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The  use  of batched  matrix  computations  recently  gained  a lot  of interest  for applications,  where  the
same  operation  is applied  to  many  small  independent  matrices.  The  batched  computational  pattern
is  frequently  encountered  in  applications  of  data  analytics,  direct/iterative  solvers  and  precondition-
ers,  computer  vision,  astrophysics,  and  more,  and often  requires  specific  designs  for vectorization  and
extreme  parallelism  to map  well  on  today’s  high-end  many-core  architectures.  This  has  led to  the  devel-
opment  of optimized  software  for batch  computations,  and  to an ongoing  community  effort  to develop
standard  interfaces  for  batched  linear  algebra  software.  Furthering  these  developments,  we  present  GPU
design  and  optimization  techniques  for high-performance  batched  one-sided  factorizations  of millions
of  tiny  matrices  (of  size  32  and  less).  We quantify  the  effects  and  relevance  of different  techniques  in
order  to  select  the best-performing  LU, QR,  and  Cholesky  factorization  designs.  While  we  adapt  common

optimization  techniques,  such  as  optimal  memory  traffic,  register  blocking,  and  concurrency  control,  we
also  show  that  a different  mindset  and  techniques  are  needed  when  matrices  are  tiny, and  in  particular,
sub-vector/warp  in size.  The  proposed  routines  are  part  of  the  MAGMA  library  and  deliver  significant
speedups  compared  to  their  counterparts  in  currently  available  vendor-optimized  libraries.  Notably,  we
tune  the  developments  for the  newest  V100  GPU  from  NVIDIA  to show  speedups  of  up to 11.8×.

© 2018  Elsevier  B.V.  All  rights  reserved.
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computations apply the same numerical algorithm to a
e number of relatively small problems. The batched com-
orkload is quite different than the common workload for
typically large, matrix. The latter is served well by many
packages, including LAPACK [2], ScaLAPACK [3], PLASMA
MAGMA  [5]. The former, however, is relatively recent,
d a lot of attention in many scientific communities, e.g.,

 chemistry [6], sparse direct solvers [7], astrophysics [8],
l processing [9]. Software libraries such as Intel’s MKL

DIA’s cuBLAS [11], and MAGMA  recently started to pro-
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g numerical linear algebra software packages rarely
ood performance on matrices of small sizes, because most
timization techniques that they carry out pay off only

matrices. For example, the hybrid lookahead technique in
[12] is used to overlap the panel factorization (on the CPU)
trailing matrix update (on the GPU). This design strategy
cient for small sizes, since the updates are no longer com-
nsive, and therefore fail to overlap the panel factorization
PU-GPU communication. This is why new developments
rent design strategies are needed.

 there have been new developments for GPU accelerated
omputations, for example the work done by Haidar et al.
Abdelfattah et al. [14], there is still room for significant
ents when the matrix sizes are tiny. For these extremely

blems, the LAPACK-style blocking cannot achieve high
nce, even if it is carried out on the GPU solely. Since the
tion becomes memory bound on such small sizes, the cost
 the factorized panel and then reading it back to perform
te becomes significant. Furthermore, the parallelization
ve sufficiently high occupancy) and the vectorization (for
warp use) become more challenging when sizes are less
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nd must, for example, be done across matrices. Therefore,
ign, parallelization, and vectorization strategies must be
d in order to resolve the aforementioned issues regarding
traffic and parallelization.
aper presents highly optimized GPU kernels for batched

 factorizations. The paper extends the previous work by
rs for batched LU factorization and matrix inversion [1],
es the same design principles to the QR, and Cholesky fac-
s. In terms of the workload size, we consider one million
of tiny sizes, typically from 1 up to 32. In addition to the
ns already mentioned, these factorizations are of partic-
rtance to sparse direct solvers, such as the multifrontal
at can be found in SuiteSparse [15]. We  adopt a step-by-
odology, where incremental improvements in the kernel

ad to incremental performance gains. Such a methodol-
atically justifies all of our design choices. While all the

are the same optimization techniques, our design for the
ization adopts a unique lazy swap strategy, which elimi-

 expensive intermediate row interchanges, thus leading to
ster kernel, but that is still numerically equivalent to an
tyle LU-factorization. The performance results show sig-
peedups against the vendor-supplied cuBLAS kernels on
100 GPU, as well as on the new Volta V100 GPU.

d Work

sign of high performance dense linear algebra (DLA) soft-
GPUs was originally motivated by the high performance

 achieve in embarrassingly parallel, compute intensive
st notably on the matrix-matrix multiplication (GEMM)

The high performance GEMM enabled the development of
ormance DLA in libraries like MAGMA  [5], where many of
K numerical algorithms are designed in a hybrid style to
ntage of both CPUs and GPUs [12].
owing demand for high performance dense linear algebra
atches of small matrices has led to early developments for
trix multiplication [19,20], which were then followed by
imized kernels being available in cuBLAS, starting with
.0. The development of the batched GEMM in MAGMA
he development of batched one-sided factorizations rou-
ed on the LAPACK-style blocking [13], but on a smaller

 example, while non-batched routines use a large blocking
 512 to 1024) to get asymptotically optimal performance,
outines block by much smaller sizes (e.g., 8 to 32), and rely
d GEMM that is specifically tuned for small sizes in order

t performance [21][22]. The developments for extremely
trices, however, are more challenging. An approach that

 separate panel/update stages [13] leads to redundant
traffic. This cost can be affordable for medium sizes (e.g.,
56), but becomes significant for smaller sizes.

s why other research efforts followed a one-kernel
, where all computations are fused into a single GPU ker-
xample, Wang et al. [23] introduced FPGA-based parallel
ization of large sparse matrices, where the algorithm is
o factorizing many small matrices concurrently. Villa et al.
loped a GPU-based batched LU factorization, which has

d in subsurface transport simulation, where many chem-
icrobiological reactions in a flow path are simulated in
5]. Kurzak et al. [26] developed batched Cholesky factor-

 single precision for sizes up to 100 × 100, which was used
rnating Least Squares (ALS) solver. Masliah et al. devel-
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ched GEMM for very small sizes for both CPUs and GPUs
hed matrix inversion has been also introduced in the con-
nerating block-Jacobi preconditioners [28]. Batched QR
ion is of particular importance to H-matrix computation,
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hted by Akbudak et al. [29], and by Boukaram et al. [30].
. also introduced batched GEMM, triangular solve, and LU
ing) for CPUs and Intel’s Xeon Phi architectures based on
t interleaved data layout [31].
aper follows the same one-kernel approach to improve
MA  performance on very small sizes. It complements the
Haidar et al. [13], which outperforms cuBLAS for medium

 sizes, but trails it for the sizes we  focus on (up to 32).

