
1

A Guide For Achieving High Performance With
Very Small Matrices on GPU: A case Study of

Batched LU and Cholesky Factorizations
Azzam Haidar∗, Ahmad Abdelfattah∗, Mawussi Zounon ‡, Stanimire Tomov∗, Jack Dongarra∗†‡

{haidar,ahmad,tomov,dongarra}@icl.utk.edu,mawussi.zounon@manchester.ac.uk
∗Innovative Computing Laboratory, University of Tennessee, Knoxville, TN, USA

†Oak Ridge National Laboratory, Oak Ridge, TN, USA
‡University of Manchester, Manchester, UK

Abstract—We present a high-performance GPU kernel with a substantial speedup over vendor libraries for very small matrix
computations. In addition, we discuss most of the challenges that hinder the design of efficient GPU kernels for small matrix
algorithms. We propose relevant algorithm analysis to harness the full power of a GPU, and strategies for predicting the performance,
before introducing a proper implementation. We develop a theoretical analysis and a methodology for high-performance linear solvers
for very small matrices. As test cases, we take the Cholesky and LU factorizations and show how the proposed methodology enables
us to achieve a performance close to the theoretical upper bound of the hardware. This work investigates and proposes novel
algorithms for designing highly optimized GPU kernels for solving batches of hundreds of thousands of small-size Cholesky and LU
factorizations. Our focus on efficient batched Cholesky and batched LU kernels is motivated by the increasing need for these kernels in
scientific simulations (e.g., astrophysics applications). Techniques for optimal memory traffic, register blocking, and tunable
concurrency are incorporated in our proposed design. The proposed GPU kernels achieve performance speedups vs. CUBLAS of up
to 6× for the factorizations, using double precision arithmetic on an NVIDIA Pascal P100 GPU.

Index Terms—batched computation, GPUs, variable small sizes

F

1 INTRODUCTION

Although it might seem like an attractive idea to focus
the efforts of the high-performance computing (HPC) com-
munity on addressing large-scale problems, the experience
of the research community over the last few years has
clearly shown that applications that use many small ma-
trices or tensors cannot make efficient use of modern HPC
systems and the associated vendor-optimized linear algebra
libraries. The existing libraries have been designed for large
matrices, and—historically—the scope of vendor libraries
has been too narrow to address matrix computation prob-
lems. Consequently, the performance that these libraries
deliver tends to be inadequate. Moreover, there are good
reasons to believe that neither improved compiler technol-
ogy nor autotuning will make any significant headway on
this problem. This lack of coverage by current library infras-
tructure is especially alarming because of the number of ap-
plications from important fields that fit this profile, includ-
ing deep learning [9], data mining [32], astrophysics [24],
image and signal processing [5], [25], hydrodynamics [11],
quantum chemistry [6], and computational fluid dynamics
(CFD) and the resulting partial differential equations (PDEs)
through direct and multifrontal solvers [42], to name a
few. Dramatically better performance on these applications
can be achieved by using software that can repetitively
execute small matrix/tensor operations grouped together in
“batches.” However, the near total lack of such capabilities

in existing software has forced users to rely on different
inefficient solutions.

For example, in the NWChem package used in chemistry
problems, the computation of the two-electron integrals
and the Fock matrix becomes a bottleneck when many
integrals of small size have to be computed independently,
which shows the necessity of optimized batched libraries.
Moreover, in [35], the authors discussed the optimization
of NWChem for Intel’s MIC architecture and highlighted
the need for tensor computations of about 200–2,000 ma-
trices from 10 × 10 to 40 × 40 in size. In his dis-
sertation, David Ozog discussed NWChem’s Tensor Con-
traction Engine (TCE) and revealed how strongly it relies
on the performance of general matrix-matrix multiplication
(GEMM) in the computation of the tensor contraction. In
the summary of the work done by [20], the authors noted
that small matrix computations have a severe bottleneck,
and specialized libraries are required. The need for efficient
libraries for thousands of small matrix computations was
also discussed at NVIDIA’s GPU Technology Conference
in 2016 by Mniszewski et al. [34] in the context of their
research on quantum molecular dynamics, where the dense
matrix computation can be performed as an independent set
of computations. Another important motivation is that the
matrix polynomial can be computed in a batch fashion as a
set of small, independent computations [27].

Deep Learning communities have also showed a signif-
icant interest in computations involving many small matri-

2

ces. NVIDIA [10] already highlighted the need for a batched
GEMM routine and has also started providing some of
the batched routines (e.g., GEMM, triangular solver matrix
[TRSM], LU, QR, inversion) for fixed size in their cuBLAS
library. Nervana [26], which is one of the pioneers of deep
learning, demonstrated the critical need for batched ma-
trix computation kernels for high-performance deep learn-
ing software. Intel has also provided batched GEMM and
batched TRSM routines for fixed matrix sizes.

For the block-mass, weighted Hessian in the molecular
dynamics simulation [36], computing the eigendecomposi-
tion involves computing the eigendecomposition of many
small, independent matrices, which can be viewed as a
batched eigendecomposition. In addition to the package
cited above, we note that in the GROMACS package [2],
because the particle-particle and mesh interactions are in-
dependent, batched computation can be used to speed up
and overlap the expensive global communication in the
Particle-mesh Ewald (PME). Also, in [31], the authors noted
the need for optimized and hardware-aware basic linear
algebra subprograms (BLAS) to perform many independent
computations inside the GROMACS MD simulation.

The approach behind Flash Principle Component Anal-
ysis (FlashPCA) performs a large number of eigendecom-
positions across many samples. Also, in combustion and
astrophysics supernova applications [7], [8], [18], [24], [33],
the study of a thermonuclear reaction networks (XNet pack-
age) requires the solution of many sparse linear systems
of around 150 × 150. Furthermore, the need for batched
routines can be illustrated in radar signal processing [5],
where a batch of 200×200 QR decompositions is needed, as
well as in hydrodynamic simulations [11], where thousands
of matrix-matrix and matrix-vector (GEMV) products of
matrices of around 100× 100 are needed.

Although the brief introduction above shows some vi-
able approaches, it mostly highlights the keen awareness of
the need for batched libraries that can enable small matrix
applications to finally start exploiting the full power of
current and future hybrid platforms. Some vendors have
started to provide some batched functionalities in their nu-
merical libraries (e.g., NVIDIA’s CUBLAS and Intel’s Math
Kernel Library [MKL]). Additionally, some open-source li-
braries from the HPC community (e.g., the Matrix Algebra
on GPU and Multicore Architectures [MAGMA] library [37])
have also started to deliver batched routines [12], [13],
[19]. While performance has been improving with these
contributions, there is still a lack of understanding of how to
design, implement, analyze, and optimize batched routines
to exploit modern architectures at full efficiency. The goal
of this paper is to develop a theoretical analysis and a
methodology for high-performance linear solvers. As test
cases, we take the Cholesky and LU factorizations and
show how the proposed methodology enables us to achieve
performance close to the theoretical upper bound.

2 CONTRIBUTIONS

The primary goal of this paper is to propose a framework
design for batched algorithms and to study their efficient
implementations. We believe this study will help HPC
application developers more effectively harness GPUs

and achieve performance close the theoretical peak of the
hardware. Our primary contributions to this end are listed
below.

• In addition to efficient implementations that exhibit
a good speedup, we provide a detailed analysis of
optimization techniques. We also present a collection
of best practices to help users understand and develop
batched computation kernels in a simple and efficient
fashion.

• We propose a methodology for designing a perfor-
mance model that provides insight into the perfor-
mance spectrum of batched kernels. The main advan-
tage of this model is that it helps predict the achievable
performance of the kernels with increased accuracy.

• We investigated a model that simplifies the autotuning
process by considering hardware information and rep-
resentative experiments that enable us to considerably
reduce the configuration/parametrization search space.
We expect this contribution to drastically reduce the
significant autotuning time required by complex GPU
kernels.

