

Event-Triggered Robust Stabilization of Nonlinear Input-Constrained Systems Using Single Network Adaptive Critic Designs

Xiong Yang¹ and Haibo He^{1,2}, *Fellow, IEEE*

Abstract—In this paper, we study the event-triggered robust stabilization problem of nonlinear systems subject to mismatched perturbations and input constraints. First, with the introduction of an infinite-horizon cost function for the auxiliary system, we transform the robust stabilization problem into a constrained optimal control problem. Then, we prove that the solution of the event-triggered Hamilton–Jacobi–Bellman (ETHJB) equation, which arises in the constrained optimal control problem, guarantees original system states to be uniformly ultimately bounded (UUB). To solve the ETHJB equation, we present a single network adaptive critic design (SN-ACD). The critic network used in the SN-ACD is tuned through the gradient descent method. By using Lyapunov method, we demonstrate that all the signals in the closed-loop auxiliary system are UUB. Finally, we provide two examples, including the pendulum system, to validate the proposed event-triggered control strategy.

Index Terms—Adaptive critic designs (ACDs), adaptive dynamic programming (ADP), event-triggered control (ETC), input constraints, neural network (NN), reinforcement learning (RL).

and RL as a kind of ACDs. The early contributors to ADP and RL included Werbos [6] and Sutton and Barto [7]. After that, many scholars showed their interest in ADP and RL. Thus, all kinds of ADP and RL methods were developed, such as local value/policy iterative ADP [8], [9], goal representation ADP [10], robust ADP [11], [12], single network ACDs (SN-ACDs) [13], online RL [14], [15], off-policy RL [16], and manifold RL [17].

In recent years, applications of ACDs to study robust stabilization problems have been extensively reported [18]–[22]. In the existing literature, the robust controllers for nonlinear systems are generally obtained by solving H_∞ optimal control problems or nonlinear zero-sum games under the framework of ACDs. Nevertheless, a limitation of solving H_∞ optimal control problems or zero-sum games is that one needs to make sure the existence of saddle points. Unfortunately, it is challenging to judge whether the saddle point of nonlinear systems exists or not. To avoid this difficulty, Lin and Brandt [23] introduced an indirect method, which aimed at converting the robust control problem into an H_2 optimal control problem. Then, one was able to derive the robust controller for nonlinear systems by solving the H_2 optimal control problem. Recently, the indirect method together with ACDs was proposed by Adhyaru *et al.* [24] to design the robust controller for uncertain nonlinear input-constrained systems. After that, Mu *et al.* [25] used the indirect method and ACDs together to derive a robust tracking control strategy for nonlinear systems subject to matched uncertainties. By using a similar method as [25], Qu *et al.* [26] obtained a decentralized tracking control of large-scale nonlinear systems with matched interconnections. An important difference between [25] and [26] was that [26] did not require the initial admissible control while implementing the proposed robust control scheme. Later, Zhang *et al.* [27] extended the work of [26] to design an optimal guaranteed cost sliding mode controller for constrained nonlinear systems with matched/mismatched disturbances. In all the above mentioned literature, the robust control strategies were implemented in the time-triggering mechanism. In other words, the robust control schemes were implemented periodically. According to [28], the time-triggered control schemes often had difficulties in handling the control problems with the conditions that there were only finite computation bandwidths as well as the limited communication resources.

To overcome these difficulties, many event-triggered control (ETC) approaches have been introduced [29]–[32]. Unlike

21

I. INTRODUCTION

ADAPTIVE critic designs (ACDs) have emerged as effective tools to solve optimal control problems over the past several decades [1]–[3]. The typical structure applied to implement ACDs is the actor-critic architecture, where the actor performs a control policy to environment (or controlled systems), and the critic offers an estimation of the value of that control policy and gives feedback information to the actor. In the computational intelligence community, adaptive dynamic programming (ADP) [4] and reinforcement learning (RL) [5] are nearly in the same spirits as ACDs (e.g., all of them have similar implementation architectures). Thus, they are often regarded as synonyms for ACDs. In this paper, we view ADP

Manuscript received April 4, 2018; accepted June 29, 2018. This work was supported in part by the National Natural Science Foundation of China under Grant 61503379, in part by the China Scholarship Council under the State Scholarship Fund, and in part by the National Science Foundation under Grant CMMI 1526835 and Grant ECCS 1731672. This paper was recommended by Associate Editor Z. Wang. (*Corresponding author: Haibo He.*)

X. Yang is with the School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China (e-mail: xiong.yang@tju.edu.cn).

H. He is with the Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881 USA (e-mail: haibohe@uri.edu).

Color versions of one or more of the figures in this paper are available online at <http://ieeexplore.ieee.org>.

Digital Object Identifier 10.1109/TSMC.2018.2853089

79 the time-triggered controller, the event-triggered controller is
 80 updated aperiodically. Specifically, the event-triggered controller is updated only when the deviation between the system
 81 state and the desired value crosses a prescribed threshold.
 82 Due to this characteristic, the ETC strategies can overcome
 83 the shortcomings of the time-triggered control schemes [28].
 84 Thus, many studies on robust ETC methods were reported.
 85 Wang *et al.* [33] presented an event-based robust controller
 86 for uncertain nonlinear systems via the SN-ACD. After that,
 87 with the combination of the SN-ACD and the concurrent
 88 learning technique, Zhang *et al.* [34] developed a robust
 89 ETC of nonlinear systems with mismatched disturbances.
 90 Compared with [33], Zhang *et al.* [34] relaxed the persistence
 91 of excitation (PE) condition. Recently, by applying ACDs
 92 to solve the event-triggered H_∞ optimal control problems,
 93 Mu *et al.* [35] and Zhang *et al.* [36] obtained robust ETC
 94 strategies for nonlinear systems, respectively. Owing to the
 95 existence of the aforementioned limitation in solving H_∞
 96 optimal control problems, these robust ETC schemes usually
 97 encountered difficulties in engineering applications. On the
 98 other hand, due to physical characteristics of actuators in engi-
 99 neering industries, it is necessary to take actuator saturations
 100 (i.e., input constraints) into account. To address this problem,
 101 Wang *et al.* [37] studied the constrained robust ETC problem
 102 of nonlinear input-affine systems with *matched* uncertainties
 103 using ACDs. However, to the best of our knowledge, there are
 104 few studies developing the robust ETC scheme for nonlinear
 105 input-constrained systems subject to *mismatched* perturba-
 106 tions, especially without using the H_∞ control theory [38].
 107 This motivates this paper.

108 In this paper, a robust ETC strategy is developed for nonlin-
 109 ear input-constrained systems with mismatched perturbations.
 110 First, by constructing an infinite-horizon cost function for the
 111 auxiliary system, the robust stabilization problem is converted
 112 into a constrained optimal control problem. Then, it is proved
 113 that the solution of the event-triggered Hamilton–Jacobi–
 114 Bellman (ETHJB) equation, arising in the constrained optimal
 115 control problem, keeps original system states uniformly ulti-
 116 mately bounded (UUB). To solve the ETHJB equation, the
 117 SN-ACD is proposed. The critic network used in the SN-ACD
 118 is updated by using the gradient descent method. Finally, uni-
 119 form ultimate boundedness of all the signals in the closed-loop
 120 auxiliary system is demonstrated via Lyapunov method.
 121

122 The novelties of this paper include three aspects.

- 123 1) Different from [34] updating the augmented control in
 124 an mechanism regarded as the combination of time-
 125 triggering and event-triggering mechanisms (ETMs), this
 126 paper tunes the augmented control only in the ETM.
 127 Hence, the developed control scheme has an advantage
 128 in decreasing the computational burden.
- 129 2) Unlike [35] and [36] solving the event-triggered H_∞
 130 optimal control problems, this paper obtains the robust
 131 ETC via an indirect method. Thus, the present method
 132 relaxes the requirement of judging the existence of the
 133 saddle point, which is an indispensable procedure in
 134 solving H_∞ optimal control problems.
- 135 3) This paper extends the work of [37] to develop a robust
 136 ETC strategy for nonlinear input-constrained systems

137 with *mismatched* perturbations. Generally, robust control
 138 methods for nonlinear systems with *matched* distur-
 139 bances are not applicable to those systems with *mis-
 140 matched* disturbances (*note*: the definitions of systems
 141 with *mismatch* disturbances and systems with *match*
 142 disturbances can refer to [23]). Furthermore, when con-
 143 sidering input constraints, it increases the difficulty in
 144 making such an extension.

145 It is worth emphasizing here that the knowledge of system
 146 dynamics [i.e., $f(x)$ and $g(x)$ in system (1) (*note*: see
 147 Section II-A)] is required to be known. Actually, by using
 148 a similar fuzzy technique proposed in [39], this condition can
 149 be removed. For simplicity, in this paper we assume that the
 150 information of system dynamics is available.

151 The rest of this paper is structured as follows. After
 152 briefly presenting problem descriptions and preliminaries in
 153 Section II, we propose the robust ETC scheme in Section III.
 154 Then, after discussing the stability analysis in Section IV, we
 155 provide two examples to validate the established theoretical
 156 results in Section V. Finally, several concluding remarks and
 157 future works are given in Section VI.

158 *Notation*: \mathbb{R} , \mathbb{N} , and \mathbb{N}^+ denote the sets of real numbers,
 159 non-negative integers, and positive integers, respectively. \mathbb{R}^m
 160 and $\mathbb{R}^{n \times m}$ denote the spaces of real m -vectors and $n \times m$ real
 161 matrices, respectively. I_n is the identity matrix of dimension
 162 $n \times n$. \top is the transposition symbol. $\|\alpha\| = \sqrt{\sum_{i=1}^n |\alpha_i|^2}$ is
 163 the Euclidean norm of the vector $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)^\top \in \mathbb{R}^n$.
 164 Ω is a subset of \mathbb{R}^n , i.e., $\Omega \subset \mathbb{R}^n$. $\|A\|$ denotes the Frobenius-
 165 norm of the matrix $A \in \mathbb{R}^{n \times m}$. $V_x^* = \partial V^*(x) / \partial x$ is the partial
 166 derivative of $V^*(x)$ with respect to $x \in \mathbb{R}^n$.

II. PROBLEM DESCRIPTION AND PRELIMINARIES

A. Problem Description

167 Consider the continuous-time nonlinear system with a mis-
 168 matched perturbation given in the form

$$\dot{x}(t) = f(x(t)) + g(x(t))u(t) + k(x(t))d(x(t)) \quad (1) \quad 171$$

172 where $x(t) \in \mathbb{R}^n$ is the state, $u(t) \in \mathfrak{U}$ is the control input, $\mathfrak{U} =$
 173 $\{(u_1, u_2, \dots, u_m) \in \mathbb{R}^m : |u_i| \leq \beta, i = 1, 2, \dots, m\}$, $\beta > 0$ is
 174 the upper bound, $f(x) \in \mathbb{R}^n$, $g(x) \in \mathbb{R}^{n \times m}$, and $k(x) \in \mathbb{R}^{n \times p}$
 175 (*note*: $k(x) \neq g(x)$ when $p = m$) are known smooth functions,
 176 and $d(x) \in \mathbb{R}^p$ is an *uncertain* perturbation. Here, $x_0 = x(0)$
 177 is the initial state.

178 *Assumption 1*: System (1) is controllable. Meanwhile,
 179 $x = 0$ is the equilibrium point of system (1) when letting
 180 $u(t) = 0$ and $d(x(t)) = 0$ for all $t \geq 0$.

181 *Assumption 2*: The control matrix $g(x)$ is bounded as $0 <$
 182 $g(x) \leq g_M$ ($\forall x \in \mathbb{R}^n$) with $g_M \in \mathbb{R}$ the positive constant.
 183 Meanwhile, there exist non-negative functions $\zeta_M(x) \in \mathbb{R}$ and
 184 $d_M(x) \in \mathbb{R}$ such that, for all $x \in \mathbb{R}^n$

$$\|g^+(x)k(x)d(x)\| \leq \ell_M(x) \quad \text{and} \quad \|d(x)\| \leq d_M(x) \quad 185$$

186 with $g^+(x)$ the Moore–Penrose pseudo-inverse of $g(x)$. In
 187 addition, $\ell_M(0) = 0$, $d(0) = 0$, and $d_M(0) = 0$.

188 This paper aims at finding an appropriate state feedback
 189 controller to stabilize system (1). Owing to the existence of

system uncertainties, it is challengeable to design the stabilizing controller directly. To address this issue, we will convert the robust control problem of system (1) into a constrained optimal control problem of the auxiliary system.

194 B. Hamilton–Jacobi–Bellman Equation Related to Auxiliary 195 Systems

196 Divide the term $k(x)d(x)$ into the following two parts:

$$197 \quad k(x)d(x) = g(x)g^+(x)k(x)d(x) + h(x)d(x) \quad (2)$$

198 with

$$199 \quad h(x) = (I_n - g(x)g^+(x))k(x). \quad (3)$$

200 According to [40], the auxiliary system corresponding to (1)
201 can be described as

$$202 \quad \dot{x} = f(x) + g(x)u + h(x)v \quad (4)$$

203 where $u \in \mathcal{U}$ and $v \in \mathbb{R}^p$ is the auxiliary control.