ibutions

 is a list of contributions for this paper.

 optimized GPU kernels for one-sided factorization on
workloads. The developed kernels significantly outper-
he state of the art designs from the vendor provided
re. We  typically consider single-node workloads that
e  millions of extremely small matrices.
f unified design techniques that are oblivious to the three
hms  considered (LU, QR, and Cholesky factorizations). The
manages to find a common ground among the three algo-

 to achieve high performance.
per presents a detailed study of the different choices for
spect of the kernel design, including thread configuration,

 storage, occupancy, and others. The paper justifies the
sign choice by showing intermediate performance results
erent choices. Such a detailed study can be considered as

e for designing other algorithms on similar workloads.

round

ection introduces the computational steps for the LU, QR,
esky factorizations on square matrices of size N×N. The
on follows the LAPACK notations in double precision arith-

 factorization computes the L and U factors of a general
 such that A = P×L×U, where P is a permutation matrix
cts the row interchanges required for pivoting. The matrix
lower triangular, while U is upper triangular. The permu-
trix P is stored in a compact format using a pivot vector
ch that for i ∈ {1, 2, · · ·,  N}, row i has been swapped with
(i).

 are four main steps in performing the unblocked LU factor-
amely, these are: (1) locate the maximum absolute value
rent column (IDAMAX); (2) swap current row with the row
imum absolute value in the current column (DLASWP); (3)

 current column (DSCAL); and (4) rank − 1 update (DGER).
 1 shows the factorization using the four steps. Accord-

PACK working notes [32], the LU factorization of a square
rforms ( 2N3

3 − N2

2 + 5N
6 ) floating point operations (FLOPs).

 1. Unblocked LU factorization.
 the LU factorization is able to factorize symmetric posi-
ite (SPD) matrices, the Cholesky factorization, shown in

 2, introduces a much faster algorithm for such matri-
lgorithm factorizes an SPD matrix A = LLT, where L is a
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angular matrix. In each iteration, the algorithm (1) com-
 square root of the current diagonal element (A[i,i]), (2)

 the elements below that element (A[i+1:N,i]), and (3)
symmetric rank − 1 update to the lower triangular part of
g matrix (A[i+1:N,i+1:N]). The Cholesky factorization

 performs ( N3

3 + N2

2 + N
6 ) FLOPs.

 2. Unblocked Cholesky factorization.

ird algorithm that we consider is the QR factorization,
atrix A is represented as the product Q×R, where Q is an

al matrix, and R is an upper triangular matrix. Following
CK implementation of the algorithm, the Q matrix is not
d explicitly. It is rather represented as a product of ele-
Householder reflectors, namely Q = H(1) H(2) · · · H(N),
i) = I − �vvT. Considering the reflector H(i), the corre-

 vector v has v[1 : i − 1] = 0, v[i] = 1, which is not explicitly
d v[i + 1 : N], which is stored in A[i + 1 : N, i]. Algorithm 3

e basic steps of the QR factorization: (1) generate an ele-
reflector (H(i)) by computing v and � (the DLARFG routine);
pply H(i) to the trailing submatrix. The QR factorization
( 4N3

3 + 2N2 + 14N
3 ) FLOPs.

 3. Unblocked QR factorization

inted out before, there is no need to use LAPACK-style
techniques, which is the strategy adopted for LU, QR, and

 factorizations in the DGETRF, DGEQRF, and DPOTRF rou-
pectively. The reason is that a very small matrix can be
gisters or shared memory during the entire factorization.
ns that it makes no difference if (additional) blocking is
ot, since all the data is blocked and accessed from fast

until the factorization is complete.

 setup

ustrate our findings on two systems accelerated with high-
IA GPUs. The first system is equipped with two  10-core

well processors (E5-2650 v3, running at 2.3 GHz) and a
U (Tesla P100). The GPU has 56 streaming multiproces-

 a base clock of 1.189 GHz. The second system is equipped
dentical CPU, but the GPU is a Volta V100, which features
processors, running at 1.38 GHz. Both GPUs have 16GB
S Stacked HBM2 memory, and are attached to the host
ugh a PCIE interconnect. All results are obtained using
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sults on the P100 GPU only, while the final performance
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al design criteria

e kernels discussed in this paper have some common
pects.
each matrix is factorized using exactly one CUDA thread
). Upon launch, the kernel is configured with as many TBs
mber of matrices, i.e., the batch size (batchCount). The
id in CUDA is, in general, a three dimensional array (gx,
e  use the gx dimension only to launch a 1D array of TBs.

mum value for gx is 231 − 1, which means that our kernels
 billions of matrices in a single kernel launch.
d, we adopt an optimal memory traffic strategy. Each
ill be read and written exactly once. Since the computa-
mory bound on such small sizes, it is an important design

 keep the entire matrix cached in a fast memory level in
void any redundant memory traffic.

 we  use C++ templates to generate fully unrolled codes.
 sizes of interest are finite, the size of the input matrix

 as a template parameter. For such a range of very small
 is a crucial decision. Fully unrolled loops get rid of integer

ch instructions, which can be quite an overhead [27].
,  all kernels use unblocked computations. There is no need

ze a panel of width nb > 1 so that the trailing updates use L3
rations that are rich in data reuse. As pointed out earlier,
rix is entirely kept in registers or shared memory, which
at data reuse is preserved anyway. Every kernel factorizes

n at a time and carries out the required transformation
iling matrix.