• We propose a modular design that relies on standard
data formats and interfaces to enable a straightforward
connection with mainstream application code.

3 RELATED WORK

At the time of writing, there are no specifications for the
computation of batched small linear algebra problems. Con-
sequently, the Linear Algebra PACKage (LAPACK), which
is the de-facto standard library for linear algebra problems,
doesn’t provide such a functionality. However at the request
of users, NVIDIA added a few batch kernels to CUBLAS
6.5 [28]. Those additions include a batched version of both
BLAS and LAPACK. For BLAS kernels, batched GEMM and
batched TRSM have been released. More effort has been put
into the direction of LAPACK kernels, resulting in a batched
version of LU and QR factorizations, matrix inversion, and
a least squares solver. Similarly, in response to customer de-
mand, Intel’s MKL team released a batched GEMM, while—
at the time of writing—AMD does not provide any batched
operations. Vendor efforts on batched BLAS may have a
tremendous impact and enhance the portability of HPC
applications, much like optimized BLAS did [14] when re-
leased. While real-world applications may require solving a
batch of small matrices of different dimensions, the batched
kernels developed by NVIDIA and Intel are limited to the
case where the matrix problems in the batch are of the
same dimension. NVIDIA’s release of four major batched
LAPACK–based routines is significant; however, they did
not address the problem of portability and device-specific
redesigns of the batched LAPACK algorithms.

Batched linear algebra concepts could be applied to mul-
ticore CPUs as well. Indeed, small problems can be solved
efficiently on a single core (e.g., using vendor-supplied
libraries like MKL [22] or the AMD Core Math Library
[ACML] [4]), because the CPU’s memory hierarchy would
support a “natural” data reuse (small enough problems
can fit into small, fast memory). Besides memory reuse,
to further speed up the computation, vectorization can be

3

added to use the supplementary single instruction, multiple
data (SIMD) processor instructions—either explicitly as in
the Intel Small Matrix Library (SML) [21], or implicitly
through the vectorization in BLAS. Batched factorizations
can then be efficiently computed for multicore CPUs by
having a single core factorize a single problem at a time.

For higher-level routines, prior work has concentrated
on achieving high performance for large problems using
hybrid algorithms [38]. The motivation came from the fact
that the GPU’s compute power cannot be used on a panel
factorization as efficiently as it can on trailing matrix up-
dates [39]. As a result, various hybrid algorithms were
developed—where the panels are factorized on the CPU,
while the GPU is used for trailing matrix updates (mostly
GEMMs) [3], [15]. For large-enough problems, the panel fac-
torizations and associated CPU-GPU data transfers can be
overlapped with GPU work. For small problems, however,
this is not possible, and our experience has shown that
hybrid algorithms would not be as efficient as they are for
large problems.

To compensate for the lack of support for batched op-
erations, application developers implemented customized
batched kernels using various approaches. For example,
targeting very small problems (no larger than 128 × 128),
Villa et al. [29], [30] designed a GPU kernel for a batched
LU factorization, where a single CUDA thread, or a single
thread block, was used to solve one system at a time.
Similar techniques, including the use of single CUDA thread
warp for a single factorization, were investigated by Wain-
wright [40] for LU factorization with full pivoting on small
matrices of up to 32× 32. These problems are small enough
to fit in the GPU’s shared memory (48KB on a K40 GPU)
and thus can benefit from data reuse. Unfortunately, the re-
sults showed these strategies do not exceed the performance
of memory-bound kernels like GEMV.

4 METHODOLOGY, ANALYSIS, AND DISCUSSION

In this section, we present our methodology for analyzing
high-performance batched linear algebra computations and
discuss the insight and theory required to design, imple-
ment, and optimize algorithms to run efficiently on mod-
ern GPU architectures. We also provide algorithm design
guidance to ensure an efficient and effortless portability of
batched linear algebra kernels across a large range of GPU
architectures.

It is a common misconception that algorithm analysis
is only useful for squeezing the last possible 5% of perfor-
mance from very small matrix applications. In other words,
when forgoing this analysis, one sacrifices only 5% in perfor-
mance while avoiding a rigorous algorithm analysis. While
it is true that some specific multicore CPU applications do
not gain much from algorithm analysis, accelerator-based
applications have far more potential, since their underlying
principles are fundamentally different from conventional
CPUs.

CPUs have accumulated design complexity that enables
them to optimize instruction streams by looking ahead
hundreds of instructions at a time. Consequently, CPUs can
resolve data dependence hazards, predict branch decisions,
and buffer cache/memory requests efficiently. The majority

of these features are missing from GPU “cores,” which—
for the sake of accuracy—should be called “processing
units.” Intel Xeon Phi coprocessors are only marginally
better with their basic cache coherency, but they still require
programmer/compiler-directed scheduling to use their in-
order execution at full efficiency. Thus, many factors and
constraints should be studied carefully to achieve relevant
insight and provide a design framework that could benefit
the research and development community. One of the main
issues associated with working on small matrices is that the
overall execution time is dominated by data transfer, be-
cause the time required to process a small matrix on modern
GPUs is negligible. Put differently, the computation of small
matrices follows the trend of memory-bound algorithms,
and the performance strongly correlates with data transfer
rather than floating-point operations (FLOPs).

On CPUs, very small matrices are more likely to remain
in at least the L2 cache. With such a configuration, using each
core to solve one problem at a time is enough to achieve
reasonably high performance. This makes the development
of batched algorithms easy to handle and optimize with a
relatively small effort from the CPUs. However, for GPUs
the cache size is very small (48–64 KB for on newer GPUs),
which makes batched linear algebra kernel implementation
more challenging. Building and implementing an efficient
GPU batched algorithm kernel requires an understanding
and analysis of many factors, which we address in this
work.

In addition, we demonstrate that, because GPU applica-
tion design puts the focus on maximizing data throughput
rather than minimizing processing latency, the common
practice of optimizing a sequential implementation first
and then optimizing the parallel version no longer applies.
For well designed kernels focused on large matrix-matrix
type operations, autotuning helps a lot in achieving a good
performance. However, autotuning is becoming overrated
in the GPU programming community, where smaller matri-
ces reign supreme. A common misinterpretation of recent
autotuning studies is to believe that an efficient autotuning
framework is enough to harness a GPU’s performance.
However, when it comes to operations like solving a batch
of very small matrix problems, even the most powerful
autotuning framework, without the correct algorithm de-
sign, will fail to provide a good performance. That said,
if one designs the kernel using both an algorithmic anal-
ysis and a good understanding of the underlying hard-
ware, the autotuning framework can be simplified and
tested/implemented. Unlike most autotuning approaches,
though, our strategy does not require hundreds of thou-
sands of runs followed by result interpretations to provide
an efficient kernel.

Finally, we analyze the effect of reshaping the data
storage into a non-conventional storage to design highly
optimized kernels for batches of small linear algebra op-
erations.

4.1 Theoretical Analysis and Performance Roofline
Model

In this section, we discuss the theoretical analysis of algo-
rithms designed for batches of very small matrix problems.

4

A detailed study based on Cholesky and LU factorization
algorithms are used for the sake of illustration. The roofline
model for processing very large matrices can be easily
presented without much complexity. On the other hand,
working out an accurate roofline model for matrices of small
to medium size involves a lot of complexities related to both
the algorithm and the hardware itself.

The roofline model for large size matrix computations
has been widely studied, and a remarkable discussion of
matrix computation roofline models by James Demmel can
be found in [41]. In general, large matrix computation algo-
rithms can be classified into three categories, listed below.

