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Abstract—This paper analyzes the consensus problem in
heterogenous nonlinear multiagent systems. The multiagent
systems not only have nonidentical nonlinear dynamics for all
agents, but also have different network topologies for position
and velocity interactions. An asynchronous sampled-data control
without any input delays is first proposed, the information of each
agent is only sampled at its own sampling instants and need not
be sampled at other sampling instants. Then, quasi-consensus in
heterogenous multiagent systems is proved by Lyapunov stability
theory. When asynchronous sampled-data control has nonuni-
form input delays, sufficient conditions for quasi-consensus in
heterogenous multiagent systems are further obtained. The upper
bound of quasi-consensus errors is estimated. Finally, numerical
simulations are provided to verify the effectiveness of theoretical
results.

Index Terms—Asynchronous sampled-data control, distributed
tracking, heterogeneous multiagent systems, nonuniform input
delays, quasi-consensus.

I. INTRODUCTION

CONSENSUS of multiagent systems has received con-
siderable attentions in recent years, due to its broad

applications in formation control of unmanned air vehicles,
coordination of multiple robots, synchronization of distributed
harmonic oscillators, and so on. The main merit of consensus
is that a group of agents can reach an agreement on certain
quantities of interest by distributed interactions between each
agent and its neighbors.

Previous studies on consensus have mainly focused
on multiagent systems with first-order dynamics [1]–[3],
second-order dynamics [4]–[6], high-order systems or lin-
ear systems [7]–[9], and nonlinear systems [10]–[12]. Most
of these studies have been concerned with homogeneous
systems which had the same network topologies and the same
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dynamics of nodes. However, heterogeneous systems are usu-
ally ubiquitous in real applications due to the differences of
intrinsic dynamics of systems, uncertainties and disturbances
of parameters, perturbations of systems, heterogeneities of
network topologies, and so on. Admittedly, heterogeneous
multiagent systems are more difficult to achieve consensus
than homogeneous systems. Considerable efforts have been
devoted to the study on coordination of heterogeneous systems
and much progress has been made so far. Both synchro-
nization of heterogenous networks and consensus of hetero-
geneous multiagent systems have obtained fruitful results.
Consensus of heterogeneous multiagent systems, which con-
sisted of single and double integrator agents, was studied
in [13] and [14]. Based on an adaptive fuzzy distributed con-
troller, heterogeneous multiagent systems with nonidentical
nonlinear dynamics arising from uncertainties, unmeasured
states, and external disturbances was studied in [15]. In the
absence of complete synchronization manifold, bounded syn-
chronization of heterogeneous complex networks was proved
in [16] and [17]. Synchronization of heterogeneous net-
worked systems involving both dynamics and parameters was
presented in [18]. Quasi-synchronization or quasi-consensus
in heterogeneous nonlinear multiagent systems was investi-
gated by employing control inputs in [19] and [20]. In addition
to the heterogeneous networked systems with nonidentical
dynamics of nodes, a heterogeneous network with noniden-
tical network topologies, where the position and velocity
interactions were different, was studied in [21]. To our knowl-
edge, however, few works have focused on the networked
systems that are heterogeneous in both dynamics of nodes
and topologies of network structures. This is the first motiva-
tion. In this paper, we consider nonlinear multiagent systems
with nonidentical node dynamics and different network
topologies.

Depending on the coupling of heterogenous networked
systems, quasi-synchronization could be guaranteed for cer-
tain networks without any external controllers [22]. In general,
however, it is essential to add an external controller to het-
erogeneous systems to reach synchronization or consensus.
Many control strategies have been employed to coordinate
heterogeneous networked systems, such as continuous feed-
back control [23], [24], discontinuous feedback control [25],
adaptive control [26]–[29], intermittent control [30], impulsive
control [19], [31], and so on. With the development of digital
technologies, sampled-data control has been widely used in
cooperative control of both homogeneous and heterogeneous
multiagent systems [32]–[39]. When each agent has different
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sampling instants with other agents, asynchronous sampled-
data control is applicable to the practical cases [32]–[35].
Recently, the consensus tracking problem for heterogeneous
nonlinear systems has been studied in [34] based on an asyn-
chronous sampled-data control. The average consensus of
second-order systems with communication delays has been
investigated in [35] via the asynchronous edge-event triggered
control. In contrast to the asynchronous case, synchronous
sampled-data control has unified sampling instants for all
agents [36]–[39], and even is necessary for stochastic sam-
pling [40], [41]. By proposing synchronous sampling proto-
cols which only used sampled position data, sufficient and
necessary criteria for consensus of second-order multiagent
systems were derived in [39]. Note that agents in heteroge-
neous multiagent systems are nonidentical, it is reasonable
to adopt an asynchronous sampling control for heterogeneous
systems.The delayed-input approach is an useful tool to deal
with sampled-data-based system [34], [37], thus the sampled-
data-based system is converted to a delayed system which
can be viewed as a system with input delay [42]–[44]. This
paper adopts asynchronous sampling control. Furthermore,
there are two different asynchronous sampling mechanisms
in two heterogeneous network topologies.

Consensus can be classified as leader-following consen-
sus (tracking consensus) [6], [8], [11] or leaderless consen-
sus [4], [5], [10] on the basis of whether or not a multiagent
system has a leader. Since the heterogeneity harms consen-
sus in multiagent systems, a group of heterogeneous agents
usually cannot reach consensus. It is necessary to introduce a
common objective (a leader) to coordinate all heterogeneous
agents. Therefore, the leader plays an important role in coor-
dinated control of heterogeneous multiagent systems. In other
words, leader-following consensus provides an effective way
to analyze the consensus problem of heterogeneous multiagent
systems [19]–[21], [25], [31], [34].

Motivated by the above mentioned discussion, this paper
investigates the consensus problem in heterogeneous leader-
following multiagent systems by applying asynchronous
sampled-data controls. The main contributions of this paper
are summarized as follows. First, heterogeneities of node
dynamics and network topologies are considered together.
Specifically, individuals of second-order multiagent systems
have nonidentical nonlinear dynamics. Moreover, the network
topologies of the position and velocity interactions are
different. Second, asynchronous sampled-data controls are
employed to solve the consensus problem for heterogeneous
second-order multiagent systems. Each agent has different
sampling instants with other agents. In other words, the infor-
mation of each agent is only sampled at its own sampling
instants and need not be sampled at the sampling instants of its
neighbors. In addition, the sampling instants of position infor-
mation and velocity information are also different. Third, the
asynchronous sampling control with nonuniform input delays
is considered.

The rest of this paper is organized as follows. In Section II,
basic concepts of algebraic graph theory and problem formu-
lation are presented. In Section III, sufficient conditions for
heterogeneous multiagent systems with both delay-free input

and nonuniform input delays are obtained. In Section IV, we
illustrate our theoretical results with numerical simulations.
Finally, the conclusion is summarized in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, notations are first introduced. Then, basic
concepts of algebraic graph theory and the model formulation
of heterogeneous multiagent systems are provided.