n choice 1: thread configuration

ost linear algebra kernels, the configuration of TBs can be
 which is one of our design parameters. A 2D configuration
s the coding effort. To use an N × N thread configuration to

 an N × N matrix, each thread is responsible for one element
trix. Thus, reading and writing the entire matrix can be
ugh one line of code each. In addition, the trailing matrix

 fully parallelized among threads. On the other hand, read-
ng, and updating the matrix will be written in loops if a
uration of N threads is used. Our analysis shows that there
ple reasons to reject the 2D configuration in favor of the
ative. In batch workloads, it is important to optimize the
ut of the processed matrices, which is achieved by max-
he number of resident TBs per multiprocessor. Using a
uration, the occupancy level of each multiprocessor are
optimal, and thus resulting in more limited parallelism,
likely to produce a very poor performance. For example,
nfiguration requires 256 threads for a 16 × 16 matrix. This

 number of resident TBs per multiprocessor to 8, which
a maximum of 2048 threads. A modern Kepler GPU  can
o 16 resident TBs per multiprocessor, while later genera-

 host up to 32. This means that the occupancy at size 16
t down by a factor of 2 on a Kepler GPU, and by a factor
ter GPUs. Using a 1D configuration, the occupancy is no
ited by the number of threads, but rather by the amount

ry resources required by each TB.
er motivation to abandon the 2D configuration is syn-
ion. The use of N2 threads is likely to produce too many
n the kernel. At each iteration, for example, threads pos-
e trailing matrix always wait for the threads performing

rization of the current column, and threads performing

rization in the next iteration have to wait for the update

 On the contrary, a 1D design can be free of synchroniza-
ts. Even with the use of the new syncwarp() function
d in CUDA 9.0, we observe that this function is obviously
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Fig. 1. Performance comparison between the 1D configuration and the 2D configuration of the Cholesky factorization kernel. Results are for 1M matrices on a Pascal P100
GPU.

Fig. 2. Perf  LU fa

more ligh
addition,
in a bette

We co
quantify 

analysis. 

both con
both situ
torization
performa
tion over 

in single
Cholesky
for the LU
similar si
regardles
winning s
we contin
ration.

8. Design

The se
ory, whic
general, t
but the la
the 1D arr

al m
 into
e m
ng th
ugh s
ssing
e LU
he ot
any 

 of sy
icit w
tion,

 sma
B re

 it di
e is a
versi
conse
first 

 amo
fle op
irst,  

ed m

Fig. 3. Perf
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tweight than the legacy syncthreads() function. In
 a 1D design assigns more work per thread, which results
r instruction-level parallelism (ILP).
nducted a performance test for both design choices to
the differences in the two techniques and to verify our
For every algorithm, we designed two kernels based on
figurations. The matrix is stored in shared memory in
ations. Figs. 1–3 show the performance for the three fac-
s using both single and double precision arithmetic. All
nce graphs show a clear advantage for the 1D configura-
the 2D configuration. Fig. 1 shows speedups of 10.5×/9.6×
/double precision against the 2D configuration for the

 factorization. A similar 9× (or more) speedup is obtained
 factorization in both precisions (Fig. 2). Fig. 3 also shows
gnificant speedups for the QR factorization. It is clear that,
s of the numerical algorithm, the 1D configuration is the
trategy for batch workloads of small sizes. From now on,
ue to carry out further enhancements on the 1D configu-

 choice 2: matrix storage

cond design parameter is the matrix storage in fast mem-
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column-b
each iter
scale the
then use t

ormance comparison between the 1D configuration and the 2D configuration of the QR fa
ctorization kernel. Results are for 1M matrices on a Pascal P100 GPU.

emory to preserve a coalesced memory access. If threads
 registers, each thread has direct access to an entire row
atrix. In order to access other elements, communication
reads is required, either by using shuffle operations, or
hared memory. All three factorization algorithms require

 data from other threads, e.g., as in the row interchanges
 factorization, and the rank − 1 updates in all algorithms.
her hand, if the threads read the matrix into shared mem-
thread has access to the entire matrix. This comes at the
nchronization points (recall that CUDA now deprecates
arp synchronous codes, especially on the Volta GPUs). In

 shared memory is slower than registers, and its capac-
ller than the register file (e.g., 64KB on the P100 GPU vs. a
gister file). The capacity of the chosen storage is important,
rectly impacts the occupancy on the multiprocessor. Since

 tradeoff between the two  design choices, we developed
ons for each factorization algorithm to better understand
quences of each choice per algorithm and matrix size.

version uses shared memory for storage and communica-
ng threads. The second uses registers for storage and warp
erations for communication.

we consider the Cholesky factorization algorithm. The
emory version loads the matrix into shared memory

y-column to respect coalesced global memory access. At

ation i, all threads compute the square root of A[i,i],
 column A[i+1:N,i] accordingly in shared memory, and
he result to update the lower triangular part of the trailing

ctorization kernel. Results are for 1M matrices on a Pascal P100 GPU.
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Fig. 4. Performance comparison between performing the Cholesky factorization in registers and in s
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 A[i,i+1:N], and that all the trailing matrix is updated.
ws the performance of the two  LU versions. We  observe a

 the Cholesky factorization case advantage for the register
ver the shared memory version.
, for the QR factorization, we  begin by discussing the
st, which are shown in Fig. 7. Unlike the Cholesky and LU

tions, we  observe that the shared memory version is faster
register version, which is the opposite of our initial expec-
he explanation of this finding requires a deeper analysis
R factorization. As explained in Algorithm 3, the DLARFG
n the ith iteration begins with a reduction operation to

 the norm of the current column A[i:N,i]. The reduction
be done in exactly the same two ways as the pivot search

 algorithm. The main difference, however, for the QR fac-
 comes in the update phase, where an extra matrix-vector

ation is required before the rank-1 update. The multipli-
mputes y = vTC, where C = A[i:N, i+1:N]. Assuming
s a size of P×Q, the multiplication costs 2PQ FLOPs. How-
re becomes a difference in the number of reduction steps
compute y depending on the storage type. If registers and

 shuffle operations are used, then all threads collaborate to
 one element of y at a time. Therefore, assuming that Np2
rest power of 2 larger than or equal to N, the total number
ion steps is Q×log2(Np2), and not Q×log2(P). Recall that
perations require that the number of matrices is always

 power of 2. On the other hand, shared memory seems to
 better alternative. If both v and C are in shared memory,
ssign each element of y to a single thread. Since threads
y parallel, and using Q threads, it would take only P steps
e entire vector y. This means that it requires much fewer
ompute y in shared memory. Since the computation of y
nnermost loop of the kernel, the shared memory version
ster than the register version.
sults of the QR factorization in Fig. 7 motivated us to try
or the matrix, but use shared memory (instead of shuffle
s) for communication among threads. Another motiva-

his strategy is that CUDA 9.0 deprecates all the previous

hared memory. Results are for 1M matrices on a Pascal P100 GPU.
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Fig. 7. Performance comparison between performing the QR factorization in registers and in shared memory. Results are for 1M matrices on a Pascal P100 GPU.