(1) Compute-Intensive Algorithms: The first category
includes compute-intensive algorithms, which are charac-
terized by a high arithmetic intensity. Arithmetic intensity
is the ratio of total FLOPs to total data movement (bytes). In
this case, the computation time is dominant compared to the
data transfer time. Consequently, a good implementation
could easily overlap the communication time with compu-
tation, which leads to a roofline model mostly defined by
the arithmetic intensity. The upper bound is then limited
by the computation’s peak performance. As an example,
an optimized GEMM kernel for large matrices can achieve
performance close to that of the machine’s peak.

(2) Memory/Bandwidth-Bound Algorithms: The second
category includes low arithmetic intensity algorithms—also
known as memory-bound algorithms or bandwidth-bound
algorithms. Matrix-vectors and vector-vector operations are
typical examples of these algorithms.

(3) Compute-Intensive, Bandwidth-Bound Algorithms:
The third category deals with algorithms that lie somewhere
between the previous two. These algorithms require a de-
tailed analysis in order to evaluate their performance upper
bound. This is the case, for example, when applying matrix-
matrix operations on small matrices. While a matrix-matrix
operation itself has a high arithmetic intensity, owing to
the significant data transfer latency, the time to process the
small matrices may be closer to the time required to move
the matrices. Since processing very small matrices falls in
this category, we provide more details on assessing its
performance upper bound and give some recommendations
for medium-size matrix computations.

The theoretical bound of floating-point performance
is computed as follows: Pmax = FLOPs/Tmin, where
FLOPs is the number of floating-point operations, and
Tmin the minimum time to solution. The Tmin can be
defined as

Tmin = min(TRead + TCompute + TWrite). (1)

Depending on the implementation and the type of al-
gorithm, there might be some overlap between the data
transfer step (read and write) and the computation steps.
However, on modern high-performance architectures that
are capable of achieving many FLOPs per cycle per core,
the time required to read and write very small size matrices
is about 1–2 orders of magnitude higher than the compu-
tation time. The time to read or write is predefined by the
bandwidth, while the computation time is determined by
both the speed of the hardware and the efficiency of the
implementation. Thus, for very small matrix operations, any

algorithm—even the historically compute-intensive matrix-
matrix multiplication—is bounded by the data movement,
and its upper-bound performance can be easily derived.
For a generic description, and for matrices of medium size
(larger than 32 × 32), we assume that the algorithm is
elegantly designed. This means that the algorithm has the
best computation/communication overlap, even though it
is less likely to be the case for very small matrices. In such a
situation, one can easily predict the minimal time Tmin and
thus the performance upper bound.

Let us take LU factorization as an example. The LU
factorization algorithm reads an n × n matrix, meaning
n2 elements, and processes 2

3n
3 FLOPs and writes back

n2 elements. On the other hand, in double precision, an
NVIDIA P100 GPU can perform 5,300 gigaFLOP/s, while
its maximum achievable read/write bandwidth is about
600 GB/s. On the P100 hardware, the time to transfer one
byte is approximately 9× higher than the time required to
complete one FLOP. Consequently, the time to complete a
batch of small matrices operations will be dominated by
the data transfer time. In other words, even with a full
overlap, the minimal time will be bounded by the data
movement time, making the computation time negligible.
To approximate the roofline upper bound, we can define:

Pupper bound = FLOPs/Tdata transfer = FLOPs× β

M
, (2)

where FLOPs is the number of floating-point operations, β
is the achievable bandwidth of the hardware, and M is the
size of the data to be moved (load and store).

4.2 The Occupancy and Bandwidth Analysis

GPU occupancy has been treated as a performance indicator
for many years. Unfortunately, although the occupancy is
correlated to performance, it does not necessarily imply that
a code that achieves a high occupancy will also deliver high
performance.

The importance of the occupancy parameter and its
correlation to high performance varies between compute-
intensive kernels and bandwidth-bound kernels. For ex-
ample, with about 12% occupancy, a compute-intensive,
matrix-matrix multiplication achieves performance close to
that of the machine’s peak. The performance of a compute-
intensive kernel is determined by the amount of data reuse
(i.e, a high arithmetic intensity). More over, occupancy is not
the most determinant factor in achieving good performance.
In fact, the occupancy is defined as the ratio of active
threads running over the total number of active threads
supported by the hardware (2,048 threads for the NVIDIA
P100 GPU). For example, if there are 336 thread blocks (TBs)
executing simultaneously on each of the P100’s 56 streaming
multiprocessors (SMXs), and each uses 256 threads, then the
occupancy is (6 × 256)/2048 = 75%. A bandwidth-bound,
matrix-vector kernel attains about 3% of the machine peak,
while it reaches about 95% of the achievable bandwidth with
an occupancy between 60%–90%. Since it is a bandwidth-
bound kernel, it is always preferable to use bandwidth as
the metric rather than FLOPs per second (FLOP/s).

As shown by the representative experiment in Figure 1,
the achievable bandwidth strongly correlates to the number

5

of threads per TB and to the number of TBs running simulta-
neously per SMX. In other words, the achievable bandwidth
is strongly correlated to the total number of threads running
on an SMX. We use the metric “per SMX” since the GPU
hardware specifications are mostly defined by the number
of SMXs. However, for the sake of clarity, when we show 6
TBs/SMX, we mean that there are 56×6 = 336 TBs running
on the whole P100 GPU. This will be one of the important
data points to consider when implementing a memory-
bound algorithm or when designing a batched algorithm
for small-size matrices. Note that any type of algorithm
that operates on small amounts of data is considered to be
bandwidth-bound as shown in Section 4.1.

of Thread-Blocks per SMX
0 1 2 4 6 8 10 20 30

B
an

dw
id

th
 G

B
/s

0
50
100
150
200
250
300
350
400
450
500
550
600

 512threads
 256threads
 128threads
 64threads
 32threads

Fig. 1. The achievable bandwidth based on the number of TBs per SMX
and the number of threads in each TB on the NVIDIA P100 GPU. Note:
to obtain the total number of TBs running on the whole GPU, the x axis
value should be multiplied by 56 since the P100 has 56 SMXs.

The number of threads per TB is mostly related to the
algorithmic design of the target application. For example,
a Cholesky factorization proceeds column by column, from
left to right. One column is processed at a time followed by
the update of all the right-side columns, while the columns
on the left remain untouched. These algorithm details, along
with the matrix size, are very important and should guide
the design choices when considering thread configurations.

To design a kernel for a batched Cholesky factorization,
one has the choice of using a 1-D or a 2-D grid of threads for
each matrix factorization. For an m×m square matrices fac-
torization, the 2-D configuration is the most intuitive choice
since the implementation can be straightforward, with an
m×m thread mapping, resulting in a 1 : 1 thread-to-matrix
entry. Unfortunately, this will require using heavyweight
TBs, which are relatively expensive to manage. Put differ-
ently, using a 2-D configuration will result in limited TBs
per SMX, consequently inducing a low-bandwidth situation,
as illustrated by the experiment depicted in Figure 1. In
addition, the Cholesky algorithm is sequential by column,
and it is only during the update steps that the whole 2-D
grid can be involved (i.e, during a column process, all of
the threads that are not involved will be in an idle state,
losing a lot of resources). Another penalty associated with
the 2-D configuration is the synchronization. In fact, a 2-
D configuration is more likely to exceed the warp size
(32 threads), and barriers will be required when accessing
shared data.

To avoid the drawbacks exhibited by the 2-D configura-
tion, we propose a design based on a 1-D configuration. For
example, for an m×m matrix, we use a TB with m threads.
This means more work per thread and therefore more room
for parallelism.

4.3 An Analytical study of the Algorithmic Design
This section is dedicated to the efficient implementation of
the Cholesky factorization kernel based on a design that
uses a 1-D grid of threads. Designing this kernel involves
a relatively high level of complexity. The design is critical
because a non-optimal decision could be penalizing in terms
of autotuning time.