204 The infinite-horizon cost function for system (4) is given by

$$205 \quad V^{u,v}(x(t)) = \int_t^\infty (\Psi(x(s)) + r(x(s), u(s), v(s)))ds \quad (5)$$

206 where $\Psi(x) = 2\ell_M^2(x) + \rho d_M^2(x)$, $\rho \in \mathbb{R}$ is a positive constant,
207 and

$$208 \quad r(x, u, v) = x^T Qx + \mathcal{W}(u) + \rho v^T v$$

209 with $Q \in \mathbb{R}^{n \times n}$ the positive definite matrix and $\mathcal{W}(u) \in \mathbb{R}$ the
210 semipositive definite function.

211 To overcome the bounded control, we define $\mathcal{W}(u)$ as [41]

$$212 \quad \mathcal{W}(u) = 2\beta \sum_{i=1}^m \int_0^{u_i} \psi^{-1}(\zeta/\beta) d\zeta \quad (6)$$

213 where $\psi(\cdot)$ is a bounded monotonic function with $\psi(0) = 0$.
214 Meanwhile, $\psi(\cdot)$ is an odd function with its derivative
215 bounded. Since $\psi^{-1}(\cdot)$ is a monotonic odd function, $\mathcal{W}(u)$
216 given in (6) is semipositive definite. In this paper, we let $\psi(\cdot)$
217 be the hyperbolic tangent function, i.e., $\psi(\cdot) = \tanh(\cdot)$.

218 Let $\mathcal{A}(\Omega)$ be the set of admissible control [5] defined on
219 Ω . Then, the optimal value of (5) is formulated as

$$220 \quad V^*(x) = \min_{u, v \in \mathcal{A}(\Omega)} V^{u,v}(x). \quad (7)$$

221 If $V^*(x)$ is continuously differentiable, then its derivative
222 satisfies

$$223 \quad (V_x^*)^T (f(x) + g(x)u + h(x)v) \\ 224 \quad + \Psi(x) + x^T Qx + \mathcal{W}(u) + \rho v^T v = 0.$$

225 According to [4], the Hamiltonian for V_x^* , u , and v can be
226 defined as

$$227 \quad H(x, V_x^*, u, v) = (V_x^*)^T (f(x) + g(x)u + h(x)v) + \Psi(x) \\ 228 \quad + x^T Qx + \mathcal{W}(u) + \rho v^T v. \quad (8)$$

229 Then, $V^*(x)$ can be obtained by solving the Hamilton–Jacobi–
230 Bellman (HJB) equation

$$231 \quad \min_{u, v \in \mathcal{A}(\Omega)} H(x, V_x^*, u, v) = 0 \quad (9)$$

with $V^*(0) = 0$. Based on the stationary condition [42, Th. 5.8], we can therefore derive the closed-form expressions of optimal control and optimal auxiliary control as follows [4]:

$$232 \quad u^*(x) = -\beta \tanh\left(\frac{1}{2\beta} g^T(x) V_x^*\right) \quad (10) \quad 236$$

$$233 \quad v^*(x) = -\frac{1}{2\rho} h^T(x) V_x^*. \quad (11) \quad 237$$

238 From (8)–(11), we can rewrite the HJB equation as

$$239 \quad (V_x^*)^T f(x) + \Psi(x) + x^T Qx + \mathcal{W}\left(-\beta \tanh\left(\frac{1}{2\beta} g^T(x) V_x^*\right)\right) \\ 240 \quad - \beta (V_x^*)^T g(x) \tanh\left(\frac{1}{2\beta} g^T(x) V_x^*\right) - \left\| \frac{1}{2\sqrt{\rho}} h^T(x) V_x^* \right\|^2 = 0 \quad (12) \quad 241$$

242 with $V^*(0) = 0$. According to [30], (12) is the time-triggered
243 HJB equation.

244 Similar to [43], it can be proved that the robust controller for
245 system (1) is able to be obtained by solving (12). However,
246 owing to the use of time-triggered formulations, the robust
247 control strategy is developed in the time-triggering mechanism.
248 As mentioned in [44], the time-triggered control algorithms
249 generally have low efficiency of using the limited communica-
250 tion resources between actuators and systems. In addition,
251 they often involve high-computational burdens. To overcome
252 the two deficiencies, we will develop a robust ETC scheme
253 for system (1).

III. ROBUST ETC STRATEGY

255 In this section, we first describe the robust stabilization of
256 system (1) in the ETM. Specifically, we prove that the robust
257 ETC of (1) can be obtained by solving an ETHJB equation.
258 Then, we use the SN-ACD to solve the ETHJB equation.

A. Robust Stabilization in the ETM

259 Let $\{t_j\}_{j=0}^\infty$ (note: $t_j < t_{j+1}, j \in \mathbb{N}$) be the sequence of trig-
260 gering instants, where t_j denotes the j th triggering instant. The
261 system state is sampled at the triggering instant t_j , and the
262 sampled state is written as

$$263 \quad \bar{x}_j = x(t_j) \quad j \in \mathbb{N}. \quad 264$$

265 Since there generally exists an error between the sampled state
266 \bar{x}_j and the current state $x(t)$, we define the error as follows:

$$267 \quad e_j(t) = \bar{x}_j - x(t) \quad \forall t \in [t_j, t_{j+1}). \quad (13) \quad 268$$

269 From the expression $e_j(t)$ given in (13), we can judge whether
270 an event is triggered or not. Specifically, if the event is trig-
271 gered at instant $t = t_j$, then $e_j(t_j) = 0$. Based on the sampled
272 state, we can obtain the ETC law $u(\bar{x}_j)$, which is executed at
273 the triggering instant t_j . By using the zero-order hold tech-
274 nique [28], the control sequence $\{u(\bar{x}_j)\}_{j=0}^\infty$ can generate a
275 continuous-time input signal $\mu(\bar{x}_j, t)$, i.e.,

$$275 \quad \mu(\bar{x}_j, t) = u(\bar{x}_j) = u(x(t_j)) \quad \forall t \in [t_j, t_{j+1}). \quad 276$$

Let the above mentioned ETM be applied to $u^*(x)$ given in (10). Then, the optimal ETC law for system (4) with the cost function (5) can be obtained as [30] (for all $t \in [t_j, t_{j+1}]$)

$$\mu^*(\bar{x}_j, t) = u^*(\bar{x}_j) = -\beta \tanh\left(\frac{1}{2\beta} g^\top(\bar{x}_j) V_{\bar{x}_j}^*\right) \quad (14)$$

with $V_{\bar{x}_j}^* = (\partial V^*(x)/\partial x)|_{x=\bar{x}_j}$.

Similarly, applying the aforementioned ETM to $v^*(x)$ given in (11), we can derive the optimal auxiliary ETC law as

$$\vartheta^*(\bar{x}_j, t) = v^*(\bar{x}_j) = -\frac{1}{2\rho} h^\top(\bar{x}_j) V_{\bar{x}_j}^* \quad \forall t \in [t_j, t_{j+1}]. \quad (15)$$

Remark 1: For brevity, in subsequent discussion we write $\mu^*(\bar{x}_j, t)$ and $\vartheta^*(\bar{x}_j, t)$ as $\mu^*(\bar{x}_j)$ and $\vartheta^*(\bar{x}_j)$, respectively.

Before continuing the discussion, we give the following assumption used in [30] and [45].

Assumption 3: $u^*(x)$ has the Lipschitz property on Ω . That is, there exists a Lipschitz constant $K_{u^*} > 0$ such that, for all $x, \bar{x}_j \in \Omega$

$$\|u^*(x) - u^*(\bar{x}_j)\| \leq K_{u^*} \|x - \bar{x}_j\| = K_{u^*} \|e_j\|.$$

Remark 2: By using Remark 1 and (14), we can write $\mu^*(\bar{x}_j) = u^*(\bar{x}_j)$. Thus, Assumption 3 implies

$$\|u^*(x) - \mu^*(\bar{x}_j)\| \leq K_{u^*} \|e_j\| \quad (16)$$

for all $x, \bar{x}_j \in \Omega$.

Theorem 1: Let Assumptions 1–3 be valid and let $V^*(x)$ be a solution of the HJB equation (12). Then, the optimal ETC law $\mu^*(\bar{x}_j)$ given in (14) can ensure the closed-loop system (1) to be stable in the sense of uniform ultimate boundedness only if $v^*(x)$ given in (11) satisfies

$$\|v^*(x(t))\|^2 \leq \lambda_{\min}(Q) \|x(t)\|^2 \quad \forall t \geq t_s \quad (17)$$

where $t_s \geq 0$ is a threshold, and provided that the triggering condition is given by

$$\|e_j\|^2 \leq \frac{(1-2\rho)\lambda_{\min}(Q)}{4K_{u^*}^2} \|x\|^2 \triangleq \|e_T\|^2 \quad (18)$$

with $0 < \rho < 1/2$ the design parameter and e_T the triggering threshold.

Proof: We take $V^*(x)$ as the Lyapunov function candidate. From the expression $V^*(x)$ given as in (7), we can deduce that $V^*(x) > 0$ for $x \neq 0$ and $V^*(x) = 0 \Leftrightarrow x = 0$, i.e., $V^*(x)$ is positive definite.

By differentiating $V^*(x)$ along the solution of $\dot{x} = f(x) + g(x)\mu^*(\bar{x}_j) + k(x)d(x)$ and using (2), we have [note: $\dot{V}^*(x)$ denotes $dV^*(x(t))/dt$]

$$\begin{aligned} \dot{V}^*(x) &= (V_x^*)^\top (f(x) + g(x)\mu^*(\bar{x}_j) + k(x)d(x)) \\ &= (V_x^*)^\top (f(x) + g(x)u^*(x) + h(x)v^*(x)) \\ &\quad + (V_x^*)^\top g(x)(\mu^*(\bar{x}_j) - u^*(x)) \\ &\quad + (V_x^*)^\top g(x)g^\top(x)k(x)d(x) \\ &\quad + (V_x^*)^\top h(x)(d(x) - v^*(x)) \end{aligned} \quad (19)$$

with $h(x)$ defined as in (3).

On the other hand, from (8) and (9), we obtain

$$\begin{aligned} (V_x^*)^\top (f(x) + g(x)u^*(x) + h(x)v^*(x)) \\ = -\Psi(x) - x^\top Qx - \mathcal{W}(u^*(x)) - \rho \|v^*(x)\|^2. \end{aligned} \quad (20)$$

Meanwhile, from (10) and (11), we find

$$\begin{cases} (V_x^*)^\top g(x) = -2\beta (\tanh^{-1}(u^*(x)/\beta))^\top \\ (V_x^*)^\top h(x) = -2\rho (v^*(x))^\top. \end{cases} \quad (21)$$

Substituting (20) and (21) into (19), it follows:

$$\begin{aligned} \dot{V}^*(x) &= -\Psi(x) - x^\top Qx - \mathcal{W}(u^*(x)) + \rho \|v^*(x)\|^2 \\ &\quad + 2\beta \underbrace{\left(\tanh^{-1}(u^*(x)/\beta) \right)^\top (u^*(x) - \mu^*(\bar{x}_j))}_{\pi_1} \\ &\quad - 2\beta \underbrace{\left(\tanh^{-1}(u^*(x)/\beta) \right)^\top g^+(x)k(x)d(x)}_{\pi_2} \\ &\quad - 2\rho \underbrace{(v^*(x))^\top d(x)}_{\pi_3}. \end{aligned} \quad (22)$$

By using Young's inequality $2y^\top z \leq \varrho \|y\|^2 + \|z\|^2/\varrho$ ($\varrho > 0$) and (16), we can see that π_1 in (22) implies (note: $\varrho = 1/2$)

$$\begin{aligned} \pi_1 &\leq \frac{\beta^2}{2} \left\| \tanh^{-1}(u^*(x)/\beta) \right\|^2 + 2 \|u^*(x) - \mu^*(\bar{x}_j)\|^2 \\ &\leq \frac{\beta^2}{2} \sum_{i=1}^m \left(\tanh^{-1}(u_i^*(x)/\beta) \right)^2 + 2K_{u^*}^2 \|e_j\|^2. \end{aligned} \quad (23)$$

Similarly, by using the above mentioned Young's inequality and Assumption 2, we can find that π_2 and π_3 in (22) yield (note: $\varrho = 1/2$ and $\varrho = 1$, respectively)

$$\begin{aligned} \pi_2 &\leq \frac{\beta^2}{2} \left\| \tanh^{-1}(u^*(x)/\beta) \right\|^2 + 2 \|g^+(x)k(x)d(x)\|^2 \\ &\leq \frac{\beta^2}{2} \sum_{i=1}^m \left(\tanh^{-1}(u_i^*(x)/\beta) \right)^2 + 2\ell_M^2(x) \end{aligned} \quad (24)$$

$$\pi_3 \leq \rho \|v^*(x)\|^2 + \rho \|d(x)\|^2 \leq \rho \|v^*(x)\|^2 + \rho d_M^2(x). \quad (25)$$

From [46] (note: see the proof of [46, Th. 1]), we know

$$\begin{aligned} \mathcal{W}(u^*) &= 2\beta \sum_{i=1}^m \int_0^{u_i^*(x)} \tanh^{-1}(\zeta/\beta) d\zeta \\ &= \beta^2 \sum_{i=1}^m \left(\tanh^{-1}(u_i^*(x)/\beta) \right)^2 \\ &\quad - 2\beta^2 \sum_{i=1}^m \int_0^{\tanh^{-1}(u_i^*(x)/\beta)} \tau_i \tanh^2(\tau_i) d\tau_i. \end{aligned} \quad (26)$$

Observing that $\Psi(x) = 2\ell_M^2(x) + \rho d_M^2(x)$ and using (23)–(26), we can conclude that (22) yields

$$\begin{aligned} \dot{V}^*(x) &\leq -x^\top Qx + 2\rho \|v^*(x)\|^2 + 2K_{u^*}^2 \|e_j\|^2 \\ &\quad + 2\beta^2 \underbrace{\sum_{i=1}^m \int_0^{\tanh^{-1}(u_i^*(x)/\beta)} \tau_i \tanh^2(\tau_i) d\tau_i}_{\mathcal{L}(x)}. \end{aligned} \quad (27)$$

According to the proof of [46, Th. 1], we know that $\mathcal{L}(x)$ given in (27) is a bounded function. To facilitate subsequent discussion, we denote that $\|\mathcal{L}(x)\| \leq \epsilon_M$,

where $\epsilon_M > 0$ is a constant. Then, (27) can be further rewritten as

$$\begin{aligned} \dot{V}^*(x) &\leq -\lambda_{\min}(Q)\|x\|^2 + 2\rho\|v^*(x)\|^2 + 2K_{u^*}^2\|e_j\|^2 + \epsilon_M \\ &= -2\rho\left(\lambda_{\min}(Q)\|x\|^2 - \|v^*(x)\|^2\right) + 2K_{u^*}^2\|e_j\|^2 \\ &\quad - (1-2\rho)\lambda_{\min}(Q)\|x\|^2 + \epsilon_M \end{aligned} \quad (28)$$

with $\lambda_{\min}(Q)$ the minimum eigenvalue of Q .

