction.

II. BACKGROUND

The Titan supercomputer is one of the fastest supercom-

puters for open science [9]. The basic block is a node, that

consists of one AMD Opteron 6274 CPU and one NVIDIA

K20X GPU. Four nodes make up one slot. In each slot,

there are two high-speed interconnect Gemini routers, each

shared by two nodes. The next granularity level is one cage,

which is composed of 8 slots. Three cages form one cabinet.

There are 200 cabinets, organized as a 25 × 8 grid, and a

total of 18,688 GPUs on the Titan. Major memory struc-

tures in K20X GPUs are protected by error-correcting codes

(ECC). Device memory, L2 cache, instruction cache, register

files, shared memory, and L1 cache are protected by Single

Error Correction Double Error Detection ECC, while read-

only data cache is parity protected. Non-memory structures

such as logic, thread schedulers, instruction dispatch unit, and

interconnection network are not protected.

Various types of GPU errors occur on the system including

hardware failures. NVIDIA provides a list of XID errors and

documents their possible causes [12]. In this study, we focus

on GPU soft errors. Particularly, we target single bit errors

(SBEs), as they occur most frequently on Titan GPUs. Other

errors, i.e., double bit errors (DBEs), are less frequent and

statistically unsuitable for prediction. The ECC mechanism

is typically turned on to detect SBEs. However, ECC incurs

significant overhead to storage and memory bandwidth. If the

impact of SBEs could be understood well with predictive

capability, turning-off ECC could improve performance and

reduce associated overhead.

Our traces contain GPU-error related data from February

2015 to June 2015 (more than 60 million node hours). SBEs

are collected via the nvidia-smi utility. This utility provides

snapshot information, i.e., it does not timestamp individual

SBEs, but records SBEs before and after each batch job.

This enables to perform data analytics on SBEs, albeit at

the granularity of a “batch job”. We denote a batch job as

a set of applications that are submitted simultaneously by the

same user. Applications (also referred as “apruns”) can run

within a submitted batch job (also referred as “job”). The SBE

count is collected at the start and end of a batch job. The

tracing framework can identify the node location on which

SBEs occur. We collect GPU resource utilization information

such as GPU core-hours, maximum memory consumption, and

total memory consumption on a per application basis. We

collect the temperature and power consumption information in

out-of-band manner without instrumenting applications. This

information is approximately collected every minute for every

node.

We do recognize that this work is subject to assumptions

and limitations. This study assumes apruns having the same

binary name are of the same type, as user codes and workflow

execution practices are unknown to us. Batch jobs may contain

multiple apruns, but we cannot tell which apruns encounter

SBEs. Therefore, we conservatively assume that SBEs occur

in all those apruns. Finally, a large-scale HPC facility is often

dynamic with respect to software stack changes and opera-

tional practices. Hence, correctly including the impact of these

factors in the data analysis is onerous. Moreover, soft errors

can be trigged by transient bit-flips due to external charge-

carrying particles or device failures, i.e., variations, yield,

aging effects, or electron migration. We cannot distinguish

soft errors by their root causes in this work due to lack of

information.

III. GPU ERROR CHARACTERIZATION

Soft errors may occur during an application execution on

GPUs for multiple reasons, i.e., cosmic ray strikes, voltage

fluctuations, elevated temperature, manufacturing defects, and

complex workload-hardware interaction. However, pinpointing

the root cause of soft errors is challenging and cannot be

easily used to predict soft error occurrences. While soft error

occurrences have limited predictability, we find that not all soft

error occurrences are random. Our results reveal that certain

system and workload properties may have hidden correlations

with GPU soft errors, albeit such correlations can not be

attributed as causations. In particular, we show that certain

GPU cards, workload behavior, GPU temperature, and GPU

power consumption may have complex interactions with GPU

soft error occurrences.

A. SBE Offender Nodes

Fig. 1. Non-uniform distribution of GPU error offender nodes at the cabinet
level.

We start by investigating how GPU errors are distributed

across the entire system. Since the 200 cabinets on the Titan

are organized as a 25 × 8 grid, we present the normalized

average value of SBE-affected nodes at the cabinet level in

Fig. 1. Clearly, GPU errors are not uniformly distributed. The

number of SBE-affected GPU cards are not the majority of

all cards in the system either. As shown later in Section VII,

exploiting this observation in isolation is not likely to yield

good prediction of future SBEs. For example, if we predict

that all applications executing on these SBE offender nodes

will experience errors, it results in a high false positive

rate because SBE offender nodes do not experience errors

uniformly over all days either. Actually, 80% of error offender

nodes experience a soft error on less than 20% of the total
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Fig. 2. Non-uniform distribution of SBE-affected application runs at the
cabinet level.

days over the trace period. Nevertheless, the non-uniform

distribution of soft error offender nodes in the space and time

domains open the possibility for learning-based predictions.

