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Event-Triggered Robust Stabilization of Nonlinear
Input-Constrained Systems Using Single
Network Adaptive Critic Designs

Xiong Yang

Abstract—In this paper, we study the event-triggered robust
stabilization problem of nonlinear systems subject to mismatched
perturbations and input constraints. First, with the introduction
of an infinite-horizon cost function for the auxiliary system, we
transform the robust stabilization problem into a constrained
optimal control problem. Then, we prove that the solution of
the event-triggered Hamilton—-Jacobi-Bellman (ETHJB) equa-
tion, which arises in the constrained optimal control problem,
guarantees original system states to be uniformly ultimately
bounded (UUB). To solve the ETHJB equation, we present a sin-
gle network adaptive critic design (SN-ACD). The critic network
used in the SN-ACD is tuned through the gradient descent
method. By using Lyapunov method, we demonstrate that all
the signals in the closed-loop auxiliary system are UUB. Finally,
we provide two examples, including the pendulum system, to
validate the proposed event-triggered control strategy.

Index Terms—Adaptive critic designs (ACDs), adaptive
dynamic programming (ADP), event-triggered control (ETC),
input constraints, neural network (NN), reinforcement learn-
ing (RL).

I. INTRODUCTION

DAPTIVE critic designs (ACDs) have emerged as

effective tools to solve optimal control problems over
the past several decades [1]-[3]. The typical structure applied
to implement ACDs is the actor-critic architecture, where the
actor performs a control policy to environment (or controlled
systems), and the critic offers an estimation of the value of that
control policy and gives feedback information to the actor. In
the computational intelligence community, adaptive dynamic
programming (ADP) [4] and reinforcement learning (RL) [5]
are nearly in the same spirits as ACDs (e.g., all of them have
similar implementation architectures). Thus, they are often
regarded as synonyms for ACDs. In this paper, we view ADP
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and RL as a kind of ACDs. The early contributors to ADP and
RL included Werbos [6] and Sutton and Barto [7]. After that,
many scholars showed their interest in ADP and RL. Thus,
all kinds of ADP and RL methods were developed, such as
local value/policy iterative ADP [8], [9], goal representation
ADP [10], robust ADP [11], [12], single network ACDs (SN-
ACDs) [13], online RL [14], [15], off-policy RL [16], and
manifold RL [17].

In recent years, applications of ACDs to study robust sta-
bilization problems have been extensively reported [18]-[22].
In the existing literature, the robust controllers for nonlinear
systems are generally obtained by solving H, optimal control
problems or nonlinear zero-sum games under the framework of
ACDs. Nevertheless, a limitation of solving Hs, optimal con-
trol problems or zero-sum games is that one needs to make sure
the existence of saddle points. Unfortunately, it is challenge-
able to judge whether the saddle point of nonlinear systems
exists or not. To avoid this difficulty, Lin and Brandt [23]
introduced an indirect method, which aimed at converting the
robust control problem into an H, optimal control problem.
Then, one was able to derive the robust controller for nonlinear
systems by solving the H, optimal control problem. Recently,
the indirect method together with ACDs was proposed by
Adhyaru et al. [24] to design the robust controller for uncertain
nonlinear input-constrained systems. After that, Mu et al. [25]
used the indirect method and ACDs together to derive a
robust tracking control strategy for nonlinear systems subject
to matched uncertainties. By using a similar method as [25],
Qu et al. [26] obtained a decentralized tracking control of
large-scale nonlinear systems with matched interconnections.
An important difference between [25] and [26] was that [26]
did not require the initial admissible control while implement-
ing the proposed robust control scheme. Later, Zhang et al. [27]
extended the work of [26] to design an optimal guaranteed cost
sliding mode controller for constrained nonlinear systems with
matched/mismatched disturbances. In all the above mentioned
literature, the robust control strategies were implemented in the
time-triggering mechanism. In other words, the robust control
schemes were implemented periodically. According to [28],
the time-triggered control schemes often had difficulties in
handling the control problems with the conditions that there
were only finite computation bandwidths as well as the limited
communication resources.

To overcome these difficulties, many event-triggered con-
trol (ETC) approaches have been introduced [29]-[32]. Unlike
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the time-triggered controller, the event-triggered controller is
updated aperiodically. Specifically, the event-triggered con-
troller is updated only when the deviation between the system
state and the desired value crosses a prescribed threshold.
Due to this characteristic, the ETC strategies can overcome
the shortcomings of the time-triggered control schemes [28].
Thus, many studies on robust ETC methods were reported.
Wang et al. [33] presented an event-based robust controller
for uncertain nonlinear systems via the SN-ACD. After that,
with the combination of the SN-ACD and the concurrent
learning technique, Zhang et al. [34] developed a robust
ETC of nonlinear systems with mismatched disturbances.
Compared with [33], Zhang et al. [34] relaxed the persistence
of excitation (PE) condition. Recently, by applying ACDs
to solve the event-triggered H, optimal control problems,
Mu et al. [35] and Zhang et al. [36] obtained robust ETC
strategies for nonlinear systems, respectively. Owing to the
existence of the aforementioned limitation in solving H
optimal control problems, these robust ETC schemes usually
encountered difficulties in engineering applications. On the
other hand, due to physical characteristics of actuators in engi-
neering industries, it is necessary to take actuator saturations
(i.e., input constraints) into account. To address this problem,
Wang et al. [37] studied the constrained robust ETC problem
of nonlinear input-affine systems with matched uncertainties
using ACDs. However, to the best of our knowledge, there are
few studies developing the robust ETC scheme for nonlinear
input-constrained systems subject to mismatched perturba-
tions, especially without using the Hy, control theory [38].
This motivates this paper.

In this paper, a robust ETC strategy is developed for nonlin-
ear input-constrained systems with mismatched perturbations.
First, by constructing an infinite-horizon cost function for the
auxiliary system, the robust stabilization problem is converted
into a constrained optimal control problem. Then, it is proved
that the solution of the event-triggered Hamilton—Jacobi—
Bellman (ETHJB) equation, arising in the constrained optimal
control problem, keeps original system states uniformly ulti-
mately bounded (UUB). To solve the ETHJB equation, the
SN-ACD is proposed. The critic network used in the SN-ACD
is updated by using the gradient descent method. Finally, uni-
form ultimate boundedness of all the signals in the closed-loop
auxiliary system is demonstrated via Lyapunov method.

