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Abstract—In this paper, we study the event-triggered robust1

stabilization problem of nonlinear systems subject to mismatched2

perturbations and input constraints. First, with the introduction3

of an infinite-horizon cost function for the auxiliary system, we4

transform the robust stabilization problem into a constrained5

optimal control problem. Then, we prove that the solution of6

the event-triggered Hamilton–Jacobi–Bellman (ETHJB) equa-7

tion, which arises in the constrained optimal control problem,8

guarantees original system states to be uniformly ultimately9

bounded (UUB). To solve the ETHJB equation, we present a sin-10

gle network adaptive critic design (SN-ACD). The critic network11

used in the SN-ACD is tuned through the gradient descent12

method. By using Lyapunov method, we demonstrate that all13

the signals in the closed-loop auxiliary system are UUB. Finally,14

we provide two examples, including the pendulum system, to15

validate the proposed event-triggered control strategy.16

Index Terms—Adaptive critic designs (ACDs), adaptive17

dynamic programming (ADP), event-triggered control (ETC),18

input constraints, neural network (NN), reinforcement learn-19

ing (RL).20

I. INTRODUCTION21

ADAPTIVE critic designs (ACDs) have emerged as22

effective tools to solve optimal control problems over23

the past several decades [1]–[3]. The typical structure applied24

to implement ACDs is the actor-critic architecture, where the25

actor performs a control policy to environment (or controlled26

systems), and the critic offers an estimation of the value of that27

control policy and gives feedback information to the actor. In28

the computational intelligence community, adaptive dynamic29

programming (ADP) [4] and reinforcement learning (RL) [5]30

are nearly in the same spirits as ACDs (e.g., all of them have31

similar implementation architectures). Thus, they are often32

regarded as synonyms for ACDs. In this paper, we view ADP33
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and RL as a kind of ACDs. The early contributors to ADP and 34

RL included Werbos [6] and Sutton and Barto [7]. After that, 35

many scholars showed their interest in ADP and RL. Thus, 36

all kinds of ADP and RL methods were developed, such as 37

local value/policy iterative ADP [8], [9], goal representation 38

ADP [10], robust ADP [11], [12], single network ACDs (SN- 39

ACDs) [13], online RL [14], [15], off-policy RL [16], and 40

manifold RL [17]. 41

In recent years, applications of ACDs to study robust sta- 42

bilization problems have been extensively reported [18]–[22]. 43

In the existing literature, the robust controllers for nonlinear 44

systems are generally obtained by solving H∞ optimal control 45

problems or nonlinear zero-sum games under the framework of 46

ACDs. Nevertheless, a limitation of solving H∞ optimal con- 47

trol problems or zero-sum games is that one needs to make sure 48

the existence of saddle points. Unfortunately, it is challenge- 49

able to judge whether the saddle point of nonlinear systems 50

exists or not. To avoid this difficulty, Lin and Brandt [23] 51

introduced an indirect method, which aimed at converting the 52

robust control problem into an H2 optimal control problem. 53

Then, one was able to derive the robust controller for nonlinear 54

systems by solving the H2 optimal control problem. Recently, 55

the indirect method together with ACDs was proposed by 56

Adhyaru et al. [24] to design the robust controller for uncertain 57

nonlinear input-constrained systems. After that, Mu et al. [25] 58

used the indirect method and ACDs together to derive a 59

robust tracking control strategy for nonlinear systems subject 60

to matched uncertainties. By using a similar method as [25], 61

Qu et al. [26] obtained a decentralized tracking control of 62

large-scale nonlinear systems with matched interconnections. 63

An important difference between [25] and [26] was that [26] 64

did not require the initial admissible control while implement- 65

ing the proposed robust control scheme. Later, Zhang et al. [27] 66

extended the work of [26] to design an optimal guaranteed cost 67

sliding mode controller for constrained nonlinear systems with 68

matched/mismatched disturbances. In all the above mentioned 69

literature, the robust control strategies were implemented in the 70

time-triggering mechanism. In other words, the robust control 71

schemes were implemented periodically. According to [28], 72

the time-triggered control schemes often had difficulties in 73

handling the control problems with the conditions that there 74

were only finite computation bandwidths as well as the limited 75

communication resources. 76

To overcome these difficulties, many event-triggered con- 77

trol (ETC) approaches have been introduced [29]–[32]. Unlike 78
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the time-triggered controller, the event-triggered controller is79