B. Application

It is also important to analyze the impact of various work-

loads on GPU soft error occurrences. As a first step, we

explore the spatial distribution of SBE-affected applications

and observe the non-uniform distribution across the Titan

system (see Fig. 2). Next, we look at the severity of SBE-

affected applications by analyzing their SBE count (application

and SBE correlation is normalized by the GPU core hours,

i.e., runtime × number of nodes). Fig. 3(a) shows that a

smaller set of workloads, less than 20% of all applications,

experience the majority of errors (≥ 90%). However, Fig. 3(b)

shows that even SBE-affected applications do not experience

SBEs uniformly across all application runs. The top 20% of

the SBE affected workloads experience all their share of soft

errors during 60% of their total application executions, while

the lower 20% of the SBE affected workloads experience all

their share of soft errors during less than 10% of their total

application executions. We further investigate the relationship

between the severity of SBE-affected application runs and their

GPU utilization, i.e., core-hours and memory, see Fig. 4. The

high Spearman coefficient values (see inset in each figure for

the exact values) indicate that applications with more SBEs

tend to utilize more GPU memory and for longer duration.
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(b) Fraction of SBE apruns

Fig. 3. Workload and GPU error distribution: a small set of workloads
experience most of the soft errors (a), and fraction of executions affected
by SBEs for SBE-affected application runs (b).

The above observations imply that application related mea-

surements such as utilization, are good indicators for SBE

occurrences. While these observations provide useful ground

truth for error prediction, simple prediction strategies based on

these findings alone lead to low prediction quality (we address

this issue in Section VII).

(a) GPU core-hours (b) GPU memory

Fig. 4. Scatter plot of SBE count of SBE-affected application runs and their
GPU utilization: core-hours (a) and memory (b).

C. Temperature and Power Consumption

Consistent with previous studies on GPU errors [4, 13–15],

we analyze the potential relationship between GPU tempera-

ture/power consumption and GPU errors.

1) A bird’s eye view

We first explore whether GPU temperature/power consumption

correlate with soft error occurrences. Fig. 5 shows the cumula-

tive temperature/power consumption over the entire sampling

period of every cabinet in the Titan. We observe that the

temperature distribution is non-uniform in space, i.e., cabinets

in the upper left corner and lower right corner tend to be

hotter than the rest. In contrast, power consumption is more

evenly spread, implying that the Titan is intensively utilized

both time-wise and space-wise.

(a) Temperature distribution

(b) Power consumption distribution

Fig. 5. Distribution of temperature (a) and power consumption (b) accumu-
lative over the whole period at the cabinet level.

Next, we compare the non-uniform temperature distribution

with the SBE-affected nodes distribution (Fig. 1) by calculat-

ing Spearman correlation coefficient at the node level. The low

value (0.07) implies that the accumulative temperature distri-

bution is not related to the SBE offender nodes distribution

in space. The same observation is reached when comparing

the temperature distribution and the SBE-affected application

distribution (the Spearman correlation coefficient is only 0.15).

Similar analysis is conducted for power consumption, which

also shows weak correlation between power consumption and

SBE-affected nodes or SBE-affected application runs. In sum-

mary, the effect of temperature on SBEs may not be entirely
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(a) SBE-free period (b) SBE-affected period

Fig. 6. Temperature distribution of SBE offender nodes during SBE-free
periods (a) and SBE-affected periods (b). Vertical lines represent mean values.

captured by SBE offender nodes or workload characteristics

only.

2) Considering the time dimension

We turn the focus to SBE offender nodes and temperature

characteristics across time. We divide the time dimension

in two parts: (1) the time during which a soft error occurs

(SBE-affected period) and (2) the time during which no soft

error occurs (SBE-free period). Fig. 6 shows the empirical

temperature distribution of SBE offender nodes during these

two periods. The distribution for GPU power consumption is

presented in Fig. 7.

We observe that the SBE offender nodes are relatively

hotter during the SBE-affected period by more than 3◦C on

average, compared to SBE-free period (Fig. 6(a) vs. 6(b)).

The SBE offender nodes also consume relatively higher power

during the SBE-affected period by more than 15 watts on

average, compared to the SBE-free period (Fig. 7(a) vs. 7(b)).

Note that higher power consumption likely contributes to

increased temperature. However, due to varying cooling ef-

ficiency and workload characteristics, temperature elevation

may be caused by other factors too. The above observation

implies that SBEs are more likely to happen during periods of

elevated temperature. Our measured data do not conclusively

indicate that SBEs definitely occur above a certain threshold

of temperature/power consumption. Sometimes even during

the SBE-free period, temperature can be significantly high

(see Fig. 6(a)), making the SBE occurrence prediction non-

trivial. Nevertheless, these observations are encouraging as

they demonstrate a relationship between temperature/power

consumption and SBE occurrences, which can be potentially

used for prediction.

3) Considering the space dimension

Besides the time domain, it is natural to also explore whether

similarities exist across space. In fact, our measured data

indicate that GPU power consumption and temperature profile

can change for the same workload across runs, possibly due to

effects from neighboring nodes (i.e., spatial effects). We first

investigate how the temperature profile changes when the same

workload is executed repeatedly on the same node. Intuitively,

one does not expect the temperature profile to change. To test

this, we select a computational chemistry application that is

(a) SBE-free period (b) SBE-affected period

Fig. 7. Power consumption distribution of SBE offender nodes during SBE-
free periods (a) and SBE-affected periods (b). Vertical lines represent mean
values.

executed multiple times on the same node at different times.

Fig. 8 shows the temperature and power profiles of GPU

during two different runs on different days, but on the same

node to avoid location specific power/cooling side-effects. We

plot the average temperature and power values for all other

nodes in the same slot or cage, as well as the temperature

profile of the CPU in the same target node. For the power

profile, we do not have the ability to measure CPU power

consumption out-of-the-band. We include the 30 min time

window before and after the application run to evaluate the

results in context.