The novelties of this paper include three aspects.

1) Different from [34] updating the augmented control in
an mechanism regarded as the combination of time-
triggering and event-triggering mechanisms (ETMs), this
paper tunes the augmented control only in the ETM.
Hence, the developed control scheme has an advantage
in decreasing the computational burden.

Unlike [35] and [36] solving the event-triggered Hxo
optimal control problems, this paper obtains the robust
ETC via an indirect method. Thus, the present method
relaxes the requirement of judging the existence of the
saddle point, which is an indispensable procedure in
solving Hy, optimal control problems.

This paper extends the work of [37] to develop a robust
ETC strategy for nonlinear input-constrained systems

2)

3)
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with mismatched perturbations. Generally, robust control
methods for nonlinear systems with matched distur-
bances are not applicable to those systems with mis-
matched disturbances (note: the definitions of systems
with mismatch disturbances and systems with match
disturbances can refer to [23]). Furthermore, when con-
sidering input constraints, it increases the difficulty in
making such an extension.

It is worth emphasizing here that the knowledge of system
dynamics [i.e., f(x) and g(x) in system (1) (note: see
Section II-A)] is required to be known. Actually, by using
a similar fuzzy technique proposed in [39], this condition can
be removed. For simplicity, in this paper we assume that the
information of system dynamics is available.

The rest of this paper is structured as follows. After
briefly presenting problem descriptions and preliminaries in
Section II, we propose the robust ETC scheme in Section III.
Then, after discussing the stability analysis in Section IV, we
provide two examples to validate the established theoretical
results in Section V. Finally, several concluding remarks and
future works are given in Section VI.

Notation: R, N, and NT denote the sets of real numbers,
non-negative integers, and positive integers, respectively. R™
and R"*™ denote the spaces of real m-vectors and n x m real
matrices, respectively. I, is the identity matrix of dimension

7/ Z?:l |Otl‘|2 is
the Euclidean norm of the vector o = (o1, g, ..., oz,,)T e R".
Q is a subset of R”, i.e., 2 C R". ||A|| denotes the Frobenius-
norm of the matrix A € R™. V¥ = dV*(x)/dx is the partial
derivative of V*(x) with respect to x € R".

n x n. T is the transposition symbol. |j«| =

II. PROBLEM DESCRIPTION AND PRELIMINARIES
A. Problem Description

Consider the continuous-time nonlinear system with a mis-
matched perturbation given in the form

x() = f(x(®) + gx()u®) + k(x(1))d (x(1)) ey

where x(7) € R" is the state, u(¢) € 4l is the control input, {l =
{(uy,ug, ..., up) € R™:uil < B,i=1,2,....,m}, B > 0is
the upper bound, f(x) € R", g(x) € R, and k(x) € R"™*P
(note: k(x) # g(x) when p = m) are known smooth functions,
and d(x) € R? is an uncertain perturbation. Here, xog = x(0)
is the initial state.

Assumption 1: System (1) is controllable. Meanwhile,
x =0 is the equilibrium point of system (1) when letting
u(t) = 0 and d(x(r)) = 0 for all £ > 0.

Assumption 2: The control matrix g(x) is bounded as 0 <
gx) < g (Vx € R") with gy € R the positive constant.
Meanwhile, there exist non-negative functions ¢7(x) € R and
dy(x) € R such that, for all x € R"

leT k)d®)| < €u(x) and [[dX)|| < dp(x)

with g*(x) the Moore—Penrose pseudo-inverse of g(x). In
addition, £4(0) =0, d(0) =0, and dy(0) = 0.

This paper aims at finding an appropriate state feedback
controller to stabilize system (1). Owing to the existence of
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system uncertainties, it is challengeable to design the stabiliz-
ing controller directly. To address this issue, we will convert
192 the robust control problem of system (1) into a constrained
optimal control problem of the auxiliary system.

19

S

19

19

@

14 B. Hamilton—Jacobi—Bellman Equation Related to Auxiliary
195 Systems

16 Divide the term k(x)d(x) into the following two parts:

197 k(x)d(x) = g(x)gT (Dk()d(x) + h(x)d(x) (2)
198 With
h) = (I — g+ (0))k). 3)

20

S

According to [40], the auxiliary system corresponding to (1)

201 can be described as
202 X =fx) 4+ gx)u+ h(x)v 4)

203 where u € 41 and v € R? is the auxiliary control.
204 The infinite-horizon cost function for system (4) is given by

20!

a

V”’”(X(t))=/ (W (x(s)) + r(x(s), u(s), v(s))ds  (5)
t

where W (x) = ZE%,I (x) + pd]%,, (x), p € R is a positive constant,
207 and

20

>

208 r(x,u,v) = TQx + W(u) + pUTU

20

©

with Q € R"*" the positive definite matrix and YW (u) € R the

210 semipositive definite function.

5}

211 To overcome the bounded control, we define WW(u) as [41]
W =25y [ /g ©)
i=1

213 where 1 (-) is a bounded monotonic function with (0) = 0.
214« Meanwhile, 1(-) is an odd function with its derivative
215 bounded. Since ¥ ~'(-) is a monotonic odd function, W(u)
given in (6) is semipositive definite. In this paper, we let ¥ (+)
217 be the hyperbolic tangent function, i.e., ¥ (-) = tanh(-).

28 Let o/ (2) be the set of admissible control [5] defined on
219 2. Then, the optimal value of (5) is formulated as

220 VE(x) = VP (x).

21

Y

min (7)
u,ved ()

21 If V*(x) is continuously differentiable, then its derivative
220 satisfies

223 (V;‘)T(f(x) + g@u + h(x)v)

224 + W(x) +xTQx +W(u) + pUTU =0.