Throughout this paper, R and N stand for the sets of real
numbers and natural numbers, respectively. R

n and R
n×m

represent the n-dimensional Euclidean space and the set of
n × m-dimensional real matrices, respectively. Let In and On

(I and O) be the n-dimensional (appropriate dimension) iden-
tity matrix and zero matrix, respectively. 1n ∈ R

n (0n ∈ R
n)

is a vector with each entry being one (zero). For a symmet-
ric matrix, M > 0 means that M is positive definite, and
λmin(M) denotes the minimum eigenvalue of M. Symbol ‖ · ‖
is the Euclidean norm. diag{Ai}n

i=1 signifies the n × n block-
diagonal matrix with Ai (1 ≤ i ≤ n) being its ith diagonal
block. Notation ⊗ indicates the Kronecker product. Symbol ∗
indicates the symmetric parts of a symmetric matrix.

A. Algebraic Graph Theory

Let G = (V, E,A) be a weighted directed graph with the
set of nodes V = {v1, v2, . . . , vN}, the set of directed edges
E ⊆ V×V , and an adjacency matrix A = [aij]N×N . A directed
edge eij is denoted by an ordered pair of nodes (vj, vi), and
eij ∈ E if and only if aij > 0. If eij ∈ E , then node j is called a
neighbor of node i. The set of neighbors of node i is denoted
by Ni. A directed path from node vj to vi is a sequence of
directed edges ei,i1 , ei1,i2 , . . . , eil,j in the digraph with distinct
nodes vim , m = 1, 2, . . . , l. A digraph has a directed spanning
tree if there exists one node which has a direct path to all
other nodes. The Laplacian matrix L = [lij]N×N of the graph
G is defined as: lij = −aij for i 	= j, and lii = −∑N

j=1,j	=i lij.
A graph is undirected if eji ∈ E is equivalent to eij ∈ E .

B. Heterogeneous Nonlinear Multiagent System

Consider a heterogeneous leader-following multiagent
system with one leader and N followers. The leader is an
isolated agent with second-order dynamics governed by

ẋ0(t) = v0(t)

v̇0(t) = f0(x0(t), v0(t), t) (1)

where x0(t) ∈ R
n and v0(t) ∈ R

n are the position and
velocity states, respectively. The intrinsic dynamics of the
leader f0 : R

n × R
n × R

+ → R
n is a nonlinear continuous

vector-valued function.
The followers of heterogeneous multiagent system com-

posed of N nonlinear agents described by

ẋi(t) = vi(t)

v̇i(t) = fi(xi(t), vi(t), t) + ui(t), i = 1, 2, . . . , N (2)
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where xi(t) ∈ R
n, vi(t) ∈ R

n, and ui(t) ∈ R
n are the

position state, velocity state, and control input of the ith
agent, respectively. The intrinsic dynamics of the ith agent
fi : Rn×R

n×R
+ → R

n is a nonlinear continuous vector-valued
function.

It is assumed that the leader-following multiagent
systems (1) and (2) are heterogeneous. In other words, All
the intrinsic dynamics f0, f1, f2, . . . , fN are different with each
other.

Assumption 1: The leader has a directed path to each
follower agent.

Assumption 2: For the nonlinear functions f0, f1, . . . , fN ,
there exist constants pi > 0 and qi > 0 such that

‖fi(x, v, t) − fi(y, z, t)‖ ≤ pi‖x − y‖ + qi‖v − z‖

i = 0, 1, 2, . . . , N, for all x, v, y, z ∈ R
n.

Assumption 3: The states of the leader are bounded, that
is, for any initial condition [x0(0), v0(0)], there exist constants
μ > 0 and T = T(x0(0), v0(0)) such that ‖x0(t)‖ ≤ μ and
‖v0(t)‖ ≤ μ for all t > T .

Remark 1: Assumption 1 is a necessary condition for
achieving consensus of multiagent systems and has been
widely adopted in [19]–[21] and [45]. Assumption 2 is a mild
Lipschitz condition [19], [20], [22] and holds for many nonlin-
ear systems. Assumption 3 is reasonable for several systems,
and the similar assumptions are adopted in many literatures,
such as [18]–[20], [34], [45], and [46].

Definition 1 [17], [19]: The heterogenous leader-following
multiagent system (1) and (2) is said to achieve quasi-
consensus to a compact set M if for any initial
conditions

lim
t→∞ dist(xi(t) − x0(t),M) = 0

lim
t→∞ dist(vi(t) − v0(t),M) = 0, i = 1, 2, . . . , N

where dist(x∗,M) denotes the distance from a point x∗ to the
compact set M.

Lemma 1 (Jensen Inequality [47]): For a given n×n-matrix
R > 0 and for all continuous function ω in [a, b] → R

n, the
following inequality holds:

∫ b

a
ωT(u)Rω(u)du ≥ 1

b − a

(∫ b

a
ωT(u)du

)

R

(∫ b

a
ω(u)du

)

.

III. MAIN RESULTS

In this section, consensus for heterogeneous leader-
following multiagent systems (1) and (2) is analyzed.
Two consensus protocols involving asynchronous sampling
and heterogeneous topologies are proposed. Sufficient cri-
teria of quasi-consensus for heterogeneous systems with
both delay-free input and input of nonuniform delays are
derived.

A. Consensus Analysis for Heterogeneous Multiagent System
With Delay-Free Input

In view of the advantages of the sample-data con-
trol, such as robustness and low cost, this paper first
considers the following delay-free asynchronous sampling
protocol:

ui(t) = αi

N∑

j=1

aij

[
xj

(
tjkj(t)

)
− xi
(
tik
)]

+ βi

N∑

j=1

bij

[
vj

(
sj

rj(t)

)
− vi
(
si

r

)]

− αiγ
a
i

[
xi
(
tik
)− x0

(
t0k0(t)

)]

− βiγ
b
i

[
vi
(
si

r

)− v0

(
s0

r0(t)

)]
(3)

for t ∈ [tik, tik+1) ∩ [si
r, si

r+1), k, r ∈ N, i = 1, 2, . . . , N,
where {tik|k ∈ N} are the sampling instants of position
information satisfying 0 = ti0 < ti1 < . . . < tik < . . .

and tik+1 − tik ≤ hai ≤ ha with ha > 0; {si
r|r ∈ N}

are the sampling instants of velocity information satisfying
0 = si

0 < si
1 < . . . < si

r < . . . and si
r+1 − si

r ≤ hbi ≤ hb

with hb > 0. Denote h = max{ha, hb}. kj(t) = max{k|tjk ≤ t}
and rj(t) = max{r|sj

r ≤ t} represent the latest sampling num-
bers of position information and velocity information of the
jth (j ∈ Ni) agent at time t, respectively. Adjacency matri-
ces A = [aij] and B = [bij] indicate the network topologies
of position and velocity interactions among all the N follower
agents, respectively. αi and βi are the coupling strengths of the
ith agents. γ a

i and γ b
i are the pinning gains of the ith agent

in the network topologies A and B, respectively. γ �
i > 0 if the

ith agent is pinned by the leader, otherwise γ �
i = 0, � = a, b.