updated aperiodically. Specifically, the event-triggered con-80

troller is updated only when the deviation between the system81

state and the desired value crosses a prescribed threshold.82

Due to this characteristic, the ETC strategies can overcome83

the shortcomings of the time-triggered control schemes [28].84

Thus, many studies on robust ETC methods were reported.85

Wang et al. [33] presented an event-based robust controller86

for uncertain nonlinear systems via the SN-ACD. After that,87

with the combination of the SN-ACD and the concurrent88

learning technique, Zhang et al. [34] developed a robust89

ETC of nonlinear systems with mismatched disturbances.90

Compared with [33], Zhang et al. [34] relaxed the persistence91

of excitation (PE) condition. Recently, by applying ACDs92

to solve the event-triggered H∞ optimal control problems,93

Mu et al. [35] and Zhang et al. [36] obtained robust ETC94

strategies for nonlinear systems, respectively. Owing to the95

existence of the aforementioned limitation in solving H∞96

optimal control problems, these robust ETC schemes usually97

encountered difficulties in engineering applications. On the98

other hand, due to physical characteristics of actuators in engi-99

neering industries, it is necessary to take actuator saturations100

(i.e., input constraints) into account. To address this problem,101

Wang et al. [37] studied the constrained robust ETC problem102

of nonlinear input-affine systems with matched uncertainties103

using ACDs. However, to the best of our knowledge, there are104

few studies developing the robust ETC scheme for nonlinear105

input-constrained systems subject to mismatched perturba-106

tions, especially without using the H∞ control theory [38].107

This motivates this paper.108

In this paper, a robust ETC strategy is developed for nonlin-109

ear input-constrained systems with mismatched perturbations.110

First, by constructing an infinite-horizon cost function for the111

auxiliary system, the robust stabilization problem is converted112

into a constrained optimal control problem. Then, it is proved113

that the solution of the event-triggered Hamilton–Jacobi–114

Bellman (ETHJB) equation, arising in the constrained optimal115

control problem, keeps original system states uniformly ulti-116

mately bounded (UUB). To solve the ETHJB equation, the117

SN-ACD is proposed. The critic network used in the SN-ACD118

is updated by using the gradient descent method. Finally, uni-119

form ultimate boundedness of all the signals in the closed-loop120

auxiliary system is demonstrated via Lyapunov method.121

The novelties of this paper include three aspects.122

1) Different from [34] updating the augmented control in123

an mechanism regarded as the combination of time-124

triggering and event-triggering mechanisms (ETMs), this125

paper tunes the augmented control only in the ETM.126

Hence, the developed control scheme has an advantage127

in decreasing the computational burden.128

2) Unlike [35] and [36] solving the event-triggered H∞129

optimal control problems, this paper obtains the robust130

ETC via an indirect method. Thus, the present method131

relaxes the requirement of judging the existence of the132

saddle point, which is an indispensable procedure in133

solving H∞ optimal control problems.134

3) This paper extends the work of [37] to develop a robust135

ETC strategy for nonlinear input-constrained systems136

with mismatched perturbations. Generally, robust control 137

methods for nonlinear systems with matched distur- 138

bances are not applicable to those systems with mis- 139

matched disturbances (note: the definitions of systems 140

with mismatch disturbances and systems with match 141

disturbances can refer to [23]). Furthermore, when con- 142

sidering input constraints, it increases the difficulty in 143

making such an extension. 144

It is worth emphasizing here that the knowledge of system 145

dynamics [i.e., f (x) and g(x) in system (1) (note: see 146

Section II-A)] is required to be known. Actually, by using 147

a similar fuzzy technique proposed in [39], this condition can 148

be removed. For simplicity, in this paper we assume that the 149

information of system dynamics is available. 150

The rest of this paper is structured as follows. After 151

briefly presenting problem descriptions and preliminaries in 152

Section II, we propose the robust ETC scheme in Section III. 153

Then, after discussing the stability analysis in Section IV, we 154

provide two examples to validate the established theoretical 155

results in Section V. Finally, several concluding remarks and 156

future works are given in Section VI. 157

Notation: R, N, and N
+ denote the sets of real numbers, 158

non-negative integers, and positive integers, respectively. Rm
159

and R
n×m denote the spaces of real m-vectors and n × m real 160

matrices, respectively. In is the identity matrix of dimension 161

n × n. T is the transposition symbol. ‖α‖ =
√∑n

i=1 |αi|2 is 162

the Euclidean norm of the vector α = (α1, α2, . . . , αn)
T ∈ R

n. 163

� is a subset of Rn, i.e., � ⊂ R
n. ‖A‖ denotes the Frobenius- 164

norm of the matrix A ∈ R
n×m. V∗

x = ∂V∗(x)/∂x is the partial 165

derivative of V∗(x) with respect to x ∈ R
n. 166

II. PROBLEM DESCRIPTION AND PRELIMINARIES 167

A. Problem Description 168

Consider the continuous-time nonlinear system with a mis- 169

matched perturbation given in the form 170

ẋ(t) = f (x(t))+ g(x(t))u(t)+ k(x(t))d(x(t)) (1) 171

where x(t) ∈ R
n is the state, u(t) ∈ U is the control input, U = 172

{(u1, u2, . . . , um) ∈ R
m : |ui| ≤ β, i = 1, 2, . . . ,m}, β > 0 is 173

the upper bound, f (x) ∈ R
n, g(x) ∈ R

n×m, and k(x) ∈ R
n×p

174

(note: k(x) 	= g(x) when p = m) are known smooth functions, 175

and d(x) ∈ R
p is an uncertain perturbation. Here, x0 = x(0) 176

is the initial state. 177

Assumption 1: System (1) is controllable. Meanwhile, 178

x = 0 is the equilibrium point of system (1) when letting 179

u(t) = 0 and d(x(t)) = 0 for all t ≥ 0. 180

Assumption 2: The control matrix g(x) is bounded as 0 < 181

g(x) ≤ gM (∀x ∈ R
n) with gM ∈ R the positive constant. 182

Meanwhile, there exist non-negative functions ζM(x) ∈ R and 183

dM(x) ∈ R such that, for all x ∈ R
n

184

∥∥g+(x)k(x)d(x)
∥∥ ≤ �M(x) and ‖d(x)‖ ≤ dM(x) 185

with g+(x) the Moore–Penrose pseudo-inverse of g(x). In 186

addition, �M(0) = 0, d(0) = 0, and dM(0) = 0. 187

This paper aims at finding an appropriate state feedback 188

controller to stabilize system (1). Owing to the existence of 189
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system uncertainties, it is challengeable to design the stabiliz-190

ing controller directly. To address this issue, we will convert191

the robust control problem of system (1) into a constrained192

optimal control problem of the auxiliary system.193

B. Hamilton–Jacobi–Bellman Equation Related to Auxiliary194

Systems195

Divide the term k(x)d(x) into the following two parts:196

k(x)d(x) = g(x)g+(x)k(x)d(x)+ h(x)d(x) (2)197

with198

h(x) = (
In − g(x)g+(x)

)
k(x). (3)199

According to [40], the auxiliary system corresponding to (1)200

can be described as201

ẋ = f (x)+ g(x)u + h(x)υ (4)202

where u ∈ U and υ ∈ R
p is the auxiliary control.203

The infinite-horizon cost function for system (4) is given by204

Vu,υ(x(t)) =
∫ ∞

t
(	(x(s))+ r(x(s), u(s), υ(s)))ds (5)205

where 	(x) = 2�2
M(x)+ρd2

M(x), ρ ∈ R is a positive constant,206

and207

r(x, u, υ) = xTQx + W(u)+ ρυTυ208

with Q ∈ R
n×n the positive definite matrix and W(u) ∈ R the209

semipositive definite function.210

To overcome the bounded control, we define W(u) as [41]211

W(u) = 2β
m∑

i=1

∫ ui

0
ψ−1(ζ/β)dζ (6)212

where ψ(·) is a bounded monotonic function with ψ(0) = 0.213

Meanwhile, ψ(·) is an odd function with its derivative214

bounded. Since ψ−1(·) is a monotonic odd function, W(u)215

given in (6) is semipositive definite. In this paper, we let ψ(·)216

be the hyperbolic tangent function, i.e., ψ(·) = tanh(·).217

Let A (�) be the set of admissible control [5] defined on218

�. Then, the optimal value of (5) is formulated as219

V∗(x) = min
u,υ∈A (�)

Vu,υ(x). (7)220

If V∗(x) is continuously differentiable, then its derivative221

satisfies222

(
V∗

x

)T
(f (x)+ g(x)u + h(x)υ)223

+ 	(x)+ xTQx + W(u)+ ρυTυ = 0.224

According to [4], the Hamiltonian for V∗
x , u, and υ can be225

defined as226

H
(
x,V∗

x , u, υ
) = (

V∗
x

)T
(f (x)+ g(x)u + h(x)υ)+	(x)227

+ xTQx + W(u)+ ρυTυ. (8)228

Then, V∗(x) can be obtained by solving the Hamilton–Jacobi–229

Bellman (HJB) equation230

min
u,υ∈A (�)

H
(
x,V∗

x , u, υ
) = 0 (9)231

with V∗(0) = 0. Based on the stationary condition 232

[42, Th. 5.8], we can therefore derive the closed-form expres- 233

sions of optimal control and optimal auxiliary control as 234

follows [4]: 235

u∗(x) = −β tanh

(
1

2β
gT(x)V∗

x

)
(10) 236

υ∗(x) = − 1

2ρ
hT(x)V∗

x . (11) 237

From (8)–(11), we can rewrite the HJB equation as 238

(
V∗

x

)T
f (x)+	(x)+ xTQx + W

(
−β tanh

(
1

2β
gT(x)V∗

x

))
239

− β
(
V∗

x

)T
g(x) tanh

(
1

2β
gT(x)V∗

x

)
−

∥∥∥∥
1

2
√
ρ

hT(x)V∗
x

∥∥∥∥
2

= 0 240

(12) 241

with V∗(0) = 0. According to [30], (12) is the time-triggered 242

HJB equation. 243

Similar to [43], it can be proved that the robust controller for 244

system (1) is able to be obtained by solving (12). However, 245

owing to the use of time-triggered formulations, the robust 246

control strategy is developed in the time-triggering mechanism. 247

As mentioned in [44], the time-triggered control algorithms 248

generally have low efficiency of using the limited communi- 249

cation resources between actuators and systems. In addition, 250

they often involve high-computational burdens. To overcome 251

the two deficiencies, we will develop a robust ETC scheme 252

for system (1). 253

III. ROBUST ETC STRATEGY 254

In this section, we first describe the robust stabilization of 255

system (1) in the ETM. Specifically, we prove that the robust 256

ETC of (1) can be obtained by solving an ETHJB equation. 257

Then, we use the SN-ACD to solve the ETHJB equation. 258

A. Robust Stabilization in the ETM 259

Let {tj}∞j=0 (note: tj < tj+1, j ∈ N) be the sequence of trig- 260

gering instants, where tj denotes the jth triggering instant. The 261

system state is sampled at the triggering instant tj, and the 262

sampled state is written as 263

x̄j = x
(
tj
)