225 According to [4], the Hamiltonian for V', u, and v can be
226 defined as

2 H(x, VEu,v) = (V)T (F®) + g@u+ h(x)v) + W (x)
228 + xTOx + W) + pv'o. (8)

220 Then, V*(x) can be obtained by solving the Hamilton—Jacobi—
230 Bellman (HJB) equation

231 min

* J—
u,uep/(Q)H(x’ Vi u, u) =0

€))

with V*(0) = 0. Based on the stationary condition
[42, Th. 5.8], we can therefore derive the closed-form expres-
sions of optimal control and optimal auxiliary control as
follows [4]:

* _ L T *
u(x) = ﬁtanh(zﬂg (x)Vx> (10)

v (x) = —ihT(x)V;:. (1)
2p

From (8)—(11), we can rewrite the HIB equation as

(VA £ + W) + 5T 0x + W(—ﬁ tanh(%gT(X)V;‘ ))
2

g(x)V*) ‘—hT( WH =0

_ /S(V;)Tg(x) tanh(zﬁ

(12)

with V*(0) = 0. According to [30], (12) is the time-triggered
HIJB equation.

Similar to [43], it can be proved that the robust controller for
system (1) is able to be obtained by solving (12). However,
owing to the use of time-triggered formulations, the robust
control strategy is developed in the time-triggering mechanism.
As mentioned in [44], the time-triggered control algorithms
generally have low efficiency of using the limited communi-
cation resources between actuators and systems. In addition,
they often involve high-computational burdens. To overcome
the two deficiencies, we will develop a robust ETC scheme
for system (1).

III. RoBUST ETC STRATEGY

In this section, we first describe the robust stabilization of
system (1) in the ETM. Specifically, we prove that the robust
ETC of (1) can be obtained by solving an ETHIB equation.
Then, we use the SN-ACD to solve the ETHJB equation.

A. Robust Stabilization in the ETM

Let {tj}fio (note: t; < tj11,j € N) be the sequence of trig-
gering instants, where #; denotes the jth triggering instant. The
system state is sampled at the triggering instant #;, and the
sampled state is written as

)_Cj = x(tj) jeN.

Since there generally exists an error between the sampled state
X; and the current state x(¢), we define the error as follows:

ej(t) =x; —x(1) Vte [tj, tj+1). (13)
From the expression e;(7) given in (13), we can judge whether
an event is triggered or not. Specifically, if the event is trig-
gered at instant ¢ = t;, then ¢;(#;) = 0. Based on the sampled
state, we can obtain the ETC law u(x;), which is executed at
the triggering instant #;. By using the zero-order hold tech-
nique [28], the control sequence {”()_Cj)}fio can generate a
continuous-time input signal w(x;, 1), i.e.,

w3, 1) = u(®) = u(x(y)) Vi€ [ ).
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Let the above mentioned ETM be applied to u*(x) given
in (10). Then, the optimal ETC law for system (4) with the
cost function (5) can be obtained as [30] (for all 7 € [¢;, tj41))

1
w* (%, 1) = u(x) = B tanh<ﬁgT(5cj)V;> (14)

with V;‘j = (OV*(x)/0x) |x=%;-

Similarly, applying the aforementioned ETM to v*(x) given

in (11), we can derive the optimal auxiliary ETC law as
- - 1 -

P*(3.1) = v'(%) =~ h @)VE Vi€ b (9

Remark 1: For brevity, in subsequent discussion we write
w*(x;, 1) and 9*(x;, 1) as w*(x;) and ¥*(X;), respectively.

Before continuing the discussion, we give the following
assumption used in [30] and [45].

Assumption 3: u*(x) has the Lipschitz property on €2. That
is, there exists a Lipschitz constant K,+ > 0 such that, for all
X, )_Cj e Q

|u* ) — (%)) | < Kir X = X1l = Kurllejl-

Remark 2: By using Remark 1 and (14), we can write
w*(x;) = u*(xj). Thus, Assumption 3 implies

| (x) — (%) | < Kl

for all x, x; € Q.

Theorem 1: Let Assumptions 1-3 be valid and let V*(x) be
a solution of the HIB equation (12). Then, the optimal ETC
law p*(x;) given in (14) can ensure the closed-loop system (1)
to be stable in the sense of uniform ultimate boundedness only
if v*(x) given in (11) satisfies

[v* @) < Amin(@ X V22 14
where #; > 0 is a threshold, and provided that the triggering
condition is given by
(1 = 2p)Amin(Q)

4K2,
with 0 < p < 1/2 the design parameter and er the triggering
threshold.

Proof: We take V*(x) as the Lyapunov function candidate.
From the expression V*(x) given as in (7), we can deduce that
V¥(x) > 0 forx #0and V*(x) =0 < x =0, i.e,, V*(x) is
positive definite.

By differentiating V*(x) along the solution of x = f(x) +
g(X)u* (X)) + k(x)d(x) and using (2), we have [note: V*(x)
denotes dV*(x(r))/dt]

700 = (V)T (F0) + @)1 E) + k()d(x)
= (V1) (F® + e@u* () + h@v* )
+ (V1) e (1" &) — u* ()
+ (V) gt kd ()

(16)

A7)

llejll> < Ix[1* £ Jler|* (18)

+ (VHTh) (d() — v* () (19)
with A(x) defined as in (3).
On the other hand, from (8) and (9), we obtain
(V)T (F @) + g0u () + hv* ()
=W -0 - W) — v @[> 0)

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Meanwhile, from (10) and (11), we find

{ (V) g(x) = —26(tanh™" (/)"

21
(V) Th(x) = —2p(* (). b

Substituting (20) and (21) into (19), it follows:
VA = —W(x) — xT 0x — Wt @) + p|v* @ |
128 (tanh_l (u* () /ﬂ))T(u*(x) )
e
~2p (anh™! (" @/B)) & kW)
b3

—2p(v* @) dx) .
—_—

3

(22)

By using Young’s inequality 2y'z < ol|y||> + [Izl*/o (o > 0)
and (16), we can see that 7 in (22) implies (note: o = 1/2)

2 2
< %Htanh_l(u*(x)/ﬁ) |+ 2w - @)
_ P

- Z(tanh” (u;“(x)/ﬁ))2 +2K2 el

i=1

(23)

Similarly, by using the above mentioned Young’s inequality
and Assumption 2, we can find that 5 and 73 in (22) yield
(note: o = 1/2 and o = 1, respectively)