Remark 2: In the protocol (3), the position information
and velocity information are assumed to be exchanged over
two different interaction topologies. Additionally, the sampling
instants in position and velocity interaction topologies are also
independent of each other.

Remark 3: Since the interaction topologies of position and
velocity are heterogeneous and the dynamics of all agents
are nonidentical, it is reasonable to assume that the sampling
instants of all agents are nonidentical and asynchronous. In
addition, position information and velocity information have
different sampling instants. More specifically, the sampling
instants {tik}+∞

k=1 of position information of agent i are indepen-
dent of the sampling instants {tjk′ }+∞

k′=1 of position information
of agent j. At time t, the protocol (3) uses the kth sampling
position information xi(tik) of agent i and the k′th sampling
position information xj(t

j
k′) of agent j, where j ∈ Ni. However,

k and k′ may be different. The same rule holds for the sam-
pling instants of velocity information. If both position and
velocity of all agents are sampled at the same instants, then
the sampling is synchronous.

Let x̃i(t) = xi(t) − x0(t) and ṽi(t) = vi(t) − v0(t),
i = 1, 2, . . . , N. Combining systems (1) and (2) and con-
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sensus protocol (3), one derives the following error systems:

˙̃xi(t) = ṽi(t)
˙̃vi(t) = fi(xi(t), vi(t), t) − fi(x0(t), v0(t), t)

+ αi

N∑

j=1

aij

[
x̃j

(
tjkj(t)

)
− x̃i
(
tik
)]− αiγ

a
i x̃i
(
tik
)

+ βi

N∑

j=1

bij

[
ṽj

(
sj

rj(t)

)
− ṽi
(
si

r

)]− βiγ
b
i ṽi
(
si

r

)

+ δi(t), t ∈ [tk, tk+1
) ∩ [si

r, si
r+1

)
(4)

where δi(t) = δi1(t) + δi2(t), and

δi1(t) = fi(x0(t), v0(t), t) − f0(x0(t), v0(t), t)

δi2(t) = αi

N∑

j=1

aij

[
x0

(
tjkj(t)

)
− x0
(
tik
)]

+ βi

N∑

j=1

bij

[
v0

(
sj

rj(t)

)
− v0
(
si

r

)]

− αiγ
a
i

[
x0
(
tik
)− x0

(
t0k0(t)

)]

− βiγ
b
i

[
v0
(
si

r

)− v0

(
s0

r0(t)

)]
(5)

i = 1, 2, . . . , N.
Together with Assumptions 2 and 3, there exist constants

νi > 0 and T > 0 such that, for all t > T

‖fi(t, x0(t), v0(t)) − f0(t, x0(t), v0(t))‖ ≤ νi

i = 1, 2, . . . , N.

Remark 4: δi1(t) reflects the heterogeneity of dynamics
between the leader and the ith follower. If the dynamics of each
follower is identical to the dynamics of the leader, then δi1(t)
is equal to zero. δi2(t) implies the asynchrony of sampled-data
control, and the nonidentity of position and velocity interaction
topologies. If the asynchronous sampling degrades into the
synchronous sampling, that is, both position and velocity of the
leader and all the followers are sampled at the same instants,
then δi2(t) will vanish.

Defining τi(t) = t − tik for t ∈ [tik, tik+1) and σi(t) = t − si
r

for t ∈ [si
r, si

r+1). The error systems (4) can be rewritten as

˙̃xi(t) = ṽi(t)
˙̃vi(t) = fi(xi(t), vi(t), t) − fi(x0(t), v0(t), t)

− αi

N∑

j=1

laij̃xj
(
t − τj(t)

)− αiγ
a
i x̃i(t − τi(t))

− βi

N∑

j=1

lbij̃vj
(
t − σj(t)

)− βiγ
b
i ṽi(t − σi(t))

+ δi(t), t ∈ [tik, tik+1

) ∩ [si
r, si

r+1

)
(6)

where La = [laij]N×N and Lb = [lbij]N×N are the Laplacian
matrices of A and B, respectively.

Denoting γ � = diag{γ �
i }N

i=1 and H� = L� + γ �, � = a, b.
Let H�

n be a block matrix, where the nth column is the same
as the nth column of H� and other columns are zero blocks.

From (6), one can further get

˙̃x(t) = ṽ(t)

˙̃v(t) = F(t) −
N∑

n=1

[(
KaHa

n

)⊗ In
]
x̃n(t − τn(t))

−
N∑

m=1

[(
KbHb

m

)
⊗ In

]
x̃m(t − σm(t)) + δ(t) (7)

where x̃(t) = [̃xT
1 (t), x̃T

2 (t), . . . , x̃T
N(t)]T , ṽ(t) =

[̃vT
1 (t), ṽT

2 (t), . . . , ṽT
N(t)]T , Ka = diag{αi}N

i=1,
Kb = diag{βi}N

i=1, δ(t) = [δT
1 (t), δT

2 (t), . . . , δT
N(t)]T , and

F(t) =

⎡

⎢
⎢
⎢
⎣

f1(x1(t), v1(t), t) − f1(x0(t), v0(t), t)
f2(x2(t), v2(t), t) − f2(x0(t), v0(t), t)

...

fN(xN(t), vN(t), t) − fN(x0(t), v0(t), t)

⎤

⎥
⎥
⎥
⎦

.

Let ỹ(t) = [̃xT(t), ṽT(t)]T . System (7) can be transformed
into the following matrix form:

˙̃y(t) = D̃y(t) + F̃(t) −
N∑

n=1

K̃aH̃a
n ỹ(t − τn(t))

−
N∑

m=1

K̃bH̃b
m̃y(t − σm(t)) + �(t) (8)

where

D =
[

ON IN

ON ON

]

⊗ In, F̃(t) =
[

0nN

F(t)

]

H̃a
n =
[

ON ON

Ha
n ON

]

⊗ In, H̃b
m =
[

ON ON

ON Hb
m

]

⊗ In

�(t) =
[

0nN

δ(t)

]

and

K̃� =
[

ON ON

ON K�

]

⊗ In, � = a, b.

Note that F̃T(t)F̃(t) = FT(t)F(t). Hence, it follows from
Assumption 2 that:

F̃T(t)F̃(t) ≤ ỹT(t)
̃y(t) (9)

where


 = 2

[
diag
{
p2

i

}N
i=1 ON

ON diag
{
q2

i

}N
i=1

]

⊗ In.

Choose the Lyapunov–Krasovskii functional candidate as
follows:

V(t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) (10)

where

V1(t) = ỹT(t)Ẽy(t)

V2(t) =
N∑

i=1

∫ t

t−hai

eλ(s−t)ỹT(s)Pĩy(s)ds

V3(t) =
N∑

i=1

∫ t

t−hbi

eλ(s−t)ỹT(s)Qĩy(s)ds
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V4(t) =
N∑

i=1

hai

∫ 0

−hai

∫ t

t+θ

eλ(s−t) ˙̃yT
(s)Ri ˙̃y(s)dsdθ

V5(t) =
N∑

i=1

hbi

∫ 0

−hbi

∫ t

t+θ

eλ(s−t) ˙̃yT
(s)Wi ˙̃y(s)dsdθ

with λ > 0, E > 0, Pi > 0, Qi > 0, Ri > 0, and Wi > 0,
i = 1, 2, . . . , N.