Fig. 8. Performance comparison between performing the QR factorization using hybrid storage and using shared memory only. Results are for 1M matrices on a Pascal P100
GPU.
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erations, and replaces them by new ones that are rela-
wer (significantly slower on the Volta GPU). Fig. 8 shows
egister version with shared memory communication beats
hared memory implementation. We  tried the same tech-

th Cholesky and LU factorization, and barely found any
 performance.

 choice 3: concurrency control

neral design strategy in Section 6 states that a matrix is
 using exactly one TB. However, it does not restrict the
f matrices assigned to the same TB. In fact, we can assign
matrices to the same TB to be factorized concurrently.
vation behind this strategy is the 1D configuration of TBs,
ings very low occupancy if the matrix size is small, and in
r, if smaller than the warp size, which is the case at hand.
ple, a batch of 8 × 8 matrices requires a TB configuration
reads. Such configuration does not use a full warp, which

 wastes resources. The second issue is that such a con-

Inste
TBs 

cont
ing 

be a
thus
enou
is a v
for s
valu
the s

F

a bat

that
ter n
an a
of nF
gain
cont
 makes the CUDA runtime in full control of the number
rent TBs per multiprocessor. Even if the runtime does the
ecision, it will not be able to schedule more than 32 TBs
processor, which is the hardware limit on modern GPUs.

precision
We ob

for sizes 
d configuration.

e  adopt a different configuration that aggregates multiple
one, thus using an (8, nFTB) TB configuration, where nFTB

the number of concurrent factorizations per TB. Assum-
timal runtime behavior with nFTB = 4, the 32 TBs will

 factorize 128 matrices per multiprocessor instead of 32,
eving a 4× speedup. This example assumes that there is
emory resources to host 128 matrices of size 8 × 8, which

assumption for double precision if the register file is used
e. The nFTB value is a tuning parameter, with an optimal
t depends on many factors, including the matrix size and
ge type.
shows the general idea of concurrency control. In general,

f size BC can be factorized using
⌈

BC
nF<ce:inf>TB</ce:inf>

⌉
, so

 TB handles nFTB matrices. The value of the tuning parame-
oes not need to be known at compile time. We  conducted
ning experiment that performs a full sweep over values
om 1 to 16. We  observe that after this range, there is no
erformance. Figs. 10–12 show the impact of concurrency
n the three factorization algorithms in single and double

.
serve that a tunable nFTB does not affect the performance
larger than 16. For such range, the hardware rounds up
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Fig. 10. The impact of concurrency control on the Cholesky factorization kernel. Results are for 1M matrices on a Pascal P100 GPU.

Fig. 11. The impact of concurrency control on the LU factorization kernel. Results are for 1M matrices on a Pascal P100 GPU.
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ng as full warps are used, the runtime is able to sched-

fficiently among the multiprocessors. For sizes 1 through
serve performance gains in both single and double preci-
smaller the sizes, the more the speedups. For example, the

 factorization has speedups that range from 1.2× to 4.3×
precision and from 1.2× to 3.9× in double precision. The

 more apparent in the LU and QR factorizations, with the
zation enjoying speedups that range from 2.0× to 3.5× in
cision, and from 1.8× to 3.7× in double precision. Simi-

 QR factorization performance is enhanced by factors that
m 2.0× to 3.8× in single precision, and from 1.8× to 3.8×

 precision.

 swapping for LU Factorization

U factorization has a unique step that is necessary for
rical stability. At each iteration, two rows potentially

 their positions in the matrix. This is an expensive step
 data movement, and zero arithmetic intensity. Originally,
nge occurs at each iteration in a greedy style. While the
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sults are for 1M matrices on a Pascal P100 GPU.

. A row that has been pivoted in a previous iteration is
ith a flag so that it is excluded from the trailing matrix

s shown in Fig. 13. Pivoted rows are also excluded from
 searches in the following factorization steps. Fig. 14 shows
rmance gains of the lazy swap technique, that are up to
32% in single and double precision, respectively.

l performance results

s section, we show the final performance results of the
orithms against the competitive routines from the vendor
uBLAS). All kernels are tuned and scheduled for the next
f the MAGMA  library. The cuBLAS library provides batched
for the LU and QR factorizations, but not for the batched

 factorization. Therefore, the results for the Cholesky fac-
 use the cuBLAS batched LU routine instead, which is still a
on (though suboptimal) to factorize SPD matrices. We  also

 reference batched CPU implementation that we devel-
g sequential calls to the factorizations in the MKL  library

11.3.0) from within an OpenMP parallel for loop. The
f OpenMP threads is set to 20, which is equivalent to the
t of the CPU.
al behavior that we observe in most performance graphs
ikes at sizes that are power of 2, and the drops that come
r those sizes. This is a normal behavior in GPUs, which
xecute threads in groups of 32 (warps). A size that is a

 2 allows the hardware to use full warps (especially when
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Fig. 13. Trailing matrix updates in LU factorization with/without swapping.

Fig. 14. The impact of the lazy swap on the LU factorization. Results are for 1M matrices on a Pascal P100 GPU.
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 concurrency control technique discussed in Section 9).
 sizes, a round up to the nearest power of 2 is imposed

 the kernel configuration, or implicitly by the hardware.
he Volta V100 GPU, which has separate program counters
s for every thread, the same behavior is still observed.

 shows the performance of the Cholesky factorization on
 GPU. The MAGMA  kernels are significantly faster than

hich uses the LU algorithm), scoring speedups that are
 in single precision, and 8.2× in double precision. Against

nce CPU implementation, MAGMA  is at least 9.3× faster in
isions. The performance of the Cholesky factorization on
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.1× speedups against cuBLAS in single/double precision.
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ering the results for the LU factorization on the P100
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against t
precision
e P100 GPU (batchCount = 1M).

ecision, and up to 2.9× in double precision. The MAGMA
nce on the V100 GPU is at least 22× faster than the CPU
nce.
erformance gains in the QR factorization results are
ificant. Considering the P100 GPU (Fig. 19), MAGMA  is
04× faster than cuBLAS in single precision. It is also 2.9× to
er in double precision. The speedup against the reference
ntation is at least 16.1×. We  observe a kind of stagna-
e double precision performance for MAGMA. Recall that
el uses both registers and shared memory to achieve the
ormance. The shared memory requirements for this ker-

 seem to limit the multiprocessor occupancy. The results
precision support this explanation, since we observe no
n for the single precision results, as the shared memory
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sidering the results on the V100 GPU (Fig. 20), MAGMA  is
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Fig. 16. Final performance of the Cholesky factorization on the V100 GPU (batchCount = 1M).

Fig. 17. Final performance of the LU factorization on the P100 GPU (batchCount = 1M).