Thus, if (17) and (18) hold, then (28) yields

$$\dot{V}^*(x) \leq -\frac{(1-2\rho)\lambda_{\min}(Q)}{2}\|x\|^2 + \epsilon_M. \quad (29)$$

Therefore, from (29), we can find that $\dot{V}^*(x) < 0$ only when $x(t)$ is out of the following set:

$$\Omega_x = \left\{ x: \|x\| \leq \sqrt{\frac{2\epsilon_M}{(1-2\rho)\lambda_{\min}(Q)}} \right\}.$$

Then, uniform ultimate boundedness of the states of system (1) is guaranteed by using Lyapunov extension theorem [47]. Specifically, this indicates that $\mu^*(\bar{x}_j)$ keeps the closed-loop system (1) stable in the sense of uniform ultimate boundedness. Meanwhile, the ultimate bound is $\sqrt{2\epsilon_M}/((1-2\rho)\lambda_{\min}(Q))$. ■

Remark 3: According to (18), the triggering instant t_j can be calculated. Then, it is possible to obtain the minimal intersample time $(\Delta t_j)_{\min}$, where $\Delta t_j = t_{j+1} - t_j, j \in \mathbb{N}$. However, if there exists $(\Delta t_j)_{\min} = 0$, then the Zeno behavior occurs [48]. In this circumstance, $\mu^*(\bar{x}_j)$ has to be redesigned. Fortunately, $(\Delta t_j)_{\min} > 0, j \in \mathbb{N}$, under Assumption 1 (note: since similar proofs have been provided in [36] and [49], we omit the proof here). In this paper, simulation results provided in Section V also show that $(\Delta t_j)_{\min} > 0, j \in \mathbb{N}$.

To obtain the optimal ETC law $\mu^*(\bar{x}_j)$, we need to solve the ETHJB equation, which is derived by substituting (14) and (15) into (9). That is,

$$\begin{aligned} &(V_x^*)^T f(x) - \beta(V_x^*)^T g(x) \tanh\left(\frac{1}{2\beta}g^T(\bar{x}_j)V_{\bar{x}_j}^*\right) \\ &\quad - \frac{1}{2\rho}(V_x^*)^T h(x)h^T(\bar{x}_j)V_{\bar{x}_j}^* + \Psi(x) + x^T Qx \\ &\quad + \mathcal{W}\left(-\beta \tanh\left(\frac{1}{2\beta}g^T(\bar{x}_j)V_{\bar{x}_j}^*\right)\right) + \left\| \frac{1}{2\sqrt{\rho}}h^T(\bar{x}_j)V_{\bar{x}_j}^* \right\|^2 = 0. \end{aligned} \quad (30)$$

Generally, it is rather hard to solve the ETHJB equation (30) analytically [50]. To conquer the difficulty, we present the SN-ACD to approximately solve (30).

B. SN-ACD for Solving the ETHJB Equation

The approximation theorem [51] guarantees that $V^*(x)$ given in (7) can be represented via a critic network over Ω as

$$V^*(x) = \omega_c^T \sigma_c(x) + \varepsilon_c(x)$$

where $\omega_c \in \mathbb{R}^{\tilde{n}_c}$ is the ideal weight vector, $\sigma_c(x) = [\sigma_{c1}(x), \sigma_{c2}(x), \dots, \sigma_{c\tilde{n}_c}(x)]^T \in \mathbb{R}^{\tilde{n}_c}$ is the basis function vector, $\sigma_{cl}(x), l = 1, 2, \dots, \tilde{n}_c$, are continuously differentiable

functions with $\sigma_{cl}(0) = 0$, $\tilde{n}_c \in \mathbb{N}^+$ is the number of basis functions, and $\varepsilon_c(x) \in \mathbb{R}$ is the approximation error.

Differentiating $V^*(x)$ at the sampled state \bar{x}_j , we have

$$V_{\bar{x}_j}^* = \nabla \sigma_c^T(\bar{x}_j) \omega_c + \nabla \varepsilon_c(\bar{x}_j) \quad \forall t \in [t_j, t_{j+1}) \quad (31)$$

where $\nabla \sigma_c(\bar{x}_j) = (\partial \sigma_c(x)/\partial x)|_{x=\bar{x}_j}$ and $\nabla \varepsilon_c(\bar{x}_j) = (\partial \varepsilon_c(x)/\partial x)|_{x=\bar{x}_j}$.

Substituting (31) into (14), we can rewrite $\mu^*(\bar{x}_j)$ as

$$\mu^*(\bar{x}_j) = -\beta \tanh(\mathcal{A}_1(\bar{x}_j)) + \varepsilon_{\mu^*}(\bar{x}_j) \quad \forall t \in [t_j, t_{j+1}) \quad (32)$$

where

$$\mathcal{A}_1(\bar{x}_j) = \frac{1}{2\beta}g^T(\bar{x}_j)\nabla \sigma_c^T(\bar{x}_j)\omega_c \quad (403)$$

and $\varepsilon_{\mu^*}(\bar{x}_j) = -(1/2)(\mathbf{1} - \tanh^2(\xi))g^T(\bar{x}_j)\nabla \varepsilon_c(\bar{x}_j)$ with $\mathbf{1} = [1, \dots, 1]^T \in \mathbb{R}^m$ and ξ chosen between $\mathcal{A}_0(\bar{x}_j)$ (note: $\mathcal{A}_0(\bar{x}_j) = (1/(2\beta))g^T(\bar{x}_j)V_x^*$) and $\mathcal{A}_1(\bar{x}_j)$.

Similarly, by using (31), $\vartheta^*(\bar{x}_j)$ given in (15) can be represented as (for all $t \in [t_j, t_{j+1})$)

$$\vartheta^*(\bar{x}_j) = -\frac{1}{2\rho}h^T(\bar{x}_j)\nabla \sigma_c^T(\bar{x}_j)\omega_c + \varepsilon_{\vartheta^*}(\bar{x}_j) \quad (33)$$

with $\varepsilon_{\vartheta^*}(\bar{x}_j) = -(1/2\rho)h^T(\bar{x}_j)\nabla \varepsilon_c(\bar{x}_j)$.

Remark 4: The difference between $\varepsilon_{\mu^*}(\bar{x}_j)$ given in (32) and $\varepsilon_{\vartheta^*}(\bar{x}_j)$ given in (33) is caused by control constraints (note: u is constrained while v is unconstrained). To make (32) be better for understanding, we provide the detailed process of deriving $\varepsilon_{\mu^*}(\bar{x}_j)$ as follows. Let

$$\mathcal{T}(\mathcal{A}_{\varpi}(x)) = -\beta \tanh(\mathcal{A}_{\varpi}(x)), \quad \varpi = 0, 1. \quad (416)$$

Then, applying the mean value theorem [42, Th. 5.10] to $\mathcal{T}(\mathcal{A}_{\varpi}(x))$, we obtain (note: $\mathcal{A}_0(x) = (1/(2\beta))g^T(x)V_x^*$)

$$\begin{aligned} \mathcal{T}(\mathcal{A}_0(x)) - \mathcal{T}(\mathcal{A}_1(x)) &= -\beta(\tanh(\mathcal{A}_0(x)) - \tanh(\mathcal{A}_1(x))) \\ &= -\frac{1}{2}(\mathbf{1} - \tanh^2(\xi))g^T(x)\nabla \varepsilon_c(x) \end{aligned} \quad (419)$$

with ξ chosen between $\mathcal{A}_0(x)$ and $\mathcal{A}_1(x)$. By using (31), we find that (14) yields

$$\begin{aligned} \mu^*(\bar{x}_j) &= -\beta \tanh(\mathcal{A}_0(\bar{x}_j)) \\ &= \mathcal{T}(\mathcal{A}_1(\bar{x}_j)) + (\mathcal{T}(\mathcal{A}_0(\bar{x}_j)) - \mathcal{T}(\mathcal{A}_1(\bar{x}_j))) \\ &= -\beta \tanh(\mathcal{A}_1(\bar{x}_j)) - \frac{1}{2}(\mathbf{1} - \tanh^2(\xi))g^T(\bar{x}_j)\nabla \varepsilon_c(\bar{x}_j). \end{aligned} \quad (423)$$

Hence, we can obtain the expression $\varepsilon_{\mu^*}(\bar{x}_j)$ given as in (32).

In general, the ideal weight vector ω_c is unavailable. Thus, we cannot implement $\mu^*(\bar{x}_j)$ given in (32). To handle this issue, we replace ω_c with the current estimated weight vector $\hat{\omega}_c$ in the critic network. Then, the approximation value function can be formulated as

$$\hat{V}(x) = \hat{\omega}_c^T \sigma_c(x). \quad (432)$$

The derivative of $\hat{V}(x)$ at the sampled state \bar{x}_j is

$$\hat{V}_{\bar{x}_j} = \nabla \sigma_c^T(\bar{x}_j) \hat{\omega}_c. \quad (434)$$

Replacing $V_{\bar{x}_j}^*$ in (14) with $\hat{V}_{\bar{x}_j}$, we derive the estimated value of $\mu^*(\bar{x}_j)$ as

$$\hat{\mu}(\bar{x}_j) = -\beta \tanh(\mathcal{A}_2(\bar{x}_j)) \quad \forall t \in [t_j, t_{j+1}) \quad (35)$$

438 where

$$439 \quad \mathcal{A}_2(\bar{x}_j) = \frac{1}{2\beta} g^\top(\bar{x}_j) \nabla \sigma_c^\top(\bar{x}_j) \hat{\omega}_c.$$

440 By the same token, the estimated value of $\vartheta^*(\bar{x}_j)$ given in (33)
441 can be obtained as

$$442 \quad \hat{\vartheta}(\bar{x}_j) = -\frac{1}{2\rho} h^\top(\bar{x}_j) \nabla \sigma_c^\top(\bar{x}_j) \hat{\omega}_c \quad \forall t \in [t_j, t_{j+1}). \quad (36)$$

443 Substituting $\hat{V}(x)$, $\hat{\mu}(\bar{x}_j)$, and $\hat{\vartheta}(\bar{x}_j)$ into (8), we can see that
444 the approximation Hamiltonian is

$$445 \quad \hat{H}(x, \hat{V}_x, \hat{\mu}(\bar{x}_j), \hat{\vartheta}(\bar{x}_j)) \\ 446 \quad = \hat{\omega}_c^\top \nabla \sigma_c(x) (f(x) + g(x) \hat{\mu}(\bar{x}_j) + h(x) \hat{\vartheta}(\bar{x}_j)) \\ 447 \quad + \Psi(x) + x^\top Q x + \mathcal{W}(\hat{\mu}^\top(\bar{x}_j)) + \rho \|\hat{\vartheta}(\bar{x}_j)\|^2.$$

448 Observe that (9) implies

$$449 \quad H(x, V_x^*, \mu^*(\bar{x}_j), \vartheta^*(\bar{x}_j)) = 0.$$

450 Thus, the error of Hamiltonian can be formulated as

$$451 \quad e_c = \hat{H}(x, \hat{V}_x, \hat{\mu}(\bar{x}_j), \hat{\vartheta}(\bar{x}_j)) - H(x, V_x^*, \mu^*(\bar{x}_j), \vartheta^*(\bar{x}_j)) \\ 452 \quad = \hat{\omega}_c^\top \phi + \Psi(x) + x^\top Q x + \mathcal{W}(\hat{\mu}^\top(\bar{x}_j)) + \rho \|\hat{\vartheta}(\bar{x}_j)\|^2 \quad (37)$$

453 where $\phi = \nabla \sigma_c(x) (f(x) + g(x) \hat{\mu}(\bar{x}_j) + h(x) \hat{\vartheta}(\bar{x}_j))$.

454 To ensure e_c given in (37) to be sufficiently small, we use
455 the gradient descent method to minimize the target function
456 $E = (1/2)e_c^\top e_c$. Then, the weight update rule for the critic
457 network is obtained as

$$458 \quad \dot{\hat{\omega}}_c = -\frac{l_c}{(1 + \phi^\top \phi)^2} \frac{\partial E}{\partial \hat{\omega}_c} \\ 459 \quad = -\frac{l_c \phi}{(1 + \phi^\top \phi)^2} e_c \quad \forall t \in [t_j, t_{j+1}) \quad (38)$$

460 with e_c defined as in (37), $l_c \in \mathbb{R}^n$ the positive parameter, and
461 $(1 + \phi^\top \phi)^{-2}$ the normalization term.

