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Stabilization of Uncertain Nonlinear Large-Scale
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Abstract—This paper presents a novel decentralized control
strategy for a class of uncertain nonlinear large-scale systems
with mismatched interconnections. First, it is shown that the
decentralized controller for the overall system can be represented
by an array of optimal control policies of auxiliary subsystems.
Then, within the framework of adaptive dynamic programming, a
simultaneous policy iteration (SPI) algorithm is developed to solve
the Hamilton–Jacobi–Bellman equations associated with auxil-
iary subsystem optimal control policies. The convergence of the
SPI algorithm is guaranteed by an equivalence relationship. To
implement the present SPI algorithm, actor and critic neural
networks are applied to approximate the optimal control policies
and the optimal value functions, respectively. Meanwhile, both
the least squares method and the Monte Carlo integration tech-
nique are employed to derive the unknown weight parameters.
Furthermore, by using Lyapunov’s direct method, the overall
system with the obtained decentralized controller is proved to be
asymptotically stable. Finally, the effectiveness of the proposed
decentralized control scheme is illustrated via simulations for
nonlinear plants and unstable power systems.

Index Terms—Adaptive dynamic programming (ADP), decen-
tralized control, large-scale systems, mismatched interconnec-
tions, reinforcement learning (RL).

I. INTRODUCTION

CHARACTERIZED by high dimensionality, uncertainty,
and information structure constraints, large-scale systems

have emerged in many real world applications, such as power
systems, socioeconomic systems, and transportation systems.
The design of stabilizing controllers for large-scale systems
often cannot use one-shot methods [1]. Under this circum-
stance, the decentralized control approach was introduced. The
key of the decentralized control method is to break down the
control problem of the overall plant into several subproblems
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which can be handled independently. Thus, the overall sys-
tem is controlled by a series of independent controllers that
all together constitute a decentralized controller. A distinct
advantage of the decentralized control approach is that it only
requires local subsystem knowledge rather than the whole sys-
tem information. Owing to this advantage, many studies on
decentralized control have been reported [2]–[5].

Among the existing literature, Saberi [2] provided an opti-
mal control method to design the decentralized controller for
nonlinear large-scale systems. To be specific, the decentral-
ized control of nonlinear interconnected systems was linked to
the optimal control of each isolated subsystem. In this paper,
we will follow the line of [2] to solve the decentralized con-
trol problem of uncertain nonlinear large-scale systems with
mismatched interconnections from an optimal control the-
ory perspective. Different from [2], we present an adaptive
dynamic programming (ADP) method to solve the nonlinear
decentralized control problem. An advantage of ADP lies in
that it can avoid the well-known “curse of dimensionality”
while dealing with optimal control problems of complex non-
linear systems [6]. ADP was first introduced to solve optimal
control problems in 1970s [7]. A common structure used in
ADP is the actor-critic architecture [8]. This architecture can
be described as follows: the actor performs an action to the
controlled system, and the critic evaluates the value of that
action and gives feedback information to the actor. It should
be noted here that, when solving optimal control problems,
reinforcement learning (RL) [9] is almost in the same spirit as
ADP. Thus, RL is often regarded as the synonym for ADP.
Since 1970s, many ADP and RL methods have been pro-
posed, such as policy iteration (PI) ADP [10], [11], value
iteration ADP [12]–[14], robust ADP [15], [16], goal represen-
tation ADP [17], [18], single network ADP [19], [20] integral
RL [21], [22], off-policy RL [23]–[25], online RL [26], [27],
and Q-learning [28]–[30] (note: Q-learning is generally con-
sidered as a kind of ADP [31]).

The past several years have witnessed considerable applica-
tions of ADP to decentralized feedback control. Mu et al. [32]
presented an ADP-based decentralized optimal control scheme
for a class of continuous-time (CT) nonlinear large-scale
systems with matched interconnections. To implement the
control scheme, an initial admissible control was neces-
sary. Qu et al. [33] proposed an adaptive-critic architecture
to solve the decentralized tracking control problem of CT
nonlinear large-scale systems in the framework of ADP.
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The initial admissible control condition was relaxed in [33].
Later, Wang et al. [34] applied the same architecture as [33]
to solve the decentralized stabilization problem of CT non-
linear interconnected systems. In all the above mentioned
literature, the interconnections satisfied the matched condi-
tion. Generally, decentralized control approaches for nonlinear
large-scale systems with matched interconnections do not
hold for those systems with mismatched interconnections.
Recently, Zhao et al. [35] designed a decentralized con-
troller for large-scale nonlinear systems subject to unknown
mismatched interconnections via ADP. After that, by using
ADP, Tong et al. [36] presented an observer-based fuzzy
decentralized optimal control scheme for strict-feedback non-
linear large-scale systems with unknown internal dynamics
and unknown mismatched interconnections. In [35] and [36],
the unknown functions (including unknown interconnections)
were approximated either using radial basis functions or using
fuzzy logic systems. Instead of approximating unknown func-
tions of large-scale systems, Bian et al. [37] developed a robust
ADP to obtain the decentralized optimal control of linear
large-scale systems with unknown mismatched interconnec-
tions. The proposed robust ADP only used the available system
states. In this sense, it was actually a data-based method.
Although there already existed literature applying the data-
based method (i.e., the robust ADP) to study decentralized
control problems of nonlinear large-scale systems, it required
the interconnections to satisfy the matched condition [38]. To
the best of our knowledge, there are few studies employing
the data-based method to solve the decentralized stabilization
problem of CT nonlinear large-scale systems with mismatched
interconnections. This motivates this paper. On the other hand,
the persistence of excitation (PE) condition or the PE-like con-
dition is necessary when implementing all the aforementioned
decentralized control strategies. In general, it is challenge-
able to find appropriate probe noises or signals to satisfy the
PE conditions for nonlinear systems, especially for nonlinear
large-scale systems. This difficulty also motivates our research.

In this paper, a novel ADP-based decentralized control
strategy is developed for a class of uncertain nonlinear large-
scale systems with mismatched interconnections. To begin
with, we prove that the decentralized controller for the over-
all system can be represented by an array of optimal control
policies of auxiliary subsystems. Then, within the framework
of ADP, we present a simultaneous PI (SPI) algorithm to
solve the Hamilton–Jacobi–Bellman (HJB) equations related
to auxiliary subsystem optimal control policies. Meanwhile,
we establish an equivalence relationship to show the conver-
gence of the SPI algorithm. To implement the SPI algorithm,
we use actor neural networks (ANNs) and critic neural net-
works (CNNs) to estimate the optimal control policies and
the optimal value functions, respectively. By using the least
squares method and the Monte Carlo integration technique,
we obtain the unknown weight parameters without the PE
condition. Moreover, we demonstrate that the derived decen-
tralized controller guarantees asymptotic stability of the overall
system.

The reminder of this paper is arranged as follows. After
briefly presenting the problem description in Section II, we

propose the decentralized control strategy in Section III.
In Section IV, we develop the SPI algorithm to solve HJB
equations related to auxiliary subsystems. In Section V, we
implement the SPI algorithm via the actor-critic architecture.
To validate the present decentralized control scheme, we pro-
vide two examples in Section VI. Finally, Section VII gives
concluding remarks and discussions.

Notation: R denotes the set of all real numbers. N represents
the set of all non-negative integers. Z+ denotes the set of all
positive integers. Rmi and R

ni×mi represent the Euclidean space
of all mi-vectors and the space of all ni × mi real matrices,
respectively. Ini is the identity matrix with the dimension ni ×
ni. T is the transposition symbol. �i is a compact set of Rni .
For A ∈ R

n×m, ‖A‖ =
√

tr(ATA) is the Frobenius-norm, and
tr(ATA) is the trace of ATA.