j ∈ N. 264

Since there generally exists an error between the sampled state 265

x̄j and the current state x(t), we define the error as follows: 266

ej(t) = x̄j − x(t) ∀t ∈ [
tj, tj+1

)
. (13) 267

From the expression ej(t) given in (13), we can judge whether 268

an event is triggered or not. Specifically, if the event is trig- 269

gered at instant t = tj, then ej(tj) = 0. Based on the sampled 270

state, we can obtain the ETC law u(x̄j), which is executed at 271

the triggering instant tj. By using the zero-order hold tech- 272

nique [28], the control sequence {u(x̄j)}∞j=0 can generate a 273

continuous-time input signal μ(x̄j, t), i.e., 274

μ
(
x̄j, t

) = u
(
x̄j
) = u

(
x
(
tj
)) ∀t ∈ [

tj, tj+1
)
. 275
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Let the above mentioned ETM be applied to u∗(x) given276

in (10). Then, the optimal ETC law for system (4) with the277

cost function (5) can be obtained as [30] (for all t ∈ [tj, tj+1))278

μ∗(x̄j, t
) = u∗(x̄j

) = −β tanh

(
1

2β
gT

(
x̄j
)
V ∗̄

xj

)
(14)279

with V ∗̄
xj

= (∂V∗(x)/∂x)|x=x̄j .280

Similarly, applying the aforementioned ETM to υ∗(x) given281

in (11), we can derive the optimal auxiliary ETC law as282

ϑ∗(x̄j, t
) = υ∗(x̄j

) = − 1

2ρ
hT

(
x̄j
)
V ∗̄

xj
∀t ∈ [tj, tj+1). (15)283

Remark 1: For brevity, in subsequent discussion we write284

μ∗(x̄j, t) and ϑ∗(x̄j, t) as μ∗(x̄j) and ϑ∗(x̄j), respectively.285

Before continuing the discussion, we give the following286

assumption used in [30] and [45].287

Assumption 3: u∗(x) has the Lipschitz property on �. That288

is, there exists a Lipschitz constant Ku∗ > 0 such that, for all289

x, x̄j ∈ �290 ∥∥u∗(x)− u∗(x̄j
)∥∥ ≤ Ku∗‖x − x̄j‖ = Ku∗‖ej‖.291

Remark 2: By using Remark 1 and (14), we can write292

μ∗(x̄j) = u∗(x̄j). Thus, Assumption 3 implies293 ∥∥u∗(x)− μ∗(x̄j
)∥∥ ≤ Ku∗‖ej‖ (16)294

for all x, x̄j ∈ �.295

Theorem 1: Let Assumptions 1–3 be valid and let V∗(x) be296

a solution of the HJB equation (12). Then, the optimal ETC297

law μ∗(x̄j) given in (14) can ensure the closed-loop system (1)298

to be stable in the sense of uniform ultimate boundedness only299

if υ∗(x) given in (11) satisfies300 ∥∥υ∗(x(t))
∥∥2 ≤ λmin(Q)‖x(t)‖2 ∀t ≥ ts (17)301

where ts ≥ 0 is a threshold, and provided that the triggering302

condition is given by303

‖ej‖2 ≤ (1 − 2ρ)λmin(Q)

4K2
u∗

‖x‖2 � ‖eT‖2 (18)304

with 0 < ρ < 1/2 the design parameter and eT the triggering305

threshold.306

Proof: We take V∗(x) as the Lyapunov function candidate.307

From the expression V∗(x) given as in (7), we can deduce that308

V∗(x) > 0 for x 	= 0 and V∗(x) = 0 ⇔ x = 0, i.e., V∗(x) is309

positive definite.310

By differentiating V∗(x) along the solution of ẋ = f (x) +311

g(x)μ∗(x̄j) + k(x)d(x) and using (2), we have [note: V̇∗(x)312

denotes dV∗(x(t))/dt]313

V̇∗(x) = (
V∗

x

)T(
f (x)+ g(x)μ∗(x̄j)+ k(x)d(x)

)
314

= (
V∗

x

)T(
f (x)+ g(x)u∗(x)+ h(x)υ∗(x)

)
315

+ (
V∗

x

)T
g(x)

(
μ∗(x̄j)− u∗(x)

)
316

+ (
V∗

x

)T
g(x)g+(x)k(x)d(x)317

+ (V∗
x )

Th(x)
(
d(x)− υ∗(x)

)
(19)318

with h(x) defined as in (3).319

On the other hand, from (8) and (9), we obtain320 (
V∗

x

)T(
f (x)+ g(x)u∗(x)+ h(x)υ∗(x)

)
321

= −	(x)− xTQx − W
(
u∗(x)

) − ρ∥∥υ∗(x)
∥∥2
. (20)322

Meanwhile, from (10) and (11), we find 323

{(
V∗

x

)T
g(x) = −2β

(
tanh−1(u∗(x)/β)

)T
(
V∗

x

)T
h(x) = −2ρ(υ∗(x))T.

(21) 324

Substituting (20) and (21) into (19), it follows: 325

V̇∗(x) = −	(x)− xTQx − W
(
u∗(x)

) + ρ∥∥υ∗(x)
∥∥2

326

+2β
(

tanh−1(u∗(x)/β
))T(

u∗(x)− μ∗(x̄j)
)

︸ ︷︷ ︸
π1

327

−2β
(

tanh−1(u∗(x)/β
))T

g+(x)k(x)d(x)
︸ ︷︷ ︸

π2

328

−2ρ
(
υ∗(x)

)T
d(x)︸ ︷︷ ︸

π3

. (22) 329

By using Young’s inequality 2yTz ≤ �‖y‖2 + ‖z‖2/� (� > 0) 330

and (16), we can see that π1 in (22) implies (note: � = 1/2) 331

π1 ≤ β2

2

∥∥∥tanh−1(u∗(x)/β
)∥∥∥

2 + 2
∥∥u∗(x)− μ∗(x̄j

)∥∥2
332

≤ β2

2

m∑
i=1

(
tanh−1(u∗

i (x)/β)
)2 + 2K2

u∗‖ej‖2. (23) 333

Similarly, by using the above mentioned Young’s inequality 334

and Assumption 2, we can find that π2 and π3 in (22) yield 335

(note: � = 1/2 and � = 1, respectively) 336

π2 ≤ β2

2

∥∥∥tanh−1(u∗(x)/β
)∥∥∥

2 + 2
∥∥g+(x)k(x)d(x)

∥∥2
337

≤ β2

2

m∑
i=1

(
tanh−1(u∗

i (x)/β
))2 + 2�2

M(x) (24) 338

π3 ≤ ρ∥∥υ∗(x)
∥∥2 + ρ‖d(x)‖2 ≤ ρ∥∥υ∗(x)

∥∥2 + ρd2
M(x). (25) 339

From [46] (note: see the proof of [46, Th. 1]), we know 340

W
(
u∗) = 2β

m∑
i=1

∫ u∗
i (x)

0
tanh−1(ζ/β)dζ 341

= β2
m∑

i=1

(
tanh−1(u∗

i (x)/β)
)2

342

− 2β2
m∑

i=1

∫ tanh−1(u∗
i (x)/β)

0
τi tanh2(τi)dτi. (26) 343

Observing that 	(x) = 2�2
M(x)+ρd2

M(x) and using (23)–(26), 344

we can conclude that (22) yields 345

V̇∗(x) ≤ −xTQx + 2ρ
∥∥υ∗(x)

∥∥2 + 2K2
u∗‖ej‖2

346

+2β2
m∑

i=1

∫ tanh−1(u∗
i (x)/β)

0
τi tanh2(τi)dτi

︸ ︷︷ ︸
£(x)

. (27) 347

According to the proof of [46, Th. 1], we know that 348

£(x) given in (27) is a bounded function. To facilitate 349

subsequent discussion, we denote that ‖£(x)‖ ≤ εM , 350
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where εM > 0 is a constant. Then, (27) can be further351

rewritten as352

V̇∗(x) ≤ −λmin(Q)‖x‖2 + 2ρ
∥∥υ∗(x)