462 Let the weight estimation error of the critic network be
463 $\tilde{\omega}_c = \omega_c - \hat{\omega}_c$. Then, from (38), we can see that the weight
464 estimation error dynamics of the critic network satisfies [30]

$$465 \quad \dot{\tilde{\omega}}_c = -l_c \varphi \varphi^\top \tilde{\omega}_c + \frac{l_c \varphi}{1 + \phi^\top \phi} \varepsilon_H \quad \forall t \in [t_j, t_{j+1}) \quad (39)$$

466 where $\varphi = \phi / (1 + \phi^\top \phi)^2$ and $\varepsilon_H = -\nabla \varepsilon_c^\top(x) (f(x) +$
467 $g(x) \hat{\mu}(\bar{x}_j) + h(x) \hat{\vartheta}(\bar{x}_j))$ is the residual error.

468 From the ETM introduced in Section III-A, we can find
469 that the closed-loop system (4) is a hybrid system. Let the
470 augmented state be $\mathcal{X} = [x^\top, \bar{x}_j^\top, \tilde{\omega}_c^\top]^\top$. Then, we can describe
471 the hybrid dynamical system as follows.

472 1) *Continuous Dynamics:*

$$473 \quad \dot{\mathcal{X}}(t) = \begin{bmatrix} f(x) + \mathcal{F}(x, \bar{x}_j) \\ 0 \\ -l_c \varphi \varphi^\top \tilde{\omega}_c + \frac{l_c \varphi \varepsilon_H}{(1 + \phi^\top \phi)^2} \end{bmatrix} \quad \forall t \in [t_j, t_{j+1}) \quad (40)$$

474 where

$$475 \quad \mathcal{F}(x, \bar{x}_j) = -\beta g(x) \tanh\left(\frac{1}{2\beta} g^\top(\bar{x}_j) \nabla \sigma_c^\top(\bar{x}_j) \hat{\omega}_c\right) \\ 476 \quad - \frac{1}{2\rho} h(x) h^\top(\bar{x}_j) \nabla \sigma_c^\top(\bar{x}_j) \hat{\omega}_c.$$

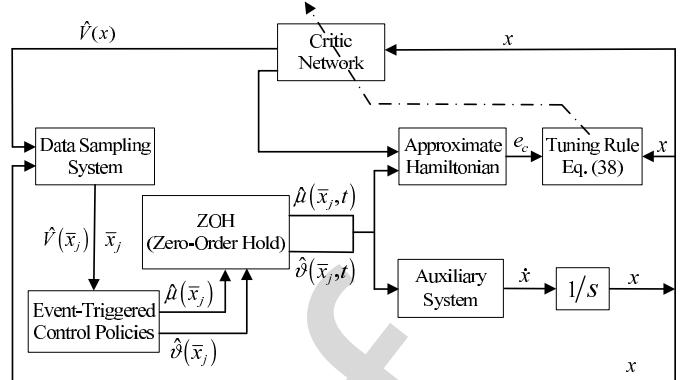


Fig. 1. Block diagram of the proposed ETC strategy.

2) Discrete Dynamics:

$$477 \quad \mathcal{X}(t^+) = \mathcal{X}(t) + \begin{bmatrix} 0 \\ \bar{x}_j - x(t) \\ 0 \end{bmatrix} \quad t = t_{j+1} \quad (41) \quad 478$$

479 where $\mathcal{X}(t^+) = \lim_{\eta \rightarrow 0^+} \mathcal{X}(t + \eta)$ with $\eta \in (0, t_{j+1} - t_j)$. 479

480 Based on the above mentioned analyses, we present the 480
481 block diagram of the proposed ETC strategy in Fig. 1. 481

IV. STABILITY ANALYSIS

482 Before proving stabilities of systems (40) and (41), we pro- 483
484 vide two assumptions introduced in [4] and [52], respectively. 484

485 *Assumption 4:* The derivative of the basic function vector is 485
486 bounded as $\|\nabla \sigma_c(x)\| \leq b_{\sigma_c}$ ($\forall x \in \Omega$), where b_{σ_c} is a positive 486
487 constant. In addition, there exist positive constants $b_{\varepsilon_{\mu^*}}$, $b_{\varepsilon_{\vartheta^*}}$, 487
488 and b_{ε_H} such the approximation errors $\varepsilon_{\mu^*}(\bar{x}_j)$, $\varepsilon_{\vartheta^*}(\bar{x}_j)$, and the 488
489 residual error ε_H bounded as $\|\varepsilon_{\mu^*}(\bar{x}_j)\| \leq b_{\varepsilon_{\mu^*}}$, $\|\varepsilon_{\vartheta^*}(\bar{x}_j)\| \leq 489$
490 $b_{\varepsilon_{\vartheta^*}}$, and $\|\varepsilon_H\| \leq b_{\varepsilon_H}$ ($\forall \bar{x}_j, x \in \Omega$), respectively. 490

491 Similar to (16) imposed on $u^*(x)$, we present the following 491
492 assumption for $v^*(x)$. 492

493 *Assumption 5:* $v^*(x)$ satisfies the Lipschitz condition on Ω . 493
494 That is, for all $x, \bar{x}_j \in \Omega$, there exists a Lipschitz constant 494
495 $K_{v^*} > 0$ such that 495

$$496 \quad \|v^*(x) - v^*(\bar{x}_j)\| \leq K_{v^*} \|x - \bar{x}_j\| = K_{v^*} \|e_j\|. \quad 496$$

497 Let

$$498 \quad G(\mathcal{A}_\kappa(x)) = \beta \tanh(\mathcal{A}_\kappa(x)), \quad \kappa = 1, 2 \quad (42) \quad 498$$

499 where $\mathcal{A}_1(x) = (1/(2\beta)) g^\top(x) \nabla \sigma_c^\top(x) \omega_c$ and $\mathcal{A}_2(x) = 499$
500 $(1/(2\beta)) g^\top(x) \nabla \sigma_c^\top(x) \hat{\omega}_c$. Then, using Taylor's theorem [42],
501 it follows: 501

$$502 \quad G(\mathcal{A}_1(x)) = G(\mathcal{A}_2(x)) + \frac{\partial G(\mathcal{A}_2)}{\partial \mathcal{A}_2}(\mathcal{A}_1(x) - \mathcal{A}_2(x)) \quad 502$$

$$503 \quad + O((\mathcal{A}_1(x) - \mathcal{A}_2(x))^2) \quad 503$$

$$504 \quad = G(\mathcal{A}_2(x)) + \frac{1}{2} (I_m - \mathcal{B}(\mathcal{A}_2(x))) g^\top(x) \quad 504$$

$$505 \quad \times \nabla \sigma_c^\top(x) \tilde{\omega}_c + O((\mathcal{A}_1(x) - \mathcal{A}_2(x))^2) \quad 505$$

506 with $\mathcal{B}(\mathcal{A}_2(x)) = \text{diag}\{\tanh^2(\mathcal{A}_{2i}(x))\}$, $i = 1, 2, \dots, m$, and
507 the high-order term $O((\mathcal{A}_1(x) - \mathcal{A}_2(x))^2)$. 507

508 *Lemma 1:* The high-order term given in (43) is bounded as
 509 $\|O((\mathcal{A}_1(x) - \mathcal{A}_2(x))^2)\| \leq 2\sqrt{m} + g_M b_{\sigma_c} \|\tilde{\omega}_c\|. \quad (44)$

510 *Proof:* From (43), we can find

511
$$\|O((\mathcal{A}_1(x) - \mathcal{A}_2(x))^2)\| \leq \|G(\mathcal{A}_1(x))\| + \|G(\mathcal{A}_2(x))\|$$

 512
$$+ \frac{1}{2} \|I_m - \mathcal{B}(\mathcal{A}_2(x))\| \|g(x)\|$$

 513
$$\times \|\nabla \sigma(x)\| \|\tilde{\omega}_c\|. \quad (45)$$

514 Since $\|\tanh(x)\| \leq 1$ for all $x \in \mathbb{R}^n$, we can conclude that
 515 $\|G(\mathcal{A}_\kappa(x))\| = (\sum_{i=1}^m \tanh^2(\mathcal{A}_{\kappa i}(x)))^{1/2} \leq \sqrt{m}$, $\kappa = 1, 2$, and
 516 $\|I_m - \mathcal{B}(\mathcal{A}_2(x))\| \leq 2$. Then, using Assumptions 2 and 4, we
 517 can see that (45) yields (44). ■

518 *Theorem 2:* Consider auxiliary system (4) associated with
 519 the ETHJB equation (30). Let Assumptions 1–5 be valid
 520 and take the control policies proposed as in (35) and (36).
 521 Suppose that the initial control for system (4) is admissible
 522 and the weight tuning rule for the critic network is described
 523 as (38). Then, the closed-loop system (4) and the weight esti-
 524 mation error $\tilde{\omega}_c$ are UUB only if the following event-triggering
 525 condition holds:

526
$$\|e_j\|^2 \leq \frac{(1-2\gamma)\lambda_{\min}(Q)}{4K_{\max}^2} \|x\|^2 \triangleq \|\bar{e}_T\|^2 \quad (46)$$

527 where $K_{\max} = \max\{K_{u^*}, K_{v^*}\}$, $0 < \gamma < 1/2$ is a design
 528 parameter, and \bar{e}_T is the triggering threshold, and provided
 529 that the following inequality holds:

530
$$\frac{l_c}{2} \lambda_{\min}(\varphi \varphi^\top) - (16g_M^2 + h_M^2/\rho^2) b_{\sigma_c}^2 > 0 \quad (47)$$

531 where $\lambda_{\min}(\varphi \varphi^\top)$ denotes the minimum eigenvalue of $\varphi \varphi^\top$, φ
 532 satisfies the PE condition, and h_M is the bound of $h(x)$.

533 *Proof:* We take the Lyapunov function candidate as

534
$$L(t) = \underbrace{V^*(\bar{x}_j)}_{L_1(t)} + \underbrace{V^*(x(t))}_{L_2(t)} + \underbrace{(1/2)\tilde{\omega}_c^\top \tilde{\omega}_c}_{L_3(t)}.$$

535 Since the closed-loop system (4) is a hybrid system, we present
 536 the stability analysis from following two circumstances.

537 *Situation I:* Events are not triggered, i.e., $t \in [t_j, t_{j+1})$, $j \in \mathbb{N}$.
 538 Then, we have $\dot{L}_1(t) = \dot{V}^*(\bar{x}_j) = 0$.

539 Taking the derivative of $L_2(t)$ and using the trajectory
 540 generated from $\dot{x} = f(x) + g(x)\hat{\mu}(\bar{x}_j) + h(x)\hat{\vartheta}(\bar{x}_j)$, we have

541
$$\begin{aligned} \dot{L}_2(t) &= (V_x^*)^\top (f(x) + g(x)\hat{\mu}(\bar{x}_j) + h(x)\hat{\vartheta}(\bar{x}_j)) \\ &= (V_x^*)^\top (f(x) + g(x)u^*(x) + h(x)v^*(x)) \\ &\quad + (V_x^*)^\top g(x)(\hat{\mu}(\bar{x}_j) - u^*(x)) \\ &\quad + (V_x^*)^\top h(x)(\hat{\vartheta}(\bar{x}_j) - v^*(x)). \end{aligned} \quad (48)$$

545 Substituting (20) and (21) into (48), it follows:

546
$$\begin{aligned} \dot{L}_2(t) &= -\Psi(x) - x^\top Qx - \rho \|u^*(x)\|^2 - \mathcal{W}(u^*(x)) \\ &\quad + \underbrace{2\beta \left(\tanh^{-1}(u^*(x)/\beta) \right)^\top (u^*(x) - \hat{\mu}(\bar{x}_j))}_{\Xi} \\ &\quad + 2\rho (v^*(x))^\top (v^*(x) - \hat{\vartheta}(\bar{x}_j)). \end{aligned} \quad (49)$$

549 Applying Young's inequality $2y^\top z \leq \|y\|^2 + \|z\|^2$ to Ξ in (49),
 550 we obtain

551
$$\begin{aligned} \Xi &\leq \beta^2 \left\| \tanh^{-1}(u^*(x)/\beta) \right\|^2 + \|u^*(x) - \hat{\mu}(\bar{x}_j)\|^2 \\ &= \beta^2 \sum_{i=1}^m \left(\tanh^{-1}(u_i^*(x)/\beta) \right)^2 + \|u^*(x) - \hat{\mu}(\bar{x}_j)\|^2. \end{aligned} \quad (52)$$

553 Then, by using (26), we can see that

554
$$-\mathcal{W}(u^*(x)) + \Xi \leq \mathfrak{f}(x) + \|u^*(x) - \hat{\mu}(\bar{x}_j)\|^2 \quad (50)$$

555 with $\mathfrak{f}(x)$ defined as in (27). As indicated in the proof
 556 of Theorem 1, $\mathfrak{f}(x)$ is bounded as $\|\mathfrak{f}(x)\| \leq \epsilon_M$. Thus,
 557 combining (49) and (50), we have