(a) Temperature and

power from first run

(b) Temperature and

power from second run

Fig. 8. Effect of neighboring components on temperature/power of an
application over two runs on the same node overtime. Vertical solid lines
represent the start and end of the aprun execution.

From Fig. 8, we observe that the temperature profile changes

from one run to another and that it is not necessarily correlated

to fluctuations in the power profile. The result indicates that

changes in the temperature/power consumption of neighboring

nodes and the CPU in the same target node may contribute

to the variation in the temperature profile of the target node.

Other factors such as change in power/cooling efficiency in

the spatial region may also contribute to variation in the

temperature profile, although these factors are hard to detect

and quantify. Motivated by the above evidence, we argue that

temperature and power consumption from neighboring nodes

in the same slot, as well as the temperature of the CPU on the
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same node, may also help with SBE occurrence prediction.

Still, it is non-trivial to understand whether or how much the

behavior of neighboring nodes can actually improve the error

prediction capabilities. In Section VII, we will quantify the

impact of these features on prediction effectiveness.

In summary, our analysis reveals that certain GPU cards,

workload, and GPU temperature/power consumption could

have predictive or associative capabilities with GPU errors,

but it is non-trivial to exploit them for error prediction. In

Section VII, we demonstrate that simple schemes based on

these observations lead to poor prediction effectiveness, while

machine-learning-based approaches capture hidden interac-

tions and significantly outperform simplistic predictions.

IV. OVERVIEW OF THE METHODOLOGY

In the previous section, we illustrate that GPU errors are

potentially correlated with different system and workload

characteristics. Formally, we are interested in finding a math-

ematical function that maps these properties (features) to the

probability of GPU error occurrence. If we express system and

workload dependent properties as features x0, x1, x2, . . . , xn,

there exists a function Fpred, such that the probability of GPU

error occurrence during program execution is expressed by:

Proberr = Fpred(x0, x1, x2, . . . , xn) . (1)

Note that, many such functions can exist with varying

accuracy-levels because the probability of GPU error occur-

rence during program execution may not always be dependent

on the value of different features only. It is possible that

a mathematical function can not fully capture the behavior

because of inherent randomness involved with soft error oc-

currences. Therefore, the goal is to “learn” a classification

function, Fpred, that provides high accuracy based on the

available features. Given this, we take the following steps:

Step 1: Feature selection and engineering. We select a

set of features as input to the desired function. We elaborate

the process, challenges, and solutions involved in selecting a

useful set of features (Section V).

Step 2: Function discovery. We discuss how to learn the

desired classification function in a generic yet meaningful

way. We provide details on the challenges in learning the

classification function (Section VI).

Step 3: Analysis of the learned function. We investigate

the usefulness of the learned function and analyze the function

to assess if it can provide meaningful results under different

circumstances (Section VII).

We emphasize that these steps are means to show that

such a problem can be solved with reasonable accuracy and

under practical constraints. The rest of the paper demonstrates

the execution of these steps. We note that deep learning

approaches are not covered in this work due to their typical

high overhead and limited suitability to the nature of our

problem.

V. FEATURE SELECTION

Determining an effective set of features to learn the desired

function is challenging. First, measuring and collecting plausi-

ble features correlated with GPU errors is not always possible.

For example, the memory access pattern could be associated

with SBEs. However, the overhead to collect this information

in a production system with dynamically changing workloads

is cost prohibitive. Second, selecting features from what can

be measured and collected is taxing. One can conservatively

collect data from all instrumentation sources, but it may

result in excessive storage and processing overhead without

clear understanding if they are indeed related to the final

outcome. Consequently, feature selection is a critical aspect

toward learning the desired function. We refer to the process

of transforming the selected features into quantifiable and

meaningful representation as feature engineering.

These challenges are addressed by following the observa-

tions discussed in Section III. We identify the features that

have correlations with GPU soft errors and organize them

into time and space dimensions. The key premise is that soft

errors are not an outcome that can be predicted by observing

the instantaneous values of features. Therefore, it is important

to include both temporal and spatial dimensions. Next, we

list different features and their corresponding quantifiable

representation.

A. Temporal Features

Application: As discussed in Section III-B, some applica-

tions experience higher number of soft errors than others, indi-

cating that application-specific features could be useful toward

soft error prediction. We use application-specific features that

can be obtained in non-intrusive manner, including the appli-

cation binary name, total execution time (from past runs), and

GPU resource utilization. GPU resource utilization includes

the aggregate GPU core time, aggregate GPU memory, and

maximum GPU memory. To capture the temporal behavior,

we also use the application name that ran before this execution

to account for post-effects of an application run.

Temperature/power consumption: We have shown ev-

idence that temperature may be correlated with soft error

occurrences (Section III-C2). However, capturing this com-

plex correlation is non-trivial. We propose the following

four temperature features to capture temporal aspects. First,

we use the mean and standard deviation of the temperature

during the current application run as two input features. In

addition, to capture the dynamic behavior during a run, we

use the mean and standard deviation of the difference between

two consecutive temperature measurements as two additional

input features. The above four features do not account for

recent historical temperature behavior. To address this, we use

temperature characteristics before the execution of a current

application on the node. Specifically, we use the mean and

standard deviation of the temperature series and the mean

and standard deviation of the difference between two consec-

utive temperature measurements on the same node before the

execution of the current application. We consider four time

windows: 5min, 15min, 30min, and 60min prior to the start

of the current execution to calculate the aforementioned four
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temperature features. Similarly, we apply the above described

metrics for GPU power consumption.