II. PROBLEM DESCRIPTION

Consider the CT nonlinear large-scale system described by
equations of the form

ẋi(t) = fi(xi(t)) + gi(xi(t))ui(t) + �fi(x(t))

xi0 = xi(0), i = 1, 2, . . . ,N (1)

where xi ∈ R
ni is the measurable state of the ith subsys-

tem, ui ∈ R
mi is the control input of the ith subsystem,

x = [xT1 , xT2 , . . . , xTN]T ∈ R
n (n =∑N

i=1 ni) is the overall state,
fi(xi) ∈ R

ni , gi(xi) ∈ R
ni×mi , and �fi(x) ∈ R

ni are the unknown
internal dynamics, the known input matrix, and the uncertain
interconnection of the ith subsystem, respectively.

To facilitate subsequent analyses, we impose the following
basic assumptions. The similar assumptions have been used
in [31] and [39].

Assumption 1: For the ith subsystem, fi(xi) and gi(xi) are
Lipschitz continuous in their arguments. Meanwhile, fi(0) = 0,
i.e., xi = 0 is an equilibrium point of the ith subsystem given
in (1) when ui(t) = 0 and �fi(x(t)) = 0 for all t ≥ 0.

Assumption 2: For the ith subsystem, the interconnection
�fi(x) satisfies the mismatched condition, that is

�fi(x) = ki(xi)ωi(x) (ki(xi) �= gi(xi))

where ki(xi) ∈ R
ni×li is an unknown smooth function and

ωi(x) ∈ R
li is an uncertain function bounded as

‖ωi(x)‖ ≤
N∑

s=1

aisαis(‖xs‖) (2)

where αis(·), s = 1, 2, . . . ,N, are class K functions [40] and
ais, s = 1, 2, . . . ,N, are non-negative constants. Meanwhile,
ωi(0) = 0, i = 1, 2, . . . ,N and αis(0) = 0, i, s = 1, 2, . . . ,N.
Let

αi(‖xi‖) = max{α1i(‖xi‖), α2i(‖xi‖), . . . , αNi(‖xi‖)}.
Then, (2) can be further written as

‖ωi(x)‖ ≤
N∑

s=1

bisαs(‖xs‖) (3)

where bis ≥ aisαis(‖xs‖)
/
αs(‖xs‖), s = 1, 2, . . . ,N, are non-

negative constants.
Similar to (3), we impose another assumption as follows.
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Assumption 3: There exist class K functions βι(·), ι =
1, 2, . . . ,N, such that

∥∥g+
i (xi)�fi(x)

∥∥ ≤
N∑

ι=1

ciιβι(‖xι‖) (4)

where g+
i (xi) is the Moore–Penrose pseudo-inverse of gi(xi)

and ciι, ι = 1, 2, . . . ,N, are non-negative constants.
Objective of Control: This paper aims at finding a feed-

back control pair (u1(x1), u2(x2), . . . , uN(xN)) for large-scale
system (1), subject to Assumptions 1–3, which guarantees the
closed-loop system (1) to be asymptotically stable.

In the above mentioned control pair, the control policies
ui(xi), i = 1, 2, . . . ,N, constitute the decentralized control
of system (1). Meanwhile, ui(xi) is the control policy for
the ith subsystem. Therefore, to achieve the goal (i.e., obtain
the decentralized control), we need to derive the control pol-
icy for each subsystem. However, the internal dynamics fi(xi)

and the interconnections �fi(xi) are unavailable. Thus, it is
hard to design the controller for each subsystem directly. To
address this issue, we first transform the decentralized control
problem of the overall system into optimal control problems
of auxiliary subsystems. Then, we solve these optimal con-
trol problems in the framework of ADP, which does not
require the information of the internal dynamics fi(xi) and the
interconnection �fi(xi).

III. DECENTRALIZED CONTROL STRATEGY

This section consists of two parts. First, we develop the HJB
equation for the ith auxiliary subsystem. Then, we demon-
strate that the decentralized controller for system (1) can be
obtained via solving the HJB equations related to the auxiliary
subsystems.

A. HJB Equation for the ith Auxiliary Subsystem

For the ith subsystem, projecting �fi(x) onto the range of
gi(xi), we have

�fi(x) = gi(xi)g
+
i (xi)�fi(x)

+ (
Ini − gi(xi)g

+
i (xi)

)
�fi(x) (5)

where the first term is the matched component of gi(xi) and
the second term is the mismatched component of gi(xi).

Based on (1) and (5), the ith auxiliary subsystem can be
described as

ẋi = fi(xi) + gi(xi)ui + (Ini − gi(xi)g
+
i (xi)

)
ki(xi)υi (6)

where υi ∈ R
li is the auxiliary control applied to cope with

the mismatched component of gi(xi).
Let the augmented control μi ∈ R

mi+li and the associated
augmented input matrix Gi(xi) ∈ R

ni×(mi+li) be denoted as

μi =
[
uTi , υ

T
i

]T
(7)

Gi(xi) = [
gi(xi),

(
Ini − gi(xi)g

+
i (xi)

)
ki(xi)

]
. (8)

Then, the ith auxiliary subsystem (6) can be rewritten as

ẋi = fi(xi) + Gi(xi)μi. (9)

Associated with the ith auxiliary subsystem (9), the value
function is given in the form

Ji(xi(t), μi) =
∫ ∞

t
(	i(xi(τ )) + ri(xi(τ ), μi(τ )))dτ (10)

where 	i(xi) = ηiP2
i (xi), ηi > 0 is a design parameter, Pi(xi)

is a positive-definite function satisfying

max
i

{αi(‖xi‖), βi(‖xi‖)} ≤ Pi(xi) (11)

and

ri(xi, μi) = Qi(xi) + μT
i Riμi

where Qi(xi) is a symmetric positive-definite function, Ri =
diag{1, . . . , 1︸ ︷︷ ︸

mi

, εi, . . . , εi︸ ︷︷ ︸
li

}, and εi > 0 is a constant. Owing to

the characteristic of Ri, we have Ri = R(1/2)
i R(1/2)

i .
The optimal value function is formulated as [9]

V∗
i (xi) = min

μi∈A (�i)
Ji(xi, μi) (12)

with A (�i) the set of admissible control defined on �i.
According to [9], V∗

i (xi) can be obtained via solving the
following HJB equation:

(∇V∗
i (xi)

)T(
fi(xi) + Gi(xi)μ

∗
i (xi)

)

+ 	i(xi) + ri
(
xi, μ

∗
i (xi)

) = 0 (13)

where ∇V∗
i (xi) = ∂V∗

i (xi)/∂xi with V∗
i (0) = 0, and μ∗

i (xi) is
the optimal control. Based on the stationarity condition [41],
the closed-form optimal control is formulated as

μ∗
i (xi) = −1

2
R−1

i GT
i (xi)∇V∗

i (xi). (14)

Substituting (7) and (8) into (14), we have

u∗
i (xi) = −1

2
gTi (xi)∇V∗

i (xi) (15)

υ∗
i (xi) = − 1

2εi
hTi (xi)∇V∗

i (xi) (16)

where hi(xi) is defined as

hi(xi) = (Ini − gi(xi)g
+
i (xi)

)
ki(xi). (17)

Combining (13) and (14), the HJB equation for the ith
auxiliary subsystem can be developed as

(∇V∗
i (xi)

)T
fi(xi) + Qi(xi) −

∥∥∥∥
1

2
gTi (xi)∇V∗

i (xi)

∥∥∥∥

2

−
∥∥∥∥

1

2
√
εi

hTi (xi)∇V∗
i (xi)