558
$$\begin{aligned} \dot{L}_2(t) &\leq -\Psi(x) - x^\top Qx - \rho \left\| \hat{\vartheta}(\bar{x}_j) \right\|^2 + \epsilon_M \\ &\quad + \underbrace{\|u^*(x) - \hat{\mu}(\bar{x}_j)\|^2}_{\Lambda_1} + \underbrace{\rho \|v^*(x) - \hat{\vartheta}(\bar{x}_j)\|^2}_{\Lambda_2}. \end{aligned} \quad (51)$$

560 Applying the inequality $\|y+z\|^2 \leq 2\|y\|^2 + 2\|z\|^2$ to Λ_1 in (51)
 561 and using Assumption 3 as well as (32) and (35), it follows:

562
$$\begin{aligned} \Lambda_1 &= \|(u^*(x) - \mu^*(\bar{x}_j)) + (\mu^*(\bar{x}_j) - \hat{\mu}(\bar{x}_j))\|^2 \\ &\leq 2\|\mu^*(\bar{x}_j) - \hat{\mu}(\bar{x}_j)\|^2 + 2\|u^*(x) - \mu^*(\bar{x}_j)\|^2 \\ &\leq 2\|G(\mathcal{A}_2(\bar{x}_j)) - G(\mathcal{A}_1(\bar{x}_j)) + \varepsilon_{\mu^*}(\bar{x}_j)\|^2 + 2K_{u^*}^2 \|e_j\|^2 \end{aligned} \quad (52)$$

566 where $G(\mathcal{A}_\kappa(\bar{x}_j)) = G(\mathcal{A}_\kappa(x))|_{x=\bar{x}_j}$ with $G(\mathcal{A}_\kappa(x))$ defined
 567 as in (42). By using (43) and Lemma 1 as well as Young's
 568 inequality, we derive

569
$$\begin{aligned} &2\|G(\mathcal{A}_2(\bar{x}_j)) - G(\mathcal{A}_1(\bar{x}_j)) + \varepsilon_{\mu^*}(\bar{x}_j)\|^2 \\ &\leq 2\left(2g_M b_{\sigma_c} \|\tilde{\omega}_c\| + 2\sqrt{m} + b_{\varepsilon_{\mu^*}}\right)^2 \\ &\leq 16g_M^2 b_{\sigma_c}^2 \|\tilde{\omega}_c\|^2 + 4a_0^2 \end{aligned} \quad (53)$$

572 with $a_0 = 2\sqrt{m} + b_{\varepsilon_{\mu^*}}$.

573 Thus, combining (52) and (53), it follows:

574
$$\Lambda_1 \leq 2K_{u^*}^2 \|e_j\|^2 + 16g_M^2 b_{\sigma_c}^2 \|\tilde{\omega}_c\|^2 + 4a_0^2. \quad (54)$$

575 Similar to the process of calculating Λ_1 , we obtain

576
$$\begin{aligned} \Lambda_2 &= \|(v^*(x) - \vartheta^*(\bar{x}_j)) + (\vartheta^*(\bar{x}_j) - \hat{\vartheta}(\bar{x}_j))\|^2 \\ &\leq 2\|\vartheta^*(\bar{x}_j) - \hat{\vartheta}(\bar{x}_j)\|^2 + 2\|v^*(x) - \vartheta^*(\bar{x}_j)\|^2 \\ &\leq 2\left\| -\frac{h^\top(\bar{x}_j)}{2\rho} \nabla \sigma_c^\top(\bar{x}_j) \tilde{\omega}_c + \varepsilon_{\vartheta^*}(\bar{x}_j) \right\|^2 + 2K_{v^*}^2 \|e_j\|^2 \\ &\leq 2K_{v^*}^2 \|e_j\|^2 + \left(h_M^2 b_{\sigma_c}^2 / \rho^2 \right) \|\tilde{\omega}_c\|^2 + 4b_{\varepsilon_{\vartheta^*}}^2. \end{aligned} \quad (55)$$

580 Note that $\Psi(x)$ given in (5) and $\rho \|\hat{\vartheta}(\bar{x}_j)\|^2$ are non-negative
 581 functions. Then, from (51), (54), and (55), we get

582
$$\begin{aligned} \dot{L}_2(t) &\leq -\lambda_{\min}(Q) \|x\|^2 + 4K_{\max}^2 \|e_j\|^2 \\ &\quad + \left(16g_M^2 + h_M^2 / \rho^2 \right) b_{\sigma_c}^2 \|\tilde{\omega}_c\|^2 + 4a_0^2 + 4b_{\varepsilon_{\vartheta^*}}^2 + \epsilon_M \end{aligned} \quad (56)$$

584 with $K_{\max} = \max\{K_{u^*}, K_{v^*}\}$.

586 Taking the time derivative of $L_3(t)$ and using the weight
587 estimation error dynamics (39), it follows:

$$588 \quad \dot{L}_3(t) = -l_c \tilde{\omega}_c^\top \varphi \varphi^\top \tilde{\omega}_c + l_c \frac{\tilde{\omega}_c^\top \varphi}{1 + \phi^\top \phi} \varepsilon_H. \quad (57)$$

589 Noticing that $1 + \phi^\top \phi \geq 1$ and using the above men-
590 tioned Young's inequality, we develop the last term in
591 (57) as

$$592 \quad \frac{l_c}{1 + \phi^\top \phi} \tilde{\omega}_c^\top \varphi \varepsilon_H \leq \frac{l_c}{2(1 + \phi^\top \phi)} \left(\tilde{\omega}_c^\top \varphi \varphi^\top \tilde{\omega}_c + \varepsilon_H^\top \varepsilon_H \right)$$

$$593 \quad \leq \frac{l_c}{2} \tilde{\omega}_c^\top \varphi \varphi^\top \tilde{\omega}_c + \frac{l_c}{2} \varepsilon_H^\top \varepsilon_H.$$

594 Then, (57) yields

$$595 \quad \dot{L}_3(t) \leq -\frac{l_c}{2} \tilde{\omega}_c^\top \varphi \varphi^\top \tilde{\omega}_c + \frac{l_c}{2} \varepsilon_H^\top \varepsilon_H$$

$$596 \quad \leq -\frac{l_c}{2} \lambda_{\min}(\varphi \varphi^\top) \|\tilde{\omega}_c\|^2 + \frac{l_c}{2} b_{\varepsilon_H}^2. \quad (58)$$

597 By using (56) and (58), we can see that

$$598 \quad \dot{L}(t) \leq -2\gamma \lambda_{\min}(Q) \|x\|^2 - (1 - 2\gamma) \lambda_{\min}(Q) \|x\|^2$$

$$599 \quad - \left(\frac{l_c}{2} \lambda_{\min}(\varphi \varphi^\top) - (16g_M^2 + h_M^2/\rho^2) b_{\sigma_c}^2 \right) \|\tilde{\omega}_c\|^2$$

$$600 \quad + 4K_{\max}^2 \|e_j\|^2 + 4a_0^2 + 4b_{\varepsilon_{\theta^*}}^2 + \epsilon_M. \quad (59)$$

601 If the condition (46) holds, then (59) yields

$$602 \quad \dot{L}(t) \leq -2\gamma \lambda_{\min}(Q) \|x\|^2 + 4a_0^2 + 4b_{\varepsilon_{\theta^*}}^2 + \epsilon_M$$

$$603 \quad - \left(\frac{l_c}{2} \lambda_{\min}(\varphi \varphi^\top) - (16g_M^2 + h_M^2/\rho^2) b_{\sigma_c}^2 \right) \|\tilde{\omega}_c\|^2.$$

604 Under the condition (47), we can find that $\dot{L}(t) < 0$
605 only if we can ensure one of the following inequalities
606 holds:

$$607 \quad \|x\| > \sqrt{\frac{4a_0^2 + 4b_{\varepsilon_{\theta^*}}^2 + \epsilon_M}{2\gamma \lambda_{\min}(Q)}} \triangleq c_1 \quad (60)$$

608 or

$$609 \quad \|\tilde{\omega}_c\| > \sqrt{\frac{8a_0^2 + 8b_{\varepsilon_{\theta^*}}^2 + 2\epsilon_M}{l_c \lambda_{\min}(\varphi \varphi^\top) - (32g_M^2 + 2h_M^2/\rho^2) b_{\sigma_c}^2}} \triangleq c_2. \quad (61)$$

610 Then, uniform ultimate boundedness of both $x(t)$ and $\tilde{\omega}_c$
611 is obtained by using Lyapunov extension theorem [47].
612 Meanwhile, the ultimate bounds of $x(t)$ and $\tilde{\omega}_c$ are c_1 given
613 in (60) and c_2 given in (61), respectively.

614 *Situation II:* Events are triggered, i.e., $t = t_j, j \in \mathbb{N}$. Then,
615 we take the difference of Lyapunov function candidate $L(t_j)$
616 into account, that is

$$617 \quad \Delta L(t_j) = V^*(\bar{x}_{j+1}) - V^*(\bar{x}_j) + \Pi(x(t_j^+), \bar{x}_j)$$

618 where $x(t_j^+) = \lim_{\eta \rightarrow 0^+} x(t_j + \eta)$ with $\eta \in (0, t_{j+1} - t_j)$, and

$$619 \quad \Pi(x(t_j^+), \bar{x}_j) = V^*(x(t_j^+)) - V^*(x(t_j))$$

$$620 \quad + \frac{1}{2} \tilde{\omega}_c^\top(t_j^+) \tilde{\omega}_c(t_j^+) - \frac{1}{2} \tilde{\omega}_c^\top(t_j) \tilde{\omega}_c(t_j).$$

Suppose that $x(t) \notin E_{c_1} = \{x(t) \in \mathbb{R}^n \mid \|x(t)\| \leq c_1\}$ or $\tilde{\omega}_c \notin E_{c_2} = \{\tilde{\omega}_c \in \mathbb{R}^n \mid \|\tilde{\omega}_c\| \leq c_2\}$. Then, from
621 Situation I, we have $dL(t)/dt < 0 \forall t \in [t_j, t_{j+1})$. That is,
622 $L(t)$ is strictly monotonically decreasing on $[t_j, t_{j+1})$. Thus, it
623 implies

$$624 \quad L(t_j) > L(t_j + \eta) \quad \forall \eta \in (0, t_{j+1} - t_j). \quad (62)$$

625 Taking $\eta \rightarrow 0^+$ over both sides of (62), we can conclude

$$626 \quad L(t_j) \geq \lim_{\eta \rightarrow 0^+} L(t_j + \eta) = L(t_j^+).$$

627 Thus, we have

$$628 \quad V^*(x(t_j)) + \frac{1}{2} \tilde{\omega}_c^\top(t_j) \tilde{\omega}_c(t_j) \geq V^*(x(t_j^+)) + \frac{1}{2} \tilde{\omega}_c^\top(t_j^+) \tilde{\omega}_c(t_j^+). \quad (63)$$

629 From (63), it follows:

$$630 \quad \Pi(x(t_j^+), \bar{x}_j) \leq 0. \quad (64)$$

631 On the other hand, the uniform ultimate boundedness of the
632 state $x(t)$ in Situation I implies

$$633 \quad V^*(\bar{x}_{j+1}) \leq V^*(\bar{x}_j). \quad (65)$$

634 Therefore, under the condition that $x(t) \notin E_{c_1} = \{x(t) \in \mathbb{R}^n \mid \|x(t)\| \leq c_1\}$ (or $\tilde{\omega}_c \notin E_{c_2} = \{\tilde{\omega}_c \in \mathbb{R}^n \mid \|\tilde{\omega}_c\| \leq c_2\}$),
635 we can conclude that $\Delta L(t_j) < 0$ based on (64) and (65).
636 According to [53], uniform ultimate boundedness of $x(t)$
637 and $\tilde{\omega}_c$ is guaranteed. Meanwhile, the ultimate bounds of
638 $x(t)$ and $\tilde{\omega}_c$ are c_1 given in (60) and c_2 given in (61),
639 respectively. \blacksquare

V. SIMULATION STUDY

640 This section presents two examples to show the effec-
641 tiveness and applicabilities of the established theoretical
642 results.