B. Spatial Features

Node location: Our characterization results indicate that

error offender nodes are not uniformly distributed in space,

and some error offenders experience SBEs repeatedly (Sec-

tion III-A). Therefore, node location is used as a feature to

capture node-specific and location-specific correlations.

Temperature/power consumption: In Section III-C3, we

show the prediction capabilities with temperature and power

consumption on neighboring nodes. Similar to the represen-

tations of temperature and power consumption used in the

temporal feature set, we leverage the mean and standard

deviation of temperature and power consumption, as well as

the mean and standard deviation of the difference between

two consecutive measurements for (1) the temperature of the

CPU on the same node and (2) the temperature and power

consumption of the GPU nodes in the same slot, as parts of

the spatial feature set.

SBE history: We include the error frequency in order

to capture non-uniform temporal distribution of SBEs (Sec-

tion III). Specifically, we use the total error count over the

preceding day i.e., in the past 24 hours, at the node-level

and for the whole machine as features to capture the spatial

behavior of error occurrence. We refer to this information

as SBE rate history at the local (node) and global (whole

machine) level. We also include the SBE rate in the past 24

hours of the given application and the nodes allocated to it as

additional history features.

VI. MACHINE LEARNING FRAMEWORK AND MODEL

In this section, we focus on the discovery of the function

that captures the relationship between input features and GPU

soft error occurrences. To this end, we use several widely-used

machine learning models including Logistic Regression (LR),

Gradient Boosting Decision Tree (GBDT), Support Vector

Machine (SVM), and Neural Network (NN). Our goal is to

understand how the classification function can be learned

effectively via carefully choosing a combination of features

and an appropriate learning model, as well as what insights

can be learned from evaluating such models.

A. Overview

The first step of the machine learning framework requires

building the training dataset by collecting input features.

In our case, we periodically collect information on input

features for jobs running on the Titan. As a second step,

this training dataset is used to build the machine learning

model. The chosen model outputs the desired classification

function that can be used for GPU soft error prediction. The

desired classification function is a two-class classifier (i.e.,

whether an error occurs or not during the target program

execution), and is dependent on the training dataset and the

selected model. Building the training dataset and estimating

the classification function is an iterative process that aims to

refine the learned classification function as time passes. Here,

the model construction is relatively less frequent (i.e., once

every two weeks). The final step is to feed the features of the

target program into the models to predict error occurrence.

Some input features for the target application run can be

collected prior to execution (e.g., machine-level error rate,

node specific characteristics), while certain program specific

features such as GPU power and temperature profiles can not

always be known a priori. We experiment with two approaches

and achieve similar results. In the first approach, the prediction

can be done at the end of the application execution, and

a possible re-execution may be required depending on the

program’s resilience needs. In this case, all input features are

known correctly. The second approach is that certain input

features are learned using statistical models and are fed into

the learned function. Note that, this approach can not guarantee

that all input feature values are 100% accurate. Fortunately,

HPC workloads are fairly repetitive. It is possible to effectively

learn and accurately predict program specific features, i.e.,

their temperature and power profile, by leveraging time-series

prediction tools, e.g., [16].

B. Challenge: Imbalanced Dataset

It is desired to select the training and testing data so that

they cover a wide variety of workload and system properties,

and are also representative of a real-world scenario. In our

approach, any workload execution that uses GPU resources is

a qualified sample. This ensures that our dataset corresponds

to different kinds of workloads distributed over both time

and space dimensions. However, this data collection approach

results in a challenging problem: a highly imbalanced dataset.

The problem stems for the fact that only a limited number

(≤ 2% in our case) of application runs encounter SBEs. This

makes the size of majority class (SBE-free samples) much

larger than that of the minority class, which is our focus.

Mitigating the imbalanced dataset challenge usually has two

solutions. The first one is over-sampling the minority class,

i.e., by generating synthetic samples [17, 18]. The other solu-

tion is to under-sample the majority class, i.e., by randomly

choosing a subset of samples [19] or control under-sampling

via clustering algorithms such as k-means [20]. Note that, none

of the above methods takes the inherent dataset features into

consideration. In the following section, we propose a two-

stage method, which first leverages the dataset characteristics

to mitigate the challenge of the imbalanced dataset and then

apply machine learning models to predict SBE occurrences.

C. Two-Stage Machine Learning Models

1) Leveraging dataset characteristics

In Section III, we observe that a small fraction of GPU

nodes and workloads are responsible for a large number

of SBEs. It is intuitive to think that previous SBE-affected

nodes/workloads may continue seeing SBEs while those SBE-

free nodes/workloads are likely to remain in “safe status”

in the future. Accordingly, we consider three basic schemes:

Basic A predicts that any application run involving a SBE
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offender node will result in a SBE-affected run. Basic B

predicts that previously SBE-affected applications will result

in future SBE-affected runs. Basic C predicts that top SBE-

affected applications will result in a future SBE-affected run.

Top SBE affected applications are defined as the top 20%
applications that encounter SBEs in the training phase in terms

of their total number of SBEs.

Table I presents the prediction effectiveness of the above

three basic schemes, compared to a trivial random classifier

that assumes the probability of encountering SBEs is 0.5.