Simply put, a basic kernel design could consist of the
following steps. (1) Load the whole matrix into the shared
memory or into the register. (2) Perform all necessary com-
putations. (3) Finally, write the result back to the main
memory. This approach is the most common for compute-
intensive kernels used to solve large matrix problems. How-
ever, this design decision is not an attractive option for
solving thousands of small, independent matrix operations.
On modern GPUs, the shared memory size is 64 KB per
SMX. This means that, in double precision, each SMX cannot
hold matrices larger than 80 × 80. Therefore, a shared-
memory kernel that implements the algorithm, which con-
sists of loading the whole matrix into the shared memory
and performing the factorization, will be limited to solving
matrices that are 80× 80 or smaller in double precision and
160× 160 or smaller in single precision. Similarly, if we use
the register to hold the matrix, we will also be limited to
matrices that are 128 × 128 or smaller in double precision
(the register file size is about 256 KB, while about half of
that will be used for internal variables and parameters).
In addition, using the full shared memory or too many
registers will severely limit the number of active TBs per
SMX.

According to our representative experiments illustrated
in Figure 1, having 1–2 TBs per SMX will result in low band-
width. Since small-size matrix computations are bandwidth-
bound, using a few TB per SMX is a bad design decision that
can lead to poor performance. To achieve good performance
from very small–size matrices (up to 32× 32), one option is
to use roughly 8+KB of shared memory per TB, with 7 TBs
per SMX. However, when the matrix size exceeds 32 × 32,
another design option should be investigated.

For the sake of simplicity, we rely on the shared-memory
implementation to describe the design for matrices larger
than 32×32. The register-based version is very similar. Later,
we will revisit both the shared memory and the register
versions for LU factorization. To address matrices larger
than 32× 32, the key idea is to divide the whole matrix into
block columns—also known as “panels.” For example, an
n×n matrix will be divided into blocks of n×ib, where ib—
called the “block size”—is the number of columns per block.
This modification helps us avoid loading the whole matrix
directly into shared memory and instead allows us to load
it panel by panel. This is known as a “blocking technique.”
Since the panel factorization is mainly sequential, splitting
the factorization into panels is a reasonable design decision.

There are many versions of the Cholesky factorization.
Here, we discuss the right-looking, the left-looking, and the

6

top-looking variants. As an example, we show the analysis
of the left-looking and the right-looking variants. In the right-
looking variant illustrated in Algorithm 1, the matrix is
factorized, per panel, from left to right. At each step, the
current panel is processed followed by an immediate update
of the panel at the right side of the current panel. In the
left-looking variant described in Algorithm 2, at each step
the update from previous panels (left side) are applied to
the current panel before performing the computations on
the current panel. In other words, the updates are applied
as late as possible, while on the right-looking algorithm,
the updates are applied as soon as possible. We refer the
reader to [23] for further details on the different Cholesky
implementations.

Algorithm 1: The right-looking fashion.

for i← 0 to m Step ib do
// Panel factorize Ai:m,i:i+ib

POTF2 Ai:i+ib,i:i+ib;
TRSM
Ai+ib:m,i:i+ib = Ai+ib:m,i:i+ib ×A−1

i:i+ib,i:i+ib;
// Update trailing matrix Ai+ib:m,i+ib:m

SYRK Ai+ib:m,i+ib:m =
Ai+ib:m,i+ib:m −Ai+ib:m,i:i+ib ×ATi+ib:m,i:i+ib;

end

Algorithm 2: The left-looking fashion.

for i← 0 to m Step ib do
if (i > 0) then

// Update current panel Ai:m,i:i+ib

SYRK Ai:i+ib,i:i+ib =
Ai:i+ib,i:i+ib −Ai:i+ib,0:i ×ATi:i+ib,0:i;

GEMM Ai+ib:m,i:i+ib =
Ai+ib:m,i:i+ib −Ai+ib:m,0:i ×ATi:i+ib,0:i;

end
// Panel factorize Ai:m,i:i+ib

POTF2 Ai:i+ib,i:i+ib;
TRSM
Ai+ib:m,i:i+ib = Ai+ib:m,i:i+ib ×A−1

i:i+ib,i:i+ib;
end

To analyze the roofline bound of the right-looking variant,
let’s calculate the volume of the data transfer. At each iter-
ation, applying the updates from the current panel requires
loading and storing back all the panels at the right of the
current one. For the sake of exposure, the panels at the right
of the current panel will be referred to as the “trailing ma-
trix.” If the shared memory is used to hold the current panel,
then a register will be dedicated to the storage of a portion
of the trailing matrix to update and vice versa. The main
drawback exhibited by this algorithm is the unnecessarily
large amount of data movement. In fact, the first panel will
be loaded once, only for its factorization. The second panel
will be loaded once to apply the updates for the first panel,
and the second panel will be loaded the second time for its
own factorization; in general, the kth panel will be loaded
k times. In terms of communication volume, at iteration k,
the current panel will be of size (n− (k− 1)ib)× ib, and the

trailing matrix will be of size (n− (k− 1)ib)× (n− k× ib).
The sum gives (n−(k−1)ib)2. However, since the Cholesky
factorization is applied to a symmetric positive definite
matrix, only half of the matrix needs to be considered, which
reduces the communication volume to 1

2 (n − (k − 1)ib)2.
Since each panel is loaded and then stored back, we can
infer that the volume of data transfer can be multiplied by
two, which means that the total communication volume at
the kth iteration is (n−(k−1)ib)2. Assuming that the matrix
is divided into p same-size panels (n = p × ib), the total
volume of communications for the right looking variant is

V = data read + data written
=
∑p
k=1 (n− (k − 1)ib)

2
,

=
∑p
k=1(p× ib− (k − 1)ib)2,

= ib2
∑p
k=1(p+ 1− k)2,

= ib2(p
3

3 + p2

2 + p
6),

≈ ib2 p
3

3 = ib2 n3

3ib3 ,

≈ 1
3
n3

ib .

(3)

In contrast, to the right-looking algorithm, the left-looking
variant loads a panel, applies the updates from previous
panels (left side of the panel), factorizes, and stores back.
With respect to the right-looking design, the current panel is
stored into the shared memory, portions of the matrix on its
left loaded into a register, in order to perform its update.
At the kth iteration, the volume of data involved in loading
the current panel and storing it back is (n− (k − 1)ib)× ib,
while the volume of data required for moving the updates
from previous panels is (n− (k−1)ib)× (k−1)ib. Thus, the
volume of communication at iteration k is k(n−(k−1)ib)ib.
Since n = p× ib, we get k(p−k+1)ib2. As consequence, the
total amount of communications for the left looking variant
is:

V = data read + data written
= ib2

∑p
k=1 k(p− k + 1),

= ib2
∑p
k=1(k(p+ 1)− k2),

= ib2
(
(p+ 1) (p+1)p

2 − (p
3

3 + p2

2 + p
6)
)
,

= ib2
(
1
6p

3 + 1
2p

2 + 1
3p
)
≈ 1

6 ib
2p3,

≈ 1
6
n3

ib .

(4)

Since very small size matrix processing is bandwidth-
bound, and the performance depends on the volume of
data transfer, we can now derive the roofline performance
upper bound for both the right-looking and the left-looking
variants. The Cholesky factorization of an n × n matrix
consumes about 1

3n
3 FLOPs. Thus, with respect to Equa-

tion (2), in double precision, we can expect the right-looking
version to have an asymptotic performance upper bound
of 1

3n
3 × 3ibβ

8n3 = ibβ
8 . Using the same method, the left-

looking variant will be bounded by ibβ
4 , in double precision,

which means that—in theory—the left-looking variant could

7

achieve twice the performance of the right-looking imple-
mentation, in the context of very small size matrices. To
decide whether to use the right-looking or the left-looking
algorithm, a traditional approach consists of prototyping
both approaches and going through long autotuning sweeps
before assessing the performance of the two algorithms.
However, based on our effective algorithm analysis, we
proved that the right-looking variant is not suitable for very
small matrices.