∥∥2 + 2K2
u∗‖ej‖2 + εM353

= −2ρ
(
λmin(Q)‖x‖2 − ∥∥υ∗(x)

∥∥2
)

+ 2K2
u∗‖ej‖2

354

− (1 − 2ρ)λmin(Q)‖x‖2 + εM (28)355

with λmin(Q) the minimum eigenvalue of Q.356

Thus, if (17) and (18) hold, then (28) yields357

V̇∗(x) ≤ − (1 − 2ρ)λmin(Q)

2
‖x‖2 + εM. (29)358

Therefore, from (29), we can find that V̇∗(x) < 0 only when359

x(t) is out of the following set:360

�x =
{

x : ‖x‖ ≤
√

2εM
(1 − 2ρ)λmin(Q)

}
.361

Then, uniform ultimate boundedness of the states of362

system (1) is guaranteed by using Lyapunov extension the-363

orem [47]. Specifically, this indicates that μ∗(x̄j) keeps364

the closed-loop system (1) stable in the sense of uniform365

ultimate boundedness. Meanwhile, the ultimate bound is366 √
2εM/((1 − 2ρ)λmin(Q)).367

Remark 3: According to (18), the triggering instant tj can368

be calculated. Then, it is possible to obtain the minimal inter-369

sample time (�tj)min, where �tj = tj+1−tj, j ∈ N. However, if370

there exists (�tj)min = 0, then the Zeno behavior occurs [48].371

In this circumstance, μ∗(x̄j) has to be redesigned. Fortunately,372

(�tj)min > 0, j ∈ N, under Assumption 1 (note: since similar373

proofs have been provided in [36] and [49], we omit the proof374

here). In this paper, simulation results provided in Section V375

also show that (�tj)min > 0, j ∈ N.376

To obtain the optimal ETC law μ∗(x̄j), we need to377

solve the ETHJB equation, which is derived by substitut-378

ing (14) and (15) into (9). That is,379

(
V∗

x

)T
f (x)− β(V∗

x

)T
g(x) tanh

(
1

2β
gT(x̄j)V

∗̄
xj

)
380

− 1

2ρ
(V∗

x )
Th(x)hT(x̄j)V

∗̄
xj

+	(x)+ xTQx381

+ W
(
−β tanh

(
1

2β
gT(x̄j)V

∗̄
xj

))
+

∥∥∥∥
1

2
√
ρ

hT(x̄j)V
∗̄
xj

∥∥∥∥
2

= 0.382

(30)383

Generally, it is rather hard to solve the ETHJB equation (30)384

analytically [50]. To conquer the difficulty, we present the SN-385

ACD to approximately solve (30).386

B. SN-ACD for Solving the ETHJB Equation387

The approximation theorem [51] guarantees that V∗(x)388

given in (7) can be represented via a critic network over � as389

V∗(x) = ωTc σc(x)+ εc(x)390

where ωc ∈ R
ñc is the ideal weight vector, σc(x) =391

[σc1(x), σc2(x), . . . , σcñc(x)]
T ∈ R

ñc is the basis function vec-392

tor, σcι(x), ι = 1, 2, . . . , ñc, are continuously differentiable393

functions with σcι(0) = 0, ñc ∈ N
+ is the number of basis 394

functions, and εc(x) ∈ R is the approximation error. 395

Differentiating V∗(x) at the sampled state x̄j, we have 396

V ∗̄
xj

= ∇σTc
(
x̄j
)
ωc + ∇εc

(
x̄j
) ∀t ∈ [

tj, tj+1
)

(31) 397

where ∇σc(x̄j) = (∂σc(x)/∂x)|x=x̄j and ∇εc(x̄j) = 398

(∂εc(x)/∂x)|x=x̄j . 399

Substituting (31) into (14), we can rewrite μ∗(x̄j) as 400

μ∗(x̄j
) = −β tanh

(
A1(x̄j)

) + εμ∗
(
x̄j
) ∀t ∈ [

tj, tj+1
)

(32) 401

where 402

A1
(
x̄j
) = 1

2β
gT

(
x̄j
)∇σTc (x̄j)ωc 403

and εμ∗(x̄j) = −(1/2)(1 − tanh2(ξ))gT(x̄j)∇εc(x̄j) with 1 = 404

[1, . . . , 1]T ∈ R
m and ξ chosen between A0(x̄j) (note: 405

A0(x̄j) = (1/(2β))gT(x̄j)V ∗̄
xj

) and A1(x̄j). 406

Similarly, by using (31), ϑ∗(x̄j) given in (15) can be 407

represented as (for all t ∈ [tj, tj+1)) 408

ϑ∗(x̄j
) = − 1

2ρ
hT(x̄j)∇σTc

(
x̄j
)
ωc + εϑ∗(x̄j) (33) 409

with εϑ∗(x̄j) = −(1/2ρ)hT(x̄j)∇εc(x̄j). 410

Remark 4: The difference between εμ∗(x̄j) given in (32) 411

and εϑ∗(x̄j) given in (33) is caused by control constraints (note: 412

u is constrained while υ is unconstrained). To make (32) be 413

better for understanding, we provide the detailed process of 414

deriving εμ∗(x̄j) as follows. Let 415

T (A�(x)) = −β tanh(A�(x)), � = 0, 1. 416

Then, applying the mean value theorem [42, Th. 5.10] to 417

T (A�(x)), we obtain (note: A0(x) = (1/(2β))gT(x)V∗
x ) 418

T (A0(x))− T (A1(x)) = −β(tanh(A0(x))− tanh(A1(x))) 419

= −1

2

(
1 − tanh2(ξ)

)
gT(x)∇εc(x) 420

with ξ chosen between A0(x) and A1(x). By using (31), we 421

find that (14) yields 422

μ∗(x̄j
) = −β tanh

(
A0

(
x̄j
))

423

= T
(
A1

(
x̄j
)) + (

T
(
A0

(
x̄j
)) − T

(
A1

(
x̄j
)))

424

= −β tanh
(
A1

(
x̄j
)) − 1

2

(
1 − tanh2(ξ)

)
gT∇εc

(
x̄j
)
. 425

Hence, we can obtain the expression εμ∗(x̄j) given as in (32). 426

In general, the ideal weight vector ωc is unavailable. Thus, 427

we cannot implement μ∗(x̄j) given in (32). To handle this 428

issue, we replace ωc with the current estimated weight vec- 429

tor ω̂c in the critic network. Then, the approximation value 430

function can be formulated as 431

V̂(x) = ω̂Tc σc(x). (34) 432

The derivative of V̂(x) at the sampled state x̄j is 433

V̂x̄j = ∇σTc (x̄j)ω̂c. 434

Replacing V ∗̄
xj

in (14) with V̂x̄j , we derive the estimated value 435

of μ∗(x̄j) as 436

μ̂
(
x̄j
) = −β tanh

(
A2(x̄j)

) ∀t ∈ [tj, tj+1) (35) 437



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

where438

A2
(
x̄j
) = 1

2β
gT(x̄j)∇σTc (x̄j)ω̂c.439

By the same token, the estimated value of ϑ∗(x̄j) given in (33)440

can be obtained as441

ϑ̂
(
x̄j
) = − 1

2ρ
hT

(
x̄j
)∇σTc

(
x̄j
)
ω̂c ∀t ∈ [

tj, tj+1
)
. (36)442

Substituting V̂(x), μ̂(x̄j), and ϑ̂(x̄j) into (8), we can see that443

the approximation Hamiltonian is444

Ĥ
(

x, V̂x, μ̂
(
x̄j
)
, ϑ̂

(
x̄j
))

445

= ω̂Tc ∇σc(x)
(

f (x)+ g(x)μ̂
(
x̄j
) + h(x)ϑ̂

(
x̄j
))