Theorem 1: Suppose that Assumptions 1 and 2 hold. The
trajectory of the error system (8) exponentially converges into
a compact set

M =
⎧
⎨

⎩
ε ∈ R

2nN : ‖ε‖ ≤
√
√
√
√ ρ

λmin(E)λ

N∑

i=1

sup
t∈[0,∞)

‖δi(t)‖2

⎫
⎬

⎭

if there exist constants λ > 0, ρ > 0, hai > 0 and hbi > 0,
and matrices E > 0, Pi > 0, Qi > 0, Ri > 0, Wi > 0, S1 and
S2 with appropriate dimensions, i = 1, 2, . . . , N, such that

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11 �12 S1 O O �16 �17 S1
∗ �22 S2 O O �26 �27 S2
∗ ∗ − I O O O O O
∗ ∗ ∗ �44 O �46 O O
∗ ∗ ∗ ∗ �55 O �57 O
∗ ∗ ∗ ∗ ∗ �66 O O
∗ ∗ ∗ ∗ ∗ ∗ �77 O
∗ ∗ ∗ ∗ ∗ ∗ ∗ − ρI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (11)

where

�11 = λE +
N∑

i=1

(Pi + Qi) −
N∑

i=1

(
e−λhai Ri + e−λhbi Wi

)

+ S1D + DTST
1 + 


�12 = E − S1 + DTST
2

�16 =
[
e−λha1 R1 − S1K̃aH̃a

1, e−λha2 R2 − S1K̃aH̃a
2

. . . , e−λhaN RN − S1K̃aH̃a
N

]

�17 =
[
e−λhb1 W1 − S1K̃bH̃b

1, e−λhb2 W2 − S1K̃bH̃b
2

. . . , e−λhbN WN − S1K̃bH̃b
N

]

�22 =
N∑

i=1

(
h2

aiRi + h2
biWi

)
− S2 − ST

2

�26 = [−S2K̃aH̃a
1,−S2K̃aH̃a

2, . . . ,−S2K̃aH̃a
N

]

�27 =
[
−S2K̃bH̃b

1,−S2K̃bH̃b
2, . . . ,−S2K̃bH̃b

N

]

�44 = −diag
{

e−λhai(Pi + Ri)
}N

i=1

�46 = diag
{

e−λhai Ri

}N

i=1

�55 = −diag
{

e−λhbi(Qi + Wi)
}N

i=1

�57 = diag
{

e−λhbi Wi

}N

i=1

�66 = −2diag
{

e−λhai Ri

}N

i=1

�77 = −2diag
{

e−λhbi Wi

}N

i=1
.

Proof: See Appendix A for the details.

Remark 5: Due to the difference between the leader and
each follower, δi1 may not vanish. Since asynchronous sam-
pling protocol (3) is employed, tik, t0k0(t)

, and tjkj(t)
, j ∈ Ni

may be nonidentical. Likewise, si
r, s0

r0(t)
, and sj

rj(t)
, j ∈ Ni

are usually different with each other. Hence, δi2(t) is nonzero,
i = 1, 2, . . . , N. In other words,

∑N
i=1 ‖δi(t)‖2 cannot tend to

zero. That is, only quasi-consensus (bounded consensus) can
be reached if

∑N
i=1 supt∈[0,∞) ‖δi(t)‖2 is finite. Furthermore,

∑N
i=1 ‖δi(t)‖2 will not vanish as the heterogeneities of dynam-

ics, even if both position and velocity of the leader and all
followers are sampled at the same instants.

Proposition 1: Under Assumptions 2 and 3, there exists a
positive constant �i such that

sup
t∈[0,∞)

‖δi(t)‖ ≤ �i, i = 1, 2, . . . , N.

Proof: According to Assumptions 2 and 3, there exists a
T̃ > 0 such that for all t > T̃ one has

‖δi(t)‖ ≤ ‖fi(x0(t), v0(t), t) − f0(x0(t), v0(t), t)‖

+ αi

N∑

j=1

aij

∥
∥
∥x0

(
tjkj(t)

)
− x0
(
tik
)∥∥
∥

+ βi

N∑

j=1

bij

∥
∥
∥v0

(
sj

rj(t)

)
− v0
(
si

r

)∥∥
∥

+ αiγ
a
i

∥
∥
∥x0
(
tik
)− x0

(
t0k0(t)

)∥
∥
∥

+ βiγ
b
i

∥
∥
∥v0
(
si

r

)− v0

(
s0

r0(t)

)∥
∥
∥

≤ νi + 2μ

⎡

⎣
N∑

j=1

(
αiaij + βibij

)+ αiγ
a
i + βiγ

b
i

⎤

⎦.

Let �i = νi + 2μ[
∑N

j=1(αiaij + βibij) + αiγ
a
i + βiγ

b
i ]. This

completes the proof.
The following theorem is a straightforward conclusion by

combining Theorem 1 and Proposition 1.
Theorem 2: If Assumptions 1–3 and conditions of

Theorem 1 hold, then the trajectory of the error system (8)
exponentially converges into a compact set

M =
⎧
⎨

⎩
ε ∈ R

2nN : ‖ε‖ ≤
√
√
√
√ ρ

λmin(E)λ

N∑

i=1

�2
i

⎫
⎬

⎭
.

Remark 6: The result of Theorem 2 shows that quasi-
consensus in heterogeneous multiagent systems (1) and (2)
can be reached. In addition, an upper bound can be estimated.
Some papers apply Barrier Lyapunov function to guarantee
the boundedness of error [28], [45], [48]. If lim

t→∞ δi(t) = 0,

i = 1, 2, . . . , N, then consensus in heterogeneous multiagent
system (1) and (2) can be achieved.

If the position information and velocity information have
the same sampling frequencies, that is {tik}+∞

k=1 is the same with
{si

k}+∞
k=1 for i = 1, 2, . . . , N, then hai = hbi and system (8) is

rewritten as

˙̃y(t) = D̃y(t) + F̃(t) −
N∑

n=1

H̃ñy(t − τn(t)) + �(t) (12)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

where

H̃n =
[

ON ON

KaHa
n KbHb

n

]

⊗ In.