2 2
< %Htanh_l(u*(x)/ﬂ)H +2)| gt Wk d() |

B* < IR 2
<= ;(tanh Nz (x) /ﬂ)) +263,(x) (24)
13 < p|v* 0| + pldWI? < p|v* @ |7 + pdy ). (25)
From [46] (note: see the proof of [46, Th. 1]), we know
mo )
W) =26 [ /e
i=1
n 2
= 2" (tanh~ @ 0/P))
i=1
M atanh ™! (uf (x)/B)
—282)° / titanh®(t)dy.  (26)
0

i=1
Observing that W (x) = 2¢3,(x) + pd3,(x) and using (23)~(26),
we can conclude that (22) yields
V*() = =T 0x + 2 [0 ) |* + 2K lley I
m /tanh—‘(ujf(x)/ﬂ)

+2ﬂ2 Z T; tanhz(ti)dti .

i=1

27
0

£(x)

According to the proof of [46, Th. 1], we know that
£(x) given in (27) is a bounded function. To facilitate
subsequent discussion, we denote that [£(x)| < ep,
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where €y > 0 is a constant. Then, (27) can be further
rewritten as

(@)l + 20| v* @) |* + 2K el + em
<20 (lmin @I = 0" )| + 2K2: ey

V*(x)

A

— (1 =2p)min(Q) 1)1 + em (28)
with Apin(Q) the minimum eigenvalue of Q.
Thus, if (17) and (18) hold, then (28) yields
. 1 —20)Ami
e < L2 @ o o)

2

Therefore, from (29), we can find that V*(x) < 0 only when
x(t) is out of the following set:

2€M
(1 - 2/0))\-min(Q) )

Then, uniform ultimate boundedness of the states of
system (1) is guaranteed by using Lyapunov extension the-
orem [47]. Specifically, this indicates that p*(X;) keeps
the closed-loop system (1) stable in the sense of uniform
ultimate boundedness. Meanwhile, the ultimate bound is
V2eu /(1 = 20) kmin(Q))- u

Remark 3: According to (18), the triggering instant #; can
be calculated. Then, it is possible to obtain the minimal inter-
sample time (Atj)min, where At; = ti1 1 —t;, j € N. However, if
there exists (Atj)min = 0, then the Zeno behavior occurs [48].
In this circumstance, 1*(X;) has to be redesigned. Fortunately,
(Atj)min > 0, j € N, under Assumption 1 (note: since similar
proofs have been provided in [36] and [49], we omit the proof
here). In this paper, simulation results provided in Section V
also show that (Afj)min > 0, j € N.

To obtain the optimal ETC law up*(x;), we need to
solve the ETHJB equation, which is derived by substitut-
ing (14) and (15) into (9). That is,

Q= {xt llxll <

1
(V;)Tf(x) - B (V;)Tg(x) tanh<ﬁgT (jcj)v;j)

- %(V:)Th(x)hT(J_Cj)ij +W(x) +x Ox

2
=0.

. W Lot
- W(—ﬁtanh<ﬁgT(xj)V,-Cj>> + ”th(xj)vxj
(30)

Generally, it is rather hard to solve the ETHIB equation (30)
analytically [50]. To conquer the difficulty, we present the SN-
ACD to approximately solve (30).

B. SN-ACD for Solving the ETHJB Equation

The approximation theorem [51] guarantees that V*(x)
given in (7) can be represented via a critic network over 2 as

VE () = o) oe(x) + £c(x)

where w, € R is the ideal~ weight vector, o.(x)
[oc1(X), 0c2(%), - .., Ocii, (x)]T € R is the basis function vec-
tor, o (x), t = 1,2,...,n., are continuously differentiable

functions with 0., (0) = 0, 7i. € NT is the number of basis
functions, and ¢.(x) € R is the approximation error.
Differentiating V*(x) at the sampled state X;, we have

Vi =Vo! (Yo + Vec(%) Vie[s40)  BD
where Vo.(x;)) = (aac(x)/ax)|x:;j and Vec(x) =
(dec(x)/0x) |x:5cj-

Substituting (31) into (14), we can rewrite u*(X;) as
u* ()_c]) = —ﬂtanh(.Al ()_Cj)) + &y ()_CJ) Vt € [tj, tj+1) (32)

where

Ai(5) = 25" (6)Val G

and g,+(%) = —(1/2)(1 — tanh?(&))g" (X)) Ve (%)) with 1 =
[1,...,1]T € R™ and & chosen between Ao(x)) (note:
Ao(x)) = (1/(2ﬁ))gT(5Cj)V§fj) and A (X)).

Similarly, by using (31), #*(x;) given in (15) can be
represented as (for all ¢ € [#, 4 1))

N LT o T .
D (xj) = _ﬁh (x) Vo, ()cj)a)C + e9x (X)) (33)
with g9+ (X)) = —(1/2p)hT()_cj)V£,3()_cj).

Remark 4: The difference between &,+(X;) given in (32)
and g+ (x;) given in (33) is caused by control constraints (note:
u is constrained while v is unconstrained). To make (32) be
better for understanding, we provide the detailed process of
deriving &, (x;) as follows. Let

T (Ag (x)) = —p tanh(Ag (x)),

w =0,1.
Then, applying the mean value theorem [42, Th. 5.10] to
T (Ag (x)), we obtain (note: Ap(x) = (1/(28))g" (x)V¥)

T (Ao(x)) — T(A1(x)) = —B(tanh(Ap(x)) — tanh(A; (x)))
—% (1 - tanh?(®) )T @ Ve (o)

with & chosen between A((x) and A;(x). By using (31), we
find that (14) yields

W (%) = —p tanh(Ao (%))
= T(AI(®)) + (T(A(%)) - T(AI(5)))

I
= —pranh(4) (%)) — 5 (1 - tanh’(®) ) g7 Ve (5).

Hence, we can obtain the expression g+ (X;) given as in (32).