Precision is defined as the percentage of correct predictions

in all predictions:

Precision =
True Positives

True Positives+ False Positives
, (2)

while recall reveals the ratio of identified samples to the

ground truth, expressed by the following formula:

Recall =
True Positives

True Positives+ False Negatives
. (3)

The random classifier achieves a mere 0.5 recall. Due to the

high imbalance between the two classes, the random classifier

achieves very low precision for the SBE class prediction. Basic

A significantly outperforms the random classifier and the other

two basic schemes, achieving a high SBE prediction recall

(0.94), albeit at fairly low precision (0.40). This indicates that

the scheme Basic A could capture most SBE cases but still

over-predicts the SBE class, implying that this scheme alone

is insufficient for robust prediction.

TABLE I
PRECISION AND RECALL FOR BASIC SCHEMES.

SBE Sample Non-SBE Sample

Scheme Precision Recall Precision Recall

Random 0.02 0.50 0.98 0.50

Basic A 0.40 0.94 0.99 0.98

Basic B 0.02 0.69 0.98 0.24

Basic C 0.00 0.06 0.98 0.76

2) TwoStage method

Inspired by Basic A, which achieves a reasonable prediction

quality, we derive a TwoStage method. This method leverages

the inherent temporal dependency of our dataset and takes

advantage of the power of machine learning techniques. Unlike

Basic A, the TwoStage method is able to accurately predict

the samples from SBE offenders, instead of blindly assuming

them to always encounter SBEs in the future. During training,

we train the model solely on samples from SBE offender

nodes. The prediction flow is presented in Fig. 9. At the

first stage, samples are checked to see if they come from

SBE or non-SBE offender nodes. They are passed to the

second stage only if they come from SBE offender nodes. The

advantages of this method are three-fold: (1) the number of

SBE offender nodes is much smaller than the number of non-

SBE offender nodes. Therefore, this step automatically reduces

Sample:

<app, node>

node saw 

SBE before? SBE
Yes Yes

SBE-Free
No No

Stage 1 Stage 2

Predict as 

SBE sample?

Fig. 9. TwoStage method: prediction flow.

the training data size, resulting in less training overhead (both

in terms of time and storage). (2) As discussed previously, the

relationship between SBEs and different features is complex.

By focusing on SBE offender nodes only, we avoid the noise

and interference from error-free samples. (3) Most importantly,

this approach solves the problem of data imbalance. Now,

after the first stage, the ratio between SBE-free samples

and SBE-affected ones is roughly 2 : 1 (Consider that the

original ratio is almost 50 : 1). The downside is that this

method always misses SBE occurrences on previously error-

free nodes. Fortunately, on the Titan, such probability is low

and frequent periodic training of the model resolves this issue.

Section VII shows that TwoStage introduces low overhead and

can be trained periodically to provide high prediction quality.

D. Machine Learning Model Selection

We select four widely used machine learning models that

provide a wide variety of trade-offs and advantages. Logistic

Regression (LR) is a simple and fast model for understanding

the influence of several independent variables but limited by

the linear function between inputs and outputs. Gradient

Boosting Decision Tree (GBDT) is a boosting-based model

that is essentially an ensemble of weak models, that is effective

in tackling the variance-bias problem, but is computationally

expensive. Support Vector Machine (SVM) is designed to

solve this problem by performing non-linear classification

using a kernel. Artificial Neural Networks (NN) are inspired

by biological neural networks and are composed of many in-

terconnected neurons. The weights associated with the neurons

are used to approximate non-linear functions of the input.

Neural networks capture the complex pattern between features

and targets.

In the evaluation section (Section VII), we incorporate the

aforementioned models to the TwoStage method and compare

their effectiveness.

VII. EVALUATION AND ANALYSIS

Before discussing the prediction results, we describe the

data used for model training and testing, as well as the

evaluation metrics.

A. Data Description and Evaluation Metrics

We collect all the features discussed in Section V over the

entire sampling period (from January to June, 2015) for both

SBE-affected and SBE-free periods. We divide this dataset into

three pairs of training and testing sub-datasets based on the

time dimension. In each sub-dataset, the training dataset con-

sists of 3.5-month samples, and the samples in the following
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two weeks are used for testing. Each sample is identified as the

pair of the application name and the node ID. For example, our

first training dataset (i.e., DS1) corresponds to 6.7 thousand

application executions, with roughly 5 million samples. Note

that each application run may produce multiple number of

samples depending on the number of nodes allocated during

the execution. For determining the length of the training and

testing datasets, we follow the rule-of-thumb ratio of the

testing data size to the training data size (20% − 25%) [21].

We also ensure that the three testing datasets cover diverse

workloads and have different compositions of samples.

In order to meaningfully evaluate the results, it is important

to choose the most appropriate metric. Accuracy is a simple

and widely used metric to assess the effectiveness of pre-

dictions. However, it is misleading for evaluating imbalanced

datasets. In our testing datasets, around 98% of the application

executions (samples) fall into the majority class (i.e., non-SBE

class). For example, a naive method, such as always predicting

each sample as non-SBE case, will lead to an accuracy of

98%. Other commonly used metrics include precision and

recall, see Section VI-C1. The main goal of any prediction

mechanism is to improve precision without sacrificing recall.