Fig. 18. Final performance of the LU factorization on the V100 GPU (batchCount = 1M).

Fig. 19. Final performance of the QR factorization on the P100 GPU (batchCount = 1M).
Fig. 20. Final performance of the QR factorization on the V
100 GPU (batchCount = 1M).



l Scien

12. Conc

This p
optimizin
mainly a
design te
matrices.
the vend
for scien
frontal s
variable s
work for 

where hi
performa

Acknowl

This w
and CSR
Project (1
ment of E
Nuclear S
preparati
applicatio
testbed p
imperativ

Referenc

[1] A. Abd
a milli
Compu
procs.2
2017,  1
com/sc

[2]  LAPAC
[3]  L.S. Bla

Donga
Whale
Mathe

[4]  PLASM
Availa

[5] MAGM
http://

[6] A.A. Au
Cocior
Luc, M
Autom
tensor

[7] S.N. Ye
factori
org/10

[8] O. Mes
develo
“PARA

[9]  M.  And
linear 

Distrib
[10] Intel M
[11]  NVIDIA

develo
[12]  S. Tom

J. Kurz
and Ac

[13] A. Haid
compu
193–2

[14] A. Abd
GPUs f
C) (201
www.s

[15] SuiteS
tamu.e

[16] V. Volk
SC ’08:
IEEE  Pr

. Nath
raphi
11–5
. Tan
GEM
igh P
ew Y
5:1–3
. Anz
utotu
ompu
pe.35
. Abd
utotu
1st In
erma
-319-
. Abd
ariab
n: 201

orks
p. 12
. Don
actori
roces
. Wan
PGA-
6 (4) 

. Ore
f sma
n Par
ompu
. Ore
imula
luste

. Kurz
atche
n Par
109/T
. Masl
onga
atric

onfer
4–26
3659
. Anz
limin
rocee
pplic
SA, 2
. Akb

actori
rchite
SC Hig
2–40
.H. B

lgori
aralle
cienc
. Kim
nepp
nd LA
erfor
ork, N
5:1–5
APAC
rg/lap

Laboratory  at the University of Tennessee. He works on
optimization techniques for different linear algebra work-
loads in the MAGMA  library. Ahmad has B.Sc. and M.Sc.
degrees in computer engineering from Ain Shams Univer-
sity, Egypt.
A. Abdelfattah et al. / Journal of Computationa

lusion and future work

aper introduced a progressive design methodology for
g batched one-sided factorizations using GPUs. The paper

ddresses extremely small matrix sizes, and introduces
chniques that are different from those used for larger

 Significant performance gains were achieved against
or library. The proposed work is of great importance
tific applications, including astronomy, sparse multi-
olvers, and preconditioners. Future directions include
ize batched workloads, developing an autotuning frame-
such kernels, and integration with scientific applications
gh performance batched routines have a great impact on
nce.

edgements

ork is partially supported by NSF Grants SI2:SSE 1740250
 1514286, NVIDIA, and by the Exascale Computing
7-SC-20-SC), a collaborative effort of two U.S. Depart-
nergy organizations (Office of Science and the National
ecurity Administration) responsible for the planning and
on of a capable exascale ecosystem, including software,
ns, hardware, advanced system engineering and early
latforms, in support of the nation’s exascale computing
e.

es

elfattah, A. Haidar, S. Tomov, J. Dongarra, Factorization and inversion of
on matrices using GPUs: challenges and countermeasures, Procedia
t. Sci. 108 (Supplement C) (2017) 606–615, http://dx.doi.org/10.1016/j.
017.05.250,  International Conference on Computational Science, ICCS
2–14 June 2017, Zurich, Switzerland. URL http://www.sciencedirect.
ience/article/pii/S1877050917308785.
K – Linear Algebra PACKage, “http://www.netlib.org/lapack/”.
ckford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J.
rra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, R.C.
y, ScaLAPACK Users’ Guide, Society for Industrial and Applied
matics,  Philadelphia, PA, 1997.
A. Parallel Linear Algebra Software for Multicore Architectures,

ble  at: https://bitbucket.org/icl/plasma (October 2017).
A. Matrix Algebra on GPU and Multicore Architectures, available at
icl.cs.utk.edu/magma/ (October 2017).
er, G. Baumgartner, D.E. Bernholdt, A. Bibireata, V. Choppella, D.

va, X. Gao, R. Harrison, S. Krishnamoorthy, S. Krishnan, C.-C. Lam, Q.
.  Nooijene, R. Pitzerf, J. Ramanujamg, P. Sadayappanc, A. Sibiryakovc,
atic code generation for many-body electronic structure methods: the

 contraction engine, Mol. Phys. 104 (2) (2006) 211–228.
ralan, T.A. Davis, W.M.  Sid-Lakhdar, S. Ranka, Algorithm 980: sparse QR
zation on the GPU, ACM Trans. Math. Softw. 44 (2) (2017), http://dx.doi.
.1145/3065870, 17:1–17:29. URL http://doi.acm.org/10.1145/3065870.
ser, J. Harris, S. Parete-Koon, M.  Chertkow, Multicore and accelerator
pment for a leadership-class stellar astrophysics code, Proceedings of

 2012: State-of-the-Art in Scientific and Parallel Computing” (2012).
erson, D. Sheffield, K. Keutzer, A predictive model for solving small

algebra problems in GPU registers, IEEE 26th International Parallel
uted Processing Symposium (IPDPS) (2012).
ath Kernel Library, available at http://software.intel.com/intel-mkl/.

 CUDA Basic Linear Algebra Subroutines (CUBLAS), available at https://
per.nvidia.com/cublas.
ov, J. Dongarra, Dense linear algebra for hybrid GPU-based systems, in:
ak, D.A. Bader, J. Dongarra (Eds.), Scientific Computing with Multicore
celerators, Chapman and Hall/CRC, 2010.
ar, T. Dong, P. Luszczek, S. Tomov, J. Dongarra, Batched matrix
tations  on hardware accelerators based on GPUs, IJHPCA 29 (2) (2015)

08, http://dx.doi.org/10.1177/1094342014567546.
elfattah, A. Haidar, S. Tomov, J. Dongarra, Fast Cholesky factorization on
or batch and native modes in MAGMA, J. Comput. Sci. 20 (Supplement
7) 85–93, http://dx.doi.org/10.1016/j.jocs.2016.12.009,. URL http://
ciencedirect.com/science/article/pii/S1877750316305154.