In general, the ideal weight vector . is unavailable. Thus,
we cannot implement p*(X;) given in (32). To handle this
issue, we replace w, with the current estimated weight vec-
tor @ in the critic network. Then, the approximation value
function can be formulated as

V) = ol o). (34)
The derivative of \7(x) at the sampled state ¥; is

Vi, = Vo . &)
Replacing V}:j in (14) with V;j, we derive the estimated value
of u*(x;) as

A(x) = —Btanh(A2(x)) Vi €[5, tj41) (35)
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where
_ 1 _ N
Ao(5) = 558" ®) Vo (§)ac.
By the same token, the estimated value of ©¥*(x;) given in (33)
can be obtained as

A I
B(G) = - @) Vel G)ae Ve [hgn). (6

Substituting V(x), A (%), and 19(59) into (8), we can see that
the approximation Hamiltonian is

A(x, Vi i2(5), 9 (5))
= 1Yo () (f ) + WA (H) + hwD (%))
R 2
S W) +2Tox + W(ﬁT()_cj)) n ,OHﬂ()'cj) H .
Observe that (9) implies
H(x Vi 1 (%), 97(%)) = 0.
Thus, the error of Hamiltonian can be formulated as
e = H(x Vi 2(5). B (%)) — H(x. Vi 0¥ (). 0°(5))
a2
=319+ W) +2T0r + W(A(H)) + 0|5 (5)|
where ¢ = Voo () (F(x) + g0 AE) + h(x)D (%)).
To ensure e, given in (37) to be sufficiently small, we use
the gradient descent method to minimize the target function

E = (1 /Z)eIec. Then, the weight update rule for the critic
network is obtained as

(37

2 I oE
e = L Ty e
(1+¢Tg)" 0w

lc®

= T +¢T¢)2ec Vi € [t tiy1) (38)
with e defined as in (37), [, € R" the positive parameter, and
(14 ¢"¢)~2 the normalization term.

Let the weight estimation error of the critic network be
®c = w, — @. Then, from (38), we can see that the weight

estimation error dynamics of the critic network satisfies [30]

leg

— ¢ Vt e [t, ¢t

1+¢T¢ H [j j+l)

where ¢ = ¢/(1 + ¢'¢)? and ey =

g(X)i(xXj) + h(x)® (X)) is the residual error.
From the ETM introduced in Section III-A, we can find

that the closed-loop system (4) is a hybrid system. Let the

augmented state be X' = [xT, il d)I]T. Then, we can describe

j b
the hybrid dynamical system as follows.

1) Continuous Dynamics:

f) + F(x, X))

e = —lepg B¢ + (39)

~Vel () (f(x) +

. 0
X() = vVt e [tj, tir1) (40)
Loy T + P | T
(1+079)

where
F(x %) = —Bg) tanh(% g x)Va,] (fcj)asc>

1 T,- T— A
— Zh(X)h x)Vo, (xj))w,.
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»
V() Cride |4 x
Network
\A
N - -~
Ly Data Sampling Approximate | € | Tuning Rule| _x
> System Hamiltonian Eq. (38) ]
) _ 7OH
V(y,) X; | (Zero-Order Hold)
'Y Auxiliary | X X
v i(% 1/ S
X
Event-Triggered ,Ll( /) System
Control Policies +—
e
(%) x

Fig. 1. Block diagram of the proposed ETC strategy.

2) Discrete Dynamics:

0
+) — : — ¢
X ) =X+ | X —x(0) | =14 41)
0

where X (1) = lim,_,o+ X (t+n) with n € (0, tj1.1 —1).
Based on the above mentioned analyses, we present the
block diagram of the proposed ETC strategy in Fig. 1.

IV. STABILITY ANALYSIS

Before proving stabilities of systems (40) and (41), we pro-
vide two assumptions introduced in [4] and [52], respectively.

Assumption 4: The derivative of the basic function vector is
bounded as [|Vo.(x)|| < by, (Vx € 2), where by, is a positive
constant. In addition, there exist positive constants bgﬂ* s beyes
and b, such the approximation errors &, (X;), €9+ (X;), and the
residual error ey bounded as |lg,« (X)) || < bgﬂ*, leg= (Il <
beyi, and ey || < by (Vxj, x € ), respectively.

Similar to (16) imposed on u*(x), we present the following
assumption for v*(x).

Assumption 5: v*(x) satisfies the Lipschitz condition on €.
That is, for all x,x; € €, there exists a Lipschitz constant
K+ > 0 such that

v () — 9" (%) | < Korllx — %]l = Ko<llejll.
Let
G(Ai(x)) = Btanh(A,(x)), «k = 1,2

where Aj(x) = (1/28)g' ®)Vol (Mw, and Ay(x) =
(1/(28)g" (x)Vo ] (x)@,. Then, using Taylor’s theorem [42],
it follows:

(42)

0G(Ay)
A,
+ O((A1() — A0)?)

GAI() = G(A W) + (A1 (x) — Ax(x))

1
= G(Aa () + 5 (U — B(Ar(0)))g" (%)
x Vo (x)de + O((Al(x) - Az(x))2> 43)

with (A, (x)) = diag{tanh®(A(x))}, i = 1,2,...,m, and
the high-order term O((A;(x) — A2(x))?).
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s Lemma 1: The high-order term given in (43) is bounded as  Applying Young’s inequality 29Tz < Iyl +1Iz]1? to E in (49), s

5 _ we obtain 550
o [o((i® - Hw?)| s 2vim+gubolld. @) o 2 o
2 = p*anh ! (@ @/8) | + @ — )| o
sio  Proof: From (43), we can find
2 - 1. % 2 * N
s o((ie - A42w2) | = 1G4+ 1G4 =# ;(mh @/p) + w0 =A%
512 + %H[m — B(A2)) g )] Then, by using (26), we can see that 553
513 x Vo @ lllecll- (45) — W ®) + E <€) + [ut@) — 2@ (50) s

s14 Since || tanh(x)|| < 1 for all x € R”, we can conclude that with £(x) defined as in (27). As indicated in the proof sss
s1s [|G(A ) = O, tanh? (A, ()% < /m, k = 1,2, and  of Theorem 1, £(x) is bounded as |£(x)] < ey. Thus, ss

ste || — B(Ax(x))|| < 2. Then, using Assumptions 2 and 4, we  combining (49) and (50), we have 557
si7 can see that (45) yields (44). [ | ) » 5

sis Theorem 2: Consider auxiliary system (4) associated with Lr(n) < —W(x) —xTQx — PHﬁ()_Cj) H +em 558
s19 the ETHIB equation (30). Let Assumptions 1-5 be valid ) R 2

s20 and take the control policies proposed as in (35) and (36). + [u* ) — aG) | +;0‘ v (x) — 9 () H . (51) s

5.

o

1+ Suppose that the initial control for system (4) is admissible N
s22 and the weight tuning rule for the critic network is described

s23 as (38). Then, the closed-loop system (4) and the weight esti-  Applying the inequality ly-+zlI? < 2[IyI>+2]lzlI* to A1 in (51) se0
se« mation error @, are UUB only if the following event-triggering  and using Assumption 3 as well as (32) and (35), it follows: se
s2s condition holds:

Ap

- _ NP
Ay = (@) = 1 @) + (1™ &) — aG)) | 562
leill® < Mﬂxﬂz 2 er)? (46) .- ) . .12
526 ill” = 4K2 = ller < 2w (®) — aG) |+ 2wt ) — w*&@)| 563
< = N 2 2
sez where Kpax = max{K,+, Ky}, 0 < y < 1/2 is a design = 2”6(“42()‘/)) - G(Al (XJ')) + & (X)) “ + 2K, ¢l 564
s2s parameter, and er is the triggering threshold, and provided (52) ses

s29 that the following inequality holds: where G(Ac (i) = G(A, (x))lx:x,- with G(A,(x)) defined s

le T 2 2, 2\.2 as in (42). By using (43) and Lemma 1 as well as Young’s ser
0 7 Amin ((t?tp ) - <l6gM + /P )b"l’ >0 “47) inequality, we derive 56
ss1 Where Amin(¢@") denotes the minimum eigenvalue of 0pT, @ ZHG(Az (5Cj)) - G(Al (7_9')) +éux ()_CJ) ”2 569

s32 satisfies the PE condition, and Ay, is the bound of A(x). R )
ss  Proof: We take the Lyapunov function candidate as =< 2<28Mbaﬂ l@ecll +2¢/m + bsﬂ*> 570
s34 L(t) = V*E) + V() + (1/2)@] & . < 16g3,b2 @) + 4aj (53) sm

—_— T — X

Li(1) Ly (1) L3(2) with ap = 2\/% + bg#* . 572
s35 Since the closed-loop system (4) is a hybrid system, we present Thus, combining (52) and (53), it follows: o
sss the stability analysis from following two circumstances. Al < 2KL2,* ||ej||2 + 16g}‘i,,bc2,clld)c||2 + 4a(2). (54) 74

se7  Situation I: Events are not triggered, i.e., f € [#, tj11),j € N. Simil h ¢ calculatine A btai
ss Then, we have 1(f) = v+ (}-Cj) —0. 1milar to the process of calculating A, we obtain 575

s)9  Taking the derivative of Lp(f) and using the trajectory ” * = ( = e )H2

A — AT A> = s . b4 N — 9 (x;
se0 generated from & = f(x) + g(x) L (x;) + h(x)V (X;), we have 2 (U ) & )) + ) () e
: : R 5 ,
. A~ * _. J— _. * — * _4
La = (V) (F@) + g + hd &) <2]p*@) - b6 + 2] w - @)
2
T /’lT T
a2 = (V}) (f() + g@u* ) + h(x)v*(x)) <2 _#Vaj G + e+ @) | + 2K Neil> s
T p
43 + (V) g (aGx) — u*(x) L L i .
+ () o (D) — v w). (48) < 25Nl + (b2 /7 )|l +402,. (59) o
s Substituting (20) and (21) into (48), it follows: Note that W(x) given in (5) and p||§(3))|* are non-negative so
) . 5 functions. Then, from (51), (54), and (55), we get 581
L) = W) —x' Ox—pllv* )| —W(u*(x) .
e ” T ” ( ) Ly(t) < —Amin(Q)lIx1* + 4K eIl 582
—1 A =

+ 26 tanh™! (w7 00/8)) (0 - G5) (1683 + 131/0% B2, el + 4+ 407, e s
2 (56) 584

548 + 2)0(U>‘< (x))T<U*(x) - 19()_9)) (49 with Kmax = max{K, Ky+}. 585
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sso  Taking the time derivative of L3(f) and using the weight Suppose that x(r) ¢ E. = {x(t) € R'[[lx(O)] < c1} o
se7 estimation error dynamics (39), it follows: or @ ¢ E, = {&. € R"|&| < c2}. Then, from ez
Situation I, we have dL(7)/dt < 0 V¢ € [tj,t41). That is, ees

~T
588 [3(r) = _lCJ)I(p@Tg)C + ch(l-)rSH- (57) L() is strictly monotonically decreasing on [#;, fj+1). Thus, it e
I+¢'¢ implies 625
ss0 Noticing that 1 + ¢T¢ > 1 and using the above men- L) > Lt +1n) Yne 0,641 —1). (62) oz

s tioned Young’s inequality, we develop the last term in ! ! ! !
so1 (57) as Taking n — 0% over both sides of (62), we can conclude 627

le .1 e T o1 T . - . — ( +)
T Tt = m(% 00 d:+ efpen) L) = lim LG+ =L(7)
l l
sos < EC d)I 0 (pT oo + Ec 82'1 £x. Thus, we have 629
1. . I -
sss Then, (57) yields V*(x(t)) + Ea);.r(tj)a)c(tj) > V* (x(tj“)) aF ij(tf)a)c(tf) 630
. l. l. (63) 631
595 Ls(t) < ——ch)z(p(pTd)c + —LEIEEH
12 2 / From (63), it follows: 632
< —ZEmin(@@ )@l + <02 . (58)

596 -3 min(9@") |l &c > Ven H(x(tj*), 5Cj> <0. (64) o5

5

©

7 By using (56) and (58), we can see that
On the other hand, the uniform ultimate boundedness of the ez

508 L(t) < —2)/)»min(Q)||x||2 —(1— 2)/))xmin(Q)”.x”2 state x(¢) in Situation I implies 635

l ~ . _
- (gxmm (veT) - (1653 + h%u/pz)bé) Il V(1) < V' (). (65) oo
600 + 4I(§mxl|ej||2 ~|—4a(2) +4b§0* + €pm. (59) Therefore, under the condition that x(r) ¢ E. = {x(t) € e
. , RANx(ON = e1} (or & ¢ Ee, = {oc € R'|[|oc] = c2}), oo
eor If the condition (46) holds, then (59) yields we can conclude that AL(f;) < O based on (64) and (65). e
L) < —2p X2 +4a2 +4p2  +e According to [53], uniform ultimate boundedness of x(f) e
” @ = Vlmm(Q)” | 0 Eox M and o, is guaranteed. Meanwhile, the ultimate bounds of e
603 — (ﬁ)\min@,(ﬂ) — (16g12\/1+h12w/,02>b(2,,>||5)c||2- x() and @, are c¢; given in (60) and ¢y given in (61), e
2 ‘ respectively. B o

s0s Under the condition (47), we can find that L(#) < O
es only if we can ensure one of the following inequalities V. SIMULATION STUDY 644
es holds: This section presents two examples to show the effec- oss
4a(2) Y42 ey . tiveness and applicabilities of the established theoretical e
607 llx|| > 2 2 (60) results. 647
2y Amin(Q)