At this point, the primary question is the effectiveness of
our algorithm analysis. In an ideal scenario, the bandwidth
β ≈ 600GB/s. With ib = 8, the performance left-looking
kernel is bounded by 1, 200 gigaFLOP/s. On the other hand,
the experimental results of our kernel based on the left-
looking design is depicted in Figure 2a. As illustrated by
the chart, the performance obtained is far from the 1,200
gigaFLOP/s performance upper bound. Achieving half of
the upper bound performance does not necessary mean that
the computation is expensive or sequential. It is important
to note that the results displayed have been intensively
autotuned, and only the best results have been reported.

A careful study of the design, along with the information
reported in Figure 1, could—in fact—allow an accurate
guess of most of the results displayed in Figure 2a. For
the sake of illustration, let us take n = 512 and ib = 8 as
examples. Based on the algorithm characteristics, the code
requires about n × ib + ib2 elements to be stored in shared
memory, which is about 32.5 KB using 512 threads. As result,
only 1 TB can run per SMX, meaning our achievable band-
width in this condition is about 420 GB/s. Consequently, a
reasonable performance upper bound is 840 gigaFLOP/s.
This demonstrates the effectiveness of our implementation.
However, more investigations may provide additional infor-
mation that will help us understand why we did not make
it close to the upper bound. An advanced analysis of the
Cholesky factorization revealed that, for the first panel, the
algorithm requires all 512 threads to work. However, for
the next panel, the number of threads required decreases
by ib and so on until the last panel, where only ib threads
have to work. This is an interesting clue for understanding
why we failed to reach the performance upper bound. Since
the real bandwidth is a function of the number of threads
and the number of TBs, we achieve 420 GB/s with 1 TB
per SMX, when 512 threads are working. But by using only
128 threads with 1 TB per SMX, the bandwidth decreases
up to 200 GB/s. Thus, if we reformulate our performance
analysis based on these details, we can display the upper
bound corresponding to each ib. With this, we realized in
advance that ib = 8 or ib = 10 will be among the optimal
configurations. This shows that our model can also serve as
a base to prune the autotuning search space. Consequently,
the autotuning process is simplified considerably.

As shown in Figure 1, when a small number of threads
are used in a TB (e.g., 32 threads) it is beneficial to run more
than 8 TBs per SMX in order to extract a high bandwidth.
Unfortunately, run more TBs we have to decrease the value
of ib, which is more likely to decrease our roofline bound.
Therefore, ib = 8 is the best scenario for the current design.
For example, for n = 512, we need to allow more than 1
TB per SMX when, say, only 64 threads are working. By
studying the algorithm, we found that the shared memory

requirement to reserve n × ib + ib2 elements, where n is
the size of the matrix, is the constraint that does not allow
more than 1TB per SMX. However, for the factorization of
a remaining portion of size 64 × 64, only 64 threads are
required, and in terms of memory, only 64 × ib + ib2 is
required, not the entire 512 × ib + ib2. To optimize the
shared memory usage, instead of allocating n × ib + ib2

for entire factorization, we revisited the algorithm to enable
launching a kernel for every panel with the appropriate
memory requirement. For example, when the remaining
portion is 64×64, we need 64× ib+ ib2 as a shared memory
space, which will allow for an ib = 8 achieving up to 14
TBs per SMX using 64 threads each. Such a configuration is
bandwidth friendly, and we can expect to extract more than
550 GB/s—instead of 100 GB/s with the previous design.
This improvement is beyond the insight one can gain from
autotuning.

When implementing this third design, we used the same
kernel proposed above (design of Algorithm 2 left-looking),
but we now use an optimal shared memory allocated at each
step. Thus, we designed a fused GPU kernel that performs
the four routines of one iteration of Algorithm 2. Such a
design will minimize the memory traffic, increase the data
reuse from shared memory, and reduce the overhead of
launching multiple kernels. Our optimized and customized
fused kernel performs the update (SYRK and GEMM opera-
tions) and keeps the updated panel in shared memory to be
used by the factorization step. The cost of the left-looking
algorithm is dominated by the update step, (SYRK and
GEMM). The panel C , illustrated in Figure 3, is updated
as C = C − A × BT . In order to decrease its cost, we
implemented a double buffering scheme as described in
Algorithm 3. We prefix the data array with “r” to specify
the register and “s” to specify the shared memory. We
prefetch data from A into the register array, rAk, while a
multiplication is being performed between the register array
rAkk and the array sB stored in shared memory. Since the
matrix B is the shaded portion of A, our kernel avoids
reading it from the global memory and transposes it in
situ to the shared memory, sB. Once the update is finished,
the factorization (POTF2 and TRSM) is performed as one
operation on the panel C , held in shared memory.

Algorithm 3: The fused kernel correspond to one iter-
ation of Algorithm 2.

rAk← A(i:m,0:lb); rC← 0;
for k← 0 to m-i Step lb do

rAkk← rAk;
sB← rAk(i:lb,k:k+lb) inplace transpose;
barrier();
rA1← A(i:m,k+lb:k+2lb) prefetching;
rC← rC + rAkk×sB multiplying;
barrier();

end
sC← rA1 - rC;
factorize sC;

This implementation achieves close to the peak band-
width, and—according to our model—in double precision
Pupper bound = ibβ

4 = 1, 200 gigaFLOP/s. The performance

8

Matrix size
32 64 128 192 256 320 384 448 512

G
flo

p/
s

0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300

inner blocking 2
inner blocking 4
inner blocking 8
inner blocking 10

(a) using more shared
Matrix size

32 64 128 192 256 320 384 448 512

G
flo

p/
s

0
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300

inner blocking 2
inner blocking 4
inner blocking 8
inner blocking 10

(b) using min shared.

Fig. 2. Kernel design and autotuning of the Cholesky factorization.

C

ib	

ib	

m-i	

m
-i	

lb	

A

Fig. 3. left-looking Cholesky factorization

of this implementation is depicted in Figure 2b. Not only
did the performance improve considerably, but we achieved
performance very close to the predicted theoretical peak,
which highlights both the efficiency of the implementation
and the accuracy of our model.

The objective of this example is to learn and understand
the expectation of a design without necessarily delving
into the implementation and autotuning efforts. There is
also a practical lesson from this study in that we now
know autotuning strategies can only help one get close
to the theoretical peak of the algorithm being designed.
To achieve reasonable performance, one should investigate
the design that has the highest theoretical bound before
investing in autotuning. This should reduce the effort of
researchers/developers in exploiting modern GPUs at full
efficiency and provide an accurate performance spectrum.

4.4 Analysis and Design of Batched LU Factorization of
Very Small–Size Matrices
In this section, we analyze another example of kernel design
for batched computations of very small matrices ranging in
size from 2× 2 to 32× 32. Using the LU factorization as an
example in this study, the analysis performed in this section
is similar to the experiments we defined for Cholesky. Since
the target sizes are very small (less than 32 × 32), it is
beneficial to keep the whole matrix in shared memory or
in the register.

To accurately estimate the number of TBs that we should
run simultaneously, we need a reliable estimate of the
amount of shared memory required. This is also true for
the number of registers. To ensure good performance, only
a limited number of registers can be allocated per thread.
In fact, for the number of registers per threads, beyond a
certain bound, the number of TBs to run simultaneously
will be reduced to only a few, which is detrimental to
the bandwidth. To start our performance analysis, we first
evaluated the amount of shared memory required in cases
where the shared memory implementation is beneficial. We
did the same study for the register version (i.e, where the
whole matrix is stored in the registers). The left y-axis of
Figure 4 shows the amount of shared memory (in KBs)
required for the shared memory design (SH-MEM). The
right y-axis of Figure 4 shows the number of registers per
thread required by the register design (REG-v1).