[17] R
g
5

[18] G
D
H
N
3

[19]  H
a
C
c

[20]  A
a
3
G
3

[21]  A
v
i
W
p

[22] T
f
P

[23] X
F
1

[24] V
o
o
C

[25] V
s
C

[26] J
b
o
1

[27]  I
D
m
C
2
4

[28]  H
E
P
A
U

[29] K
f
a
I
2

[30] W
A
P
s

[31]  K
K
a
P
Y
5

[32] L
o

parse. A Suite of Sparse Matrix Software, Available at http://faculty.cse.
du/davis/suitesparse.html.
ov, J. Demmel, Benchmarking GPUs to Tune Dense Linear Algebra, in:

 Proceedings of the 2008 ACM/IEEE conference on Supercomputing,
ess, Piscataway, NJ, USA, 2008, pp. 1–11.
ce 26 (2018) 226–236 235

, S. Tomov, J. Dongarra, An improved MAGMA  GEMM for Fermi
cs processing units, Int. J. High Perform. Comput. Appl. 24 (4) (2010)
15, http://dx.doi.org/10.1177/1094342010385729.
, L. Li, S. Triechle, E. Phillips, Y. Bao, N. Sun, Fast implementation of
M on Fermi GPU, in: Proceedings of 2011 International Conference for
erformance Computing, Networking, Storage and Analysis, SC ’11, ACM,
ork, NY, USA, 2011, http://dx.doi.org/10.1145/2063384.2063431, pp.
5:11.
t, B. Haugen, J. Kurzak, P. Luszczek, J. Dongarra, Experiences in
ning matrix multiplication for energy minimization on GPUs, Concurr.
t.: Practice Exp. 27 (17) (2015) 5096–5113, http://dx.doi.org/10.1002/

16.
elfattah, A. Haidar, S. Tomov, J. Dongarra, Performance, design, and
ning of batched GEMM for GPUs, in: High Performance Computing–
ternational Conference, ISC High Performance 2016, kFrankfurt,
ny, June 19–23, 2016, 2016, pp. 21–38, http://dx.doi.org/10.1007/978-
41321-1  2.
elfattah, A. Haidar, S. Tomov, J. Dongarra, On the development of
le size batched computation for heterogeneous parallel architectures,
6 IEEE International Parallel and Distributed Processing Symposium
hops, IPDPS Workshops 2016, Chicago, IL, USA, May  23–27, 2016, 2016,
49–1258, http://dx.doi.org/10.1109/IPDPSW.2016.190.
g, A. Haidar, S. Tomov, J. Dongarra, A fast batched Cholesky
zation  on a GPU, Proc. 2014 International Conference on Parallel
sing (ICPP-2014) (2014).
g, S.G. Ziavras, Parallel LU factorization of sparse matrices on

based configurable computing engines, Concurr. Comput.: Practice Exp.
(2004) 319–343, http://dx.doi.org/10.1002/cpe.748.
ste, M.  Fatica, N.A. Gawande, A. Tumeo, Power/performance trade-offs
ll batched LU based solvers on GPUs, in: 19th International Conference
allel Processing, Euro-Par 2013, - vol. 8097 of Lecture Notes in
ter Science, Aachen, Germany, 2013, pp. 813–825.

ste, N.A. Gawande, A. Tumeo, Accelerating subsurface transport
tion on heterogeneous clusters, in: IEEE International Conference on
r Computing (CLUSTER 2013), Indianapolis, Indiana, 2013.
ak, H. Anzt, M.  Gates, J. Dongarra, Implementation and tuning of
d Cholesky factorization and solve for NVIDIA GPUs, IEEE Transactions
allel and Distributed Systems, PP (99) (2015), http://dx.doi.org/10.
PDS.2015.2481890,  1-1.
iah, A. Abdelfattah, A. Haidar, S. Tomov, M.  Baboulin, J. Falcou, J.J.
rra, High-performance matrix–matrix multiplications of very small
es, in: Euro-Par 2016: Parallel Processing – 22nd International
ence  on Parallel and Distributed Computing, Grenoble, France, August
, 2016, 2016, pp. 659–671, http://dx.doi.org/10.1007/978-3-319-
-3 48.
t, J. Dongarra, G. Flegar, E.S. Quintana-Ortí, Batched Gauss–Jordan
ation  for Block–Jacobi Preconditioner Generation on GPUs, in: in:
dings of the 8th International Workshop on Programming Models and
ations for Multicores and Manycores, PMAM’17, ACM, New York, NY,
017, pp. 1–10, http://dx.doi.org/10.1145/3026937.3026940.
udak, H. Ltaief, A. Mikhalev, D.E. Keyes, Tile low rank Cholesky
zation  for climate/weather modeling applications on manycore
ctures,  High Performance Computing – 32nd International Conference,
h Performance 2017, Frankfurt, Germany, June 18–22, 2017 (2017)

, http://dx.doi.org/10.1007/978-3-319-58667-0 2.
oukaram, G. Turkiyyah, H. Ltaief, D.E. Keyes, Batched QR  and SVD

thms on GPUs with Applications in Hierarchical Matrix Compression,
l Computing, https://doi.org/10.1016/j.parco.2017.09.001, http://www.

edirect.com/science/article/pii/S0167819117301461.
, T.B. Costa, M.  Deveci, A.M. Bradley, S.D. Hammond, M.E. Guney, S.
er, S. Story, S. Rajamanickam, Designing vector-friendly compact BLAS
PACK kernels, in: Proceedings of the International Conference for High

mance Computing, Networking, Storage and Analysis, SC ’17, ACM, New
Y, USA, 2017, http://dx.doi.org/10.1145/3126908.3126941, pp.
5:12.
K Working Note 41. Installation Guide for LAPACK, http://www.netlib.
ack/lawnspdf/lawn41.pdf  (1999).

Ahmad Abdelfattah received his PhD in computer science
from King Abdullah University of Science and Technol-
ogy  (KAUST) in 2015, where he was a member of the
Extreme Computing Research Center (ECRC). He is cur-
rently a research scientist in the Innovative Computing

dx.doi.org/10.1016/j.procs.2017.05.250
dx.doi.org/10.1016/j.procs.2017.05.250
dx.doi.org/10.1016/j.procs.2017.05.250
dx.doi.org/10.1016/j.procs.2017.05.250
dx.doi.org/10.1016/j.procs.2017.05.250
dx.doi.org/10.1016/j.procs.2017.05.250
dx.doi.org/10.1016/j.procs.2017.05.250
dx.doi.org/10.1016/j.procs.2017.05.250
dx.doi.org/10.1016/j.procs.2017.05.250
dx.doi.org/10.1016/j.procs.2017.05.250
dx.doi.org/10.1016/j.procs.2017.05.250
http://www.sciencedirect.com/science/article/pii/S1877050917308785
http://www.sciencedirect.com/science/article/pii/S1877050917308785
http://www.sciencedirect.com/science/article/pii/S1877050917308785
http://www.sciencedirect.com/science/article/pii/S1877050917308785
http://www.sciencedirect.com/science/article/pii/S1877050917308785
http://www.sciencedirect.com/science/article/pii/S1877050917308785
http://www.sciencedirect.com/science/article/pii/S1877050917308785
http://www.sciencedirect.com/science/article/pii/S1877050917308785
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0015
https://bitbucket.org/icl/plasma
https://bitbucket.org/icl/plasma
https://bitbucket.org/icl/plasma
https://bitbucket.org/icl/plasma
https://bitbucket.org/icl/plasma
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://icl.cs.utk.edu/magma/
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0030
dx.doi.org/10.1145/3065870
dx.doi.org/10.1145/3065870
dx.doi.org/10.1145/3065870
dx.doi.org/10.1145/3065870
dx.doi.org/10.1145/3065870
dx.doi.org/10.1145/3065870
dx.doi.org/10.1145/3065870
http://doi.acm.org/10.1145/3065870
http://doi.acm.org/10.1145/3065870
http://doi.acm.org/10.1145/3065870
http://doi.acm.org/10.1145/3065870
http://doi.acm.org/10.1145/3065870
http://doi.acm.org/10.1145/3065870
http://doi.acm.org/10.1145/3065870
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0040
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0045
http://software.intel.com/intel-mkl/
http://software.intel.com/intel-mkl/
http://software.intel.com/intel-mkl/
http://software.intel.com/intel-mkl/
http://software.intel.com/intel-mkl/
http://software.intel.com/intel-mkl/
http://software.intel.com/intel-mkl/
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cublas
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0060
dx.doi.org/10.1177/1094342014567546
dx.doi.org/10.1177/1094342014567546
dx.doi.org/10.1177/1094342014567546
dx.doi.org/10.1177/1094342014567546
dx.doi.org/10.1177/1094342014567546
dx.doi.org/10.1177/1094342014567546
dx.doi.org/10.1177/1094342014567546
dx.doi.org/10.1016/j.jocs.2016.12.009
dx.doi.org/10.1016/j.jocs.2016.12.009
dx.doi.org/10.1016/j.jocs.2016.12.009
dx.doi.org/10.1016/j.jocs.2016.12.009
dx.doi.org/10.1016/j.jocs.2016.12.009
dx.doi.org/10.1016/j.jocs.2016.12.009
dx.doi.org/10.1016/j.jocs.2016.12.009
dx.doi.org/10.1016/j.jocs.2016.12.009
dx.doi.org/10.1016/j.jocs.2016.12.009
dx.doi.org/10.1016/j.jocs.2016.12.009
dx.doi.org/10.1016/j.jocs.2016.12.009
http://www.sciencedirect.com/science/article/pii/S1877750316305154
http://www.sciencedirect.com/science/article/pii/S1877750316305154
http://www.sciencedirect.com/science/article/pii/S1877750316305154
http://www.sciencedirect.com/science/article/pii/S1877750316305154
http://www.sciencedirect.com/science/article/pii/S1877750316305154
http://www.sciencedirect.com/science/article/pii/S1877750316305154
http://www.sciencedirect.com/science/article/pii/S1877750316305154
http://www.sciencedirect.com/science/article/pii/S1877750316305154
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://faculty.cse.tamu.edu/davis/suitesparse.html
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0080
dx.doi.org/10.1177/1094342010385729
dx.doi.org/10.1177/1094342010385729
dx.doi.org/10.1177/1094342010385729
dx.doi.org/10.1177/1094342010385729
dx.doi.org/10.1177/1094342010385729
dx.doi.org/10.1177/1094342010385729
dx.doi.org/10.1177/1094342010385729
dx.doi.org/10.1145/2063384.2063431
dx.doi.org/10.1145/2063384.2063431
dx.doi.org/10.1145/2063384.2063431
dx.doi.org/10.1145/2063384.2063431
dx.doi.org/10.1145/2063384.2063431
dx.doi.org/10.1145/2063384.2063431
dx.doi.org/10.1145/2063384.2063431
dx.doi.org/10.1145/2063384.2063431
dx.doi.org/10.1002/cpe.3516
dx.doi.org/10.1002/cpe.3516
dx.doi.org/10.1002/cpe.3516
dx.doi.org/10.1002/cpe.3516
dx.doi.org/10.1002/cpe.3516
dx.doi.org/10.1002/cpe.3516
dx.doi.org/10.1002/cpe.3516
dx.doi.org/10.1002/cpe.3516
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1007/978-3-319-41321-1_2
dx.doi.org/10.1109/IPDPSW.2016.190
dx.doi.org/10.1109/IPDPSW.2016.190
dx.doi.org/10.1109/IPDPSW.2016.190
dx.doi.org/10.1109/IPDPSW.2016.190
dx.doi.org/10.1109/IPDPSW.2016.190
dx.doi.org/10.1109/IPDPSW.2016.190
dx.doi.org/10.1109/IPDPSW.2016.190
dx.doi.org/10.1109/IPDPSW.2016.190
dx.doi.org/10.1109/IPDPSW.2016.190
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0110
dx.doi.org/10.1002/cpe.748
dx.doi.org/10.1002/cpe.748
dx.doi.org/10.1002/cpe.748
dx.doi.org/10.1002/cpe.748
dx.doi.org/10.1002/cpe.748
dx.doi.org/10.1002/cpe.748
dx.doi.org/10.1002/cpe.748
dx.doi.org/10.1002/cpe.748
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0120
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
http://refhub.elsevier.com/S1877-7503(17)31145-6/sbref0125
dx.doi.org/10.1109/TPDS.2015.2481890
dx.doi.org/10.1109/TPDS.2015.2481890
dx.doi.org/10.1109/TPDS.2015.2481890
dx.doi.org/10.1109/TPDS.2015.2481890
dx.doi.org/10.1109/TPDS.2015.2481890
dx.doi.org/10.1109/TPDS.2015.2481890
dx.doi.org/10.1109/TPDS.2015.2481890
dx.doi.org/10.1109/TPDS.2015.2481890
dx.doi.org/10.1109/TPDS.2015.2481890
dx.doi.org/10.1007/978-3-319-43659-3_48
dx.doi.org/10.1007/978-3-319-43659-3_48
dx.doi.org/10.1007/978-3-319-43659-3_48
dx.doi.org/10.1007/978-3-319-43659-3_48
dx.doi.org/10.1007/978-3-319-43659-3_48
dx.doi.org/10.1007/978-3-319-43659-3_48
dx.doi.org/10.1007/978-3-319-43659-3_48
dx.doi.org/10.1007/978-3-319-43659-3_48
dx.doi.org/10.1007/978-3-319-43659-3_48
dx.doi.org/10.1007/978-3-319-43659-3_48
dx.doi.org/10.1007/978-3-319-43659-3_48
dx.doi.org/10.1007/978-3-319-43659-3_48
dx.doi.org/10.1145/3026937.3026940
dx.doi.org/10.1145/3026937.3026940
dx.doi.org/10.1145/3026937.3026940
dx.doi.org/10.1145/3026937.3026940
dx.doi.org/10.1145/3026937.3026940
dx.doi.org/10.1145/3026937.3026940
dx.doi.org/10.1145/3026937.3026940
dx.doi.org/10.1145/3026937.3026940
dx.doi.org/10.1007/978-3-319-58667-0_2
dx.doi.org/10.1007/978-3-319-58667-0_2
dx.doi.org/10.1007/978-3-319-58667-0_2
dx.doi.org/10.1007/978-3-319-58667-0_2
dx.doi.org/10.1007/978-3-319-58667-0_2
dx.doi.org/10.1007/978-3-319-58667-0_2
dx.doi.org/10.1007/978-3-319-58667-0_2
dx.doi.org/10.1007/978-3-319-58667-0_2
dx.doi.org/10.1007/978-3-319-58667-0_2
dx.doi.org/10.1007/978-3-319-58667-0_2
dx.doi.org/10.1007/978-3-319-58667-0_2
dx.doi.org/10.1007/978-3-319-58667-0_2
https://doi.org/10.1016/j.parco.2017.09.001
https://doi.org/10.1016/j.parco.2017.09.001
https://doi.org/10.1016/j.parco.2017.09.001
https://doi.org/10.1016/j.parco.2017.09.001
https://doi.org/10.1016/j.parco.2017.09.001
https://doi.org/10.1016/j.parco.2017.09.001
https://doi.org/10.1016/j.parco.2017.09.001
https://doi.org/10.1016/j.parco.2017.09.001
https://doi.org/10.1016/j.parco.2017.09.001
https://doi.org/10.1016/j.parco.2017.09.001
http://www.sciencedirect.com/science/article/pii/S0167819117301461
http://www.sciencedirect.com/science/article/pii/S0167819117301461
http://www.sciencedirect.com/science/article/pii/S0167819117301461
http://www.sciencedirect.com/science/article/pii/S0167819117301461
http://www.sciencedirect.com/science/article/pii/S0167819117301461
http://www.sciencedirect.com/science/article/pii/S0167819117301461
http://www.sciencedirect.com/science/article/pii/S0167819117301461
http://www.sciencedirect.com/science/article/pii/S0167819117301461
dx.doi.org/10.1145/3126908.3126941
dx.doi.org/10.1145/3126908.3126941
dx.doi.org/10.1145/3126908.3126941
dx.doi.org/10.1145/3126908.3126941
dx.doi.org/10.1145/3126908.3126941
dx.doi.org/10.1145/3126908.3126941
dx.doi.org/10.1145/3126908.3126941
dx.doi.org/10.1145/3126908.3126941
http://www.netlib.org/lapack/lawnspdf/lawn41.pdf
http://www.netlib.org/lapack/lawnspdf/lawn41.pdf
http://www.netlib.org/lapack/lawnspdf/lawn41.pdf
http://www.netlib.org/lapack/lawnspdf/lawn41.pdf
http://www.netlib.org/lapack/lawnspdf/lawn41.pdf
http://www.netlib.org/lapack/lawnspdf/lawn41.pdf
http://www.netlib.org/lapack/lawnspdf/lawn41.pdf
http://www.netlib.org/lapack/lawnspdf/lawn41.pdf


236 l Scien

position of a Distinguished Research Staff member in the
Computer Science and Mathematics Division at Oak  Ridge
National Laboratory (ORNL), Turing Fellow in the Com-

 Science and Mathematics Schools at the University of Manchester, and an
ct Professor in the Computer Science Department at Rice University.
A. Abdelfattah et al. / Journal of Computationa

Azzam Haidar received a Ph.D. in 2008 from CERFACS,
France.  He is Research Scientist at the Innovative Comput-
ing Laboratory at the University of Tennessee, Knoxville.
His  research interests focus on the development and
implementation  of parallel linear algebra routines for
scalable distributed multi-core and GPU architectures,
for  large-scale dense and sparse problems, as well as
new  algorithms for singular value (SVD) and eigenvalue
problems  as well as approaches that combine direct and
iterative algorithms to solve large linear systems.

Stanimire Tomov received a M.S. degree in Computer
Science  from Sofia University, Bulgaria, and Ph.D. in Math-
ematics from Texas A&M University. He is a Research
Director  in ICL and Adjunct Assistant Professor in the

puter
Adjun
EECS at UTK. Tomov’s research interests are in paral-
lel  algorithms, numerical analysis, and high-performance
scientific  computing (HPC). Currently, his work is concen-
trated  on the development of numerical linear algebra
software  for emerging architectures for HPC.
ce 26 (2018) 226–236

Jack Dongarra received a Bachelor of Science in Mathe-
matics from Chicago State University in 1972 and a Master
of Science in Computer Science from the Illinois Institute
of  Technology in 1973. He received his Ph.D. in Applied
Mathematics  from the University of New Mexico in 1980.
He worked at the Argonne National Laboratory until 1989,
becoming a Senior Scientist. He now holds an appoint-
ment  as University Distinguished Professor of Computer
Science  in the Department of Electrical Engineering and
Computer Science at the University of Tennessee, has the


	Batched one-sided factorizations of tiny matrices using GPUs: Challenges and countermeasures
	1 Introduction
	2 Related Work
	3 Contributions
	4 Background
	5 System setup
	6 General design criteria
	7 Design choice 1: thread configuration
	8 Design choice 2: matrix storage
	9 Design choice 3: concurrency control
	10 Lazy swapping for LU Factorization
	11 Final performance results
	12 Conclusion and future work
	Acknowledgements
	References