Let hi = hai = hbi. Choose the Lyapunov–Krasovskii
functional candidate as follows:

V(t) = V1(t) + V2(t) + V3(t) (13)

where

V1(t) = ỹT(t)Ẽy(t)

V2(t) =
N∑

i=1

∫ t

t−hi

eλ(s−t)ỹT(s)Qĩy(s)ds

V3(t) =
N∑

i=1

hi

∫ 0

−hi

∫ t

t+θ

eλ(s−t) ˙̃yT
(s)Ri ˙̃y(s)dsdθ

with λ > 0, E > 0, Qi > 0, and Ri > 0, i = 1, 2, . . . , N.
By Theorem 1, the following corollary holds directly for

system (12).
Corollary 1: Suppose that Assumptions 1–3 hold. The tra-

jectory of the error system (12) exponentially converges into
a compact set

M =
⎧
⎨

⎩
ε ∈ R

2nN : ‖ε‖ ≤
√
√
√
√ ρ

λmin(E)λ

N∑

i=1

�2
i

⎫
⎬

⎭

if there exist constants λ > 0, ρ > 0, and hi > 0, and matri-
ces E > 0, Qi > 0, Ri > 0, S1, and S2 with appropriate
dimensions, i = 1, 2, . . . , N, such that

ω =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ω11 ω12 S1 O ω15 S1
∗ ω22 S2 O ω25 S2
∗ ∗ − I O O O
∗ ∗ ∗ ω44 ω45 O
∗ ∗ ∗ ∗ ω55 O
∗ ∗ ∗ ∗ ∗ − ρI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (14)

where the blocks of ω are given by

ω11 = λE +
N∑

i=1

Qi −
N∑

i=1

e−λhi Ri + S1D + DTST
1 + 


ω12 = E − S1 + DTST
2

ω15 =
[
e−λh1 R1 − S1H̃1, e−λh2 R2 − S1H̃2

, . . . , e−λhN RN − S1H̃N

]

ω22 =
N∑

i=1

h2
i Ri − S2 − ST

2

ω25 = [−S2H̃1,−S2H̃2, . . . ,−S2H̃N
]

ω44 = −diag
{

e−λhi(Qi + Ri)
}N

i=1

ω45 = diag
{

e−λhi Ri

}N

i=1

ω55 = −2diag
{

e−λhi Ri

}N

i=1
.

Remark 7: If the dynamics of the leader and all followers
are identical and the topologies of position and velocity are the

same, then the multiagent systems are homogeneous. If asyn-
chronous protocol (3) is applied, then only quasi-consensus of
homogeneous systems can be reached under Assumptions 1–3
since δi2(t) cannot vanish. Furthermore, if sampling protocol
is synchronous, then position and velocity of all the agents
are sampled at the same instants. Thus, consensus of homo-
geneous systems will be reached since δi(t) = 0 for all
i = 1, 2, . . . , N.

B. Consensus Analysis With Nonuniform Input Delays

Because of the limited rate of network communication, net-
worked systems usually exist input delays. Since multiagent
system (2) is heterogeneous, it is reasonable to consider
nonuniform input delays. Adopting the nonuniform delayed
protocol ui(t − di) for multiagent system (2), where di is a
time delay of the ith control input with 0 < di < d < h, d is
a positive constant.

Based on the sampled-data protocol (3) with nonuniform
input delays, the following error systems can be obtained:

˙̃xi(t) = ṽi(t)
˙̃vi(t) = fi(xi(t), vi(t), t) − fi(x0(t), v0(t), t)

+ αi

N∑

j=1

aij

[
x̃j

(
tjkj(t)

− di

)
− x̃i
(
tik − di

)]

+ βi

N∑

j=1

bij

[
ṽj

(
sj

rj(t)
− di

)
− ṽi
(
si

r − di
)]

− αiγ
a
i x̃i
(
tik − di

)− βiγ
b
i ṽi
(
si

r − di
)

+ δ̃i(t), t ∈ [tik, tik+1

) ∩ [si
r, si

r+1

)
(15)

where i = 1, 2, . . . , N, and

δ̃i(t) = fi(x0(t), v0(t), t) − f0(x0(t), v0(t), t)

+ αi

N∑

j=1

aij

[
x0

(
tjkj(t)

− di

)
− x0
(
tik − di

)]

+ βi

N∑

j=1

bij

[
v0

(
sj

rj(t)
− di

)
− v0
(
si

r − di
)]

− αiγ
a
i

[
x0
(
tik − di

)− x0

(
t0k0(t)

− di

)]

− αiγ
b
i

[
v0
(
si

r − di
)− v0

(
s0

r0(t)
− di

)]
. (16)

Similar to Proposition 1, based on Assumptions 2
and 3, there exists a positive constant �̃i such that
supt∈[0,∞) ‖̃δi(t)‖ ≤ �̃i, i = 1, 2, . . . , N.

Then, systems (15) can be rewritten as the following
compact form:

˙̃y(t) = D̃y(t) + F̃(t) −
N∑

n,j=1

K̃aH̃a
jñy
(
t − τn(t) − dj

)

−
N∑

m,j=1

K̃bH̃b
jm̃y
(
t − σm(t) − dj

)+ �̃(t) (17)
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where

δ̃(t) = [δ̃T
1 (t), δ̃T

2 (t), . . . , δ̃T
N(t)
]T

�̃(t) = [0T
nN, δ̃T(t)

]T
, H̃a

jn =
[

ON ON

Ha
jn ON

]

⊗ In

H̃b
jm =

[
ON ON

ON Hb
jm

]

⊗ In

the elements of matrix H�
ij are all zero except the (i, j)th entry

is the same as the (i, j)th entry of H�, � = a, b, i, j =
1, 2, . . . , N.

Theorem 3: Suppose that Assumptions 1–3 hold. The tra-
jectory of the error system (17) exponentially converges into
a compact set

M =
⎧
⎨

⎩
ε ∈ R

2nN : ‖ε‖ ≤
√
√
√
√ ρ

λmin(E)λ

N∑

i=1

�̃2
i

⎫
⎬

⎭

if there exist constants λ > 0, ρ > 0, hai > 0, and hbi > 0,
and matrices E > 0, Pi > 0, Qi > 0, Ri > 0, Wi > 0, S1, and
S2 with appropriate dimensions, i = 1, 2, . . . , N, such that

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11 �12 S1 O O �16 �17 S1
∗ �22 S2 O O �26 �27 S2
∗ ∗ − I O O O O O
∗ ∗ ∗ �44 O �46 O O
∗ ∗ ∗ ∗ �55 O �57 O
∗ ∗ ∗ ∗ ∗ �66 O O
∗ ∗ ∗ ∗ ∗ ∗ �77 O
∗ ∗ ∗ ∗ ∗ ∗ ∗ − ρI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (18)

where

�11 = λE +
N∑

i=1

(Pi + Qi) − N
N∑

i=1

e−λ(hai+d)Ri

− N
N∑

i=1

e−λ(hbi+d)Wi + S1D + DTST
1 + 


�12 = E − S1 + DTST
2

�16 =
[
1T

N ⊗ e−λ(ha1+d)R1, 1T
N ⊗ e−λ(ha2+d)R2

, . . . , 1T
N ⊗ e−λ(haN+d)RN

]
− S1K̃a[

�
a
1, �

a
2, . . . , �

a
N

]