608 OF A. Example 1: Nonlinear Plants 648
8a(2)+8b§ +2em We study the continuous-time nonlinear system with a es
09 |||l > L £ ¢, (61) mismatched perturbation given by 650

Iehmin (0o T) = (3283, + 2h3,/p?)b2.

s1o Then, uniform ultimate boundedness of both x(r) and &, X1 = —x1+x + 8 COS(
11 is obtained by using Lyapunov extension theorem [47].
sz Meanwhile, the ultimate bounds of x(f) and @, are c¢; given
3 in (60) and c; given in (61), respectively. where x = [x1, x2]7 € R? is the state, u € {u € R: [u| < B} is s
o1 Situation II: Events are triggered, i.e., r = t;,j € N. Then,  the control input, and 8, ¢ = 1,2, 3, are unknown parameters. sss
s we take the difference of Lyapunov function candidate L(#j) 1In this example, we set = 2 and randomly choose 8; € ess

1
83xp sin
ot 52) =+ 83xp sin(xx2) 651

%2 = —0.5(x1 + x2) + 0.5x7 sin®(x}) + sin(x))u (66) 652

6

6

s16 into account, that is [—+/2/2,3/2/2], 85 € [—100, 100], and 83 € [—~/2/2, v/2/2]. eso
_ _ B} The initial state is xo = [0.5, —0.5]. 657
N — V*(x: — V(¥ + .
o AL(f) = V7 (j+1) — V7 (5) + H(x (IJ )’ x]) The mismatched perturbation in system (66) is 658
here x(£7) = lim x(¢ + ith n € (0, t;1 — t;), and 1 )
e W x(] ) ;7_1>o+ Xt +m) with n € (0, fj+1 = 1) d(x) = 81x; cos + §3x7 sin(x1x7). 659
X2+ 82
619 H(x<lj+>,)_€j) = V* (X(lf» — V¥(x(1)) After making some computations, we obtain ||d(x)|| < ||x||. eso

L .1/4\~ [+ | Hence, we can let dy(x) = |x|. Since g(x) = [0, sin(x)]" ee1
+ 500 )ac(57) = 36I®3®)- and kv = [1.0]T, we have g(vg" Wk = 0. Then, w
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Fig. 2. Evolution of auxiliary system states x(f) and xp(¢) in Example 1.
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Fig. 3. Convergence of critic network weight vector @, in Example 1.

proposed as
X1
X2

with g(x) = [0, sin(x)]",
Since ||gT()k(x)d(x)|

—xi
—0.5()61 + X2

be

+x2

—x Sil’lz(xl))] +g@u + k(x)v

(67)

k(x) =[1,0]", and v € R.
= 0, we choose {j/(x) = 0. Let

p = 0.25 and Q = I,. Then, based on (5), the cost function
for system (67) can be given as

o0
VY (xg) = /0 (1.25||)c||2 + W) + O.ZSUTU)dt

where

W(u) = Z/M Btanh™
0
— 2Butanh~ ' (u/B) + B2 1n(1 - u2/52).

Y¢/pde

(68)

To obtain the optimal ETC, we employ the critic
network (34). The parameters used in the critic network
and the event-triggering condition (46) are given as follows:

Time (s)

20
Time (s)

(b)

Fig. 4. (a) ETC u(x)). (b) Auxiliary ETC

30

9 (%))

le =0.5,n. =8,y =0.3, and Knax = 3.5. The basic function

vector used in the critic network is

-
2 2 4 4 3 22 3
oc(x) = [xl,xz,xlxz,xl,xz,x]xz,xlxz,xlxz] .

The weight vector in the critic network 1is writ-
ten as &, = [@c1, Dy ..., 0es]". Furthermore, to
ensure ¢ to be persistently exciting, we add the

exploration noise n,(f)
sin’(21) cos(0.17) + sin?(—1.2r)
sin?(1.12¢) + cos(2.47) sin’(2.41)]
first 38 s.

12¢7095 sin2(r) cos(f) +
cos(0.51) + sin’(r) +
into the control at the

Remark 5: Choosing appropriate basic function vectors for

critic networks is a challenging issue. Because the number of

the elements in the basis function vector is closely associ-
ated with the number of neurons in the critic network. In this
example, the basic function vector is determined via computer
simulations. We find that selecting the basic function vector
as the above mentioned o.(x) can lead to desirable results. In
Example 2, the basic function vector is also determined by

using computer simulations.

The evolution of auxiliary system states is illustrated in
Fig. 2. As displayed in Fig. 2, the auxiliary system states
x1(#) and x»(¢) turn out to be asymptotically stable. The con-
vergence of the critic network weight vector @, is shown in
Fig. 3. It can be seen that, after the first 40 s, the critic network
weight vector converges to &)Enal = [0.383, 0.773, —0.068,
0.130, 0.533, —0.018, 0.149, 0.062]". Fig. 4(a) and (b)
describes the ETC () and the auxiliary ETC ¢ (x;). The
validity of condition (17) is verified by presenting Fig. 5.
As indicated in Fig. 5, (17) holds only if ¢+ > 40 s (i.e.,
ty = 40 s). Fig. 6(a) and (b) shows the two norms (i.e., the

norm of the event-triggering condition |l¢;|| and the norm of

the event-triggering threshold |ler||

) and the sampling period

T, respectively. Observing Fig. 6(b), we can find that min 7y =
0.1 s. Actually, there are 289 state samples in Fig. 6(b),
which indicates that only 289 state samples are necessary to
implement the ETC algorithm. Nevertheless, under the same
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Fig. 5. Verification of condition (17) in Example 1.
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(b)
Fig. 6. (a) Norm of the event-triggering condition |l¢;|| and norm of the

event-triggering threshold |er||. (b) Sampling period 7 in Example 1.

condition, there are 1000 state samples utilized to imple-
ment the time-triggering control algorithm. Consequently, the
present ETC strategy reduces the controller updates up to
71.1%. In this sense, the computational burden is remarkably
decreased. Substituting the above obtained weight vector @/i"!
to (35), we derive the approximate optimal ETC. Fig. 7 dis-
plays the states of closed-loop system (66). From Fig. 7, we
can see that the states of system (66) are stable under the
approximate ETC.