Matrix size
0 5 10 15 20 25 30

Sh
ar

ed
 m

em
 s

iz
e

pe
r T

B
 in

 K
B

0

1

2

3

4

5

6

7

8

9

10
LU shared memory version

LU register version

of

 re
gi

st
er

s/
th

re
ad

0

20

40

60

80

100

120

140

160

180

200

Fig. 4. The amount of shared memory (in KB) required by the SH-MEM
design (left y-axis) and the amount of registers per thread required
by the REG-v1 design (right y-axis) for the LU factorization in double
precision for matrices ranging from 2× 2 to 32× 32 on an NVIDIA P100
GPU.

Using the data from Figure 4, we try to predict the
performance bound of each design (SH-MEM and REG-v1)
to select the most suitable candidate.

9

Based on the design options and hardware constraints,
the optimal number of TBs per SMX can be approximated.
For the SH-MEM case, the estimated optimal ratio of TBs per
SMX is illustrated in Figure 5 (orange curve). With respect
to hardware constraints, the maximum number of TBs per
SMX is 32 (depicted in grey). Consequently, any efficient
implementation of the SH-MEM design would need to set
the TBs per SMX ratio based on the minimum of the hard-
ware constraint (i.e., 32) and the estimate obtained from the
algorithm analysis. The SH-MEM design is implemented,
with the results illustrated by the blue curve of Figure 4,
where the executed number of TBs per SMX were measured
using the NVIDIA profiler tools. The effectiveness of our
design is illustrated by the fact that the measured data
matches the model estimations. However, our objective is
not limited to determining the optimal TBs per SMX but
rather to deduce the possible performance peak based on
the number of TBs per SMX and to figure out the best
implementation to optimize (i.e., SH-MEM vs. REG-v1). To
this end, we did the same study for the REG-v1 design and
presented (Figure 6) the number of optimal TBs per SMX
(orange curve) computed from data on Figure 4. Similarly,
we also measured the executed TBs per SMX during a real
run of the code (blue curve) to assess our prediction. A
comparison between Figure 5 and Figure 6 reveals that both
versions allow and use the same number of TBs per SMX
for matrices up to 20× 20, above which the REG-v1 design
allows a higher number of TBs per SMX. Consequently, for
matrices ranging from 2×2 to 20×20, the same performance
can be expected from both designs. However, for matrices
beyond 20× 20, the REG-v1 design should be preferred.

Matrix size
0 4 8 12 16 20 24 28 32

of

 T
hr

ea
d-

B
lo

ck
/S

M
X

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60

 # of running TB/SMX of 32 threads each, measured using Nvprof for the SH-MEM
 # of possible TB/SMX of 32 threads each, based on the SH-MEM design requirement
 Hardware constraint of # TB/SMX

Fig. 5. Analysis of the number of TBs per SMX estimated. Real run for
the SH-MEM design of the LU factorization on an NVIDIA P100.

Figure 7 shows the performance obtained (in gi-
gaFLOP/s) using the two designs. This experimental result
is consistent with our analysis (i.e, for matrices ranging from
2×2 to 20×20, the SH-MEM design and the REG-v1 design
exhibit similar performance). Also, as expected, for matrices
larger than 20 × 20, the REG-v1 design outperformed the
SH-MEM design. Such consistency should be of a great
interest to the community, and the proposed model is an
excellent tool for understanding and analyzing the design of
algorithms prior to implementation. The model also allows
us to understand our code and let us find the correct

Matrix size
0 4 8 12 16 20 24 28 32

of

 T
hr

ea
d-

B
lo

ck
/S

M
X

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60

 # of running TB/SMX of 32 threads each, measured using Nvprof for REG-v1
 # of possible TB/SMX of 32 threads each, based on REG-v1 design requirement
 # of running TB/SMX of 128 threads each, measured using Nvprof for REG-v2
 # of possible TB/SMX of 128 threads each, based on REG-v2 design requirement
 Hardware constraint of # TB/SMX

Fig. 6. Analysis of the number of TBs per SMX estimated. Real run for
the REG-v1 design of the LU factorization on an NVIDIA P100.

optimization path in order to achieve performance close to
the theoretical upper bound.

Matrix size
0 4 8 12 16 20 24 28 32

G
flo

p/
s

2n
3 /3

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300

Register design REG-v1
Shared memory design SH-MEM

Fig. 7. Performance comparison of SH-MEM vs. REG-v1 for the LU
factorization on an NVIDIA P100.

A further comparison of data from Figure 5 and Figure 6,
reveals that the hardware constraint of the maximal number
of TBs per SMX was reached for matrices smaller than
12 × 12. Following up, we focused on REG-v1, because it
provided better performance. The hard constraint we found
for the optimization was that we could not go beyond 32 TBs
per SMX. However, for matrices smaller than 12 × 12, the
TBs used less than 32 threads; consequently, they were using
a sub-optimal amount of bandwidth. A higher bandwidth
could be achieved by increasing the number of working
threads. This was possible by revisiting our design and allo-
cating a 2-D grid of threads, where each 1-D grid operated
on an independent matrix. This workaround allowed us to
reach the maximal ratio of TBs per SMX. Now, one TB would
operate on Dim.y matrices. For example, we could assign
128 threads (32 × 4) to a TB and make it operate on four
independent matrices. This configuration increased the total
number of registers per SMX (4× in this example).

Using data from Figure 4, we computed the number of
TBs per SMX, as illustrated in Figure 6 (purple curve). The
information depicted in Figures 1 and 6 has been decisive
in evaluating the optimal configuration of 2-D threads for
matrices smaller than 16×16. With this in mind, we can say

10

confidently that the 32×4 threads configuration would help
achieve even better performance. However, for matrices
larger than 16 × 16, the new version of the register design
(REG-v2) will be more likely to run less than 6 TBs per SMX,
leading to an upper bandwidth of less than 10 TBs per SMX
of 32 threads each; consequently, the performance will be
lower when compared to REG-v1. This is not surprising
since REG-v2 is designed specifically for matrices smaller
than 16× 16.

In Figure 8, we show the previous register design (REG-
v1) and the latest register design (REG-v3), where we used
the 2-D grid for matrices smaller than 16× 16 and kept the
REG-v1 design for matrices larger than 16 × 16. We also
compared our implementation to the cuBLAS 8.0 batched
LU solver. The first observation is that the results match the
expectations of our analysis. The second point is related to
the efficiency of our implementation since it outperforms the
cuBLAS batched LU solver by about 3× on 32×32 matrices.

This paper does not aim to provide details on the ad-
vancement of the LU factorization algorithm. However, we
would like to mention that it is possible to improve the
performance by delaying the algorithm’s swapping process,
as reported in [1]. This optimization does not affect the
number of registers or shared memory required and can
improve performance by 10% (purple curve of Figure 8).

Finally, after all possible algorithm analysis and opti-
mization, we found it reasonable to apply autotuning strate-
gies. The autotuning experiments showed that an improve-
ment of only about 5% could be obtained on top of our
algorithm analysis.

Matrix size
0 4 8 12 16 20 24 28 32

G
flo

p/
s

2n
3 /3

0
20
40
60
80

100
120
140
160
180
200
220
240
260
280
300
320
340
360

Nvidia P100 batchcount 100K
Register design REG-v1
Register design REG-v3
Batched LU cuBLAS 8.0
Register design REG-v3 with pivot delay

Fig. 8. Performance comparison of the two-register design of the LU
factorization on an NVIDIA P100.

4.5 The Interleaved Data Layout

We also investigated alternatives to conventional data stor-
age to assess possible improvements. Based on the analysis
outlined in this work, we believe that there may be a little
performance gain for matrices smaller than 20× 20.