�17 =
[
1T

N ⊗ e−λ(hb1+d)W1, 1T
N ⊗ e−λ(hb2+d)W2

, . . . , 1T
N ⊗ e−λ(hbN+d)WN

]
− S1K̃b

[
�

b
1, �

b
2, . . . , �

b
N

]

�
�
i =
[
H̃�

1i, H̃�
2i, . . . , H̃�

Ni

]
, i = 1, 2, . . . , N, � = a, b

�22 = N
N∑

i=1

[
(d + hai)

2Ri + (d + hbi)
2Wi

]
− S2 − ST

2

�26 = −S2K̃a[
�

a
1, �

a
2, . . . , �

a
N

]

�27 = −S2K̃b
[
�

b
1, �

b
2, . . . , �

b
N

]

�44 = −diag
{

e−λ(d+hai)(Pi + NRi)
}N

i=1

�46 = diag
{

1T
N ⊗ e−λ(d+hai)Ri

}N

i=1

�55 = −diag
{

e−λ(d+hbi)(Qi + NWi)
}N

i=1

�57 = diag
{

1T
N ⊗ e−λ(d+hbi)Wi

}N

i=1

�66 = −2diag
{

IT
N ⊗ e−λ(d+hai)Ri

}N

i=1

�77 = −2diag
{

IT
N ⊗ e−λ(d+hbi)Wi

}N

i=1
.

Proof: See Appendix B for the details.
If the networked leader-following systems (1) and (2) have

the uniform input delays ui(t −d) for all i = 1, 2, . . . , N, then
system (17) should be changed as follows:

˙̃y(t) = D̃y(t) + F̃(t) −
N∑

n=1

K̃aH̃a
n ỹ(t − τn(t) − d)

−
N∑

m=1

K̃bH̃b
m̃y(t − σm(t) − d) + �̃d(t) (19)

where �̃d(t) = [0T
nN, δ̃T

d (t)]T , δ̃d(t) = [̃δT
d1(t), δ̃

T
d2(t), . . . ,

δ̃T
dN(t)]T and

δ̃di(t) = fi(x0(t), v0(t), t) − f0(x0(t), v0(t), t)

+ αi

N∑

j=1

aij

[
x0

(
tjkj(t)

− d
)

− x0
(
tik − d

)]

+ βi

N∑

j=1

bij

[
v0

(
sj

rj(t)
− d
)

− v0
(
si

r − d
)]

− αiγ
a
i

[
x0
(
tik − d

)− x0

(
t0k0(t)

− d
)]

− αiγ
b
i

[
v0
(
si

r − d
)− v0

(
s0

r0(t)
− d
)]

. (20)

Combining Theorems 1 and 3 derives the following result
directly.

Corollary 2: Suppose that Assumptions 1–3 hold. The tra-
jectory of the error system (19) exponentially converges into
a compact set

M =
⎧
⎨

⎩
ε ∈ R

2nN : ‖ε‖ ≤
√
√
√
√ ρ

λmin(E)λ

N∑

i=1

�̃2
i

⎫
⎬

⎭

if there exist constants λ > 0, ρ > 0, hai > 0, hbi > 0, and
d > 0, and matrices E > 0, Pi > 0, Qi > 0, Ri > 0, Wi > 0,
S1, and S2 with appropriate dimensions, i = 1, 2, . . . , N, such
that

φ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ11 φ12 S1 O O φ16 φ17 S1
∗ φ22 S2 O O �26 �27 S2
∗ ∗ − I O O O O O
∗ ∗ ∗ φ44 O φ46 O O
∗ ∗ ∗ ∗ φ55 O φ57 O
∗ ∗ ∗ ∗ ∗ φ66 O O
∗ ∗ ∗ ∗ ∗ ∗ φ77 O
∗ ∗ ∗ ∗ ∗ ∗ ∗ − ρI

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

(21)
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where �26 and �27 are defined in Theorem 1, and the other
blocks of φ are defined as follows:

φ11 = λE +
N∑

i=1

(Pi + Qi) + S1D + DTST
1 + 


−
N∑

i=1

[
e−λ(hai+d)Ri + e−λ(hbi+d)Wi

]

φ12 = E − S1 + DTST
2

φ16 =
[
e−λ(ha1+d)R1, e−λ(ha2+d)R2, . . . , e−λ(haN+d)RN

]

− S1K̃a[H̃a
1, H̃a

2, . . . , H̃a
N

]

φ17 =
[
e−λ(hb1+d)W1, e−λ(hb2+d)W2, . . . , e−λ(hbN+d)WN

]

− S1K̃b
[
H̃b

1, H̃b
2, . . . , H̃b

N

]

φ22 =
N∑

i=1

[
(hai + d)2Ri + (hbi + d)2Wi

]
− S2 − ST

2

φ44 = −diag
{

e−λ(hai+d)(Pi + Ri)
}N

i=1

φ46 = diag
{

e−λ(hai+d)Ri

}N

i=1

φ55 = −diag
{

e−λ(hbi+d)(Qi + Wi)
}N

i=1

φ57 = diag
{

e−λ(hbi+d)Wi

}N

i=1

φ66 = −2diag
{

e−λ(hai+d)Ri

}N

i=1

φ77 = −2diag
{

e−λ(hbi+d)Wi

}N

i=1
.

Remark 8: Compared with the evident delays di in delayed
input ui(t − di), protocol (3) has hidden delays induced by
asynchronous sampling. Since each agent and its neighbors are
sampled asynchronously, delays are induced in transmissions
of information.

IV. NUMERICAL SIMULATIONS

In this section, numerical simulations are provided to
illustrate the theoretical results.

Example 1: Consensus of heterogeneous multiagent
systems with delay-free input.

Consider a heterogeneous multiagent system (2) composed
of three agents. The intrinsic nonlinear dynamics fi of the ith
agent is described by a Chua’s circuit

fi(xi(t), vi(t), t) = Aivi(t) + Big(vi(t)) (22)

where xi(t), vi(t) ∈ R
3, g(vi(t)) = [0.5(|vi1 + 1| − |vi1 −

1|), 0, 0]T , and

A1 =
⎡

⎣
−0.0750 0.3000 0
0.0300 −0.0300 0.0300

0 −0.5400 0

⎤

⎦, B1 =
⎡

⎣
0.1750 0 0

0 0 0
0 0 0

⎤

⎦

A2 =
⎡

⎣
−0.0675 0.2700 0
0.0300 −0.0300 0.0300

0 −0.5400 0

⎤

⎦, B2 =
⎡

⎣
0.1000 0 0

0 0 0
0 0 0

⎤

⎦

(a) (b)

(c) (d)

Fig. 1. Trajectories of the leader and three followers.

A3 =
⎡

⎣
−0.0975 0.3900 0
0.0300 −0.0300 0.0300

0 −0.5400 −0.0030

⎤

⎦, B3 =
⎡

⎣
0.0500 0 0

0 0 0
0 0 0

⎤

⎦.