446

+ 	(x)+ xTQx + W
(
μ̂T(x̄j

)) + ρ
∥∥∥ϑ̂(x̄j

)∥∥∥
2
.447

Observe that (9) implies448

H
(
x,V∗

x , μ
∗(x̄j

)
, ϑ∗(x̄j

)) = 0.449

Thus, the error of Hamiltonian can be formulated as450

ec = Ĥ
(

x, V̂x, μ̂
(
x̄j
)
, ϑ̂

(
x̄j
)) − H

(
x,V∗

x , μ
∗(x̄j

)
, ϑ∗(x̄j

))
451

= ω̂Tc φ +	(x)+ xTQx + W
(
μ̂
(
x̄j
)) + ρ

∥∥∥ϑ̂(x̄j
)∥∥∥

2
(37)452

where φ = ∇σc(x)(f (x)+ g(x)μ̂(x̄j)+ h(x)ϑ̂(x̄j)).453

To ensure ec given in (37) to be sufficiently small, we use454

the gradient descent method to minimize the target function455

E = (1/2)eTc ec. Then, the weight update rule for the critic456

network is obtained as457

˙̂ωc = − lc(
1 + φTφ)2

∂E

∂ω̂c
458

= − lcφ(
1 + φTφ)2

ec ∀t ∈ [
tj, tj+1

)
(38)459

with ec defined as in (37), lc ∈ R
n the positive parameter, and460

(1 + φTφ)−2 the normalization term.461

Let the weight estimation error of the critic network be462

ω̃c = ωc − ω̂c. Then, from (38), we can see that the weight463

estimation error dynamics of the critic network satisfies [30]464

˙̃ωc = −lcϕϕ
Tω̃c + lcϕ

1 + φTφ εH ∀t ∈ [tj, tj+1) (39)465

where ϕ = φ/(1 + φTφ)2 and εH = −∇εTc (x)(f (x) +466

g(x)μ̂(x̄j)+ h(x)ϑ̂(x̄j)) is the residual error.467

From the ETM introduced in Section III-A, we can find468

that the closed-loop system (4) is a hybrid system. Let the469

augmented state be X = [xT, x̄Tj , ω̃
T
c ]T. Then, we can describe470

the hybrid dynamical system as follows.471

1) Continuous Dynamics:472

Ẋ (t) =

⎡
⎢⎢⎣

f (x)+ F
(
x, x̄j

)
0

−lcϕϕTω̃c + lcϕεH(
1 + φTφ)2

⎤
⎥⎥⎦ ∀t ∈ [tj, tj+1) (40)473

where474

F
(
x, x̄j

) = −βg(x) tanh

(
1

2β
gT(x̄j)∇σTc (x̄j)ω̂c

)
475

− 1

2ρ
h(x)hT(x̄j)∇σTc (x̄j)ω̂c.476

Fig. 1. Block diagram of the proposed ETC strategy.

2) Discrete Dynamics: 477

X
(
t+

) = X (t)+
⎡
⎣

0
x̄j − x(t)

0

⎤
⎦ t = tj+1 (41) 478

where X (t+) = limη→0+ X (t+η) with η ∈ (0, tj+1 − tj). 479

Based on the above mentioned analyses, we present the 480

block diagram of the proposed ETC strategy in Fig. 1. 481

IV. STABILITY ANALYSIS 482

Before proving stabilities of systems (40) and (41), we pro- 483

vide two assumptions introduced in [4] and [52], respectively. 484

Assumption 4: The derivative of the basic function vector is 485

bounded as ‖∇σc(x)‖ ≤ bσc (∀x ∈ �), where bσc is a positive 486

constant. In addition, there exist positive constants bεμ∗ , bεϑ∗ , 487

and bεH such the approximation errors εμ∗(x̄j), εϑ∗(x̄j), and the 488

residual error εH bounded as ‖εμ∗(x̄j)‖ ≤ bεμ∗ , ‖εϑ∗(x̄j)‖ ≤ 489

bεϑ∗ , and ‖εH‖ ≤ bεH (∀x̄j, x ∈ �), respectively. 490

Similar to (16) imposed on u∗(x), we present the following 491

assumption for υ∗(x). 492

Assumption 5: υ∗(x) satisfies the Lipschitz condition on �. 493

That is, for all x, x̄j ∈ �, there exists a Lipschitz constant 494

Kυ∗ > 0 such that 495

∥∥υ∗(x)− ϑ∗(x̄j
)∥∥ ≤ Kυ∗‖x − x̄j‖ = Kυ∗‖ej‖. 496

Let 497

G(Aκ(x)) = β tanh(Aκ(x)), κ = 1, 2 (42) 498

where A1(x) = (1/(2β))gT(x)∇σTc (x)ωc and A2(x) = 499

(1/(2β))gT(x)∇σTc (x)ω̂c. Then, using Taylor’s theorem [42], 500

it follows: 501

G(A1(x)) = G(A2(x))+ ∂G(A2)

∂A2
(A1(x)− A2(x)) 502

+ O
(
(A1(x)− A2(x))

2
)

503

= G(A2(x))+ 1

2
(Im − B(A2(x)))g

T(x) 504

× ∇σTc (x)ω̃c + O
(
(A1(x)− A2(x))

2
)

(43) 505

with B(A2(x)) = diag{tanh2(A2i(x))}, i = 1, 2, . . . ,m, and 506

the high-order term O((A1(x)− A2(x))2). 507
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Lemma 1: The high-order term given in (43) is bounded as508

∥∥∥O
(
(A1(x)− A2(x))

2
)∥∥∥ ≤ 2

√
m + gMbσc‖ω̃c‖. (44)509

Proof: From (43), we can find510

∥∥∥O
(
(A1(x)− A2(x))

2
)∥∥∥ ≤ ‖G(A1(x))‖ + ‖G(A2(x))‖511

+ 1

2
‖Im − B(A2(x))‖‖g(x)‖512

× ‖∇σ(x)‖‖ω̃c‖. (45)513

Since ‖ tanh(x)‖ ≤ 1 for all x ∈ R
n, we can conclude that514

‖G(Aκ(x))‖ = (∑m
i=1 tanh2(Aκi(x)))1/2 ≤ √

m, κ = 1, 2, and515

‖Im −B(A2(x))‖ ≤ 2. Then, using Assumptions 2 and 4, we516

can see that (45) yields (44).517

Theorem 2: Consider auxiliary system (4) associated with518

the ETHJB equation (30). Let Assumptions 1–5 be valid519

and take the control policies proposed as in (35) and (36).520

Suppose that the initial control for system (4) is admissible521

and the weight tuning rule for the critic network is described522

as (38). Then, the closed-loop system (4) and the weight esti-523

mation error ω̃c are UUB only if the following event-triggering524

condition holds:525

‖ej‖2 ≤ (1 − 2γ )λmin(Q)

4K2
max

‖x‖2 � ‖ēT‖2 (46)526

where Kmax = max{Ku∗ ,Kυ∗}, 0 < γ < 1/2 is a design527

parameter, and ēT is the triggering threshold, and provided528

that the following inequality holds:529

lc
2
λmin

(
ϕϕT

)
−

(
16g2

M + h2
M/ρ

2
)

b2
σc
> 0 (47)530

where λmin(ϕϕ
T) denotes the minimum eigenvalue of ϕϕT, ϕ531

satisfies the PE condition, and hM is the bound of h(x).532

Proof: We take the Lyapunov function candidate as533

L(t) = V∗(x̄j)︸ ︷︷ ︸
L1(t)

+ V∗(x(t))︸ ︷︷ ︸
L2(t)

+ (1/2)ω̃Tc ω̃c︸ ︷︷ ︸
L3(t)