When the matrices are very small, it becomes more
challenging to have a coalesced memory read, and as the
dimensions of the matrices become smaller, it eventually
becomes impossible to have any coalesced reads at all for
matrices smaller than 16 × 16. The easiest and most basic
way to solve this problem is to reorder the dimensions in

an interleaved fashion (e.g., the first element of Matrix 1
will be followed by the first element of Matrix 2 and so on,
eventually moving through all elements of every matrix).
In this case, one warp reads 32 elements, with the same
row and column index in 32 consecutive matrices. It is true
that data is now 128-byte aligned, but this kind of storage
will not allow for an efficient implementation on a GPU
for matrices larger than 16 × 16 in double precision and
for matrices larger than 32 × 32 in single precision. The
reason being: 32 threads will be working on 32 different
matrices, thereby making it impossible to hold data in
shared memory or in the registers. On the P100 for example,
this will limit the amount of shared memory available for
the panel of the Cholesky factorization to 2 KB. This results
in bad performance except for the sizes mentioned above,
where the performance obtained from such a design was
close to that obtained with the standard design. This kind
of design might be interesting for a GEMV or TRSV type
of operation, where the matrix is read only once. Recent
studies on optimized batched BLAS kernels designed for
multicore architectures have shown promising results over
the classical approach of solving one problem per core at a
time [16], [17].

5 CONCLUSION AND FUTURE REMARKS

This paper presented a model and an analysis on how to
design GPU kernels for very small matrix computations.
We provided a detailed study of the optimization process,
and we also demonstrated how a detailed performance
analysis could help considerably reduce developer efforts
and man hours required to design an efficient GPU kernel.
The proposed work will also simplify the autotuning pro-
cess, where—instead of generating, running, and analyzing
tens of thousands of configurations—one can dramatically
decrease this number to a small subset. We showed a
Cholesky factorization and an LU factorization as case stud-
ies and showed how we were able to reach the theoretical
peak performance of these kernels. The model is designed
specifically for very small matrices, where the computation
is memory-bound, and high performance can be achieved
through a set of optimizations different from those used
in the more standard large matrix computations. Future
directions include studying other algorithms of interest to
the scientific community and discovering more detailed
optimization techniques in the area of deep learning, where
little research has been conducted from this perspective.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under Grants No. CSR 1514286 and No.
OAC 1740250, NVIDIA, and the Department of Energy.

REFERENCES

[1] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra. Factoriza-
tion and inversion of a million matrices using gpus: Challenges
and countermeasures. Procedia Computer Science, 108:606 – 615,
2017. International Conference on Computational Science, ICCS
2017, 12-14 June 2017, Zurich, Switzerland.

11

[2] M. J. Abraham, T. Murtola, R. Schulz, S. Pll, J. C. Smith, B. Hess,
and E. Lindahl. Gromacs: High performance molecular simula-
tions through multi-level parallelism from laptops to supercom-
puters. SoftwareX, 1-2(Supplement C):19 – 25, 2015.

[3] E. Agullo, C. Augonnet, J. Dongarra, H. Ltaief, R. Namyst,
S. Thibault, and S. Tomov. Faster, Cheaper, Better – a Hybridiza-
tion Methodology to Develop Linear Algebra Software for GPUs.
In W. mei W. Hwu, editor, GPU Computing Gems, volume 2.
Morgan Kaufmann, Sept. 2010.

[4] ACML - AMD Core Math Library, 2014. Avail-
able at http://developer.amd.com/tools-and-sdks/cpu-
development/amd-core-math-library-acml.

[5] M. Anderson, D. Sheffield, and K. Keutzer. A predictive model
for solving small linear algebra problems in gpu registers. In IEEE
26th International Parallel Distributed Processing Symposium (IPDPS),
2012.

[6] A. A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata, V. Chop-
pella, D. Cociorva, X. Gao, R. Harrison, S. Krishnamoorthy, S. Kr-
ishnan, C.-C. Lam, Q. Luc, M. Nooijene, R. Pitzerf, J. Ramanujamg,
P. Sadayappanc, and A. Sibiryakovc. Automatic code generation
for many-body electronic structure methods: the tensor contrac-
tion engine. Molecular Physics, 104(2):211–228, 2006.

[7] B. Brock, A. Belt, J. J. Billings, and M. Guidry. Explicit Integration
with GPU Acceleration for Large Kinetic Networks, Jan. 2015.

[8] J. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R.
Hawkes, S. Klasky, W. K. Liao, K. L. Ma, J. Mellor-Crummey,
N. Podhorszki, R. Sankaran, S. Shende, and C. S. Yoo. Terascale
direct numerical simulations of turbulent combustion using S3D.
Comput. Sci. Disc., 2, 2009.

[9] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer. cudnn: Efficient primitives for deep
learning. CoRR, abs/1410.0759, 2014.

[10] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer. cudnn: Efficient primitives for deep
learning. CoRR, abs/1410.0759, 2014.

[11] T. Dong, V. Dobrev, T. Kolev, R. Rieben, S. Tomov, and J. Don-
garra. A step towards energy efficient computing: Redesigning a
hydrodynamic application on CPU-GPU. In IEEE 28th International
Parallel Distributed Processing Symposium (IPDPS), 2014.

[12] T. Dong, A. Haidar, P. Luszczek, A. Harris, S. Tomov, and J. Don-
garra. LU Factorization of Small Matrices: Accelerating Batched
DGETRF on the GPU. In Proceedings of 16th IEEE International
Conference on High Performance and Communications (HPCC 2014),
August 2014.

[13] T. Dong, A. Haidar, S. Tomov, and J. Dongarra. A fast batched
Cholesky factorization on a GPU. In Proceedings of 2014 Interna-
tional Conference on Parallel Processing (ICPP-2014), Septembe 2014.

[14] J. Dongarra, I. Duff, M. Gates, A. Haidar, S. Hammarling, N. J.
Higham, J. Hogg, P. Valero-Lara, S. D. Relton, S. Tomov, and
M. Zounon. A proposed API for Batched Basic Linear Algebra
Subprograms. MIMS EPrint 2016.25, Manchester Institute for
Mathematical Sciences, The University of Manchester, UK, Apr.
2016.

[15] J. Dongarra, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and
A. YarKhan. Model-driven one-sided factorizations on multicore
accelerated systems. International Journal on Supercomputing Fron-
tiers and Innovations, 1(1), June 2014.

[16] J. Dongarra, S. Hammarling, N. J. Higham, S. D. Relton, P. Valero-
Lara, and M. Zounon. The design and performance of batched
blas on modern high-performance computing systems. Procedia
Computer Science, 108:495–504, 2017.

[17] J. J. Dongarra, S. Hammarling, N. J. Higham, S. D. Relton, and
M. Zounon. Optimized batched linear algebra for modern archi-
tectures. In Euro-Par 2017: Parallel Processing - 23rd International
Conference on Parallel and Distributed Computing, Santiago de Com-
postela, Spain, August 28 - September 1, 2017, Proceedings, pages 511–
522, 2017.

[18] M. W. Guidry, J. J. Billings, and W. R. Hix. Explicit integration
of extremely stiff reaction networks: partial equilibrium methods.
Computational Science & Discovery, 6(1):015003, 2013.

[19] A. Haidar, P. Luszczek, S. Tomov, and J. Dongarra. Towards
batched linear solvers on accelerated hardware platforms. In
Proceedings of the 20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP 2015, San Francisco, CA,
02/2015 2015. ACM, ACM.

[20] J. R. Hammond, S. Krishnamoorthy, S. Shende, N. A. Romero, and
A. D. Malony. Performance characterization of global address

space applications: a case study with nwchem. Concurrency and
Computation: Practice and Experience, 24(2):135–154, 2012.

[21] Intel Pentium III Processor - Small Matrix Library, 1999. Available
at http://www.intel.com/design/pentiumiii/sml/.

[22] Intel Math Kernel Library, 2014. Available at
http://software.intel.com/intel-mkl/.