The nonlinear dynamics of the leader f0 is also described
by a Chua’s circuit

f0(x0(t), v0(t), t) = A0v0(t) + B0g(v0(t)) (23)

where

A0 =
⎡

⎣
−0.0750 0.3000 0
0.0300 −0.0300 0.0300

0 −0.5400 −0.0300

⎤

⎦, B0 =
⎡

⎣
0.0100 0 0

0 0 0
0 0 0

⎤

⎦.

The trajectories of the leader and three followers are
depicted in Fig. 1.

It is shown from Fig. 1 that four agents have different
dynamics with each other. Four agents are stable, chaotic,
oscillating, and unstable, respectively. Furthermore, fi satisfies

‖fi(xi(t), vi(t), t) − fi(x0(t), v0(t), t)‖
≤ ‖Ai(vi(t) − v0(t))‖ + ‖Bi(g(vi(t)) − g(v0(t)))‖
≤ (‖Ai‖ + ‖Bi‖)‖vi(t) − v0(t)‖. (24)

Assume that the Laplacian matrices of the position topology
and velocity topology are chosen by

La =
⎡

⎣
2 −1 −1

−1 2 −1
−1 −1 2

⎤

⎦, Lb =
⎡

⎣
0 0 0

−1 2 −1
−1 −1 2

⎤

⎦.

Chosen γ a = {0, 3.5, 0}, γ b = {2.9, 0, 0}, Ka =
{7, 7.7, 8.4}, and Kb = {6.5, 7.15, 7.8} for consensus proto-
col (3). Let λ = 0.1 and ρ = 4. By solving LMI (11),
an allowance bound of sampling intervals is obtained as
h = 0.045. For simplicity, asynchronous period sampling is
considered. Chosen h0x = h0v = 0.04, ha1 = 0.04, ha2 =
0.035, ha3 = 0.02, hb1 = 0.02, hb2 = 0.015, for hb3 = 0.01
for asynchronous sampling protocol (3).

The trajectories of the position and velocity states of four
agents are sketched in Figs. 2 and 3, respectively.
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Fig. 2. Trajectories of the position states of four agents.

Fig. 3. Trajectories of the velocity states of four agents.

(a)

(b)

Fig. 4. Error trajectories of (a) the position states and (b) the velocity states.

The marked dotted lines are three states of the position and
velocity of the leader in Figs. 2 and 3. The other lines repre-
sent three states of all the followers. Figs. 2 and 3 show that
the followers can track the leader with asynchronous sam-
pling information and heterogeneous topologies of position
and velocity interactions.

The error trajectories of the position and velocity states
between each follower and the leader are sketched in
Fig. 4(a) and (b), respectively.

It is shown from Fig. 1(a) and (23) that three states of the
position and velocity of the leader tend to constant vector
and zero vector, respectively. Combining (5) and (22) gives

(a) (b)

(c) (d)

Fig. 5. Trajectories of the leader and three followers.

limt→∞ ‖δi(t)‖ = 0, i = 1, 2, . . . , N. Therefore, consensus in
heterogeneous (1) and (2) is reached based on Theorem 1 and
Remark 6. Consensus is also verified in Figs. 2–4.

Example 2: Consensus of heterogeneous multiagent
systems with nonuniform input delays.

Suppose that a heterogeneous leader-following multiagent
systems composed of four agents have the same forms as
Example 1, but the parameters of the nonlinear dynamics are
different, where

A0 =
⎡

⎣
−2.5000 10.0000 0
1.0000 −1.0000 1.0000

0 −18.0000 0

⎤

⎦, B0 =
⎡

⎣
5.8333 0 0

0 0 0
0 0 0

⎤

⎦

A1 =
⎡

⎣
−0.0660 0.2700 0
0.0300 −0.0330 0.0300

0 −0.5400 0

⎤

⎦, B1 =
⎡

⎣
0.0930 0 0

0 0 0
0 0 0

⎤

⎦

A2 =
⎡

⎣
−0.0975 0.3900 0
0.0300 −0.0300 0.0300

0 −0.5400 −0.0300

⎤

⎦, B2 =
⎡

⎣
0.0300 0 0

0 0 0
0 0 0

⎤

⎦

A3 =
⎡

⎣
−0.0625 0.2500 0
0.0250 −0.0250 0.0250

0 −0.4500 0

⎤

⎦, B3 =
⎡

⎣
0.1458 0 0

0 0 0
0 0 0

⎤

⎦.

The trajectories of the leader and three followers are drawn
in Fig. 5.

Chosen the same values of γ a, γ b, Ka, Kb, λ, and ρ as
Example 1. By solving LMI (18), an allowance bound of
sampling intervals is obtained as h = 0.029. Set h0x =
h0v = 0.02, ha1 = 0.025, ha2 = 0.015, ha3 = 0.008, hb1 =
0.02, hb2 = 0.028, and hb3 = 0.016. Given the nonuniform
input delays as d1 = 0.01, d2 = 0.02, and d3 = 0.015. The
trajectories of the position and velocity states of four agents
are sketched in Figs. 6 and 7, respectively.

Similar to Example 1, the marked dotted lines are three
states of the position and velocity of the leader in Figs. 6 and 7.
The other lines represent three states of all the followers.
Figs. 6 and 7 show that the followers can track the leader
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Fig. 6. Trajectories of the position states of four agents.

Fig. 7. Trajectories of the velocity states of four agents.

(a)

(b)

Fig. 8. Error trajectories of (a) the position states and (b) the velocity states.

within a bounded range. In other words, quasi-consensus
is achieved in heterogeneous multiagent systems with asyn-
chronous sampling and nonuniform input delays.

The error trajectories of the position and velocity states
between each follower and the leader are sketched in
Fig. 8(a) and (b), respectively.

Since the leader is bounded in Fig. 5(a), we have
from (16) and (22) that supt∈[0,∞) ‖̃δi(t)‖ is bounded,
i = 1, 2, . . . , N. That is, quasi-consensus in heterogeneous
multiagent systems is reached. Fig. 8(a) and (b) shows that
the errors of the position and velocity between the leader and
each follower cannot vanish.

(a)

(b)

Fig. 9. Error trajectories for identical dynamics and synchronous sampling.

If the dynamics of three followers are chosen as f1 = f2 =
f3 = f0 and synchronous sampling is adopted by choosing
sampling interval h = 0.02, then δ̃i(t) = 0. Thus, consensus
in leader-following systems is reached. Fig. 9(a) and (b) shows
that the errors of the position and velocity between the leader
and each follower tend to zero.

V. CONCLUSION

This paper has analyzed the consensus problem of hetero-
geneous second-order leader-following nonlinear multiagent
systems. The position and velocity interactions have dif-
ferent topologies. Asynchronous sampled-data protocols are
proposed. Each agent has independent sampling instants and
is only sampled at its own sampling instants. In addition,
sampling mechanisms over position and velocity interaction
topologies are also independent of each other. Sufficient condi-
tions for quasi-consensus of heterogeneous multiagent systems
are first obtained by employing a delay-free asynchronous
sampled-data control. Then, the results are extended to the
control input with nonuniform input delays. Although the
leader-following multiagent systems have nonidentical non-
linear dynamics, heterogeneous interaction topologies, asyn-
chronous sampled data and even nonuniform input delays,
quasi-consensus can still be reached. That is, all the follow-
ers can track the leader within a bound range. The upper
bound of quasi-consensus errors is estimated. Future works
include the studies on the consensus problem for hetero-
geneous multiagent systems with switching topologies and
stochastic sampling.