A. Example 1: Nonlinear Plants

643 We study the continuous-time nonlinear system with a
644 mismatched perturbation given by

$$645 \quad \dot{x}_1 = -x_1 + x_2 + \delta_1 x_1 \cos\left(\frac{1}{x_2 + \delta_2}\right) + \delta_3 x_2 \sin(x_1 x_2) \quad (65)$$

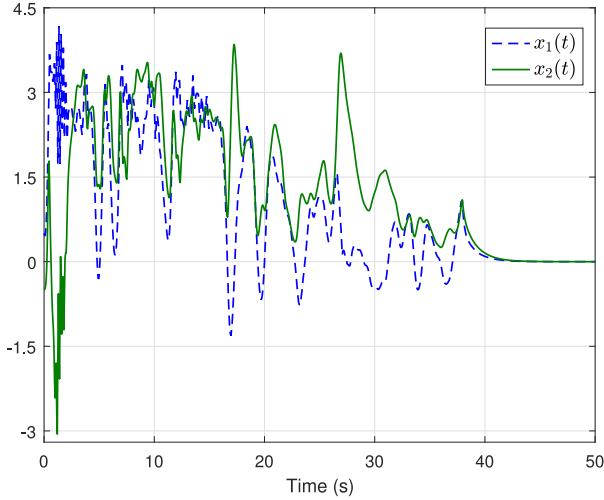
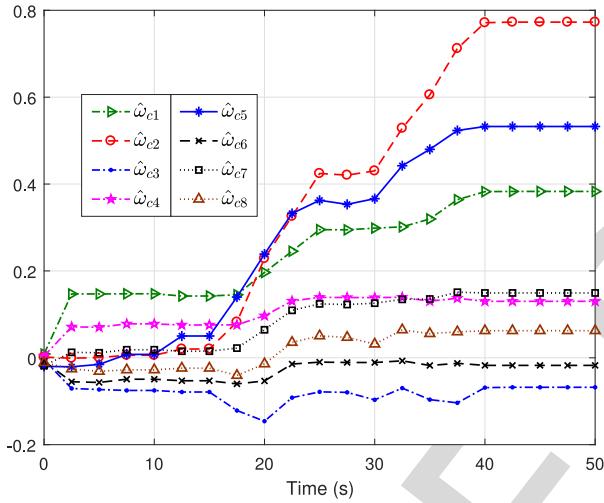
$$646 \quad \dot{x}_2 = -0.5(x_1 + x_2) + 0.5x_2 \sin^2(x_1) + \sin(x_1)u \quad (66)$$

647 where $x = [x_1, x_2]^\top \in \mathbb{R}^2$ is the state, $u \in \{u \in \mathbb{R} : |u| \leq \beta\}$ is
648 the control input, and $\delta_\zeta, \zeta = 1, 2, 3$, are unknown parameters.
649 In this example, we set $\beta = 2$ and randomly choose $\delta_1 \in$
650 $[-\sqrt{2}/2, \sqrt{2}/2]$, $\delta_2 \in [-100, 100]$, and $\delta_3 \in [-\sqrt{2}/2, \sqrt{2}/2]$.
651 The initial state is $x_0 = [0.5, -0.5]^\top$.
652

653 The mismatched perturbation in system (66) is

$$654 \quad d(x) = \delta_1 x_1 \cos\left(\frac{1}{x_2 + \delta_2}\right) + \delta_3 x_2 \sin(x_1 x_2). \quad (67)$$

655 After making some computations, we obtain $\|d(x)\| \leq \|x\|$.
656 Hence, we can let $d_M(x) = \|x\|$. Since $g(x) = [0, \sin(x_1)]^\top$
657 and $k(x) = [1, 0]^\top$, we have $g(x)g^+(x)k(x) = 0$. Then,
658

Fig. 2. Evolution of auxiliary system states $x_1(t)$ and $x_2(t)$ in Example 1.Fig. 3. Convergence of critic network weight vector $\hat{\omega}_c$ in Example 1.

663 based on (4), the auxiliary system related to (66) can be
664 proposed as

$$665 \quad \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -x_1 + x_2 \\ -0.5(x_1 + x_2 - x_2 \sin^2(x_1)) \end{bmatrix} + g(x)u + k(x)v \\ 666 \quad (67)$$

667 with $g(x) = [0, \sin(x_1)]^T$, $k(x) = [1, 0]^T$, and $v \in \mathbb{R}$.

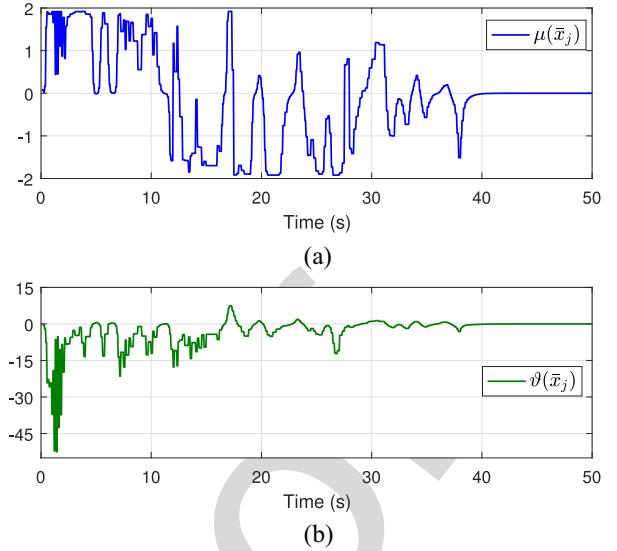
668 Since $\|g^+(x)k(x)d(x)\| = 0$, we choose $\ell_M(x) = 0$. Let
669 $\rho = 0.25$ and $Q = I_2$. Then, based on (5), the cost function
670 for system (67) can be given as

$$671 \quad V^{u,v}(x_0) = \int_0^\infty (1.25\|x\|^2 + \mathcal{W}(u) + 0.25v^T v) dt$$

672 where

$$673 \quad \mathcal{W}(u) = 2 \int_0^u \beta \tanh^{-1}(\xi/\beta) d\xi \\ 674 \quad = 2\beta u \tanh^{-1}(u/\beta) + \beta^2 \ln(1 - u^2/\beta^2). \quad (68)$$

675 To obtain the optimal ETC, we employ the critic
676 network (34). The parameters used in the critic network
677 and the event-triggering condition (46) are given as follows:

Fig. 4. (a) ETC $\mu(\bar{x}_j)$. (b) Auxiliary ETC $\vartheta(\bar{x}_j)$.

678 $l_c = 0.5$, $\tilde{n}_c = 8$, $\gamma = 0.3$, and $K_{\max} = 3.5$. The basic function
679 vector used in the critic network is

$$680 \quad \sigma_c(x) = [x_1^2, x_2^2, x_1x_2, x_1^4, x_2^4, x_1^3x_2, x_1^2x_2^2, x_1x_2^3]^T. \quad 681$$

682 The weight vector in the critic network is written as
683 $\hat{\omega}_c = [\hat{\omega}_{c1}, \hat{\omega}_{c2}, \dots, \hat{\omega}_{c8}]^T$. Furthermore, to
684 ensure φ to be persistently exciting, we add the
685 exploration noise $n_e(t) = 12e^{-0.05t}[\sin^2(t)\cos(t) +$
686 $\sin^2(2t)\cos(0.1t) + \sin^2(-1.2t)\cos(0.5t) + \sin^5(t) +$
687 $\sin^2(1.12t) + \cos(2.4t)\sin^3(2.4t)]$ into the control at the
688 first 38 s.

689 *Remark 5:* Choosing appropriate basic function vectors for
690 critic networks is a challenging issue. Because the number of
691 the elements in the basis function vector is closely associated
692 with the number of neurons in the critic network. In this
693 example, the basic function vector is determined via computer
694 simulations. We find that selecting the basic function vector
695 as the above mentioned $\sigma_c(x)$ can lead to desirable results. In
696 Example 2, the basic function vector is also determined by
697 using computer simulations.

698 The evolution of auxiliary system states is illustrated in
699 Fig. 2. As displayed in Fig. 2, the auxiliary system states
700 $x_1(t)$ and $x_2(t)$ turn out to be asymptotically stable. The con-
701 vergence of the critic network weight vector $\hat{\omega}_c$ is shown in
702 Fig. 3. It can be seen that, after the first 40 s, the critic network
703 weight vector converges to $\hat{\omega}_c^{\text{final}} = [0.383, 0.773, -0.068,$
704 $0.130, 0.533, -0.018, 0.149, 0.062]^T$. Fig. 4(a) and (b)
705 describes the ETC $\mu(\bar{x}_j)$ and the auxiliary ETC $\vartheta(\bar{x}_j)$. The
706 validity of condition (17) is verified by presenting Fig. 5.
707 As indicated in Fig. 5, (17) holds only if $t \geq 40$ s (i.e.,
708 $t_s = 40$ s). Fig. 6(a) and (b) shows the two norms (i.e., the
709 norm of the event-triggering condition $\|e_j\|$ and the norm of
710 the event-triggering threshold $\|\bar{e}_T\|$) and the sampling period
711 T_s , respectively. Observing Fig. 6(b), we can find that $\min T_s =$
712 0.1 s. Actually, there are 289 state samples in Fig. 6(b),
713 which indicates that only 289 state samples are necessary to
714 implement the ETC algorithm. Nevertheless, under the same

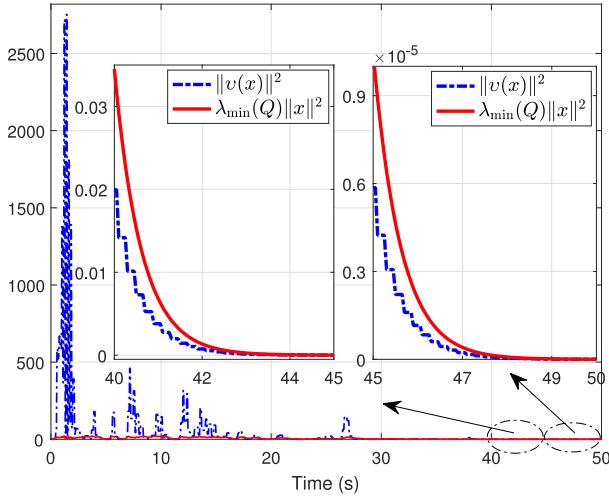
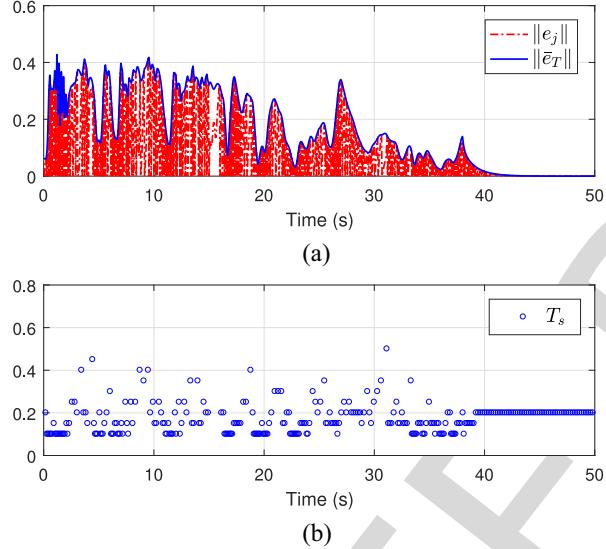
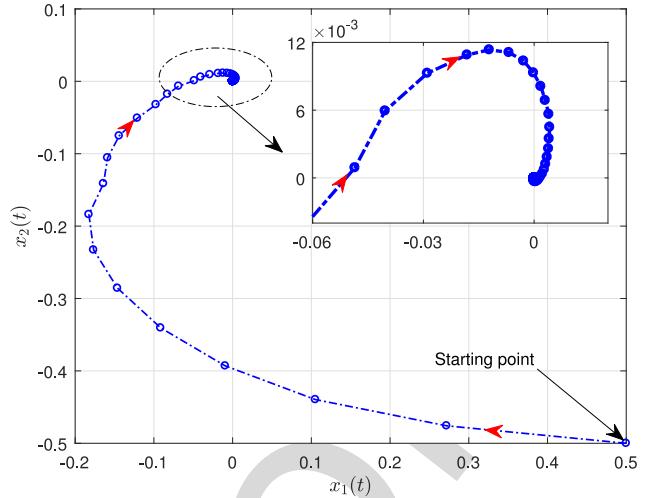
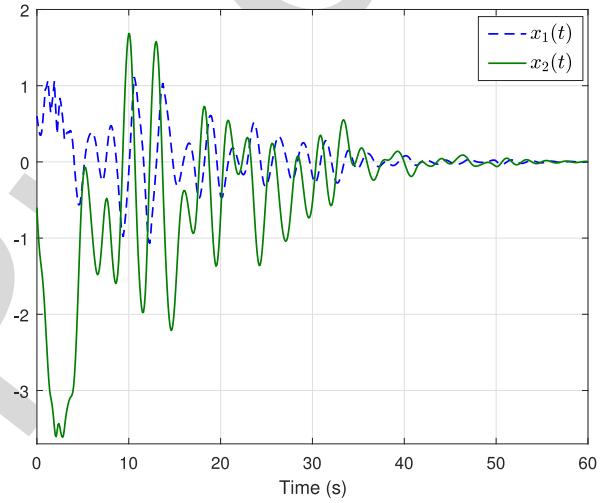


Fig. 5. Verification of condition (17) in Example 1.

Fig. 6. (a) Norm of the event-triggering condition $\|e_j\|$ and norm of the event-triggering threshold $\|\bar{e}_T\|$. (b) Sampling period T_s in Example 1.Fig. 7. States $x_1(t)$ and $x_2(t)$ of closed-loop system (66).Fig. 8. Evolution of auxiliary system states $x_1(t)$ and $x_2(t)$ in Example 2.

$M = 4/3$ kg, the acceleration of gravity $g = 9.8$ m/s², the length of the pendulum $l = 3/2$ m, the rotary inertia $J = 4/3ML^2$ kg · m², and the frictional factor $f_d = 0.2$. We assume that $d = \delta_1 \theta \sin(\delta_2 v)$ with δ_1 and δ_2 randomly chosen within the intervals $[-\sqrt{2}/2, \sqrt{2}/2]$ and $[-2, 2]$, respectively.