∥∥∥∥

2

+ 	i(xi) = 0 (18)

with V∗
i (0) = 0.
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B. Decentralized Controller Design Based on Solutions of
the HJB Equations

In this section, we establish a theorem to show that the
decentralized controller for system (1) is composed of optimal
control policies u∗

1(x1), u∗
2(x2), . . . , u∗

N(xN).
Theorem 1: Consider N auxiliary subsystems and the asso-

ciated value functions sharing the same expressions as (9)
and (10), respectively. Let Assumptions 1–3 hold. If υ∗

i (xi),
i = 1, 2, . . . ,N, given as in (16) satisfy

∥∥υ∗
i (xi(t))

∥∥2 ≤ Qi(xi(t)), t ≥ t0, i = 1, 2, . . . ,N (19)

where t0 is a non-negative threshold, and the parameters εi,
i = 1, 2, . . . ,N, are selected as

0 < εi < 1/2, i = 1, 2, . . . ,N (20)

then there exist N constants η∗
i > 0, i = 1, 2, . . . ,N, such

that, for every ηi ≥ η∗
i , i = 1, 2, . . . ,N, the control poli-

cies u∗
i (xi), i = 1, 2, . . . ,N, given in (15) can guarantee

asymptotic stability of the closed-loop system (1). That is,
the feedback control pair (u∗

1(x1), u∗
2(x2), . . . , u∗

N(xN)) is the
decentralized control of system (1).

Proof: Choose the Lyapunov function candidate as

L(x) =
N∑

i=1

V∗
i (xi)

where V∗
i (xi), i = 1, 2, . . . ,N, are the optimal value functions

defined as in (12). According to the definition of V∗
i (xi), we

have V∗
i (xi) > 0 ∀xi �= 0 and V∗

i (xi) = 0 ⇔ xi = 0, i =
1, 2, . . . ,N. Therefore, L(x) is positive definite.

Differentiating L(x) with respect to the time variable t and
using the trajectory ẋi = fi(xi) + gi(xi)u∗

i (xi) + �fi(x), i =
1, 2, . . . ,N, it follows:

L̇(x) =
N∑

i=1

{(∇V∗
i (xi)

)T(
fi(xi) + gi(xi)u

∗
i (xi)

)

+ (∇V∗
i (xi)

)T
�fi(x)

}
. (21)

By using (5) and Assumption 2, we can see that (21) yields

L̇(x) =
N∑

i=1

{(∇V∗
i (xi)

)T
fi(xi) + (∇V∗

i (xi)
)T

gi(xi)

× u∗
i (xi) + (∇V∗

i (xi)
)T

gi(xi)g
+
i (xi)�fi(x)

+ (∇V∗
i (xi)

)T
hi(xi)ωi(x)

}
(22)

with hi(xi) defined as in (17).
From (15), (16), and (18), we find

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∇V∗
i (xi)

)T
fi(xi) = −ηiP2

i (xi) − Qi(xi)

+ ∥∥u∗
i (xi)

∥∥2 + εi
∥∥υ∗

i (xi)
∥∥2

(∇V∗
i (xi)

)T
gi(xi) = −2

(
u∗

i (xi)
)T

(∇V∗
i (xi)

)T
hi(xi) = −2εi

(
υ∗

i (xi)
)T
.

(23)

Substituting (23) into (22), we obtain

L̇(x) =
N∑

i=1

{
− ηiP

2
i (xi) − Qi(xi) − ∥∥u∗

i (xi)
∥∥2

+ εi
∥∥υ∗

i (xi)
∥∥2 −2

(
u∗

i (xi)
)T

g+
i (xi)�fi(x)︸ ︷︷ ︸

£1(x)

−2εi
(
υ∗

i (xi)
)T
ωi(x)︸ ︷︷ ︸

£2(x)

}
. (24)

Applying the Cauchy–Schwarz inequality to £1(x) in (24) and
using (3) and (11), it follows:

£1(x) ≤ 2
∥∥u∗

i (xi)
∥∥∥∥g+

i (xi)�fi(x)
∥∥

≤ 2
∥∥u∗

i (xi)
∥∥

N∑

s=1

bisPs(xs). (25)

Similarly, using (4) and (11) and noting that 0 < εi < 1/2
in (20), we can conclude that £2(x) in (24) implies

£2(x) ≤ 2εi
∥∥υ∗

i (xi)
∥∥‖ωi(x)‖

≤ 2
∥∥υ∗

i (xi)
∥∥

N∑

ι=1

ciιPι(xι). (26)

From (24)–(26), we can see that

L̇(x) ≤ −
N∑

i=1

2εi

(
Qi(xi) − ∥∥υ∗

i (xi)
∥∥2
)

−
N∑

i=1

(1 − 2εi)Qi(xi)

−
N∑

i=1

{

ηiP
2
i (xi) + ∥∥u∗

i (xi)
∥∥2 + εi

∥∥υ∗
i (xi)

∥∥2

− 2
∥∥u∗

i (xi)
∥∥

N∑

s=1

bisPs(xs) − 2
∥∥υ∗

i (xi)
∥∥

N∑

ι=1

ciιPι(xι)

}

.

(27)

Denote

�1 = diag{η1, η2, . . . , ηN}

�2 = diag

⎧
⎨

⎩
1, 1, . . . , 1︸ ︷︷ ︸

N

⎫
⎬

⎭

�3 = diag{ε1, ε2, . . . , εN}

B =

⎡

⎢⎢⎢
⎣

b11 · · · b1N

b21 · · · b2N
...

. . .
...

bN1 · · · bNN

⎤

⎥⎥⎥
⎦

and C =

⎡

⎢⎢⎢
⎣

c11 · · · c1N

c21 · · · c2N
...

. . .
...

cN1 · · · cNN

⎤

⎥⎥⎥
⎦
.

Let

ζ = [
P1(x1), . . . ,PN(xN),

∥∥u∗
1(x1)

∥∥, . . . ,
∥∥u∗

N(xN)
∥∥

∥∥υ∗
1 (x1)

∥∥, . . . ,
∥∥υ∗

N(xN)
∥∥]T.

Then, by using (19) and (20), we can conclude that (27) yields
(for every t ≥ t0)

L̇(x) ≤ −
N∑

i=1

(1 − 2εi)Qi(xi) − ζTAζ (28)
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where

A =
⎡

⎣
�1 BT CT

B �2 0N×N

C 0N×N �3

⎤

⎦ (29)

and 0N×N = diag{0, 0, . . . , 0︸ ︷︷ ︸
N

}. Observing the expression A

given in (29), we can find that A is able to be kept positive
definite by choosing sufficiently large ηi, i = 1, 2, . . . ,N, in
�1. Therefore, there exist η∗

i , i = 1, 2, . . . ,N, such that ηi ≥
η∗

i , i = 1, 2, . . . ,N, imply −ζTAζ < 0. Thus, from (28), we
obtain

L̇(x(t)) ≤ −
N∑

i=1

(1 − 2εi)Qi(xi(t)), t ≥ t0. (30)

Note that, for each index i, the positive definite matrix Qi(xi)

implies ρixTi xi ≤ Qi(xi) with the constant ρi > 0, Then,
from (30), we have

L̇(x(t)) ≤ −
N∑

i=1

ρi(1 − 2εi)‖xi(t)‖2, t ≥ t0. (31)

Integrating both sides of (31) over the time interval [t0,∞),
it follows:

N∑

i=1

ρi(1 − 2εi)

∫ ∞

t0
‖xi(t)‖2dt ≤ L(x(t0)) − L(x(∞)).

Then, after some computations, we derive
∫ ∞

t0
‖xi(t)‖2dt ≤ L(x(t0)) − L(x(∞))

ρi(1 − 2εi)
(32)

with i = 1, 2, . . . ,N. Because the right side of (32) is finite,
using Barbalat’s lemma [42], we obtain

lim
t→∞‖xi(t)‖ = 0, i = 1, 2, . . . ,N.

This verifies that system (1) is asymptotically stable with
optimal control policies u∗

i (xi), i = 1, 2, . . . ,N.
Remark 1: Generally, the condition (19) cannot be veri-

fied directly. This is mainly because υ∗
i (xi) given in (16)

has no direct connection with the positive-definite function
Qi(xi). We only know that both υ∗

i (xi) and Qi(xi) are functions
with respect to the state xi. Moreover, as indicated in (16),
υ∗

i (xi) is linked with ∇V∗
i (xi). The explicit expression of

∇V∗
i (xi) usually cannot be obtained. Owing to this difficulty,

the validity of (19) is often verified via simulation results
(see [43], [44]). In this paper, we will illustrate the validity
of (19) in Section VI.

Theorem 1 indicates that the decentralized controller for
system (1) can be represented by an array of optimal con-
trol policies u∗

i (xi), i = 1, 2, . . . ,N. Hence, we need to
solve the HJB equation (18) for the ith auxiliary subsystem.
However, (18) is a nonlinear partial differential equation with
respect to V∗

i (xi), which often does not exist the closed-form
solution. In addition, the knowledge of fi(xi) and Gi(xi) (note:
Gi(xi) contains ki(xi)) is unavailable, which increases the dif-
ficulty in solving (18). To overcome these difficulties, we will
present a SPI algorithm to approximately solve (18) in the
framework of ADP.

IV. SPI ALGORITHM TO SOLVE HJB EQUATIONS

This section first introduces the traditional PI algorithm.
Then, based on the traditional PI algorithm, the SPI algorithm
is developed.

For the ith auxiliary subsystem, the HJB equation is
described as (18). According to [45], (18) can be solved via
the traditional PI algorithm as follows.

1) Find an initial control μ(0)
i (xi) ∈ A (�i).

2) For every j ∈ N, obtain V(j)
i (xi) by solving

(
∇V(j)

i (xi)
)T(

fi(xi) + Gi(xi)μ
(j)
i (xi)

)

+ 	i(xi) + ri

(
xi, μ

(j)
i (xi)

)
= 0 (33)

with V(j)
i (0) = 0.

3) Update the control policy via

μ
(j+1)
i (xi) = −1

2
R−1GT

i (xi)∇V(j)
i (xi). (34)

To illustrate the convergence of PI (33) and (34), we
establish the following theorem.

Theorem 2: Let V(j)
i (xi) and μi

(j)(xi) be generated
from (33) and (34). If μ

(0)
i (xi) ∈ A (�i), then, for every

xi ∈ �i

lim
j→∞ V(j)

i (xi) = V∗
i (xi) and lim

j→∞μ
(j)
i (xi) = μ∗

i (xi).

Proof: Since the proof is almost the same as [45, Th. 4],
we omit it here.

Remark 2: To implement the PI (33) and (34), the priori
knowledge of fi(xi) and Gi(xi) is required to be available.
Owing to the unavailability of the knowledge of fi(xi) and
Gi(xi), the PI (33) and (34) cannot be employed to solve (18).

For the sake of solving (18), we develop a SPI algorithm
based on (33) and (34). By using the SPI algorithm, we no
longer need the priori knowledge concerning system dynamics
fi(xi) and Gi(xi).

Rewrite the ith auxiliary subsystem (9) as

ẋi = fi(xi) + Gi(xi)μi
(j)(xi) + Gi(xi)

(
μi − μ

(j)
i (xi)

)
. (35)

Differentiating V(j)
i (xi) with respect to the time variable t and

using the trajectory (35) as well as (33) and (34), it follows:

V̇(j)
i (xi) =

(
∇V(j)

i (xi)
)T(

fi(xi) + Gi(xi)μ
(j)
i (xi)

)

+
(
∇V(j)

i (xi)
)T

Gi(xi)
(
μi − μ

(j)
i (xi)

)

= −	i(xi) − ri

(
xi, μ

(j)
i (xi)

)

− 2
(
μ
(j+1)
i (xi)

)TRi

(
μi − μ

(j)
i (xi)

)
. (36)

Integrating (36) over the time interval [t, t + �t], we have
[note: for brevity, we write μ

(j)
i (xi(τ )) and μ

(j+1)
i (xi(τ )) as

μ
(j)
i (τ ) and μ

(j+1)
i (τ ), respectively]

V(j)
i (xi(t + �t)) − V(j)

i (xi(t))

= −
∫ t+�t

t

(
	i(xi(τ )) + ri

(
xi(τ ), μ

(j)
i (τ )

))
dτ

− 2
∫ t+�t

t

(
μ
(j+1)
i (τ )

)TRi

(
μi(τ ) − μ

(j)
i (τ )

)
dτ.
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Let

nei = μi − μ
(j)
i (xi). (37)

Then the SPI algorithm can be described as follows.
1) Find an initial control μi

(0)(xi) ∈ A (�i).
2) For every j ∈ N, derive V(j)

i (xi) and μ
(j+1)
i (xi) simulta-

neously via solving

V(j)
i (xi(t)) =

∫ t+�t

t
(	i(xi(τ )) + Qi(xi(τ )))dτ

+
∫ t+�t

t

(
μ
(j)
i (τ )

)TRiμ
(j)
i (τ )dτ

+ 2
∫ t+�t

t

(
μ
(j+1)
i (τ )

)TRinei(τ )dτ

+ V(j)
i (xi(t + �t)). (38)

Remark 3: Two notes about the SPI algorithm are given as
follows [in what follows we call the present SPI algorithm as
the SPI (38) for convenience].

1) The key of implementing the SPI (38) is to find an ini-
tial admissible control, i.e., μi

(0)(xi) ∈ A (�i). However,
there is no general method proposed to find such a
control. In this paper, the initial admissible control
is obtained through the trail-and-error method, which
shares the same spirit as [46].

2) From the expression (38), we can see that the knowledge
of fi(xi) and Gi(xi) is not necessary while implement-
ing the SPI (38). Actually, only data pairs

(
xi, μ

(j)
i

)
are

used. In comparison with the PI (33) and (34), this is
an advantage of the SPI (38).

As for the SPI (38), two questions will be asked.
(I) Is it possible to obtain V(j)

i (xi) and μ
(j+1)
i (xi) simulta-

neously only by solving (38)?
(II) For every xi ∈ �i, will the sequences

{
V(j)

i (xi)
}

and
{
μ
(j+1)
i (xi)

}

generated from (38) be convergent?
Next, we first answer the question (II). Then, we answer

the question (I) in Section V.
Lemma 1: Assume that the mappings γi : �i → R

mi+li ,
di : �i → R, and yi ∈ R

mi+li is the variable function. If, for
every xi ∈ �i and yi �= 0, the equality γ T

i (xi)yi = di(xi) holds,
then γi(xi) = 0 and di(xi) = 0.

Proof: Given that there exists a fixed y0
i �= 0 such that

γ T
i (xi)y0

i = di(xi). Then, we have

γ T
i (xi)

(
yi − y0

i

)
= 0 ∀xi, ∀yi �= 0.

If denoting F(xi, yi) = γ T
i (xi)(yi − y0

i ), then we obtain

F(xi, yi) = 0 ∀xi, ∀yi �= 0. (39)

Taking the partial derivative of (39) with respect to yi, we can
see that

0 = ∂F(xi, yi)

∂yi
= ∂

(
γ T

i (xi)
(
yi − y0

i

))

∂yi
= γi(xi).