[23] H. Ltaief, S. Tomov, R. Nath, P. Du, and J. Dongarra. A Scalable High
Performant Cholesky Factorization for Multicore with GPU Accelera-
tors, pages 93–101. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011.

[24] O. Messer, J. Harris, S. Parete-Koon, and M. Chertkow. Multi-
core and accelerator development for a leadership-class stellar
astrophysics code. In Proceedings of ”PARA 2012: State-of-the-Art
in Scientific and Parallel Computing.”, 2012.

[25] J. M. Molero, E. M. Garzn, I. Garca, E. S. Quintana-Ort, and
A. Plaza. Efficient implementation of hyperspectral anomaly
detection techniques on gpus and multicore processors. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 7(6):2256–2266, June 2014.

[26] Going beyond full utilization: The inside scoop
on nervanas winograd kernels, 2016. Available at
https://www.nervanasys.com/winograd-2/.

[27] A. M. N. Niklasson, S. M. Mniszewski, C. F. A. Negre, M. J.
Cawkwell, P. J. Swart, J. Mohd-Yusof, T. C. Germann, M. E. Wall,
N. Bock, E. H. Rubensson, and H. Djidjev. Graph-based linear
scaling electronic structure theory. The Journal of Chemical Physics,
144(23):234101, 2016.

[28] CUBLAS 6.5, Jan. 2015. Available at
http://docs.nvidia.com/cuda/cublas/.

[29] V. Oreste, M. Fatica, N. A. Gawande, and A. Tumeo.
Power/performance trade-offs of small batched LU based solvers
on GPUs. In 19th International Conference on Parallel Processing,
Euro-Par 2013, volume 8097 of Lecture Notes in Computer Science,
pages 813–825, Aachen, Germany, August 26-30 2013.

[30] V. Oreste, N. A. Gawande, and A. Tumeo. Accelerating sub-
surface transport simulation on heterogeneous clusters. In IEEE
International Conference on Cluster Computing (CLUSTER 2013),
Indianapolis, Indiana, September, 23-27 2013.

[31] S. Páll, M. J. Abraham, C. Kutzner, B. Hess, and E. Lindahl.
Tackling exascale software challenges in molecular dynamics sim-
ulations with GROMACS. CoRR, abs/1506.00716, 2015.

[32] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos. Tensors for
data mining and data fusion: Models, applications, and scalable
algorithms. ACM Trans. Intell. Syst. Technol., 8(2):16:1–16:44, Oct.
2016.

[33] W. Raphael and Friedrich-Karl. Silicon burning II: Quasi-
equilibrium and explosive burning. ApJ, 511:862–875, February
1999.

[34] M. J. C. S. M. Mniszewski, C. F. A. Negre and A. M. N. Niklasson.
Distributed graph-based density. matrix calculation for quantum.
molecular dynamics using gpus, 2016.

[35] H. Shan, S. Williams, W. de Jong, and L. Oliker. Thread-level
parallelization and optimization of nwchem for the intel mic
architecture. In Proceedings of the Sixth International Workshop on
Programming Models and Applications for Multicores and Manycores,
PMAM ’15, pages 58–67, New York, NY, USA, 2015. ACM.

[36] J. C. Sweet, R. J. Nowling, T. Cickovski, C. R. Sweet, V. S. Pande,
and J. A. Izaguirre. Long timestep molecular dynamics on the
graphical processing unit. Journal of Chemical Theory and Computa-
tion, 9(8):3267–3281, 2013.

[37] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear
algebra for hybrid gpu accelerated manycore systems. Parellel
Comput. Syst. Appl., 36(5-6):232–240, 2010.

[38] S. Tomov, R. Nath, and J. Dongarra. Dense linear algebra solvers
for multicore with GPU accelerators. In Proc. of the IEEE IPDPS’10,
Atlanta, GA, April 19-23 2014.

[39] V. Volkov and J. W. Demmel. LU, QR and Cholesky factorizations
using vector capabilities of GPUs. Technical Report UCB/EECS-
2008-49, University of California, Berkeley, May 13 2008. Also
available as LAPACK Working Note 202.

[40] I. Wainwright. Optimized LU-decomposition with full pivot for
small batched matrices, April, 2013. GTC’13 – ID S3069.

[41] S. Williams, A. Waterman, and D. Patterson. Roofline: An in-
sightful visual performance model for multicore architectures.
Commun. ACM, 52(4):65–76, Apr. 2009.

12

[42] S. N. Yeralan, T. A. Davis, and S. Ranka. Sparse mulitfrontal QR on
the GPU. Technical report, University of Florida Technical Report,
2013.

Azzam Haidar holds a research scientist posi-
tion at the Innovative Computing Laboratory at
the University of Tennessee. His research re-
volves around Parallel Linear Algebra for Scal-
able Distributed Heterogeneous Architectures
such as multicore CPUs and accelerators (Intel
Xeon-Phi, NVIDIA and AMD GPUs). His goal is
to create software that simplifies development
of applications that achieve high-performance
and portability. Such programming models rely
on asynchronous and out-of-order scheduling of

operations. These concepts are the basis for scalable and efficient
software for Computational Linear Algebra and applications. Another
research interest is the development/implementation of numerical algo-
rithms and software for large scale parallel sparse problems in order to
develop hybrid approaches combining direct and iterative algorithms to
solve systems of linear algebraic equations with large sparse matrices.
Contact him at haidar@icl.utk.edu.

Ahmad Abdelfattah received his PhD in com-
puter science from King Abdullah University
of Science and Technology (KAUST) in 2015,
where he was a member of the Extreme Com-
puting Research Center (ECRC). He is cur-
rently a research scientist in the Innovative
Computing Laboratory at the University of Ten-
nessee. He works on optimization techniques for
many dense linear algebra algorithms at different
scales. Ahmad has B.Sc. and M.Sc. degrees in
computer engineering from Ain Shams Univer-

sity, Egypt. Contact him at ahmad@icl.utk.edu.

Mawussi Zounon is a Research Associate
in the Numerical Linear Algebra group at the
University of Manchester. He received a PhD
in computer science and applied mathematics
from the University of Bordeaux for his contri-
bution to numerical fault tolerant strategies for
large sparse linear algebra solvers with a spe-
cial focus on Krylov subspace methods. His re-
search interests are in parallel algorithms, nu-
merical algorithms in linear algebra, computer
architures, and fault tolerance. Contact him at

mawussi.zounon@manchester.ac.uk.

Stanimire Tomov received a M.S. degree in
Computer Science from Sofia University, Bul-
garia, and Ph.D. in Mathematics from Texas
A&M University. He is a Research Director in ICL
and Research Assistant Professor in the EECS
at UTK. Tomov’s research interests are in par-
allel algorithms, numerical analysis, and high-
performance scientific computing (HPC). Cur-
rently, his work is concentrated on the develop-
ment of numerical linear algebra software, and
in particular MAGMA, for emerging architectures

for HPC. Contact him at tomov@icl.utk.edu.

Jack Dongarra holds an appointment at the
University of Tennessee, Oak Ridge National
Laboratory, and the University of Manchester.
He specializes in numerical algorithms in linear
algebra, parallel computing, use of advanced-
computer architectures, programming methodol-
ogy, and tools for parallel computers. He was
awarded the IEEE Sid Fernbach Award in 2004;
in 2008 he was the recipient of the first IEEE
Medal of Excellence in Scalable Computing; in
2010 he was the first recipient of the SIAM Spe-

cial Interest Group on Supercomputing’s award for Career Achievement;
in 2011 he was the recipient of the IEEE Charles Babbage Award; and in
2013 he received the ACM/IEEE Ken Kennedy Award. He is a Fellow of
the AAAS, ACM, IEEE, and SIAM and a foreign member of the Russian
Academy of Science and a member of the US National Academy of
Engineering.