B. Example 2: Application to the Pendulum System

We consider the pendulum system given in [19] as

do
@ =vTd 69
{J‘j‘j—; = u — Mglsin(9) — f% ©9)

with the current angle position of the pendulum 6 € R, the
angular velocity v € R, the perturbation d € R, the control
ue {ueR: ul <1} (note: B = 1), the mass of the pendulum
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Fig. 7. States x1(7) and x, () of closed-loop system (66).
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Fig. 8. Evolution of auxiliary system states x1(¢) and x> (¢) in Example 2.

M = 4/3 kg, the acceleration of gravity g = 9.8 m/s?, the
length of the pendulum / = 3/2 m, the rotary inertia J =
4/3MI? kg - m?, and the frictional factor f; = 0.2. We assume
that d = §10 sin(8v) with 6; and §, randomly chosen within
the intervals [—\/5/2, ﬁ/Z] and [—2, 2], respectively.

Let x; 0 and x» = v. Observing that g(x)
[0,0.25]" and k(x) = [1,—0.2]", we obtain h(x)
(12 —g(x)g+(x))k(x) = [1,0]". Then, according to (4), the
auxiliary system related to (69) can be proposed as

X1 X 0 {
|:5cz] |:—4.9 sin(xy) — O.2x2:| + |:O.25i|u + [O]U' (70)

The initial state is xp [0.6, —O.6]T. Since d(x)
S1x18in(62xp), we have that ||[d(x)| < \/z/2||x|| and
g™ k)| < 0.4+/2||x||. Therefore, we choose dys(x) =
(v2/2)||1x]| and £y(x) = 0.44/2]|x| to satisfy Assumption 2.
Selecting p = 0.4, Q = I, and using (5), we can present the
cost function for system (70) as follows:

[o/e]
ViU (xo) = /O (1.84||x||2 + W) + O.4UTv)dt

with W(u) defined as in (68).
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The critic network given as in (34) is applied to derive the
optimal ETC law for system (70). The parameters employed
in the critic network and the event-triggering condition (46)
are the same as in Example 1. The basic function vector used
in the critic network is

2 .2 4 4 3 2.2 3
oc(x) = [xl,xz,xm,xl,xz,xlxz,xlxz,mxz]

and the weight vector in the critic network is denoted
as & = [Bel, Dea, ..., 0eg]". To ensure ¢ to be persis-
tently exciting, we add the following exploration noise
ne) = 3¢ %[sin’(t)cos(r) + sin®(2f) cos(0.15) +
+sin?(—1.21)cos(0.50) + sin’() + sin®(1.128) +
cos(2.41) sin’ (2.41)] into the control at the first 50 s.

The evolution of auxiliary system states is displayed in
Fig. 8. As illustrated in Fig. 8, the auxiliary system states
x1(7) and x,(¢) are UUB. The convergence of the weight vec-
tor @, is depicted in Fig. 9. It can be observed that, after
the first 50 s, the critic network weight vector converges to
@final —10.234, 0.062, —0.527, 0.369, 0.049, —0.177, 0.023,

45
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Fig. 11. Verification of condition (17) in Example 2.
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Fig. 12.  (a) Norm of the event-triggering condition |l¢;| and norm of the

event-triggering threshold |ler||. (b) Sampling period 75 in Example 2.

—0.516]". Fig. 10(a) and (b) indicates the ETC 1 (X;) and the
auxiliary ETC ¢ (x;). The validity of condition (17) is veri-
fied through Fig. 11. As shown in Fig. 11, (17) holds only if
t > 50 s (i.e., t; = 50 s). Fig. 12(a) and (b) describes the two
norms (i.e., the norm of the event-triggering condition ||¢;||
and the norm of the event-triggering threshold |ler||) and the
sampling period Ty, respectively. From Fig. 12(b), we can see
that min 7y = 0.2 s. In fact, there are 284 state samples in
Fig. 12(b), which shows that only 284 state samples are nec-
essary to implement the ETC algorithm. Nonetheless, under
the same condition, there are 600 state samples required to
implement the time-triggering control algorithm. Accordingly,
the present ETC strategy reduces the controller updates up to
52.67%. In this sense, the computational burden is remarkably
decreased. Substituting the above derived weight vector cbf““‘l
to (35), we obtain the approximate optimal ETC. Fig. 13 dis-
plays the states of closed-loop system (69). Observing Fig. 13,
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Fig. 13. States x1(¢) and x» (¢) of closed-loop system (69).

we can find that the approximate optimal ETC keeps the states
of system (69) stable.

VI. CONCLUSION

This paper has presented a robust ETC method for nonlin-
ear input-constrained systems with mismatched perturbations.
By using an SN-ACD, the robust ETC law was obtained via
solving the H» optimal control problem. Thus, the proposed
control method can avoid the difficulty in judging the exis-
tence of saddle points, which arises in Hy, optimal control
problems. However, the developed robust ETC approach has
to calculate the Moore—Penrose pseudo-inverse of the control
matrix function and offer its upper bounded function. Indeed,
this is a limitation when applying the present control strategy
to nonlinear systems with complicated structures. Hence, how
to relax this condition is one subject of our future studies.

On the other hand, this robust ETC approach is devel-
oped for a unique agent system. In recent years, ACDs
have been utilized to study optimal regulations of multiagent
systems [54], [55]. It is well-known that multiagent plants
exist widely in engineering applications, such as the coordi-
nation of unmanned aerial vehicles. In addition, packet loss
is an important issue arising in multiagent systems, espe-
cially networked multiagent systems. Recently, Lu et al. [56]
proposed an effective model predictive tracking control strat-
egy for networked systems subject to random packet loss
and uncertainties. Accordingly, how to extend the SN-ACD
to develop robust ETC schemes for multiagent systems with
random packet loss and uncertainties is also one direction in
our future research.
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