Thus, di(xi) = γ T
i (xi)yi = 0.

Theorem 3: The SPI (38) is valid if and only if the PI (33)
and (34) holds.

Proof (Necessity): Owing to V(j)
i (xi) and μ

(j+1)
i (xi) gen-

erated from (33) and (34), we can easily obtain (38) by
using (35)–(37).
(Sufficiency): Let �t → 0. Then (38) yields

− lim
�t→0

1

�t

(
V(j)

i (xi(t + �t)) − V(j)
i (xi(t))

)

= lim
�t→0

1

�t

∫ t+�t

t
(	i(xi(τ )) + Qi(xi(τ )))dτ

+ lim
�t→0

1

�t

∫ t+�t

t

(
μ
(j)
i (τ )

)TRiμ
(j)
i (τ )dτ

+ lim
�t→0

2

�t

∫ t+�t

t

(
μ
(j+1)
i (τ )

)TRinei(τ )dτ. (40)

According to the definition of derivative [41], (40) implies

−
(
∇V(j)

i (xi)
)T

ẋi = 	i(xi) + Qi(xi)

+
(
μ
(j)
i (xi)

)TRiμ
(j)
i (xi)

+ 2
(
μ(j+1)(xi)

)TRinei . (41)

Note that (35) and (37) yield

ẋi = fi(xi) + Gi(xi)μ
(j)
i (xi) + Gi(xi)nei .

Then (41) can be developed as

−
[(

∇V(j)
i (xi)

)T
Gi(xi) + 2

(
μ
(j+1)
i (xi)

)TRi

]
nei

=
(
∇V(j)

i (xi)
)T(

fi(xi) + Gi(xi)μ
(j)
i (xi)

)

+ 	i(xi) + Qi(xi) +
(
μ
(j)
i (xi)

)TRiμ
(j)
i (xi). (42)

Owing to the validity of (42) for arbitrary nei , we can conclude
that (42) holds for every nei �= 0. Then, by Lemma 1, we have

(
∇V(j)

i (xi)
)T(

fi(xi) + Gi(xi)μ
(j)
i (xi)

)
+ 	i(xi)

+ Qi(xi) +
(
μ
(j)
i (xi)

)TRiμ
(j)
i (xi) = 0 (43)

(
∇V(j)

i (xi)
)T + 2

(
μ
(j+1)
i (xi)

)TRi = 0. (44)

From (43) and (44), one can easily obtain (33) and (34).
Theorem 4: Let μ

(0)
i (xi) ∈ A (�i). If the sequence

pairs
{
V(j)

i (xi), μ
(j)
i (xi)

}
are determined by (38), then, for

every xi ∈ �i

lim
j→∞ V(j)

i (xi) = V∗
i (xi) and lim

j→∞μ
(j)
i (xi) = μ∗

i (xi)

where V∗
i (xi) is the optimal value function given in (12) and

μ∗
i (xi) is the associated optimal control defined as in (14).
Proof: According to Theorem 3, the sequence pairs{

V(j)
i (xi), μ

(j)
i (xi)

}
determined by (38) can be viewed as

the sequence pairs
{
V(j)

i (xi), μ
(j)
i (xi)

}
generated from (33)

and (34). Thus, by using Theorem 2, we can conclude
limj→∞ V(j)

i (xi) = V∗
i (xi) and limj→∞ μ

(j)
i (xi) = μ∗

i (xi) for
every xi ∈ �i.
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Remark 4: Theorem 4 shows that the sequences
{
V(j)

i (xi)
}

and
{
μ
(j+1)
i (xi)

}
generated from (38) are convergent. Hence,

the question (II) has been well addressed.

V. IMPLEMENT THE SPI ALGORITHM VIA ACTOR-CRITIC

ARCHITECTURE

Based on the definition μi given in (7), we let

μ
(j+1)
i (xi) =

[(
u(j+1)

i (xi)
)T

,
(
υ
(j+1)
i (xi)

)T]T

where

u(j+1)
i (xi) =

[
u(j+1)

i1 (xi), . . . , u(j+1)
imi

(xi)
]T

(45)

υ
(j+1)
i (xi) =

[
υ
(j+1)
i1 (xi), . . . , υ

(j+1)
ili

(xi)
]T

(46)

with u(j+1)
iκ (xi) ∈ R, κ = 1, 2, . . . ,mi and υ

(j+1)
iπ (xi) ∈ R,

π = 1, 2, . . . , li.
According to the approximation theory proposed in [47],

V(j)
i (xi), u(j+1)

iκ (xi), and υ
(j+1)
iπ (xi) can be, respectively, approx-

imated by the CNN and ANNs over �i as

V̂(j)
i (xi) =

ñ1∑

�=1

θ
(j)
i� σi�(xi) =

(
θ
(j)
i

)T
σi(xi) (47)

û(j+1)
iκ (xi) =

ñ2∑

p=1

λ
(j)
iκ,pψiκ,p(xi) =

(
λ̄
(j)
iκ

)T
ψ̄iκ(xi) (48)

υ̂
(j+1)
iπ (xi) =

ñ3∑

q=1

ν
(j)
iπ,qφiπ,q(xi) =

(
ν̄
(j)
iπ

)T
φ̄iπ (xi) (49)

where θ
(j)
i = [θ(j)i1 , . . . , θ

(j)
iñ1

]T ∈ R
ñ1 is the constant CNN

weight vector, λ̄
(j)
iκ = [λ(j)iκ,1, . . . , λ

(j)
iκ,ñ2

]T ∈ R
ñ2 and ν̄

(j)
iπ =

[ν(j)iπ,1, . . . , ν
(j)
iπ,ñ3

]T ∈ R
ñ3 are the constant ANN weight vec-

tors, ñ1 ∈ Z
+ is the number of neurons in the CNN,

ñ2 ∈ Z
+ and ñ3 ∈ Z

+ are the numbers of neurons in ANNs,
σi(xi) = [σi1(xi), . . . , σiñ1(xi)]T ∈ R

ñ1 is the vector activation
function of the CNN with σi�(xi) ∈ C1(�i) and σi�(0) = 0
(� = 1, 2, . . . , ñ1), ψ̄iκ(xi) = [ψiκ,1(xi), . . . , ψiκ,ñ2(xi)]T ∈
R

ñ2 and φ̄iπ (xi) = [φiπ,1(xi), . . . , φiπ,ñ3(xi)]T ∈ R
ñ3 are

the vector activation functions of ANNs with ψiκ,p(xi) ∈
C1(�i), ψiκ,p(0) = 0 (p = 1, 2, . . . , ñ2), and φiπ,q(xi) ∈
C1(�i), φiπ,q(0) = 0 (q = 1, 2, . . . , ñ3). Moreover, the
sets {σi�(xi)}ñ1

�=1, {ψiκ,p(xi)}ñ2
p=1 and {φiπ,q(xi)}ñ3

q=1 are linearly
independent, respectively.

By using (48) and (49), we approximate u(j+1)
i (xi) given

in (45) and υ
(j+1)
i (xi) given in (46) via ANNs over �i as

û(j+1)
i (xi) =

[(
λ̄
(j)
i1

)T
ψ̄i1(xi), . . . ,

(
λ̄
(j)
imi

)T
ψ̄imi(xi)

]T

υ̂
(j+1)
i (xi) =

[(
ν̄
(j)
i1

)T
φ̄i1(xi), . . . ,

(
ν̄
(j)
ili

)T
φ̄ili(xi)

]T
. (50)

Then the estimated value of μ(j+1)
i (xi) is

μ̂
(j+1)
i (xi) =

[(
û(j+1)

i (xi)
)T

,
(
υ̂
(j+1)
i (xi)

)T]T
. (51)

Rewrite (38) as

0 = V(j)
i (xi(t + �t)) − V(j)

i (xi(t))

+ 2
∫ t+�t

t

(
μ
(j+1)
i (τ )

)TRinei(τ )dτ

+ �
(

xi, μ
(j)
i (xi)

)
(52)

where

�
(

xi, μ
(j)
i (xi)

)
=
∫ t+�t

t
(	i(xi(τ )) + Qi(xi(τ )))dτ

+
∫ t+�t

t

(
μ
(j)
i (τ )

)TRiμ
(j)
i (τ )dτ.

Due to nei ∈ R
mi+li , we denote

nei =
[
nei1 , . . . , neimi

, nei(mi+1)
, . . . , nei(mi+li)

]T ∈ R
mi+li .

In (52), let V(j)
i (xi) and μ

(j+1)
i (xi) be replaced by V̂(j)

i (xi) given
in (47) and μ̂

(j+1)
i (xi) given in (51), respectively. Then, the

residual error δ(j)i (xi, nei) ∈ R [48] is formulated as

δ
(j)
i

(
xi, nei

) =
(
θ
(j)
i

)T
(σi(xi(t + �t)) − σi(xi(t)))

+ 2
mi∑

κ=1

∫ t+�t

t

(
λ̄
(j)
iκ

)T
ψ̄iκ(xi(τ ))neiκ (τ )dτ

+ 2εi

li∑

π=1

∫ t+�t

t

((
ν̄
(j)
iπ

)T
φ̄iπ (xi(τ ))

× nei(mi+π)
(τ )

)
dτ

+ �
(

xi, μ̂
(j)
i (xi)

)
. (53)

Note that, for MTN ∈ R, the equality MTN = NTM holds.
Therefore, from (53), we have

δ
(j)
i

(
xi, nei

) = (σi(xi(t + �t)) − σi(xi(t)))
Tθ

(j)
i

+ 2
mi∑

κ=1

∫ t+�t

t
neiκ (τ )ψ̄

T
iκ(xi(τ ))dτ λ̄

(j)
iκ

+ 2εi

li∑

π=1

∫ t+�t

t
nei(mi+π)

(τ )φ̄T
iπ (xi(τ ))dτ

× ν̄
(j)
iπ + �

(
xi, μ̂

(j)
i (xi)

)

= �i
(
xi, nei

)
�
(j)
i + �

(
xi, μ̂

(j)
i (xi)

)
(54)

where

�
(j)
i =

[(
θ
(j)
i

)T
,
(
λ̄
(j)
i1

)T
, . . . ,

(
λ̄
(j)
imi

)T
, ν̄

(j)
i1 , . . . , ν̄

(j)
ili

]T
(55)

and

�i
(
xi, nei

) = [�σi(xi(t)), ξi1, . . . , ξimi , �i1, . . . , �ili

]

with �σi(xi(t)) = [σi(xi(t + �t)) − σi(xi(t))]T and

ξiκ = 2
∫ t+�t

t
neiκ (τ )ψ̄

T
iκ(xi(τ ))dτ, κ = 1, . . . ,mi

�iπ = 2εi

∫ t+�t

t
nei(mi+π)

(τ )φ̄T
iπ (xi(τ ))dτ, π = 1, . . . , li.
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To calculate �(j)
i in (54), we use the method of weighted resid-

uals [48]. To be specific, we can obtain �
(j)
i by projecting the

residual error δ(j)i (xi, nei) onto the term ∂δ
(j)
i (xi, nei)/∂�

(j)
i and

letting the result be zero. This procedure can be formulated as
〈
∂δ

(j)
i

(
xi, nei

)

∂�
(j)
i

, δ
(j)
i

(
xi, nei

)
〉

�̃i

= 0 (56)

where 〈·, ·〉�̃i
denotes the L2 inner product defined on �̃i [49],

�̃i = {(xi, nei)|xi ∈ �i, nei ∈ Ei}, and Ei is the set of nei .
Substituting (54) into (56), it follows:

〈
�i
(
xi, nei

)
, �i
(
xi, nei

)〉
�̃i
�
(j)
i

+
〈
�i
(
xi, nei

)
, �
(

xi, μ̂
(j)
i (xi)

)〉

�̃i
= 0. (57)

In order not have to calculate the L2 inner product in (57),
we employ the Monte Carlo integration method [50]. Define
the set {(xςi , nςei)|xςi ∈ �i, nςei ∈ Ei, ς = 1, 2, . . . , zi}, and zi is
the number of sample points. Let

Xi =
[
�T

i

(
x1

i , n1
ei

)
, . . . , �T

i

(
xzi

i , nzi
ei

)]T

Yi =
[
�
(

x1
i , μ̂

(j)
i

(
x1

i

))
, . . . , �

(
xzi

i , μ̂
(j)
i

(
xzi

i

))]T
.

Then, letting zi → ∞, we get
〈
�i
(
xi, nei

)
, �i
(
xi, nei

)〉
�̃i

= lim
zi→∞

I
(
�̃i

)

zi

zi∑

ς=1

�T
i

(
xςi , nςei

)
�i
(
xςi , nςei

)

= lim
zi→∞

I
(
�̃i

)

zi
X T

i Xi (58)

with I(�̃i) = ∫
�̃i

d(xi, nei) the Lebesgue integral [49].
By the same token, we obtain

〈
�i
(
xi, nei

)
, �
(

xi, μ̂
(j)
i (xi)

)〉

�̃i

= lim
zi→∞

I
(
�̃i

)

zi
X T

i Yi. (59)

Using (57)–(59) and selecting sufficiently large zi, we have
(
X T

i Xi

)
�
(j)
i + X T

i Yi = 0. (60)

If there exists the number of sampling points z0 (z0 ≥ ñ1 +
miñ2 + liñ3) such that

rank{Xi} = ñ1 + miñ2 + liñ3 (61)

then (60) yields

�
(j)
i = −

(
X T

i Xi

)−1X T
i Yi. (62)

When the sequence {�(j)
i } generated from (62) is convergent,

we can obtain the CNN and ANN weights simultaneously
through (55). Then, by using (50), we can derive the approx-
imate optimal control for the ith auxiliary subsystem.

Remark 5: To guarantee the validity of (61), one often can
select large enough number of sampling points zi. Moreover,

Fig. 1. Block diagram of the present control strategy.

�i(xi, nei) is unnecessary to be persistently exciting, for the
sampling points are collected offline.

The block diagram of the present control strategy is illus-
trated in Fig. 1 (note: ε0 is a small positive computation
accuracy, and xi0 ∈ �i is the initial state of the ith subsystem,
where i = 1, 2, . . . ,N).

VI. SIMULATION RESULTS

This section presents two examples to illustrate the effec-
tiveness and applicability of the developed control strategy.
First, we consider a nonlinear plant consisting of two intercon-
nected subsystems. Then, we study the power system proposed
in [51], which includes three interconnected subsystems.

A. Example 1: Nonlinear Plant

Consider the nonlinear interconnected system given in the
form

ẋ1 =
[ −x11 + x12

−0.5x11 − 0.5x12 cos2(x11)

]
+
[

0
sin(x11)

]
u1

+
[

1
0

](
ε1(x11 + x22) sin2(ε2x12) cos(0.5x21)

)

ẋ2 =
[ −x21 + 0.5x22

−x21 − 0.5x22 + 0.5x21x2
22

]
+
[

0
x21

]
u2

+
[

1
0

](
ε3(x12 + x22) cos

(
ε4ex2

21

))
(63)

where x1 = [x11, x12]T ∈ R
2 and x2 = [x21, x22]T ∈ R

2 are
the states of subsystems 1 and 2, respectively, u1 and u2 are
the control inputs for subsystems 1 and 2, respectively, and
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εs ∈ R (s = 1, 2, 3, 4) are unknown parameters. For simplic-
ity, we choose εi (i = 1, 2) and εi′ (i′ = 3, 4) randomly within
the intervals [−1, 1] and [−0.5, 0.5], respectively. Observing
the expressions of the interconnections given in (63), we let
α1(x1) = β1(x1) = ‖x1‖ and α2(x2) = β2(x2) = ‖x2‖. To
satisfy Assumption 2, the parameters are designed as fol-
lows: b11 = 1, b12 = 1, b21 = 0.5, and b22 = 0.5. Owing
to g1(x1) = [0, sin(x11)]T, g2(x2) = [0, x21]T, and ki(xi) =
[1, 0]T (i = 1, 2), we derive that ‖g+

i (xi)ki(xi)ωi(x)‖ = 0
(i = 1, 2). Thus, we can choose parameters ciι = 0 (i, ι = 1, 2)
to satisfy Assumption 3.

By using (9), the auxiliary subsystems 1 and 2 for (63) can
be obtained. To derive the decentralized control of system (63),
we first solve the optimal control problems of two isolated
auxiliary subsystems. According to (11), we let P1(x1) = ‖x1‖
and P2(x2) = ‖x2‖. Meanwhile, we choose η1 = 3 and η2 =
3 to make the matrix A [see (29)] positive definite. Then,
selecting εi = 0.25 (i = 1, 2) (note: according to Theorem 1,
we have 0 < εi < 1/2. Therefore, we can let εi = 0.25),
Q1(x1) = ‖x1‖2, and Q2(x2) = 2‖x2‖2, we can propose the
value functions for auxiliary subsystems 1 and 2 as

J1(x1, u1, υ1) =
∫ ∞

0

(
4‖x1‖2 + uT1 u1 + 0.25υT

1 υ1

)
dt

J2(x2, u2, υ2) =
∫ ∞

0

(
5‖x2‖2 + uT2 u2 + 0.25υT

2 υ2

)
dt.

For auxiliary subsystem 1, the vector activation functions
for the CNN and ANNs are, respectively, selected as (note:
ñ1 = 3, ñ2 = 3, and ñ3 = 3)

σ1(x1) =
[
x2

11, x2
12, x11x12

]T

ψ1(x1) = [x11, x12, x11x12]T

φ1(x1) = [x11, x12, x11x12]T.

The associated CNN and ANN weight vectors are denoted
as θ

(j)
1 = [θ(j)11 , θ

(j)
12 , θ

(j)
13 ]T, λ

(j)
1 = [λ(j)11, λ

(j)
12, λ

(j)
13]T, and

ν
(j)
1 = [ν(j)11 , ν

(j)
12 , ν

(j)
13 ]T, respectively. The initial weight vec-

tors for CNN and ANNs are set as follows: θ(0)1 = [0, 0, 0]T,
λ
(0)
1 = [−2,−2,−2]T, and ν

(0)
1 = [−1,−1,−1]T.

For auxiliary subsystem 2, we choose the vector activation
functions for the CNN and ANNs as (note: ñ1, ñ2, and ñ3 are
the same as in auxiliary subsystem 1)

σ2(x2) =
[
x2

21, x2
22, x21x22

]T

ψ2(x2) = [x21, x22, x21x22]T

φ2(x2) = [x21, x22, x21x22]T.

Meanwhile, we denote the associated CNN and ANN weight
vectors as θ

(j)
2 = [θ(j)21 , θ

(j)
22 , θ

(j)
23 ]T, λ(j)2 = [λ(j)21, λ

(j)
22, λ

(j)
23]T, and

ν
(j)
2 = [ν(j)21 , ν

(j)
22 , ν

(j)
23 ]T, respectively. The initial weight vectors

for CNN and ANNs are given as follows: θ(0)2 = [0, 0, 0]T,
λ
(0)
2 = [−2,−2,−2]T, and ν

(0)
2 = [−2,−2,−2]T. Moreover,

we set the initial state x0 = [1,−1, 1, 0.5]T and the sampling
period �t = 0.01 s. The compact sets �i, i = 1, 2, are both
chosen to be the interval [−1, 1], that is, �i = [−1, 1], i =
1, 2.

(a)

(b)

Fig. 2. (a) Performance of the CNN weight vector θ(j)1 . (b) Performance of

ANN weight vectors λ
(j)
1 and ν

(j)
1 .

(a)

(b)

Fig. 3. (a) Performance of the CNN weight vector θ(j)2 . (b) Performance of

ANN weight vectors λ
(j)
2 and ν

(j)
2 .

Remark 6: To our knowledge, the selection of the proper
number of neurons for neural networks remains an open ques-
tion. To address this issue, here we choose the number of
neurons through computer simulations. After choosing three
neurons for the CNN and ANNs, respectively, we can obtain
desirable simulation results. In addition, it should be men-
tioned that the number of neurons used in the following
Example 2 is also determined by computer simulations.

The computer simulation results are depicted in Figs. 2–5.
Figs. 2 and 3 describe the performance of CNN and
ANN weight vectors used in solving optimal control prob-
lems of auxiliary subsystems 1 and 2, respectively. From
Fig. 2(a) and (b), we can observe that the weight vec-
tors θ

(j)
1 , λ

(j)
1 , and ν

(j)
1 are all convergent after twelve

iterations. The converged value of the sequence {λ(j)1 }
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Fig. 4. Verification of condition (19) for isolated subsystems.

Fig. 5. States of system (63) under the obtained control pair (u1, u2).

is λ
(12)
1 = [−0.0349, 0.0092,−1.8599]T. Fig. 3(a) and (b)

indicate that the weight vectors θ
(j)
2 , λ

(j)
2 , and ν

(j)
2 are all

convergent after twenty iterations. The converged value of
the sequence {λ(j)2 } is λ(20)

2 = [−1.0817,−1.3033,−0.0280]T.
Thus, substituting λ

(12)
1 and λ

(20)
2 into (50), we can obtain the

control pair (u1, u2). Fig. 4 is provided to validate the condi-
tion (19) for isolated subsystems. As indicated in Fig. 4, the
condition (19) holds when t ≥ max{0.3, 1.2} = 1.2 s (i.e.,
t0 = 1.2 s). Fig. 5 shows the states of system (63) under the
obtained control pair (u1, u2). As shown in Fig. 5, system (63)
is asymptotically stable.

B. Example 2: Application to Power Systems

Consider the large-scale power systems described by [51]

d(�ϑi(t))

dt
= − 1

Tgi

�ϑi(t) + 1

Rgi Tgi

�fGi(t) + 1

Tgi

ui(t)

d
(
�Pm̃i(t)

)

dt
= Kti

Tti
�ϑi(t) − 1

Tti
�Pm̃i(t)

d
(
�fGi(t)

)

dt
= Kpi

Tpi

�Pm̃i(t) − �fGi(t)

Tpi

− Kpi

Tpi

�PGi(t) (64)

TABLE I
PARAMETERS FOR THE POWER SYSTEM

(a)

(b)

Fig. 6. (a) Performance of the CNN weight vector θ(j)1 . (b) Performance of

ANN weight vectors λ
(j)
1 and ν

(j)
1 .

where d(Fi(t))/dt denotes the time derivative of Fi(t) (note:
Fi(t) = �ϑi(t), �Pm̃i(t), or �fGi(t)), i = 1, 2, . . . ,N,
�ϑi(t) ∈ R is the incremental change in governor value posi-
tion, �Pm̃i(t) ∈ R is the incremental change in generator
output, �fGi(t) ∈ R is the incremental frequency deviation,
ui ∈ R is the control input, �PGi(t) ∈ R is the incremen-
tal change in the electrical power, and the rest are constant
parameters.

A three-machine power system (i.e., N = 3) is studied in
this simulation. The parameters are displayed in Table I. We
assume that �PGi(t) = ϒi(t) sin(�Pm̃i(t)�fGi(t)), i = 1, 2, 3,
where ϒ1(t) = ∑3

i=1 ε1i�ϑi(t), ϒ2(t) = ∑3
i=1 ε2i�Pm̃i(t),

ϒ3(t) = ∑3
i=1 ε3i�fGi(t), and εis, i, s = 1, 2, 3, are unknown

parameters. For simplicity, we randomly choose ε11 ∈ [−1, 1],
ε1ι ∈ [−0.5, 0.5], ει1 ∈ [−0.5, 0.5] (ι = 2, 3), and ειj ∈
[−0.25, 0.25] (ι, j = 2, 3).

Let xi = [�ϑi(t),�Pm̃i(t),�fGi(t)]
T = [xi1, xi2, xi3]T,

i = 1, 2, 3. Then, based on aforementioned characteristic of
�PGi(t), we choose αi(xi) = βi(xi) = ‖xi‖, i = 1, 2, 3.
Note that gi(xi) = [1/Tgi , 0, 0]T and ki(xi) = [0, 0,Kpi/Tpi ]

T

(i = 1, 2, 3). Thus, to satisfy Assumptions 2 and 3, we can
design the parameters as follows: b11 = 1, b1ι = 0.5 (ι = 2, 3),
b21 = 0.5, b2ι = 0.25 (ι = 2, 3), b31 = 0.5, b3ι = 0.25
(ι = 2, 3), and cis = 0 (i, s = 1, 2, 3).
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(a)

(b)

Fig. 7. (a) Performance of the CNN weight vector θ(j)2 . (b) Performance of

ANN weight vectors λ
(j)
2 and ν

(j)
2 .

By using (9), the auxiliary subsystems 1–3 for (64) can be
derived. To obtain the decentralized controller for system (64),
we first solve the optimal control problems of three isolated
auxiliary subsystems. According to (11), we select Pi(xi) =
‖xi‖, i = 1, 2, 3. Meanwhile, we choose ηi = 3 (i = 1, 2, 3)
to keep the matrix A [see (29)] positive definite. Then, letting
εi = 0.25 and Qi(xi) = ‖xi‖2, i = 1, 2, 3, we present the value
functions for auxiliary subsystems 1–3 as

Ji(xi, ui, υi) =
∫ ∞

0

(
4‖xi‖2 + uTi ui + 0.25υT

i υi

)
dt

with i = 1, 2, 3. For each auxiliary subsystem, the vector
activation functions for the CNN and ANNs are, respectively,
given as (note: ñ1 = 6, ñ2 = 3, and ñ3 = 6)

σi(xi) =
[
x2

i1, x2
i2, x2

i3, xi1xi2, xi1xi3, xi2xi3

]T

ψi(xi) = [xi1, xi2, xi3]T

φi(xi) = [xi1, xi2, xi3, xi1xi2, xi1xi3, xi2xi3]T.

The associated CNN and ANN weight vectors are writ-
ten as θ

(j)
i = [θ(j)i1 , θ

(j)
i2 , . . . , θ

(j)
i6 ]T, λ

(j)
i = [λ(j)i1 , λ

(j)
i2 , λ

(j)
i3 ]T,

and ν
(j)
i = [ν(j)i1 , ν

(j)
i2 , . . . , ν

(j)
i6 ]T, respectively. The ini-

tial weight vectors for CNN and ANNs are given as
follows: θ

(0)
i = [0, 0, . . . , 0]T (i = 1, 2, 3), λ

(0)
1 =

[−2.5,−2.5,−2.5]T, λ
(0)
2 = λ

(0)
3 = [−2,−2,−2]T, and

ν
(0)
i = [−1,−1, . . . ,−1]T (i = 1, 2, 3). Moreover, the ini-

tial state is x0 = [1,−0.5, 0.5, 1,−0.2, 0.2, 2,−1, 0.5]T and
the sampling period is �t = 0.02 s. The compact sets �i,
i = 1, 2, 3, are all chosen to be the interval [−2, 2], that is,
�i = [−2, 2], i = 1, 2, 3.

The computer simulation results are displayed in Figs. 6–10.
Figs. 6–8 depict the performance of CNN and ANN weight
vectors used in solving optimal control problems of auxil-
iary subsystems 1–3, respectively. Fig. 6(a) and (b) show
that the weight vectors θ

(j)
1 , λ

(j)
1 , and ν

(j)
1 are all conver-

gent after twelve iterations. The converged value of the

(a)

(b)

Fig. 8. (a) Performance of the CNN weight vector θ(j)3 . (b) Performance of

ANN weight vectors λ
(j)
3 and ν

(j)
3 .

Fig. 9. Verification of condition (19) for isolated subsystems.

sequence {λ(j)1 } is λ
(12)
1 = [−0.9547,−0.3251,−1.8187]T.

Fig. 7(a) and (b) describe that the weight vectors θ
(j)
2 ,

λ
(j)
2 , and ν

(j)
2 are all convergent after eight iterations.

The converged value of the sequence {λ(j)2 } is λ
(8)
2 =

[−0.9681,−0.5386,−1.6280]T. Fig. 8(a) and (b) indicate that
the weight vectors θ

(j)
3 , λ(j)3 , and ν

(j)
3 are all convergent after

six iterations. The converged value of the sequence {λ(j)3 }
is λ

(6)
3 = [−1.1288,−0.4696,−1.6144]T. Then, substituting

λ
(12)
1 , λ

(8)
2 , and λ

(6)
3 into (50), we derive the control pair

(u1, u2, u3). Fig. 9 is provided to validate the condition (19) for
isolated subsystems. As illustrated in Fig. 9, the condition (19)
holds when t ≥ max{0.05, 0, 0.1} = 0.1 s (i.e., t0 = 0.1 s).
Fig. 10 presents the evolution of �ϑi(t), �Pm̃i(t), and �fGi(t)
(i = 1, 2, 3) under the obtained control pair (u1, u2, u3). As
shown in Fig. 10, system (64) is asymptotically stable.
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Fig. 10. Evolution of �ϑi(t), �Pm̃i
(t), and �fGi (t) (i = 1, 2, 3) under the

obtained control pair (u1, u2, u3).

VII. CONCLUSION

We have presented a novel decentralized control scheme
for uncertain nonlinear large-scale systems with mismatched
interconnections. Specifically speaking, we first partition the
given decentralized control problem into optimal control prob-
lems of auxiliary subsystems. Then, the SPI algorithm is
developed to solve these optimal control problems within the
framework of ADP. When developing the decentralized control
scheme, we have to calculate the Moore–Penrose pseudo-
inverse of the control matrix beforehand. This is mainly
because the pseudo-inverse of the control matrix is a part of
the value function for each subsystem. This requirement is a
limitation of the present method. In our consecutive work, we
will focus on removing this condition. On the other hand,
it is observed that system (1) is composed of input-affine
nonlinear subsystems. In general, the design of controllers
for input-nonaffine nonlinear systems is more intractable
than for input-affine nonlinear systems [52], [53]. Therefore,
how to extend the present decentralized control strategy to
input-nonaffine nonlinear interconnected systems is also one
direction of our future works.
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