.534

Since the closed-loop system (4) is a hybrid system, we present535

the stability analysis from following two circumstances.536

Situation I: Events are not triggered, i.e., t ∈ [tj, tj+1), j ∈ N.537

Then, we have L̇1(t) = V̇∗(x̄j) = 0.538

Taking the derivative of L2(t) and using the trajectory539

generated from ẋ = f (x)+ g(x)μ̂(x̄j)+ h(x)ϑ̂(x̄j), we have540

L̇2(t) = (
V∗

x

)T(
f (x)+ g(x)μ̂(x̄j)+ h(x)ϑ̂(x̄j)

)
541

= (
V∗

x

)T(
f (x)+ g(x)u∗(x)+ h(x)υ∗(x)

)
542

+ (
V∗

x

)T
g(x)

(
μ̂(x̄j)− u∗(x)

)
543

+ (
V∗

x

)T
h(x)

(
ϑ̂(x̄j)− υ∗(x)

)
. (48)544

Substituting (20) and (21) into (48), it follows:545

L̇2(t) = −	(x)− xTQx − ρ∥∥υ∗(x)
∥∥2 − W

(
u∗(x)

)
546

+ 2β
(

tanh−1(u∗(x)/β
))T(

u∗(x)− μ̂(x̄j)
)

︸ ︷︷ ︸
�

547

+ 2ρ
(
υ∗(x)

)T(
υ∗(x)− ϑ̂(x̄j)

)
. (49)548

Applying Young’s inequality 2yTz ≤ ‖y‖2 +‖z‖2 to � in (49), 549

we obtain 550

� ≤ β2
∥∥∥tanh−1(u∗(x)/β

)∥∥∥
2 + ∥∥u∗(x)− μ̂(x̄j)

∥∥2
551

= β2
m∑

i=1

(
tanh−1(u∗

i (x)/β)
)2 + ∥∥u∗(x)− μ̂(x̄j)

∥∥2
. 552

Then, by using (26), we can see that 553

− W
(
u∗(x)

) +� ≤ £(x)+ ∥∥u∗(x)− μ̂(x̄j)
∥∥2 (50) 554

with £(x) defined as in (27). As indicated in the proof 555

of Theorem 1, £(x) is bounded as ‖£(x)‖ ≤ εM . Thus, 556

combining (49) and (50), we have 557

L̇2(t) ≤ −	(x)− xTQx − ρ
∥∥∥ϑ̂(x̄j)

∥∥∥
2 + εM 558

+ ∥∥u∗(x)− μ̂(x̄j)
∥∥2

︸ ︷︷ ︸
�1

+ ρ
∥∥∥υ∗(x)− ϑ̂(x̄j)

∥∥∥
2

︸ ︷︷ ︸
�2

. (51) 559

Applying the inequality ‖y+z‖2 ≤ 2‖y‖2+2‖z‖2 to �1 in (51) 560

and using Assumption 3 as well as (32) and (35), it follows: 561

�1 = ∥∥(u∗(x)− μ∗(x̄j)
) + (

μ∗(x̄j)− μ̂(x̄j)
)∥∥2

562

≤ 2
∥∥μ∗(x̄j)− μ̂(x̄j)

∥∥2 + 2
∥∥u∗(x)− μ∗(x̄j)

∥∥2
563

≤ 2
∥∥G

(
A2(x̄j)

) − G
(
A1(x̄j)

) + εμ∗(x̄j)
∥∥2 + 2K2

u∗‖ej‖2
564

(52) 565

where G(Aκ(x̄j)) = G(Aκ(x))|x=x̄j with G(Aκ(x)) defined 566

as in (42). By using (43) and Lemma 1 as well as Young’s 567

inequality, we derive 568

2
∥∥G

(
A2(x̄j)

) − G
(
A1(x̄j)

) + εμ∗
(
x̄j
)∥∥2

569

≤ 2
(

2gMbσc‖ω̃c‖ + 2
√

m + bεμ∗
)2

570

≤ 16g2
Mb2
σc

‖ω̃c‖2 + 4a2
0 (53) 571

with a0 = 2
√

m + bεμ∗ . 572

Thus, combining (52) and (53), it follows: 573

�1 ≤ 2K2
u∗‖ej‖2 + 16g2

Mb2
σc

‖ω̃c‖2 + 4a2
0. (54) 574

Similar to the process of calculating �1, we obtain 575

�2 =
∥∥∥(υ∗(x)− ϑ∗(x̄j)

) +
(
ϑ∗(x̄j)− ϑ̂(x̄j)

)∥∥∥
2

576

≤ 2
∥∥∥ϑ∗(x̄j)− ϑ̂(x̄j)

∥∥∥
2 + 2

∥∥υ∗(x)− ϑ∗(x̄j)
∥∥2

577

≤ 2

∥∥∥∥∥−
hT(x̄j)

2ρ
∇σTc (x̄j)ω̃c + εϑ∗(x̄j)

∥∥∥∥∥
2

+ 2K2
υ∗‖ej‖2

578

≤ 2K2
υ∗‖ej‖2 +

(
h2

Mb2
σc
/ρ2

)
‖ω̃c‖2 + 4b2

εϑ∗ . (55) 579

Note that 	(x) given in (5) and ρ‖ϑ̂(x̄j)‖2 are non-negative 580

functions. Then, from (51), (54), and (55), we get 581

L̇2(t) ≤ −λmin(Q)‖x‖2 + 4K2
max‖ej‖2

582

+
(

16g2
M + h2

M/ρ
2
)

b2
σc

‖ω̃c‖2 + 4a2
0 + 4b2

εϑ∗ + εM 583

(56) 584

with Kmax = max{Ku∗ ,Kυ∗}. 585
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Taking the time derivative of L3(t) and using the weight586

estimation error dynamics (39), it follows:587

L̇3(t) = −lcω̃
T
c ϕϕ

Tω̃c + lc
ω̃Tc ϕ

1 + φTφ εH . (57)588

Noticing that 1 + φTφ ≥ 1 and using the above men-589

tioned Young’s inequality, we develop the last term in590

(57) as591

lc
1 + φTφ ω̃

T
c ϕεH ≤ lc

2
(
1 + φTφ)

(
ω̃Tc ϕϕ

Tω̃c + εTHεH

)
592

≤ lc
2
ω̃Tc ϕϕ

Tω̃c + lc
2
εTHεH .593

Then, (57) yields594

L̇3(t) ≤ − lc
2
ω̃Tc ϕϕ

Tω̃c + lc
2
εTHεH595

≤ − lc
2
λmin

(
ϕϕT

)‖ω̃c‖2 + lc
2

b2
εH
. (58)596

By using (56) and (58), we can see that597

L̇(t) ≤ −2γ λmin(Q)‖x‖2 − (1 − 2γ )λmin(Q)‖x‖2
598

−
(

lc
2
λmin

(
ϕϕT

)
−

(
16g2

M + h2
M/ρ

2
)

b2
σc

)
‖ω̃c‖2

599

+ 4K2
max‖ej‖2 + 4a2

0 + 4b2
εϑ∗ + εM. (59)600

If the condition (46) holds, then (59) yields601

L̇(t) ≤ −2γ λmin(Q)‖x‖2 + 4a2
0 + 4b2

εϑ∗ + εM602

−
(

lc
2
λmin

(
ϕϕT

)
−

(
16g2

M + h2
M/ρ

2
)

b2
σc

)
‖ω̃c‖2.603

Under the condition (47), we can find that L̇(t) < 0604

only if we can ensure one of the following inequalities605

holds:606

‖x‖ >
√

4a2
0 + 4b2

εϑ∗ + εM
2γ λmin(Q)