However, precision and recall sometimes can be conflicting,

as while increasing the true positives, the false positives may

also increase [22]. Consequently, we use the F1 Score [23],

the harmonic mean of precision and recall (see Eq. 4),

F1 Score =
2× Precision×Recall

Precision+Recall
(4)

as the evaluation metric to capture such trade-off between

prediction and recall. In general, higher F1 score indicates

better prediction quality.

B. Machine Learning Model Comparison

As stated in Section VI-D, we apply four machine learning

models (i.e., LR, GBDT, SVM, and NN) on the second stage

of the TwoStage method. Here, we discuss which machine

learning model works most efficiently.

1) Accuracy and robustness comparison

Across machine learning models: Choosing an effective

model is one of the key challenges. Fig. 10 reveals the F1

score of SBE class using the first dataset (DS1) for the four

machine learning models. Note that the result of SBE-free

class is not shown here (also in later evaluation parts)

because all models are able to achieve high prediction quality

for the SBE-free cases (i.e., the majority class) due to the

highly imbalanced nature of our testing samples. We notice

that applying machine learning models always significantly

surpasses the Basic A scheme, with at least 0.1 improvement

for the F1 score. Applying GBDT model achieves the highest

F1 score (0.81), outperforming the least effective one (LR) by

0.14. To investigate why GBDT works better than the other

models, we also look at the precision and recall values. We

find that all four models are able to achieve a similar precision

values (around 0.8), but GBDT is able to achieve a much

higher recall value (0.87) than the other three models (around

0.6). High recall value implies that the boosting nature of

GBDT enables it to identify more SBE samples, while similar

precision across four different learning models indicates that

GBDT also conservatively predicts SBE occurrences as the

other three models. This result suggests that GBDT achieves

the most accurate prediction of SBE occurrences among the

four machine learning models.

Fig. 10. Comparison of SBE occurrence prediction across different models
for DS1.

Across different datasets: We have shown that applying

GBDT yields to the best prediction result for the first dataset.

Here we validate whether GBDT works best for other datasets

(i.e., DS2 and DS3). Note that these testing and training

datasets are disjoint and the machine learning models are

trained independently for each dataset. Table II summarizes

the F1 scores of applying different models on the other two

datasets. The table shows that applying machine learning

models almost always leads to improvement in the F1 score,

compared with Basic A. Secondly, using GBDT results in

satisfactory prediction quality (F1 score) across different

datasets and significantly outperforms all the other three

models. Even for the most tough-to-predict dataset (DS3),

applying GBDT within TwoStage improves the F1 score

to 0.71. The above observations confirm the efficiency and

robustness of GBDT.

TABLE II
F1 SCORE FOR SBE OCCURRENCE PREDICTION.

Dataset Basic A LR GBDT SVM NN

DS1 0.56 0.67 0.81 0.70 0.69

DS2 0.75 0.80 0.81 0.79 0.77

DS3 0.55 0.52 0.71 0.55 0.51

2) Model overhead comparison

In the previous subsection, we have illustrated that the

TwoStage method with GBDT is effective and robust. Here,

we evaluate its training overhead, especially since the Titan

operation would require re-training to occur periodically. The

comparison of the training time of the four machine learning

models is presented in Table III. Note that all experiments
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are conducted on an Intel Xeon server (Intel E5-4627v2) with

512GB RAM. The training time is the longest for SVM and

is approximately one hour. This is due to the computationally

expensive quadratic RBF kernel used in the SVM model.

LR consumes the least amount of time, but it also fails

to provide a guaranteed prediction quality (see Fig. 10 and

Table II). Considering both prediction quality and overhead,

GBDT is superior as it strikes a good balance between these

two measures. Note that since the training process can be

done offline and periodically (e.g., repeated every two weeks),

the relative model re-training time is truly negligible. Overall,

GBDT’s small training time would allow re-training to happen

even several times during the day if needed. In addition, the

data movement overhead for storing and preprocessing the data

is of the order of minutes.

TABLE III
MEAN TRAINING TIME FOR VARIOUS MODELS.

Model LR GBDT SVM NN

Mean Time 4.81 s 40.53 s 1.04 h 20.01 min

The aforementioned evidence supports that TwoStage with

GBDT is practically feasible for error prediction. In the later

sections, we show prediction results based on this model only.

C. Feature Analysis

Besides choosing an appropriate machine learning model,

the selection of features is another key to achieving high-

quality of prediction. In Section V, we illustrate several

features from temporal and spatial perspectives, which may

contribute to the SBE occurrence prediction. This does not

imply that all features are needed for training the most

effective model. Nonetheless, it is non-trivial to discover and

engineer the feature set resulting in the highest prediction

quality. In this section, we explain how to perform the feature

discovery process.

The large number of features and complexity of advanced

learning models make it challenging to meaningfully under-

stand the impact of each feature. Consequently, we simplify

this problem by grouping features into categories (feature

groups) and train the machine learning models with each

feature group. The goal is to see which feature group con-

tributes most to the prediction quality. We also train one model

with all features. Fig. 11 shows the effect of different feature

groups on the prediction quality, in the form of the percentage

improvement for the F1 score comparing to Basic A. The labels

in the figure legend indicate the corresponding feature groups

used in each experiment.