APPENDIX A
PROOF OF THEOREM 1

Let U(t) = V̇(t) + λV(t) − ρ�T(t)�(t). Calculating the
derivation of V(t) along the trajectory of (8) and substituting
the derivation of V(t) into U(t) gives

U(t) ≤ 2̃yT(t)E ˙̃y(t) + ỹT(t)

[

λE +
N∑

i=1

(Pi + Qi)

]

ỹ(t)
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+ ˙̃yT
(t)

[
N∑

i=1

(
h2

aiRi + h2
biWi

)
]

˙̃y(t) − ρ�T(t)�(t)

−
N∑

i=1

e−λhaĩ yT(t − hai)Pĩy(t − hai)

−
N∑

i=1

e−λhbĩ yT(t − hbi)Qĩy(t − hbi)

−
N∑

i=1

e−λhai hai

∫ t

t−hai

˙̃yT
(s)Ri ˙̃y(s)ds

−
N∑

i=1

e−λhbi hbi

∫ t

t−hbi

˙̃yT
(s)Wi ˙̃y(s)ds. (25)

Based on the Jensen inequality of Lemma 1, we have

−hai

∫ t

t−hai

˙̃yT
(s)Ri ˙̃y(s)ds

= −hai

∫ t−τi

t−hai

˙̃yT
(s)Ri ˙̃y(s)ds − hai

∫ t

t−τi

˙̃yT
(s)Ri ˙̃y(s)ds

≤ −(hai − τi)

∫ t−τi

t−hai

˙̃yT
(s)Ri ˙̃y(s)ds − τi

∫ t

t−τi

˙̃yT
(s)Ri ˙̃y(s)ds

≤ −[ỹ(t − τi) − ỹ(t − hai)
]T

Ri
[
ỹ(t − τi) − ỹ(t − hai)

]

− [ỹ(t) − ỹ(t − τi)
]T

Ri
[
ỹ(t) − ỹ(t − τi)

]

= −[ỹT(t − τi), ỹT(t − hai)
]
[

Ri −Ri

∗ Ri

][
ỹ(t − τi)

ỹ(t − hai)

]

− [ỹT(t), ỹT(t − τi)
]
[

Ri −Ri

∗ Ri

][
ỹ(t)

ỹ(t − τi)

]

. (26)

Similarly,

−hbi

∫ t

t−hbi

˙̃yT
(s)Wi ˙̃y(s)ds

≤ −[ỹ(t − σi) − ỹ(t − hbi)
]T

Wi
[
ỹ(t − σi) − ỹ(t − hbi)

]

− [ỹ(t) − ỹ(t − σi)
]T

Wi
[
ỹ(t) − ỹ(t − σi)

]

= −[ỹT(t − σi), ỹT(t − hbi)
]
[

Wi −Wi

∗ Wi

][
ỹ(t − σi)

ỹ(t − hbi)

]

− [ỹT(t), ỹT(t − σi)
]
[

Wi −Wi

∗ Wi

][
ỹ(t)

ỹ(t − σi)

]

. (27)

Let e(t) = [̃yT(t), ˙̃yT
(t), F̃T(t), ξT

1 (t), ξT
2 (t), ξT

3 (t), ξT
4 (t),

�T(t)]T , where

ξ1(t) = [ỹT(t − ha1), ỹT(t − ha2), . . . , ỹT(t − haN)
]T

ξ2(t) = [ỹT(t − hb1), ỹT(t − hb2), . . . , ỹT(t − hbN)
]T

ξ3(t) = [ỹT(t − τ1(t)), ỹT(t − τ2(t)), . . . , ỹT(t − τN(t))
]T

ξ4(t) = [ỹT(t − σ1(t)), ỹT(t − σ2(t)), . . . , ỹT(t − σN(t))
]T

.

Substituting (9), (26), and (27) into (25) derives

U(t) ≤ eT(t)�e(t).

It follows from the condition � < 0 that:

V̇(t) + λV(t) − ρ�T(t)�(t) < 0. (28)

From (28), one can get the following inequality directly:

V(t) < ρ

∫ t

0
eλ(s−t)�T(s)�(s)ds + e−λtV(0).

Consequently, limt→∞ yT(t)Ey(t) ≤ (ρ/λ)
∑N

i=1 supt∈[0,∞)

‖δi(t)‖2.

According to the conditions of Theorem 1, consensus errors
x̃(t), ṽ(t) exponentially converge to set M under protocol (3).
This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

Construct the Lyapunov–Krasovskii functional

V(t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t)

where

V1(t) = ỹT(t)Ẽy(t)

V2(t) =
N∑

i=1

∫ t

t−d−hai

eλ(s−t)ỹT(s)Pĩy(s)ds

V3(t) =
N∑

i=1

∫ t

t−d−hbi

eλ(s−t)ỹT(s)Qĩy(s)ds

V4(t) = N
N∑

i=1

(hai + d)

∫ 0

−hai−d

∫ t

t+θ

eλ(s−t) ˙̃yT
(s)Ri ˙̃y(s)dsdθ

V5(t) = N
N∑

i=1

(hbi + d)

∫ 0

−hbi−d

∫ t

t+θ

eλ(s−t) ˙̃yT
(s)Wi ˙̃y(s)dsdθ

with the constant λ > 0, and matrices E > 0, Pi > 0, Qi > 0,
Ri > 0, and Wi > 0.

Let e(t) = [̃yT(t), ˙̃yT
(t), F̃T(t), ξT

a (t), ξT
b (t), ξT

τ (t), ξT
σ (t),

�̃T(t)]T , where

ξa(t) = [ỹT(t − ha1 − d), ỹT(t − ha2 − d)

, . . . , ỹT(t − haN − d)
]T

ξb(t) = [ỹT(t − hb1 − d), ỹT(t − hb2 − d)

, . . . , ỹT(t − hbN − d)
]T

ξτ (t) = [ξT
τ1(t), ξ

T
τ2(t), . . . , ξ

T
τN(t)

]T

ξτ i(t) = [ỹT(t − τi(t) − d1), ỹT(t − τi(t) − d2)

, . . . , ỹT(t − τi(t) − dN)
]T

ξσ (t) = [ξT
σ1(t), ξ

T
σ2(t), . . . , ξ

T
σN(t)

]T

ξσ i(t) = [ỹT(t − σi(t) − d1), ỹT(t − σi(t) − d2)

, . . . , ỹT(t − σi(t) − dN)
]T

, i = 1, 2, . . . , N.

The remainder proof is similar to Theorem 1, therefore, it is
omitted.
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