� c1 (60)607

or608

‖ω̃c‖ >
√√√√ 8a2

0 + 8b2
εϑ∗ + 2εM

lcλmin
(
ϕϕT

) − (
32g2

M + 2h2
M/ρ

2
)
b2
σc

� c2. (61)609

Then, uniform ultimate boundedness of both x(t) and ω̃c610

is obtained by using Lyapunov extension theorem [47].611

Meanwhile, the ultimate bounds of x(t) and ω̃c are c1 given612

in (60) and c2 given in (61), respectively.613

Situation II: Events are triggered, i.e., t = tj, j ∈ N. Then,614

we take the difference of Lyapunov function candidate L(tj)615

into account, that is616

�L(tj) = V∗(x̄j+1)− V∗(x̄j)+ 
(

x
(

t+j
)
, x̄j

)
617

where x(t+j ) = lim
η→0+ x(tj + η) with η ∈ (0, tj+1 − tj), and618

 
(

x
(

t+j
)
, x̄j

)
= V∗(x

(
t+j

))
− V∗(x(tj

))
619

+ 1

2
ω̃Tc

(
t+j

)
ω̃c

(
t+j

)
− 1

2
ω̃Tc (tj)ω̃c(tj).620

Suppose that x(t) /∈ Ec1 = {x(t) ∈ R
n|‖x(t)‖ ≤ c1} 621

or ω̃c /∈ Ec2 = {ω̃c ∈ R
n|∥∥ω̃c

∥∥ ≤ c2}. Then, from 622

Situation I, we have dL(t)/dt < 0 ∀t ∈ [tj, tj+1). That is, 623

L(t) is strictly monotonically decreasing on [tj, tj+1). Thus, it 624

implies 625

L(tj) > L(tj + η) ∀η ∈ (0, tj+1 − tj). (62) 626

Taking η → 0+ over both sides of (62), we can conclude 627

L
(
tj
) ≥ lim

η→0+ L(tj + η) = L
(

t+j
)
. 628

Thus, we have 629

V∗(x(tj))+ 1

2
ω̃Tc (tj)ω̃c

(
tj
) ≥ V∗(x

(
t+j

))
+ 1

2
ω̃Tc

(
t+j

)
ω̃c

(
t+j

)
. 630

(63) 631

From (63), it follows: 632

 
(

x
(

t+j
)
, x̄j

)
≤ 0. (64) 633

On the other hand, the uniform ultimate boundedness of the 634

state x(t) in Situation I implies 635

V∗(x̄j+1
) ≤ V∗(x̄j

)
. (65) 636

Therefore, under the condition that x(t) /∈ Ec1 = {x(t) ∈ 637

R
n|‖x(t)‖ ≤ c1} (or ω̃c /∈ Ec2 = {ω̃c ∈ R

n|‖ω̃c‖ ≤ c2}), 638

we can conclude that �L(tj) < 0 based on (64) and (65). 639

According to [53], uniform ultimate boundedness of x(t) 640

and ω̃c is guaranteed. Meanwhile, the ultimate bounds of 641

x(t) and ω̃c are c1 given in (60) and c2 given in (61), 642

respectively. 643

V. SIMULATION STUDY 644

This section presents two examples to show the effec- 645

tiveness and applicabilities of the established theoretical 646

results. 647

A. Example 1: Nonlinear Plants 648

We study the continuous-time nonlinear system with a 649

mismatched perturbation given by 650

ẋ1 = −x1 + x2 + δ1x1 cos

(
1

x2 + δ2
)

+ δ3x2 sin(x1x2) 651

ẋ2 = −0.5(x1 + x2)+ 0.5x2 sin2(x1)+ sin(x1)u (66) 652

where x = [x1, x2]T ∈ R
2 is the state, u ∈ {u ∈ R : |u| ≤ β} is 653

the control input, and δς , ς = 1, 2, 3, are unknown parameters. 654

In this example, we set β = 2 and randomly choose δ1 ∈ 655

[−√
2/2,

√
2/2], δ2 ∈ [−100, 100], and δ3 ∈ [−√

2/2,
√

2/2]. 656

The initial state is x0 = [0.5,−0.5]T. 657

The mismatched perturbation in system (66) is 658

d(x) = δ1x1 cos

(
1

x2 + δ2
)

+ δ3x2 sin(x1x2). 659

After making some computations, we obtain ‖d(x)‖ ≤ ‖x‖. 660

Hence, we can let dM(x) = ‖x‖. Since g(x) = [0, sin(x1)]T 661

and k(x) = [1, 0]T, we have g(x)g+(x)k(x) = 0. Then, 662
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Fig. 2. Evolution of auxiliary system states x1(t) and x2(t) in Example 1.

Fig. 3. Convergence of critic network weight vector ω̂c in Example 1.

based on (4), the auxiliary system related to (66) can be663

proposed as664

[
ẋ1
ẋ2

]
=

[ −x1 + x2

−0.5
(
x1 + x2 − x2 sin2(x1)

)
]

+ g(x)u + k(x)υ665

(67)666

with g(x) = [0, sin(x1)]T, k(x) = [1, 0]T, and υ ∈ R.667

Since
∥∥g+(x)k(x)d(x)

∥∥ = 0, we choose �M(x) = 0. Let668

ρ = 0.25 and Q = I2. Then, based on (5), the cost function669

for system (67) can be given as670

Vu,υ(x0) =
∫ ∞

0

(
1.25‖x‖2 + W(u)+ 0.25υTυ

)
dt671

where672

W(u) = 2
∫ u

0
βtanh−1(ζ/β)dζ673

= 2βu tanh−1(u/β)+ β2 ln
(

1 − u2/β2
)
. (68)674

To obtain the optimal ETC, we employ the critic675

network (34). The parameters used in the critic network676

and the event-triggering condition (46) are given as follows:677

(a)

(b)

Fig. 4. (a) ETC μ(x̄j). (b) Auxiliary ETC ϑ(x̄j).

lc = 0.5, ñc = 8, γ = 0.3, and Kmax = 3.5. The basic function 678

vector used in the critic network is 679

σc(x) =
[
x2

1, x
2
2, x1x2, x

4
1, x

4
2, x

3
1x2, x

2
1x2

2, x1x3
2

]T
. 680

The weight vector in the critic network is writ- 681

ten as ω̂c = [ω̂c1, ω̂c2, . . . , ω̂c8]T. Furthermore, to 682

ensure ϕ to be persistently exciting, we add the 683

exploration noise ne(t) = 12e−0.05t[ sin2(t) cos(t) + 684

sin2(2t) cos(0.1t) + sin2(−1.2t) cos(0.5t) + sin5(t) + 685

sin2(1.12t) + cos(2.4t) sin3(2.4t)] into the control at the 686

first 38 s. 687

Remark 5: Choosing appropriate basic function vectors for 688

critic networks is a challenging issue. Because the number of 689

the elements in the basis function vector is closely associ- 690

ated with the number of neurons in the critic network. In this 691

example, the basic function vector is determined via computer 692

simulations. We find that selecting the basic function vector 693

as the above mentioned σc(x) can lead to desirable results. In 694

Example 2, the basic function vector is also determined by 695

using computer simulations. 696

The evolution of auxiliary system states is illustrated in 697

Fig. 2. As displayed in Fig. 2, the auxiliary system states 698

x1(t) and x2(t) turn out to be asymptotically stable. The con- 699

vergence of the critic network weight vector ω̂c is shown in 700

Fig. 3. It can be seen that, after the first 40 s, the critic network 701

weight vector converges to ω̂final
c = [0.383, 0.773, −0.068, 702

0.130, 0.533, −0.018, 0.149, 0.062]T. Fig. 4(a) and (b) 703

describes the ETC μ(x̄j) and the auxiliary ETC ϑ(x̄j). The 704

validity of condition (17) is verified by presenting Fig. 5. 705

As indicated in Fig. 5, (17) holds only if t ≥ 40 s (i.e., 706

ts = 40 s). Fig. 6(a) and (b) shows the two norms (i.e., the 707

norm of the event-triggering condition ‖ej‖ and the norm of 708

the event-triggering threshold ‖ēT‖) and the sampling period 709

Ts, respectively. Observing Fig. 6(b), we can find that min Ts = 710

0.1 s. Actually, there are 289 state samples in Fig. 6(b), 711

which indicates that only 289 state samples are necessary to 712

implement the ETC algorithm. Nevertheless, under the same 713
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Fig. 5. Verification of condition (17) in Example 1.

(a)

(b)

Fig. 6. (a) Norm of the event-triggering condition ‖ej‖ and norm of the
event-triggering threshold ‖ēT‖. (b) Sampling period Ts in Example 1.

condition, there are 1000 state samples utilized to imple-714

ment the time-triggering control algorithm. Consequently, the715

present ETC strategy reduces the controller updates up to716

71.1%. In this sense, the computational burden is remarkably717

decreased. Substituting the above obtained weight vector ω̂final
c718

to (35), we derive the approximate optimal ETC. Fig. 7 dis-719

plays the states of closed-loop system (66). From Fig. 7, we720

can see that the states of system (66) are stable under the721

approximate ETC.722

B. Example 2: Application to the Pendulum System723

We consider the pendulum system given in [19] as724

{ dθ
dt = ν + d
J dν

dt = u − Mgl sin(θ)− fd
dθ
dt

(69)725

with the current angle position of the pendulum θ ∈ R, the726

angular velocity ν ∈ R, the perturbation d ∈ R, the control727

u ∈ {u ∈ R : |u| ≤ 1} (note: β = 1), the mass of the pendulum728

Fig. 7. States x1(t) and x2(t) of closed-loop system (66).

Fig. 8. Evolution of auxiliary system states x1(t) and x2(t) in Example 2.

M = 4/3 kg, the acceleration of gravity g = 9.8 m/s2, the 729

length of the pendulum l = 3/2 m, the rotary inertia J = 730

4/3Ml2 kg · m2, and the frictional factor fd = 0.2. We assume 731

that d = δ1θ sin(δ2ν) with δ1 and δ2 randomly chosen within 732

the intervals [−√
2/2,

√
2/2] and [−2, 2], respectively. 733

Let x1 = θ and x2 = ν. Observing that g(x) = 734

[0, 0.25]T and k(x) = [1,−0.2]T, we obtain h(x) = 735(
I2 − g(x)g+(x)

)
k(x) = [1, 0]T. Then, according to (4), the 736

auxiliary system related to (69) can be proposed as 737[
ẋ1
ẋ2

]
=

[
x2

−4.9 sin(x1)− 0.2x2

]
+

[
0

0.25

]
u +

[
1
0

]
υ. (70) 738

The initial state is x0 = [0.6,−0.6]T. Since d(x) = 739

δ1x1 sin(δ2x2), we have that ‖d(x)‖ ≤ √
2/2‖x‖ and 740∥∥g+(x)k(x)d(x)

∥∥ ≤ 0.4
√

2‖x‖. Therefore, we choose dM(x) = 741

(
√

2/2)‖x‖ and �M(x) = 0.4
√

2‖x‖ to satisfy Assumption 2. 742

Selecting ρ = 0.4, Q = I2, and using (5), we can present the 743

cost function for system (70) as follows: 744

Vu,υ(x0) =
∫ ∞

0

(
1.84‖x‖2 + W(u)+ 0.4υTυ

)
dt 745

with W(u) defined as in (68). 746
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Fig. 9. Convergence of critic network weight vector ω̂c in Example 2.

(a)

(b)

Fig. 10. (a) ETC μ(x̄j). (b) Auxiliary ETC ϑ(x̄j).

The critic network given as in (34) is applied to derive the747

optimal ETC law for system (70). The parameters employed748

in the critic network and the event-triggering condition (46)749

are the same as in Example 1. The basic function vector used750

in the critic network is751

σc(x) =
[
x2

1, x
2
2, x1x2, x

4
1, x

4
2, x

3
1x2, x

2
1x2

2, x1x3
2

]T
752

and the weight vector in the critic network is denoted753

as ω̂c = [ω̂c1, ω̂c2, . . . , ω̂c8]T. To ensure ϕ to be persis-754

tently exciting, we add the following exploration noise755

ne(t) = 3e−0.15t[ sin2(t) cos(t) + sin2(2t) cos(0.1t) +756

+ sin2(−1.2t) cos(0.5t) + sin5(t) + sin2(1.12t) +757

cos(2.4t) sin3(2.4t)] into the control at the first 50 s.758

The evolution of auxiliary system states is displayed in759

Fig. 8. As illustrated in Fig. 8, the auxiliary system states760

x1(t) and x2(t) are UUB. The convergence of the weight vec-761

tor ω̂c is depicted in Fig. 9. It can be observed that, after762

the first 50 s, the critic network weight vector converges to763

ω̂final
c = [0.234, 0.062, −0.527, 0.369, 0.049, −0.177, 0.023,764

Fig. 11. Verification of condition (17) in Example 2.

(a)

(b)

Fig. 12. (a) Norm of the event-triggering condition ‖ej‖ and norm of the
event-triggering threshold ‖ēT‖. (b) Sampling period Ts in Example 2.

−0.516]T. Fig. 10(a) and (b) indicates the ETC μ(x̄j) and the 765

auxiliary ETC ϑ(x̄j). The validity of condition (17) is veri- 766

fied through Fig. 11. As shown in Fig. 11, (17) holds only if 767

t ≥ 50 s (i.e., ts = 50 s). Fig. 12(a) and (b) describes the two 768

norms (i.e., the norm of the event-triggering condition ‖ej‖ 769

and the norm of the event-triggering threshold ‖ēT‖) and the 770

sampling period Ts, respectively. From Fig. 12(b), we can see 771

that min Ts = 0.2 s. In fact, there are 284 state samples in 772

Fig. 12(b), which shows that only 284 state samples are nec- 773

essary to implement the ETC algorithm. Nonetheless, under 774

the same condition, there are 600 state samples required to 775

implement the time-triggering control algorithm. Accordingly, 776

the present ETC strategy reduces the controller updates up to 777

52.67%. In this sense, the computational burden is remarkably 778

decreased. Substituting the above derived weight vector ω̂final
c 779

to (35), we obtain the approximate optimal ETC. Fig. 13 dis- 780

plays the states of closed-loop system (69). Observing Fig. 13, 781
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Fig. 13. States x1(t) and x2(t) of closed-loop system (69).

we can find that the approximate optimal ETC keeps the states782

of system (69) stable.783

VI. CONCLUSION784

This paper has presented a robust ETC method for nonlin-785

ear input-constrained systems with mismatched perturbations.786

By using an SN-ACD, the robust ETC law was obtained via787

solving the H2 optimal control problem. Thus, the proposed788

control method can avoid the difficulty in judging the exis-789

tence of saddle points, which arises in H∞ optimal control790

problems. However, the developed robust ETC approach has791

to calculate the Moore–Penrose pseudo-inverse of the control792

matrix function and offer its upper bounded function. Indeed,793

this is a limitation when applying the present control strategy794

to nonlinear systems with complicated structures. Hence, how795

to relax this condition is one subject of our future studies.796

On the other hand, this robust ETC approach is devel-797

oped for a unique agent system. In recent years, ACDs798

have been utilized to study optimal regulations of multiagent799

systems [54], [55]. It is well-known that multiagent plants800

exist widely in engineering applications, such as the coordi-801

nation of unmanned aerial vehicles. In addition, packet loss802

is an important issue arising in multiagent systems, espe-803

cially networked multiagent systems. Recently, Lu et al. [56]804

proposed an effective model predictive tracking control strat-805

egy for networked systems subject to random packet loss806

and uncertainties. Accordingly, how to extend the SN-ACD807

to develop robust ETC schemes for multiagent systems with808

random packet loss and uncertainties is also one direction in809

our future research.810
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