We observe that almost all models trained with any feature

group positively contribute to the SBE occurrence prediction,

but with different degrees of improvement. Meanwhile, no

single feature group is the winner across all datasets. For

example, Hist is the most effective feature group for DS1,

but it negatively impacts prediction quality in DS2. However,

in all datasets, using the combination of all features always

Fig. 11. Effect of different feature groups on F1 score, in terms of
the improvement over Basic A. All means using all features discussed in
Section V. Hist, TP, and App correspond to SBE history, temperature/power
consumption, and application-related features, respectively.

results in the biggest improvement, implying that all features

are valuable and needed for achieving good prediction.

Besides feature grouping, it is also interesting to conduct a

deeper and more fine-grained investigation on input features.

We start by quantifying the impact of various types of tem-

perature/power consumption features. As stated in Section V,

temperature and power consumption features are collected

from both temporal and spatial perspectives, on the targeted

node and other neighboring nodes in the same slot. Therefore,

we conduct experiments with various combination of tem-

perature and power consumption features to see their impact

on SBE occurrence prediction, see Table IV. Cur refers to

using temperature and power consumption data collected only

from the targeted node during the application run, together

with all other groups of features mentioned in Section V. In

addition to the features used in Cur, CurPrev also leverages

temperature and power consumption data prior to the execution

of application on the targeted node (in four time windows,

up to one hour). Similarly, CurNei adds the temperature

and power consumption data on neighboring nodes (i.e., in

the same slot as the targeted node). CurPrevNei leverages

all temperature and power consumption features discussed

above. Interestingly, we notice that the prediction quality is

not significantly affected by the various feature combinations.

Looking at F1 score, CurPrev and CurPrevNei work

worse than Cur. In contrast, CurNei achieves slightly better

prediction quality, but it also leverages more features which

means it introduces more overhead in terms of data collection

and model training. Cur exhibits high recall and good preci-

sion. Consequently, we select Cur as an effective and light-

weight representation of temperature and power consumption

information for model training.

TABLE IV
EFFECT FROM TEMPORAL AND SPATIAL ASPECTS OF TEMPERATURE AND

POWER FEATURES.

Feature Set Precision Recall F1 Score

Cur 0.764 0.865 0.820

CurPrev 0.801 0.830 0.815

CurNei 0.815 0.838 0.826

CurPrevNei 0.807 0.829 0.818

As a next step, we analyze the impact of various types of
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history features on the SBE occurrence prediction. Unlike the

aforementioned experiments, here we conduct the experiment

by removing one type of history features and see the decrease

in F1 score. First, we compare the effects from global (overall

information collected from the whole system) and local (infor-

mation collected from the targeted node) SBE history on SBE

occurrence prediction, see Fig. 12(a). Interestingly, removing

global and local history even increases the F1 score in DS2,

which is consistent with the observation in Fig. 11, where

SBE history features contribute negatively in DS2. However,

if we focus on DS1 and DS3, we notice that local history

information plays a more important role in prediction, i.e.,

removing these features leads to 15% to 25% loss in F1 score.

The impact of history length on prediction quality is presented

in Fig. 12 (b). From this figure, we observe that the importance

of SBE history generally increases as it is closer to the current

time. Note also that there is no particular length (i.e., today,

yesterday, or full history) that is always effective across all

datasets. This illustrates the importance of inclusion of all SBE

history features.

(a) Global vs. Local (b) Length of history

Fig. 12. Decrement on F1 score if removing a certain feature set from the
original feature combination: global vs local (a), and different length of SBE
history (b).

D. Prediction Analysis

In the previous sections, we have determined that GBDT is

the best machine learning model for the TwoStage method, and

the most effective feature combination for its training. Here,

we conduct an evaluation on the prediction quality of this

model with the most efficient feature combination as inputs.

Due to the space constraints, we illustrate the analysis on the

results of using the first dataset only. The quality of prediction

for the two other datasets is similar to that of DS1.

1) Spatial robustness

We investigate if TwoStage performs well spatially across the

entire Titan system. Fig. 13(a) shows the proximity of the

cumulative distribution plots of SBE predictions across the

entire system for the ground truth, prediction (true positives

plus false positives) and true positives. We then present the

absolute difference between the number of SBE affected

application runs (ground truth) and the prediction for the

testing period at the cabinet level, see Fig. 13(b). For over 95%
of cabinets, the error difference is relatively small, ranging in

[−15, 13]. In fact, there are only 3 (out of 200) cabinets where

the prediction overestimates SBE affected application runs by

more than 25. This is encouraging as thousands of applications

are executed over each cabinet. We also perform such analysis

at the node level and observe accurate prediction for more than

99% of nodes (result not shown due to space constraint).

(a) Comparison of CDFs (b) Diff. from prediction

Fig. 13. Comparison between SBE occurrence prediction and ground truth
at the cabinet level.

We also investigate how the choice of optimal model

changes across the various cabinets. We find that TwoStage

with GBDT remains the close-to-the-best choice among all

models for all cabinets. The number of cabinets where this

scheme is not the optimal choice is limited across the machine

in all three datasets. In fact, we find that even if the prediction

model is chosen with the apriori knowledge (oracle) on the

optimal model, the overall F1 score improves only by 0.01,

0.02, and 0.001 for the three datasets, respectively. Overall,

our results indicate that TwoStage with GBDT delivers robust

and consistent results across the whole machine and it is not

restricted to performing well only in selected sections of the

machine.

2) Effect of application runtime

We look into whether the quality of the prediction is

significantly impacted by the length of the application

execution. In other words, do short-running and long-running

applications attain comparable prediction quality? We classify

an application as “short-running” if its runtime falls in the

bottom 25 percentile range and as “long-running” if its

runtime falls in the top 25 percentile range. Table V confirms

that both types of application achieve high prediction quality

with comparable F1 scores. Moreover, “long-running”

applications achieve better prediction quality than “short-

running” ones. This is quite favorable since the cost of

mislabeling a “long-running” application would be higher,

e.g., if re-execution is needed.

TABLE V
SBE OCCURRENCE PREDICTION FOR “SHORT-RUNNING” AND

“LONG-RUNNING” APPLICATIONS.

Application Precision Recall F1 Score

All 0.76 0.87 0.81

Short 0.77 0.94 0.84

Long 0.93 0.90 0.92
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3) Effect of SBE severity

An error predictor that is able to label more severe application

runs (i.e., with a higher number of SBEs) as SBE-affected is

desirable. Towards this goal, we first group application runs

into four levels of SBE severity (25 percentile per level), i.e.,

the bottom 25 percentile applications with the least number of

SBEs are in level Light while the top 25 percentile ones are in

level Extreme. Table VI presents the percentage of correctly

classified SBE-affected runs in each level. Our results indicate

that as the number of SBEs increases among application

runs in our dataset, the effectiveness of the TwoStage method

grows. For example, 74% of the application runs in level

Light are already correctly predicted to be SBE-affected cases.

The percentage number increases as the SBE severity level

goes higher, becoming 95% for Extreme application runs. The

results show that TwoStage is able to achieve high prediction

quality for SBE occurrences, especially for those applications

affected by more SBEs.

TABLE VI
PERCENTAGE OF CORRECTLY CLASSIFIED SBE-AFFECTED APPLICATION

RUNS IN FOUR SEVERITY LEVELS.

Severity Light Moderate Severe Extreme

PCT. 74% 88% 93% 95%

VIII. DISCUSSION

Time Series-based Feature Prediction. As stated in Sec-

tion VI, some input features into the TwoStage method cannot

be known before the execution of application, such as the

temperature and power consumption during the application

run. Therefore, we need to leverage time-series prediction

tools to forecast those features. Fortunately, there is a rich

body of works on time-series prediction. ARMA/ARIMA [24]

have been widely used for time series prediction in several

systems areas. Tran and Reed [25] use ARIMA to improve

block prefetching for scientific applications. Neural networks

have been shown effective in capturing temporal and spatial

dependencies within time series of data center resource us-

age [16, 26, 27]. Generally speaking, we can take advantage

of these prediction tools to first forecast features based on time

series, and then plug them into the TwoStage method for SBE

occurrence prediction.

Application of SBE Prediction. Intuitively, GPU soft error

prediction can work together with system scheduling. For

example, based on the prediction result of SBE occurrences,

one can dynamically turn on or turn off the ECC protection

on targeted nodes and applications for the sake of lower ECC

overhead. One may argue that the aftermath of mislabeling a

SBE sample can be too much given the fact that no prediction

technique can guarantee 100% accuracy. Several prior works

indicate that this standpoint is too conservative. First, some

hardware errors (i.e., transient bit flips) occurring during

application runs can be masked in the final output, meaning

that these errors are imperceptible by the end users [28–

31]. Moreover, even those corrupted outputs are not always

got rejected as long as the severity level of corruption is

below a certain user-acceptable threshold [32] . For instance,

in the field of approximate computing, users are willing to

trade accuracy with better performance [33–37]. Similarly, it

is desirable under certain situations to sacrifice accuracy for

lower reliability overhead. In fact, due to the prohibitively high

error protection overhead, computational scientists may opt to

naively off error protection for their application runs [11]. The

proposed error predictor allows to strike a balance between

performance, overhead, and reliability.

IX. RELATED WORK

Characterizing system failures in HPC systems has been

an important topic for decades [5, 38–40]. Oliner et al. [41]

analyze logs collected from five HPC systems. Researchers

have also looked specifically into DRAMs and HDDs and

demonstrate pitfalls in error studies and their impact on system

reliability assessment [5–7, 38, 42]. Unfortunately, there are

relatively limited studies on GPU reliability of large scale

systems. One reason is that the GPU architecture is relatively

recently deployed in large-scale HPC systems, comparing

to other components such as disks and CPUs. Martino et

al. [43] investigate GPU errors in Blue Waters at the National

Center for Supercomputing Applications, while recent efforts

present GPU error characterization for the Titan supercom-

puter [4, 14]. Those studies point to spatial and temporal

locality, resource utilization, workload type, error frequency,

and correlation with jobs for various types of GPU errors.

None of the above works look into the complex interplay of

temperature, power consumption, and GPU SBEs. Close to the

work presented in this paper, the impact of temperature and

power consumption on GPU soft errors is examined in [15]

and a neural-network-based model is proposed to predict the

occurrences. In contrast to [15], we use a host of features from

both the temporal and spatial perspectives and evaluate their

effectiveness across multiple machine learning models.

CONCLUSION

In this paper, we analyzed large amounts of measured

system related data to understand the characteristics of

temperature, power, workload type, and SBE distribution

across space and time. We propose several machine learning-

based models that use workload and system features as

input for GPU soft-error prediction. We examined their

effectiveness under various scenarios and in multiple aspects

including its accuracy, robustness, overhead, and model

interpretations.
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