Let $x_1 = \theta$ and $x_2 = v$. Observing that $g(x) = [0, 0.25]^\top$ and $k(x) = [1, -0.2]^\top$, we obtain $h(x) = (I_2 - g(x)g^+(x))k(x) = [1, 0]^\top$. Then, according to (4), the auxiliary system related to (69) can be proposed as

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -4.9 \sin(x_1) - 0.2x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 0.25 \end{bmatrix}u + \begin{bmatrix} 1 \\ 0 \end{bmatrix}v. \quad (70)$$

The initial state is $x_0 = [0.6, -0.6]^\top$. Since $d(x) = \delta_1 x_1 \sin(\delta_2 x_2)$, we have that $\|d(x)\| \leq \sqrt{2}/2\|x\|$ and $\|g^+(x)k(x)d(x)\| \leq 0.4\sqrt{2}\|x\|$. Therefore, we choose $d_M(x) = (\sqrt{2}/2)\|x\|$ and $\ell_M(x) = 0.4\sqrt{2}\|x\|$ to satisfy Assumption 2. Selecting $\rho = 0.4$, $Q = I_2$, and using (5), we can present the cost function for system (70) as follows:

$$V^{u,v}(x_0) = \int_0^\infty (1.84\|x\|^2 + \mathcal{W}(u) + 0.4v^\top v) dt \quad (745)$$

with $\mathcal{W}(u)$ defined as in (68). 746

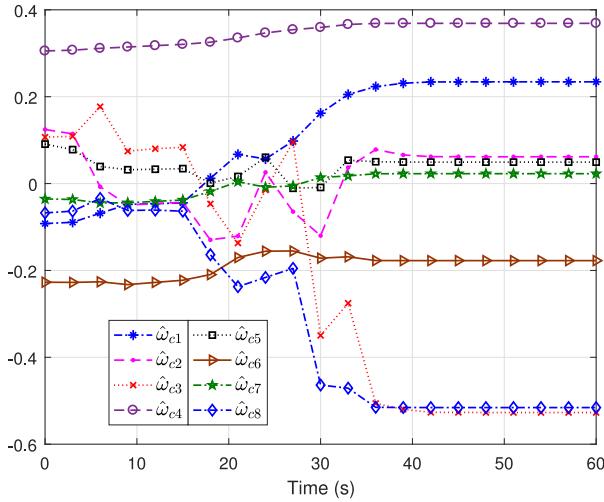
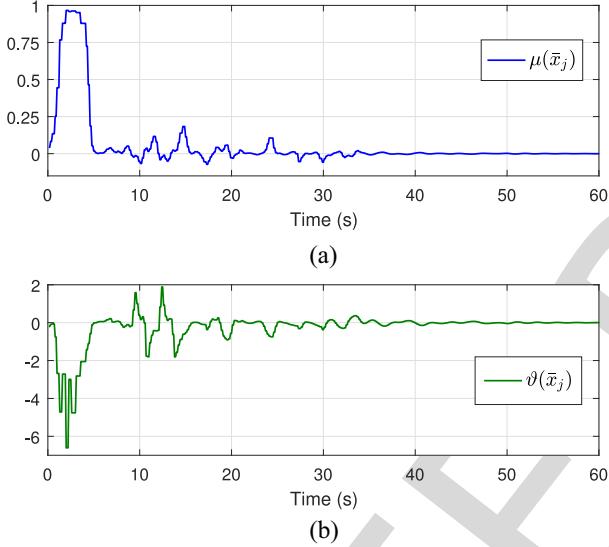
714 condition, there are 1000 state samples utilized to implement 715 the time-triggering control algorithm. Consequently, the 716 present ETC strategy reduces the controller updates up to 717 71.1%. In this sense, the computational burden is remarkably 718 decreased. Substituting the above obtained weight vector $\hat{\omega}_c^{\text{final}}$ 719 to (35), we derive the approximate optimal ETC. Fig. 7 720 displays the states of closed-loop system (66). From Fig. 7, we 721 can see that the states of system (66) are stable under the 722 approximate ETC.

723 B. Example 2: Application to the Pendulum System

724 We consider the pendulum system given in [19] as

$$725 \quad \begin{cases} \frac{d\theta}{dt} = v + d \\ J \frac{dv}{dt} = u - Mgl \sin(\theta) - f_d \frac{d\theta}{dt} \end{cases} \quad (69)$$

726 with the current angle position of the pendulum $\theta \in \mathbb{R}$, the 727 angular velocity $v \in \mathbb{R}$, the perturbation $d \in \mathbb{R}$, the control 728 $u \in \{u \in \mathbb{R} : |u| \leq 1\}$ (note: $\beta = 1$), the mass of the pendulum

Fig. 9. Convergence of critic network weight vector $\hat{\omega}_c$ in Example 2.Fig. 10. (a) ETC $\mu(\bar{x}_j)$. (b) Auxiliary ETC $\vartheta(\bar{x}_j)$.

The critic network given as in (34) is applied to derive the optimal ETC law for system (70). The parameters employed in the critic network and the event-triggering condition (46) are the same as in Example 1. The basic function vector used in the critic network is

$$\sigma_c(x) = [x_1^2, x_2^2, x_1 x_2, x_1^4, x_2^4, x_1^3 x_2, x_1^2 x_2^2, x_1 x_2^3]^T$$

and the weight vector in the critic network is denoted as $\hat{\omega}_c = [\hat{\omega}_{c1}, \hat{\omega}_{c2}, \dots, \hat{\omega}_{c8}]^T$. To ensure φ to be persistently exciting, we add the following exploration noise $n_e(t) = 3e^{-0.15t}[\sin^2(t)\cos(t) + \sin^2(2t)\cos(0.1t) + \dots + \sin^2(-1.2t)\cos(0.5t) + \sin^5(t) + \sin^2(1.12t) + \cos(2.4t)\sin^3(2.4t)]$ into the control at the first 50 s.

The evolution of auxiliary system states is displayed in Fig. 8. As illustrated in Fig. 8, the auxiliary system states $x_1(t)$ and $x_2(t)$ are UUB. The convergence of the weight vector $\hat{\omega}_c$ is depicted in Fig. 9. It can be observed that, after the first 50 s, the critic network weight vector converges to $\hat{\omega}_c^{\text{final}} = [0.234, 0.062, -0.527, 0.369, 0.049, -0.177, 0.023, -0.516]^T$.

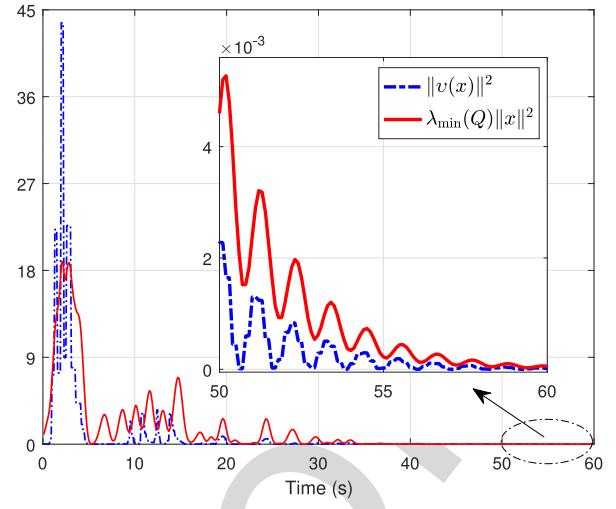


Fig. 11. Verification of condition (17) in Example 2.

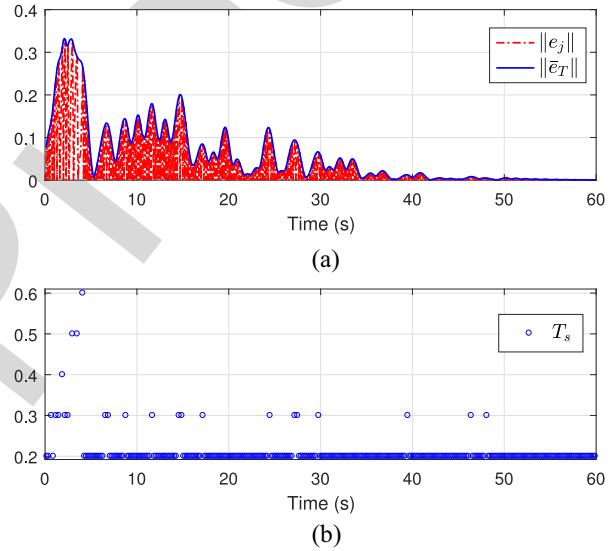
Fig. 12. (a) Norm of the event-triggering condition $\|e_j\|$ and norm of the event-triggering threshold $\|\bar{e}_T\|$. (b) Sampling period T_s in Example 2.

Fig. 10(a) and (b) indicates the ETC $\mu(\bar{x}_j)$ and the auxiliary ETC $\vartheta(\bar{x}_j)$. The validity of condition (17) is verified through Fig. 11. As shown in Fig. 11, (17) holds only if $t \geq 50$ s (i.e., $t_s = 50$ s). Fig. 12(a) and (b) describes the two norms (i.e., the norm of the event-triggering condition $\|e_j\|$ and the norm of the event-triggering threshold $\|\bar{e}_T\|$) and the sampling period T_s , respectively. From Fig. 12(b), we can see that $\min T_s = 0.2$ s. In fact, there are 284 state samples in Fig. 12(b), which shows that only 284 state samples are necessary to implement the ETC algorithm. Nonetheless, under the same condition, there are 600 state samples required to implement the time-triggering control algorithm. Accordingly, the present ETC strategy reduces the controller updates up to 52.67%. In this sense, the computational burden is remarkably decreased. Substituting the above derived weight vector $\hat{\omega}_c^{\text{final}}$ to (35), we obtain the approximate optimal ETC. Fig. 13 displays the states of closed-loop system (69). Observing Fig. 13,

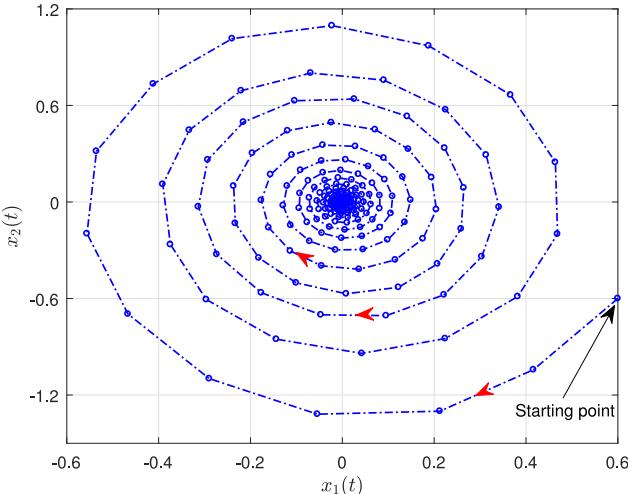


Fig. 13. States $x_1(t)$ and $x_2(t)$ of closed-loop system (69).

782 we can find that the approximate optimal ETC keeps the states
783 of system (69) stable.

VI. CONCLUSION

784 This paper has presented a robust ETC method for nonlinear
785 ear input-constrained systems with mismatched perturbations.
786 By using an SN-ACD, the robust ETC law was obtained via
787 solving the H_2 optimal control problem. Thus, the proposed
788 control method can avoid the difficulty in judging the exist-
789 ence of saddle points, which arises in H_∞ optimal control
790 problems. However, the developed robust ETC approach has
791 to calculate the Moore–Penrose pseudo-inverse of the control
792 matrix function and offer its upper bounded function. Indeed,
793 this is a limitation when applying the present control strategy
794 to nonlinear systems with complicated structures. Hence, how
795 to relax this condition is one subject of our future studies.

796 On the other hand, this robust ETC approach is devel-
797 oped for a unique agent system. In recent years, ACDs
798 have been utilized to study optimal regulations of multiagent
799 systems [54], [55]. It is well-known that multiagent plants
800 exist widely in engineering applications, such as the coordi-
801 nation of unmanned aerial vehicles. In addition, packet loss
802 is an important issue arising in multiagent systems, espe-
803 cially networked multiagent systems. Recently, Lu *et al.* [56]
804 proposed an effective model predictive tracking control strat-
805 egy for networked systems subject to random packet loss
806 and uncertainties. Accordingly, how to extend the SN-ACD
807 to develop robust ETC schemes for multiagent systems with
808 random packet loss and uncertainties is also one direction in
809 our future research.

REFERENCES

- [1] D. V. Prokhorov and D. C. Wunsch, “Adaptive critic designs,” *IEEE Trans. Neural Netw.*, vol. 8, no. 5, pp. 997–1007, Sep. 1997.
- [2] D. Wang, D. Liu, Q. Zhang, and D. Zhao, “Data-based adaptive critic designs for nonlinear robust optimal control with uncertain dynamics,” *IEEE Trans. Syst., Man, Cybern., Syst.*, vol. 46, no. 11, pp. 1544–1555, Nov. 2016.
- [3] L. Liu, Z. Wang, and H. Zhang, “Neural-network-based robust optimal tracking control for MIMO discrete-time systems with unknown uncertainty using adaptive critic design,” *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 29, no. 4, pp. 1239–1251, Apr. 2018.
- [4] D. Liu, Q. Wei, D. Wang, X. Yang, and H. Li, *Adaptive Dynamic Programming With Applications in Optimal Control*. Cham, Switzerland: Springer, 2017.
- [5] D. L. Vrabie, K. G. Vamvoudakis, and F. L. Lewis, *Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles*. London, U.K.: IET, 2013.
- [6] P. J. Werbos, “Beyond regression: New tools for prediction and analysis in the behavioral sciences,” Ph.D. dissertation, Dept. Appl. Math., Harvard Univ., Cambridge, MA, USA, 1974.
- [7] R. S. Sutton and A. G. Barto, *Reinforcement Learning: An Introduction*. Cambridge, MA, USA: MIT Press, 1998.
- [8] Q. Wei, F. L. Lewis, D. Liu, R. Song, and H. Lin, “Discrete-time local value iteration adaptive dynamic programming: Convergence analysis,” *IEEE Trans. Syst., Man, Cybern., Syst.*, vol. 48, no. 6, pp. 875–891, Jun. 2018.
- [9] Q. Wei, D. Liu, Q. Lin, and R. Song, “Discrete-time optimal control via local policy iteration adaptive dynamic programming,” *IEEE Trans. Cybern.*, vol. 47, no. 10, pp. 3367–3379, Oct. 2017.
- [10] X. Zhong, Z. Ni, and H. He, “Gr-GDHP: A new architecture for globalized dual heuristic dynamic programming,” *IEEE Trans. Cybern.*, vol. 47, no. 10, pp. 3318–3330, Oct. 2017.
- [11] W. Gao, Y. Jiang, Z.-P. Jiang, and T. Chai, “Output-feedback adaptive optimal control of interconnected systems based on robust adaptive dynamic programming,” *Automatica*, vol. 72, pp. 37–45, Oct. 2016.
- [12] Y. Jiang and Z.-P. Jiang, *Robust Adaptive Dynamic Programming*. Hoboken, NJ, USA: Wiley, 2017.
- [13] A. Heydari and S. N. Balakrishnan, “Finite-horizon control-constrained nonlinear optimal control using single network adaptive critics,” *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 24, no. 1, pp. 145–157, Jan. 2013.
- [14] Z. Wang, L. Liu, H. Zhang, and G. Xiao, “Fault-tolerant controller design for a class of nonlinear MIMO discrete-time systems via online reinforcement learning algorithm,” *IEEE Trans. Syst., Man, Cybern., Syst.*, vol. 46, no. 5, pp. 611–622, May 2016.
- [15] V. Narayanan and S. Jagannathan, “Event-triggered distributed control of nonlinear interconnected systems using online reinforcement learning with exploration,” *IEEE Trans. Cybern.*, to be published, doi: 10.1109/TCYB.2017.2741342.
- [16] B. Luo, H.-N. Wu, and T. Huang, “Off-policy reinforcement learning for H_∞ control design,” *IEEE Trans. Cybern.*, vol. 45, no. 1, pp. 65–76, Jan. 2015.
- [17] X. Xu, Z. Huang, L. Zuo, and H. He, “Manifold-based reinforcement learning via locally linear reconstruction,” *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 28, no. 4, pp. 934–947, Apr. 2017.
- [18] B. Luo, T. Huang, H.-N. Wu, and X. Yang, “Data-driven H_∞ control for nonlinear distributed parameter systems,” *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 26, no. 11, pp. 2949–2961, Nov. 2015.
- [19] Q. Wei, R. Song, and P. Yan, “Data-driven zero-sum neuro-optimal control for a class of continuous-time unknown nonlinear systems with disturbance using ADP,” *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 27, no. 2, pp. 444–458, Feb. 2016.
- [20] H. Jiang, H. Zhang, Y. Luo, and X. Cui, “ H_∞ control with constrained input for completely unknown nonlinear systems using data-driven reinforcement learning method,” *Neurocomputing*, vol. 237, pp. 226–234, May 2017.
- [21] Y. Zhu, D. Zhao, and X. Li, “Iterative adaptive dynamic programming for solving unknown nonlinear zero-sum game based on online data,” *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 28, no. 3, pp. 714–725, Mar. 2017.
- [22] K. G. Vamvoudakis, H. Modares, B. Kiumarsi, and F. L. Lewis, “Game theory-based control system algorithms with real-time reinforcement learning: How to solve multiplayer games online,” *IEEE Control Syst.*, vol. 37, no. 1, pp. 33–52, Feb. 2017.
- [23] F. Lin and R. D. Brandt, “An optimal control approach to robust control of robot manipulators,” *IEEE Trans. Robot. Autom.*, vol. 14, no. 1, pp. 69–77, Feb. 1998.
- [24] D. M. Adhyaru, I. N. Kar, and M. Gopal, “Bounded robust control of nonlinear systems using neural network-based HJB solution,” *Neural Comput. Appl.*, vol. 20, no. 1, pp. 91–103, Feb. 2011.
- [25] C. Mu, C. Sun, D. Wang, and A. Song, “Adaptive tracking control for a class of continuous-time uncertain nonlinear systems using the approximate solution of HJB equation,” *Neurocomputing*, vol. 260, pp. 432–442, Oct. 2017.

[26] Q. Qu, H. Zhang, T. Feng, and H. Jiang, "Decentralized adaptive tracking control scheme for nonlinear large-scale interconnected systems via adaptive dynamic programming," *Neurocomputing*, vol. 225, pp. 1–10, Feb. 2017.

[27] H. Zhang, Q. Qu, G. Xiao, and Y. Cui, "Optimal guaranteed cost sliding mode control for constrained-input nonlinear systems with matched and unmatched disturbances," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 29, no. 6, pp. 2112–2126, Jun. 2018.

[28] W. P. M. H. Heemels, K. H. Johansson, and P. Tabuada, "An introduction to event-triggered and self-triggered control," in *Proc. 51st IEEE Annu. Conf. Decis. Control*, Maui, HI, USA, Dec. 2012, pp. 3270–3285.

[29] P. Tabuada, "Event-triggered real-time scheduling of stabilizing control tasks," *IEEE Trans. Autom. Control*, vol. 52, no. 9, pp. 1680–1685, Sep. 2007.

[30] K. G. Vamvoudakis, "Event-triggered optimal adaptive control algorithm for continuous-time nonlinear systems," *IEEE/CAA J. Automatica Sinica*, vol. 1, no. 3, pp. 282–293, Jul. 2014.

[31] A. Sahoo, H. Xu, and S. Jagannathan, "Neural network-based event-triggered state feedback control of nonlinear continuous-time systems," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 27, no. 3, pp. 497–509, Mar. 2016.

[32] A. Sahoo and S. Jagannathan, "Stochastic optimal regulation of nonlinear networked control systems by using event-driven adaptive dynamic programming," *IEEE Trans. Cybern.*, vol. 47, no. 2, pp. 425–438, Feb. 2017.

[33] D. Wang, C. Mu, H. He, and D. Liu, "Event-driven adaptive robust control of nonlinear systems with uncertainties through NDP strategy," *IEEE Trans. Syst., Man, Cybern., Syst.*, vol. 47, no. 7, pp. 1358–1370, Jul. 2017.

[34] Q. Zhang, D. Zhao, and D. Wang, "Event-based robust control for uncertain nonlinear systems using adaptive dynamic programming," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 29, no. 1, pp. 37–50, Jan. 2018.

[35] C. Mu, D. Wang, C. Sun, and Q. Zong, "Robust adaptive critic control design with network-based event-triggered formulation," *Nonlin. Dyn.*, vol. 90, no. 3, pp. 2023–2035, Nov. 2017.

[36] Q. Zhang, D. Zhao, and Y. Zhu, "Event-triggered H_∞ control for continuous-time nonlinear system via concurrent learning," *IEEE Trans. Syst., Man, Cybern., Syst.*, vol. 47, no. 7, pp. 1071–1081, Jul. 2017.

[37] D. Wang, C. Mu, X. Yang, and D. Liu, "Event-based constrained robust control of affine systems incorporating an adaptive critic mechanism," *IEEE Trans. Syst., Man, Cybern., Syst.*, vol. 47, no. 7, pp. 1602–1612, Jul. 2017.

[38] T. Basar and P. Bernhard, *H_∞ Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach*, 2nd ed. Boston, MA, USA: Birkhäuser, 1995.

[39] K. Sun, Y. Li, and S. Tong, "Fuzzy adaptive output feedback optimal control design for strict-feedback nonlinear systems," *IEEE Trans. Syst., Man, Cybern., Syst.*, vol. 47, no. 1, pp. 33–44, Jan. 2017.

[40] X. Yang and H. He, "Self-learning robust optimal control for continuous-time nonlinear systems with mismatched disturbances," *Neural Netw.*, vol. 99, pp. 19–30, Mar. 2018.

[41] M. Abu-Khalaf, J. Huang, and F. L. Lewis, *Nonlinear H_2/H_∞ Constrained Feedback Control: A Practical Design Approach Using Neural Networks*. London, U.K.: Springer, 2006.

[42] W. Rudin, *Principles of Mathematical Analysis*, 3rd ed. New York, NY, USA: McGraw-Hill, 1976.

[43] X. Yang, H. He, and X. Zhong, "Adaptive dynamic programming for robust regulation and its application to power systems," *IEEE Trans. Ind. Electron.*, vol. 65, no. 7, pp. 5722–5732, Jul. 2018.

[44] W. Liu and J. Huang, "Event-triggered global robust output regulation for a class of nonlinear systems," *IEEE Trans. Autom. Control*, vol. 62, no. 11, pp. 5923–5930, Nov. 2017.

[45] X. Zhong and H. He, "An event-triggered ADP control approach for continuous-time system with unknown internal states," *IEEE Trans. Cybern.*, vol. 47, no. 3, pp. 683–694, Mar. 2017.

[46] D. Liu, X. Yang, D. Wang, and Q. Wei, "Reinforcement-learning-based robust controller design for continuous-time uncertain nonlinear systems subject to input constraints," *IEEE Trans. Cybern.*, vol. 45, no. 7, pp. 1372–1385, Jul. 2015.

[47] F. L. Lewis, S. Jagannathan, and A. Yesildirak, *Neural Network Control of Robot Manipulators and Nonlinear Systems*. London, U.K.: Taylor & Francis, 1999.

[48] M. Heymann, F. Lin, G. Meyer, and S. Resmerita, "Analysis of Zeno behaviors in a class of hybrid systems," *IEEE Trans. Autom. Control*, vol. 50, no. 3, pp. 376–383, Mar. 2005.

[49] Y. Zhu, D. Zhao, H. He, and J. Ji, "Event-triggered optimal control for partially unknown constrained-input systems via adaptive dynamic programming," *IEEE Trans. Ind. Electron.*, vol. 64, no. 5, pp. 4101–4109, May 2017.

[50] D. Wang, H. He, and D. Liu, "Adaptive critic nonlinear robust control: A survey," *IEEE Trans. Cybern.*, vol. 47, no. 10, pp. 3429–3451, Oct. 2017.

[51] B. Igelnik and Y.-H. Pao, "Stochastic choice of basis functions in adaptive function approximation and the functional-link net," *IEEE Trans. Neural Netw.*, vol. 6, no. 6, pp. 1320–1329, Nov. 1995.

[52] K. G. Vamvoudakis, A. Mojoodi, and H. Ferraz, "Event-triggered optimal tracking control of nonlinear systems," *Int. J. Robust Nonlin. Control*, vol. 27, no. 4, pp. 598–619, Mar. 2017.

[53] H. K. Khalil, *Nonlinear Systems*, 3rd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

[54] H. Zhang, H. Liang, Z. Wang, and T. Feng, "Optimal output regulation for heterogeneous multiagent systems via adaptive dynamic programming," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 28, no. 1, pp. 18–29, Jan. 2017.

[55] H. Modares, F. L. Lewis, W. Kang, and A. Davoudi, "Optimal synchronization of heterogeneous nonlinear systems with unknown dynamics," *IEEE Trans. Autom. Control*, vol. 63, no. 1, pp. 117–131, Jan. 2018.

[56] R. Lu, Y. Xu, and R. Zhang, "A new design of model predictive tracking control for networked control system under random packet loss and uncertainties," *IEEE Trans. Ind. Electron.*, vol. 63, no. 11, pp. 6999–7007, Nov. 2016.

Xiong Yang received the B.S. degree in mathematics and applied mathematics from Central China Normal University, Wuhan, China, in 2008, the M.S. degree in pure mathematics from Shandong University, Jinan, China, in 2011, and the Ph.D. degree in control theory and control engineering from the Institute of Automation, Chinese Academy of Sciences, Beijing, China, in 2014.

From 2014 to 2016, he was an Assistant Professor with the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences. Since 2016, he has been a Post-Doctoral Fellow with the Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA. He is currently an Associate Professor with the School of Electrical and Information Engineering, Tianjin University, Tianjin, China. His current research interests include adaptive dynamic programming, reinforcement learning, event-triggered control, data-driven control, and their applications.

Dr. Yang was a recipient of the Excellent Award of Presidential Scholarship of the Chinese Academy of Sciences in 2014.

Haibo He (SM'11-F'18) received the B.S. and M.S. degrees in electrical engineering from the Huazhong University of Science and Technology, Wuhan, China, in 1999 and 2002, respectively, and the Ph.D. degree in electrical engineering from Ohio University, Athens, OH, USA, in 2006.

He is currently the Robert Haas Endowed Chair Professor with the Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA. He has published one sole-author research book entitled *Self-Adaptive Systems for Machine Intelligence* (Wiley, 2011), edited one book entitled *Imbalanced Learning: Foundations, Algorithms, and Applications* (Wiley-IEEE, 2013) and six conference proceedings (Springer), and authored and coauthored over 300 peer-reviewed journal and conference papers.

Dr. He was the Chair of the IEEE Computational Intelligence Society (CIS) Neural Networks Technical Committee in 2013 and 2014 and the IEEE CIS Emergent Technologies Technical Committee in 2015. He was the General Chair of the IEEE Symposium Series on Computational Intelligence in 2014. He was a recipient of the IEEE International Conference on Communications Best Paper Award in 2014, the IEEE CIS Outstanding Early Career Award in 2014, the U.S. National Science Foundation CAREER Award in 2011, and the Providence Business News "Rising Star Innovator" Award in 2011. He is currently the Editor-in-Chief of the IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS.