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Abstract

We propose a new example of entanglement knitting spacetime together, satisfying a series
of checks of the corresponding von Neumann and Renyi entropies. The conjectured dual of de
Sitter in d+1 dimensions involves two coupled CF'T sectors constrained by residual d-dimensional
gravity. In the d = 2 case, the gravitational constraints and the CFT spectrum are relatively
tractable. We identify a finite portion of each CFT Hilbert space relevant for de Sitter. Its
maximum energy level coincides with the transition to the universal Cardy behavior for theories
with a large central charge and a sparse light spectrum, derived by Hartman, Keller, and Stoica.
Significant interactions between the two CFTs, derived previously for other reasons, suggest a
maximally mixed state upon tracing out one of the two sectors; we derive this by determining
the holographic Renyi entropies. The resulting entanglement entropy matches the Gibbons-
Hawking formula for de Sitter entropy, including the numerical coefficient. Finally, we interpret
the Gibbons-Hawking horizon entropy in terms of the Ryu-Takayanagi entropy, and explore the
time evolution of the entanglement entropy.
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1 Introduction

The relations between quantum entanglement and spacetime geometry are an important part
of the holographic dictionary. This includes the Ryu-Takayanagi (RT) and Hubeny-Rangamani-
Takayanagi (HRT') prescriptions [1] which reproduce field theoretic entanglement entropy, includ-
ing the area law dominated by high energy modes.! An iconic example of an entangled state with
an interesting gravitational description is the thermofield double state dual to the two-sided AdS
black hole [3, 4, 5],

(0) =) e 72 n) . (1.1)

Tracing out one of the two CF'Ts over the whole spatial volume of the CFT leads to an entan-
glement entropy that scales like the volume. On the gravity side, this is captured by the area
of the extremal surface bisecting the two sides of the Einstein-Rosen bridge, as illustrated in the

! Generalizations beyond the GR limit appeared in [2].



left panel of Fig. 1. In this example, entanglement is in some sense dominated by the scale of the
temperature, as higher energy components of the state (1.1) are Boltzmann suppressed. The in-
terpretation admits further checks and applications, some extending the wormhole [6] and others
shortening it [7], leading to new approaches to problems in many-body dynamics and black hole
physics. Other proposals for volume law entanglement have appeared, obtained by tracing over
a range of energy scales [8] or over certain internal sectors [9].

Figure 1: On the left, we show an extremal surface (in black) bisecting a spatial slice (blue) of the eternal AdS
black hole in d = 2. It corresponds to the entanglement entropy obtained by tracing over one of the CFTs in the
thermofield double state (1.1). On the right, we depict a spatial slice of dS3 (2.1) at the moment of time symmetry
7 = 0, bisected by the extremal surface (in black) at the ultraviolet slice w = wl45/2. Its area corresponds to the
entanglement entropy obtained by tracing over one of the two coupled CFTs in the dual of de Sitter. Given the
maximally mixed density matrix derived from the Renyi entropies, we match the entanglement entropy, including
its numerical coefficient. The entropy of the full circle is also the Gibbons-Hawking horizon entropy for an observer
O momentarily at the deep IR end of one or the other warped throat, at w = 0 or 735 and 7 = 0. That observer
has no interaction with the second CFT, and must trace over it. See Fig. 2 below for the corresponding space-time
diagram.

These examples involve a joining of different regions of space via entanglement [4]. In this
note, we propose that de Sitter (dS) holography realizes this general idea in a new way, admitting
a counting of de Sitter entropy [10] which matches between the two sides of the duality. In
contrast to (1.1), the dominant CFT energy levels contributing to the entangled state are at the
ultraviolet end of the relevant spectrum. As we review shortly, the dual of de Sitter involves
two lower-dimensional matter sectors that are cut off and coupled to each other, constrained by
residual lower-dimensional gravity. We identify the finite dimensional Hilbert space corresponding
to each cutoff matter sector. The Renyi entropies show that the reduced density matrix obtained
by tracing out one of the sectors is maximally mixed (see the right panel of Fig. 1). This leads to a
von Neumann entropy which matches between the two sides, including the numerical coefficient,
and provides a dual description of the Gibbons-Hawking horizon entropy. In what follows, we
will initially focus on the d = 2 case dual to dS3, for which the analysis is technically simpler,?
and we will then generalize to higher dimensions. We will also explore the time evolution and
late time behavior of the entanglement entropy between the two sectors.

2Tt is also in this dimensionality that the most explicit string theoretic de Sitter construction was formulated,
uplifting the D1-D5 AdS/CFT duality [11].



2 Setup

There are several mutually consistent proposals for cosmological holography [12, 13, 11, 14, 15, 16,
17]. The dS/dS duality starts from a simple observation [13]: dS441 is a warped compactification
down to a d-dimensional theory on dSg:

2 _ 2, w2 W 2
deSd+1 = dw 4+ sin (fds> deSd

= dw?+sin? | — ) |—dr® + %4 cosh? idQ?l_l . (2.1)
las tas

This exhibits two highly redshifted regions at w — 0 and w — 7wfy4g, which are each equivalent to
the gravity dual of the low energy regime of a CFT on dSy. This is in contrast with the AdS/CFT
duality in dSy slicing, for which the warp factor is sinh?(w/f4s) instead of sin?(w/lys):
) w T
dsidsd+1 = dw2 —+ Slnh2 <€Ads) |:—d7_2 + £124d5 COSh2 KAdegg_l] . (22)
On the other hand, in de Sitter the most UV scale is finite, occurring at wy, = 7l4s/2, with the

warp factor
Wy

\/QOO‘uv = sin s =1. (23)

This indicates a semi-holographic dual description as two matter sectors cut off at the energy

scale corresponding to (2.3) and coupled to each other as well as to a residual d-dimensional
gravity.3

The same statement arises independently from the basic structure of metastable de Sitter
solutions in string theory [11, 16]. The presence of two isomorphic matter sectors follows from
the uplift of the AdS/CFT brane construction, with the metastability of string solutions entering
into this in an essential way [11, 16]. The proposed dS/CFT duality [12] also ultimately consists
of 2 identical matter sectors coupled to d-dimensional gravity [20]. This consistent picture seems
unlikely to be pure coincidence, and we will pursue its consequences further in the present work.

There is a suite of calculations checking the basic structure of the duality [13, 11, 14, 19]. Of
course, the tools are more limited in this cosmological context. One aspect of this is that the
dual matter sectors only behave as a pair of CFTs at sufficiently low energies; they are deformed
by irrelevant operators.*

This will actually play an important role here. The transmission coefficient between the two
low energy throats [13] reveals that the two theories are coupled via irrelevant interactions of the
form

Smiz ~ / dey/=g AT 0100 + .. (2.4)

3dS441 is a very special Randall-Sundrum [18] system, with no explicit Planck brane and a highly constrained
holographic RG flow [19]. The d-dimensional gravity is dynamical at finite times, and we will be concerned with
the period over which the spacetime is classically de Sitter. However, it is worth noting that after decaying to a
runaway toward zero cosmological constant, the dual gravity ultimately decouples [14].

“This includes the TT deformation [21], but is not limited to that. It is interesting to note that gravitational
dressing in two dimensions appears to reproduce the effect of the T'T" deformation analyzed using non-gravitational
methods in [21] (see for example [22, 23, 24]). As noted in [25], the holographic dual of the TT deformation [26]
requires further information about the interactions than is captured purely by [21]. In our case this is reflected in
part in the couplings (2.4).



where g, is the d dimensional metric, classically dS;. In Appendix A below, we will study A
at the Gaussian level for large-IV factorized fields. The mass scale suppressing these irrelevant
operators is of order the Hubble scale 1/f45 of the de Sitter spacetime.” The ...’ in (2.4)
indicates non-Gaussian effects, which become important at the energy levels A ~ ¢ which will
be of interest here. The strong interactions between the two matter sectors plausibly generate
a long-lived state which is nearly maximally mixed, a feature that we will probe directly below

using Renyi entropies.%

3 CFT state space and entropy in the 2d theory

3.1 CFT with a cutoff

For d = 2, the two-dimensional dual theory contains two CFTs, each with a large central charge
¢, and irrelevant interactions including mixings (2.4), all coupled to d = 2 gravity. Our first
question is what sector of the Hilbert space of the CFTs comes in.

Recent work has constrained the density of states in two-dimensional CFTs with a large
central charge and a sparse light spectrum [28], such as those dual to large-radius gravity. For
simplicity, we focus on spinless states; the generalization is interesting but does not affect our
basic results.

There is a transition at CFT energies

C C C
_c_ < A== 1
12 12’ 6 (3 )

Ecrre = A
at which the entropy begins to follow the Cardy formula, given a sparse light spectrum [28]. This
is exactly the relevant part of the Hilbert space for dS.

To see this, start with the holographic dual of one of the CFTs living on global dS,. In full,
this is given by the patch of AdS3 covered by (2.2). The CFT states (3.1) correspond to the

spinless BTZ black hole states in global AdSs with horizon radius

Thy = LAds- (3.2)

They are at the threshold where black holes begin to dominate the thermodynamics. What is
important about them for our present purposes is that their horizon intersects the 7 = 0 neck of
the dS3 slices in (2.2) at unit warp factor, \/goo = sinh(w/€44s) = 1. In the dS3/dS system (2.1),
the most ultraviolet scale is at unit warp factor, sin(w/fa45) = 1, as pointed out in (2.3). This
suggests that we should restrict the Hilbert space of each of our two CFTs to Ecpr < Ecprs.
This amounts to a sharp cutoff on the CF'T at a finite radial scale at the level of each matter
sector, before mixing them or coupling to 2d gravity. We will see that this produces the correct
entropy, given the structure of the density matrix derived below, providing concrete evidence
for this simple cutoff prescription. However, we wish to note an ambiguity here: there may be
irrelevant operators deforming each CFT, independently of their mixing (2.4), which could lead

5Similar statements apply to more general 2-throated Randall-Sundrum systems, where such calculations were
originally performed [27].

SPrevious examples of interactions leading to strongly mixed states include [9] and references therein; we provide
a toy model in the Appendix C.



to a deformation of the dual geometry below the radial cutoff at the level of each individual
warped throat. This would generically not produce the same sharp agreement, but there may be
special flows that also fit the facts. In [19], we found that if one treats one side, e.g. w < wy, in
dSgy1, as the gravity dual of a matter theory, this theory has a highly constrained holographic
Wilsonian RG flow: single-trace operators do not flow, and higher traces are determined in terms
of lower ones. There is also an upper bound on the mass allowed in such a throat, which coincides
with the bound we were led to above.”
The number of states up to the bound (3.1) is given by

dim(Ha <) = €™/ (3.3)

to the leading order in the large-c limit. This can be obtained from black hole states in the
microcanonical ensemble near the bound Eopr.. Below in §6, we will generalize this to higher
dimensions, finding that the energy levels go up to the Hawking-Page transition in the canonical
ensemble, with the number of states given by (6.1), generalizing (3.3).

Having identified the part of the CFT Hilbert space that comes into the holographic descrip-
tion of a long-lived de Sitter geometry, we should stress that the full system has more degrees
of freedom which enter in the later decay of de Sitter [14, 19], in contrast to proposals with a
finite total number of degrees of freedom such as [29]. In both cases, however, the finite number
of states relevant for the dual description of a long-lived de Sitter configuration is related to
backreaction on its geometry.

In Appendix B, we spell out the role of the Liouville gravity and how it leads to the dSs
evolution.

3.2 Structure of the density matrix

The full system contains mixing interactions between the two CFTs, such as (2.4). Let us denote
the ground state wavefunction of the full system by |¥), and the two cut-off CFT sectors by
QFT; 2. The density matrix for the first sector is given by

p1 = Trqer, (W) (¥]) . (3.4)

We will be interested in the properties of p1, specifically its von Neumann entropy (or entangle-
ment entropy)
S = —Tr(p1log p1) (3.5)

and its Renyi entropies

1
S, = ! log Tr p7, (3.6)

-n
which capture the amount of entanglement between the two matter sectors.

We might expect that the strong direct interactions between the two sectors leads to a long-
lived state of the full system that is approximately maximally entangled, giving a maximally
mixed state for the first sector:

1
Plmax = ]Idim( (3.7)

HASC/G)

“In higher dimensions the bound corresponds to the limit where the black hole and cosmological horizons
coincide — see e.g. [17] for a review of this limit.



where T denotes the identity matrix. This maximal mixing is not something that we are able
to compute directly in the lower-dimensional dual theory, but there are toy models that exhibit
such a mixing effect of interactions.® If this is the case, the entanglement entropy (3.5) obtained
by tracing out the second QFT, and the corresponding Renyi entropies (3.6), are all given by
. me
P1 = Plimax §=38,=log dlm(HA§0/6) = ? ) (38)
where we used the finite dimension of the relevant Hilbert space (3.3).
We will show in §4.1 that the (d + 1)-dimensional gravity side produces exactly the behavior
in (3.8). In particular, the full set of Renyi entropies computed there matches (3.8) and implies

maximal mixing, up to 1/c corrections.

4 Holographic entanglement and Renyi entropies in dS;.1/dS,

4.1 Gravity side calculation

In a holographic theory, the entanglement entropy for any boundary region is given by the area
of an appropriate codimension-2 extremal surface in the bulk [1]:

_ Aext
AGay1

S (4.1)
In our highly symmetric dSzy; spacetime (2.1), there is a codimension-2 extremal surface at
w = mlgs/2 and at the moment of time reflection symmetry 7 = 0 in the global dSy. This gives

Vi 27Td/2€§§1

S = L Vg = 45
4G =17 T (d)2)

(4.2)

where Vj_; is the area (volume) of the extremal surface at the S~ neck. Here the entangling
region is the whole spatial volume of one of the two identical matter sectors, and (4.2) corresponds
to tracing out completely the other matter sector, giving the von Neumann entropy (3.5) of the
density matrix (3.4).

The extremal surface does not drop into either side of the bulk, but rather stays on the UV
slice as depicted in Fig. 1, leading to entanglement over the whole volume V;_; of the S%1 neck.
This is a consequence of the fact that the two throats are joined smoothly, with a warp factor
V900 = sin(w/{qs) whose first derivative vanishes at the UV slice. We discuss this calculation in
more detail in Appendix D. Similar results were found in [30].

In the d = 2 case discussed in §3, we can express (4.2) in terms of the dual variables:

N 27['5615 T C

- = 4.
S="G, =3 (4.3)

where we have used the fact that the proper length of the neck is 27f;5 as well as the relation

3lads
— 4.4
“=3a, (4.4)

8We illustrate this with a spin lattice system in Appendix C.



from the AdSs/CFT, dictionary. We have identified the curvature radii:
las = La4s . (4.5)

This is because each matter sector reverts in the infrared to a CFT on dS,, with a small warp
factor sin?(w/f4s) < 1. This warp factor in dS3 (2.1) is indistinguishable from a small warp
factor sinh?(w/faqs) in AdS3 (2.2), once we identify the two curvature radii as in (4.5).

So far, the gravity side reproduces (3.8) precisely for the von Neumann entropy. We can
calculate the Renyi entropies (3.6) which contain further information about the full spectrum of
the density matrix. Following [31, 32|, we will work with a natural generalization of the Renyi

entropies
3 2 n—1 2 1 n
S, =n0, Sy | = —n"0, | —logTrp] (4.6)
n n
which has a simple gravity dual in holographic theories and is given by
S A(Cn)
S, = 4.7
" 4G (4.7)
where A(C},) is the area of a codimension-2 cosmic brane C,, with tension
n—1
T, = — 4.8
" anGgiq (4.8)

in the Euclidean bulk theory. Note that in the limit n — 1, the generalized Renyi entropy gn
approaches the entanglement entropy, while the cosmic brane becomes tensionless and does not
backreact on the bulk geometry. It becomes a probe brane and settles at the location of the
extremal surface. In contrast, for generalized Renyi entropies with n > 1 one needs to include
the backreaction of the cosmic brane on the geometry, creating a conical deficit angle

n—1
Ao =27 . (4.9)

In our de Sitter theory, this turns out to be a simple calculation. Again, by symmetry the
cosmic brane wraps the S¢! neck between the two warped throats. Let us consider the d.S3 /dSs
case first, for which the Euclidean geometry is a 3-sphere. We can describe it in terms of complex
variables z1, zo as

|21? + |22 = £Gs. (4.10)

The cosmic brane with its deficit angle (4.9) arises at the fixed locus of the orbifold

(21, 29) ~ (egm/"zl, 29) . (4.11)

The fixed locus is the circle
2=0, |»="4s. (4.12)

The important feature for us here is that the fixed locus has the same length 27¢;g for all n. The
same feature holds in general dimensions by a similar argument.



From this we find that the generalized Renyi entropies are independent of n: g‘n = §. Inte-
grating (4.6) over n, we find the conventional Renyi entropies S,, are the same:

Eggl 2d/2

T 4Ga D(d/2) (19

Sp=8

This implies a maximally mixed density matrix p; (to the leading order in the large-c limit), with

Renyi entropies that precisely reproduce (3.8).7.

4.2 Gibbons-Hawking entropy

The entropy (4.2) is equal to the horizon entropy for an observer momentarily at the deep infrared
end of one of the two warped throats (i.e. at the north or south pole of the dSy;1 spacetime):

Va_
S = ﬁd—il == SGibbons-HaWking . (414)

Such an observer must trace out the matter sector describing the other warped throat, as shown in
Fig. 2.. This gives us an interpretation of the Gibbons-Hawking entropy, including its numerical

coefficient.

Figure 2: The Penrose diagram of dS;41, with the UV slice w = w35 /2 of the geometry indicated by the dashed
grey line. The solid grey lines indicate the two deep IR regions, w = 0 and w = 7fgg. The RT surface S4~1 is in
the center of the diagram, indicated as a dark blue point. Its area determines the entanglement entropy between
the two matter sectors. and tracing out the second sector gives a maximally mixed density matrix p; for the first.
It is also the Gibbons-Hawking horizon entropy for an observer momentarily at the deep IR end of the second
warped throat at 7 = 0, indicated in light blue. That observer has no interaction with the first matter sector and
must trace it out.

4.3 Volume law

In our calculations above, we have worked on the full volume of one of the two matter sectors,
tracing out the other sector. The RT calculation and generalizations to the Renyi entropies can

Similar maximal mixing in de Sitter was found in [33] although the interpretation was different from ours.



also be done formally on the (d + 1)-dimensional gravity side for subregions of size smaller than
L4s, which do not cover the whole volume V;_;. As shown in Appendix D, the result is again a
volume law (D.4).

This volume law for subsystems of one of the two matter sectors (say QFT1) is fully consistent
with a maximally mixed density matrix p; for QF'T;. On the other hand, it is not immediately
clear how to identity the subsystem corresponding to a subregion in QFT; at the level of the
Hilbert space, due to the imposition of the energy cutoff (3.3). The AdS/CFT and dS/dS dualities
contain ~ c degrees of freedom in a region of size £(4)4s, as explained in [34]. One can work with
bulk fields that interact weakly, but these do not dominate the entropy. As we saw above in
d = 2, the entanglement entropy is dominated by states with A ~ ¢/6 in the two CFTs, which
correspond to black holes with horizon radius £445 on the gravity side. Nonetheless, it would
be interesting to understand the subsystems corresponding to smaller regions. It may hold clues
about locality at scales below the de Sitter curvature radius.

5 Late times and HRT

By going to later times in the global dS; space we can incorporate more Hubble patches of proper
size £45. Points separated by a fixed coordinate distance eventually lose causal contact, and we
may expect a volume law for the entropy, of order ¢ per Hubble patch. In this section, we will see
how this behavior comes out, by calculating the entanglement entropy of a region at a general
time in the dS/dS duality. We will restrict our attention to the long time period over which a
metastable de Sitter configuration has not yet decayed; it would be interesting to generalize our
discussion to the case of [14] in the future.

Let us illustrate this in the dSs5/dSs case. We set 45 to 1 in this section for simplicity.
Consider when the entangling region is an interval of size ¢ on the UV slice w = 7/2 at a general
time 79. The holographic entanglement entropy of this region is given by the area of an extremal
surface (a geodesic in our d = 2 case) homologous to the region, according to the covariant HRT
prescription [1]. Let us assume 79 > 0 without loss of generality.

As in our other calculations for holographic entropies, the symmetry and smoothness at the
UV slice implies that the extremal surface (geodesic) lies on the UV slice at w = w/2. The
geodesic is moreover symmetric under a reflection exchanging the two end points of the interval.
The fixed point of this reflection defines a turning point 71 where the 7 coordinate reaches an
extremum. Parameterizing (one half of) the geodesic by ¢(7), we find its area (length):

T1 N
A= 2/ dry/$2 cosh? 7 — 1. (5.1)

0

As a result of the rotational symmetry in the ¢ direction, extremizing (5.1) gives
gz5 cosh? 7

V@2 cosh? T — 1

where C' is a constant. The 7 coordinate reaches an extremum at the turning point 7, giving

e (5.2)

#(11) = oo and leading to
C = cosh . (5.3)



From this we find
cosh 1

cosh 7‘\/ cosh? 71 — cosh? 7

This means 7 > 79 and that the geodesic bends towards later times, rather than earlier times,

¢ = (5.4)

as illustrated in Fig. 3. Integrating (5.4) from 79 to 71 and setting it to ¢/2, we find

\/ cosh? 71 — cosh? Tg)

5.5
sinh 7y cosh 7 (5:5)

¢ = 2arctan (

We use the convention where the range of arctan is [0, 7] instead of [—7/2,7/2]. The above
equation determines 7 from 7y and ¢.

T
T

0]

Figure 3: HRT extremal surface for an interval of size ¢ at a general time 9.

The extremal area (length) is

h? 71 — cosh®
A — 2 arctan <\/COS 1L T COS TO) = 2arctan (tan % cosh 7'1> . (5.6)

sinh 7

From this we determine the entanglement entropy S = A/(4G3). There is a subtlety in taking
the late time limit, which contains some interesting physics related to the causal structure of de
Sitter.

To see the subtlety, we solve (5.5) and find 77 in terms of 79 and ¢:

h
cosht = COSIT0 . (5.7)
\/1 — sinh? 7 tan?(¢/2)
This blows up as
sinh 79 — cot g, (5.8)
or
To — T«(¢) = arcsinh <cot (§> . (5.9)

What happens in this limit is that the turning point 7| reaches the future infinity.!? From (5.4),
we see that the extremal surface is lightlike except at the turning point in this limit.

10 As mentioned above, the de Sitter description only persists until a very large but finite 71, given that metastable
de Sitter solutions eventually decay. It would be interesting to see the effect of this on the extremal surface.

10



If we pushed our equations beyond this limit, we would be prescribing an entangling region
that is not in causal contact. Mathematically, the corresponding extremal surface would become
complex!! as can be seen from (5.7), similar to situations encountered in other contexts [36].

Instead, we may string together separate causally connected segments, as depicted in Fig. 4.
For each such segment, restoring the de Sitter radius we find the extremal area (length) is 745
as given by the 7 — oo limit of (5.6), and the entanglement entropy per causal segment is

mlqs  mC

SWZdS = 47(;3 E (510)

Note that this agrees with the entropy that we have calculated using the RT surface at the neck
in (4.3): there we integrated over the full 27¢;g, obtaining mc/3. Here we get the same result by
summing the entropies of the two causal segments at 7 = 0.

c—wfas 0
2L 1s —

dS, oS,

Figure 4: The left panel contains the dS2 Penrose diagram; the vertical sides are identified. The dark blue line
at 7 = 0 corresponds to the central dot (a circle of radius £45) in the dS3 diagram from Fig. 2, reproduced here
on the right. This full circle of size 27,5 is the horizon for the observer O on the far right, causally connected
to it through the dS3 bulk. Within the global dS2 geometry, the segments with extremal area mf;g between the
end points are the largest for which the endpoints can communicate, as derived in the text. On a late-time slice,
indicated in purple, we show a string of causal segments whose extremal area is wlys and entanglement entropy
is mc/6.

6 Higher dimensions

We can extend the entropy matching to higher dimensions by generalizing (3.2), although there

is no independent CFT calculation of this transition as in d = 2 [28]. In short, the Hawking-Page

transition occurs universally at 7, = 445 in the canonical ensemble [37]. The corresponding

energy scale in (A)dSgy1/dSy is at a warp factor sin(h)(w/fa4s) = 1. The logarithm of the

number of states below this energy level in the CFT is given by the entropy of this black hole,
vt ond/?

log(dimH) = § = —A4dS .
3 ) 4G441T(d/2)

(6.1)

HThis question was also raised in [35], which considers holography in finite regions as well.

11



Given the well-established AdS/CFT correspondence, we can incorporate this as a statement
about the CFT. Therefore, a maximally entangled state of the two cut-off CFT sectors in the
dS/dS duality leads to the same entanglement entropy and Renyi entropies as in (6.1). This
agrees precisely with the gravitational prediction (4.13) given (4.5).

7 Summary and recap of the logic

Altogether, we have obtained a set of nontrivial matches among the Gibbons-Hawking, von
Neumann, and Renyi entropies (with numerical coefficients), the structure of the density matrix,
and the finite Hilbert space arising in the dS/dS correspondence.

It is worth recapping the logic and interpretation. We have obtained the finite-dimensional
Hilbert space relevant for the dS/dS duality in (3.3) and (6.1). We can proceed from it in two
ways, running the duality in either direction:

e Starting from the d-dimensional theory, we can hypothesize the maximal mixing of p; based
on the existence of strong interactions between the two matter sectors. That combined with
(3.3) and (6.1) leads to the von Neumann entropy S and Renyi entropies S,, that match with the
calculation on the gravity side, including the numerical coefficients.

e Alternatively, we can use the (d+ 1)-dimensional gravity description to calculate the entan-
glement and Renyi entropies. That implies the maximal mixing of p;. From (3.3) and (6.1), we
match the value of the entropies, including the numerical coefficients.

The von Neumann and Renyi entropies of p; arise from tracing out the second matter sector,
QFTy. This provides a new example of strong entanglement resulting in the joining of two
holographic spacetimes.

The value of the entropies is the same as the Gibbons-Hawking entropy of the de Sitter
horizon. This fits in precisely as well: an observer who must trace out QFT5 is situated at the
far infrared end of the first warped throat.

8 Discussion and future directions

In this work we studied the relation between spacetime geometry and entanglement of the holo-
graphic dual degrees of freedom, in de Sitter space. We obtained a finite Hilbert space for each
of the two identical matter sectors. In d = 2, this is specifically A < ¢/6, the level at which
the Cardy formula kicks in for theories with sparse light spectra, as derived by traditional CFT
methods in [28]. We combined this with the maximal mixing of the density matrix p; obtained
by tracing out one of the two sectors, which was implied by the equality of the Renyi entropies
that we calculated (and was suggested independently by the significant interactions between the
matter sectors). This produces the correct de Sitter entropy, including its numerical coefficient,
with a simple interpretation as the entanglement entropy between the two identical matter sectors
in the dual theory.

This provides strong evidence for the conjecture that de Sitter spacetime gives a new example
of entanglement joining spacetime [3, 4, 5, 8, 9]. It is interesting to compare and contrast this with
the thermofield double/black hole case (1.1) [3]. Both involve entanglement over the whole spatial
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volume of two CFTs. In our case, the CF'T is cut off at a finite scale, and entanglement occurs
at the highest of this finite set of relevant energy levels and not at the scale of the temperature
as in the thermofield double (1.1). This translates into the joining of the two subsystems at
their most UV slice, and the Renyi entropies imply a maximally mixed density matrix p; for one
of the subsystems. A significant distinction from the eternal AdS black hole case is that here
the two subsystems have large interactions. It is these interactions that lead to the maximal
entanglement of the long-lived state corresponding to unexcited dSgy1, similar to what happens
in simple models such as the lattice model in Appendix C. In the AdS black hole case, one can
introduce interactions that lead in a novel traversability of the bridge [7]. In the de Sitter case, the
transmission between the two warped throats is an unsurprising consequence of the interactions
[27, 13].

A crucial part of our analysis is the identification of the correct Hilbert space, carried out in
§3 and §6. In d = 2, it is restricted to states with A < ¢/6 with the bound corresponding to black
holes with horizon radius r, = €445 in the gravity dual of each CFT. These dominate the entropy,
and cannot be interpreted in terms of weakly-interacting local fields. It is interesting to consider
the familiar question of characterizing what happens at scales below the (A)dS curvature radius
in the present context. In Appendix D, we consider the entanglement entropy for regions with
size smaller than £4g and still found a volume law. It is also possible to obtain a more refined
estimate of the correlations between small subsystems by computing the mutual information.
This calculation is done in Appendix D, with the result that the mutual information always
vanishes to the leading order in 1/¢. This should be contrasted with the AdS/CFT case, where
for regions that are sufficiently close to each other there is a Hagedorn-like transition and the
mutual information becomes nonvanishing [38].

The Renyi entropies S, for one of the two matter sectors in the dS/dS duality are independent
of n and equal to the von Neumann entropy. This is in contrast with the case of a boundary
region in AdS/CFT, where S, typically depends nontrivially on n. However, the equality of
Renyi entropies holds in interesting toy models of holography based on tensor networks [39, 40]
that exhibit the quantum error-correcting properties found in AdS/CFT [41], and in a certain
sense the equality of Renyi entropies “almost” holds in AdS/CFT as well [42]. It would be very
interesting to connect these special cases and further understand the structure of entanglement
in gravitational states.

The cosmological setting opens up many new directions to understand the interplay between
entanglement and gravity. It will be interesting to generalize the analysis to more general FRW
cosmologies [14], including the decays of de Sitter, using the HRT prescription. Here gravity
decouples at late times and the number of degrees of freedom increases; the Bousso entropy bound
[43] asymptotically goes to infinity, along with the d-dimensional Planck mass. In Appendix B,
we incorporate the main role of gravitational dressing in producing a Wheeler-DeWitt solution
describing dS. It would be interesting to pursue its relation to the 77" deformation [21, 22].

Although we stress that the dS/dS correspondence and the arguments in this paper apply for
a large radius de Sitter space [11], it might be interesting to analyze the holographic dual in cases
involving weakly interacting fields in the d-dimensional dual theory. In those cases, one might be
able to directly compute additional properties of the wavefunction yielding the maximally mixed
density matrix. This would need to be compared to an appropriate generalization of the RT
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prescription to gravity duals with a small curvature radius.
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A Interactions between two matter sectors in dS;.

Here we will describe the mixing interaction (2.4) between the two CFTs in a complementary way
to the transmission coefficient analysis in [13]. These analyses are tractable only for sufficiently
low operator dimensions A < ¢ that the correlation functions respect large- N factorization. One
can compute the generating function Zopr[J] for each CFT on dS; using the gravity side as in
[20], with J the source of a scalar operator O of dimension A. At the Gaussian level, this takes
the form

Zerrald]=ew (- | / H)Gaasla) ) (A1)

where G 445 is the 2-point function in the CFT, expressible in terms of T' functions [20]. In an
angular momentum basis for Euclidean dSy, this Green’s function behaves like G 445 ~ (2A—d 4
large total angular momentum ¢. Again at A ~ ¢, where the dominant states in our entanglement
calculation reside, non-Gaussian effects will not be suppressed; here we are just getting an idea
of the strength of the mixing for lower A where the calculation is tractable.

Next, we wish to incorporate interactions of the form (2.4). Consider the generating function
Z|[J] for each sector, in the presence of the mixing interaction, tracing out the other sector.
Denoting the degrees of freedom of the two CFTs by x and X respectively, we can write

Z[J] — /DX/D)zei(SCFT(X)Jrf)\06+IJ0+SCFT(>~<))
_ / DyelSerr 0+ 00 7 10 (A.2)

At the Gaussian level for the large-N factorized fields, we have (A.1), and correspondingly

Sorra~ | [ 0@k »Ow). (A.3)

Y

Plugging this into (A.2) yields

ZglJ] ~ e I, J(2)(A2G aqs+G 1 hs) T () ) (A.4)
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We can now solve for A by doing a gravity-side calculation of the 2-point function Ggs = (OO)
in one warped throat, say the w < ml;5/2 side of (2.1), and imposing

_ 1
Gas = )\QGAds + GAtliS = A= Cnzs \VGisGags — 1, (A.5)

where in the last expression, we work in a diagonal (angular momentum) basis. So the Gaussian
action for O, O is of the form

3 Gl (oo + OO0/ GusCags —1 + (5(5) . (A.6)

AdS

We can determine Ggg via a straightforward calculation along the lines of [20]. The result has
the property that Ggg ~ ¢! for £ > 1, independently of A. Since we are interested in interpreting
the volume-law entropy, let us focus on this £ > 1 regime. Plugging Gyg ~ ¢, G aqs ~ £>*~% into
(A.6), we see that the mixing interaction dominates over the pure CFT terms in this effective
Gaussian action at large angular momentum ¢. In general, the dS/dS correspondence may require
irrelevant operators deforming each CFT separately, which could be incorporated in a similar way
at the Gaussian level.

B Liouville quantum gravity and d55

Here we spell out the role of the Liouville gravity and how it leads to the dSs evolution. This
is essentially a review of the framework of Liouville quantum cosmology [44, 45], applied to our
system.

We write the metric as gog = e'“z)nag; in cosmological solutions, e"%/2 plays the role of the scale
factor. We will be interested in ground states corresponding to a classical global d.S5 solution,

d3352 = —dr’+ 835 COShZ(T/edS)d92, 0=042r

with curvature R = 2/¢25. The proper volume at the neck (7 = 0) is 27m¢4g, the same as that at
the most ultraviolet dSy slice of the dSs metric (2.1).

For simplicity, and since we aim to first understand the state corresponding to unexcited
de Sitter spacetime, let us solve the momentum constraint with zero spatial momentum in the
matter sector. The minisuperspace'? Hamiltonian constraint then takes the form

2
{_6(152 —2Hcerr, — 2Herr, — 2Hmiz — - — :26“4’} v =0, (B.2)
with k ~ 24/3/co at large total central charge in the infrared of our mixed matter theory, with
Hamiltonian Hiot = Horr, + Horr, + Hmiz + - - -

For the pure de Sitter solution, we are interested in the lowest energy solution in the matter
sector; excited energy levels lead to a deformation up to a point where they cause large backreac-
tion. We work on the cylinder, and include the Casimir energy —cy0t/12 as part of the Hamiltonian
of the infrared CFT of the full system: the eigenstates of Hiot are Eior 1r = Aot 1R — Ctot/12.

12Tt is not necessary to restrict to minisuperspace, but as discussed in [44] and elsewhere, this turns out to be a
good guide.
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When the Liouville theory is coupled to a CFT matter sector, the solution to the Wheeler-
DeWitt equation (B.2) behaves as global de Sitter spacetime, or an excitation of it that still
bounces, for negative total CFT energy [44, 45]. We can see this as follows. For this window
Eiot.1r < 0, there is a bouncing solution. At the minimal energy, with Ay rr = 0, the classical
turning point occurs at ¢, = 0. More generally, it occurs at

1240t 1R

Ctot,IR

e =1 — (B.3)
leading to a smaller neck for Ay ;r > 0, and a taller Penrose diagram. For pure CFTs, at
the upper end of this window, the neck approaches zero proper size according to (B.3), leading
to ¢« — —oo. At energies above this window, the matter backreaction is too great to support
the full contracting and expanding phase. For more involved matter theories, the Liouville field
couples nontrivially, leading to richer 2d cosmological dynamics [45].

In the classically disallowed regime ¢ — —oo, these wavefunctions decay exponentially. The
Hamiltonian constraint leads to solutions e*¢ with imaginary frequency

o= \/2 (Atot,IR — CtT’ZIR> . (B4)

In the context of the worldsheet theory of supercritical strings, X? = ¢/« plays the role of the
ipd X0

timelike embedding coordinate of the string, with solutions o e corresponding to spacetime
energy levels p' = &/v/a/. 13 These energy levels may be obtained from the TT deformation
[21, 22], potentially eliminating any direct reference to gravity, which would be interesting to

pursue in the future.

C A lattice model with volume law entanglement

The physics of the d dimensional dual theory involves an interplay between interactions between
the two matter sectors, and entanglement between them over the volume V;_;. In this appendix,
we describe a lattice model that displays some of the relevant features, and where the calculations
can be carried out explicitly.

Let us consider a lattice where at each lattice point we have two types of spins, S and 9.
These will model the two CFT sectors. There are nearest-neighbor antiferromagnetic couplings,
and also on-site couplings between the different spins:

H=> (Ji;Si- S+ ;8-S + > K S;- 5. (C.1)
(i) i

All the couplings J, J', K are positive. This is basically a discretized version of two scalar fields
coupled via an interaction of the form ¢2¢3. Now we take the limit K > J,J'. In this strong
coupling limit, the ground state of the system is that the two spins 5’@-, SZ form a singlet (a “bond”)
at each lattice site,

9 =T[5 (b= 100 (€2

13 As reviewed recently in [46], on the cylinder the spacetime momenta are shifted from those on the plane, which
include an additional piece o< i+/ce.
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We now trace out all the 5‘;’ , obtaining the reduced density matrix

p = Trss((0)w)) = T S0 106lt i+ 1 itd 1) (C.3)

)

We get a maximally mixed state at each site. The von Neumann entropy for the full system is
simply
S = —Tr(plogp) = Nlog2 (C4)

where N is the number of sites. This reproduces as it should the dimension of the Hilbert space,
e = 2N,

We can also consider an entangling region >, and trace over all the spins S in the complement
of the region (after having traced out all the S”). Denoting py; = Trs, p, we find the entanglement
entropy

1
Sy, = Ny log2 = % log2. (C.5)
a

Here Nx; = Voly /a?"! is the number of spins inside ¥, a is the lattice spacing, and the lattice
has d — 1 spatial dimensions. Intuitively, the entanglement entropy counts the number of bonds
(spin singlets) between the inside and the outside of ¥; each bond contributes log2 to the von
Neumann entropy. As K — oo, each of the spins S; inside the entangling region ¥ is in a singlet
with S’;’ . Now, the spins 5’;’ have been traced out — they behave like an external bath for the spins
S;. Therefore every spin inside X is connected to a bond outside ¥, and we obtain the volume
law.

This simple example provides a toy model illustrating some of the features of what we are
finding in the dS/dS duality. The two QFTs are modeled here by the two types of spins, and the
large irrelevant couplings between the sectors are represented by the large on-site coupling K 5.5
The fact that the interaction is irrelevant does not seem to be important for the entanglement
entropy property; rather, the point is that it dominates over the interactions within each sector.
In the lattice model, tracing out one sector completely leads to a volume law for the entanglement
entropy associated to finite regions of the lattice. For K/J finite but large, some of the bonds
between S and S would break, and instead there would be bonds between spins S; at different
sites. This leads to an area term correction.

D Holographic entanglement for subregions in dS/dS

In this appendix we expand upon the calculation of different entanglement measures using holog-
raphy. We focus on the von Neumann and Renyi entropies, as well as the mutual information.
We will exhibit a volume law, as well as vanishing mutual information.

As discussed in the main text in §4.3, the holographic entanglement entropy has a clear
interpretation only for a region that covers the whole space S¢~1 of global dSy. This arises from
tracing out completely one of the two matter sectors, and corresponds to (3.5, 3.6). Nevertheless,
in this appendix we will perform a more general RT calculation for regions of size smaller than
lqs, and will also obtain a volume law. As the entangling region approaches the whole space,
we will recover (4.2). The physical interpretation of these entropies for smaller regions is not
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completely clear, but this could provide an intriguing clue regarding locality at scales smaller
than £4g.

Consider an entangling region ¥ in the dual d-dimensional theory, at sin(w/¢4s) = 1 and on
the S9=! at 7 = 0 in global de Sitter (2.1). We allow the extremal surface M to extend into the
bulk (meaning w # 7lgg/2), parameterized by w = w(y"), where 3 denote the coordinates of the
S4=1 We will also denote the unit sphere metric by Gij- Defining @ = w/{4g, the metric on this
surface is

ds|3 = (Ag (0 051 + sin® b ;) dy'dy’ (D.1)
and the area functional is

A=t / ALy det'/2 (9 910 + sin® b Gij) - (D.2)

We find the extremal surface by varying this with respect to w(y;). For example, in the d = 2
case this generates the geodesic equation, whose solution lies along the great circle at

w(y') =5 - (D.3)

A similar result holds for higher dimensions. The variation of (D.2) with respect to @(y;) has two
types of terms; one is proportional to the variation of the warp factor, sin @ cos @, which vanishes
on the UV slice. The remaining terms contain derivatives 9;w, so since the other contribution
vanishes, a consistent solution is the constant one, w(y;) = 7/2.

This gives a volume law for the entanglement entropy,

Vs

S =15

(D.4)

This volume law holds for regions X of size smaller than /;5. As the entangling region covers the
whole space, we recover (4.2).

It is not difficult to understand this volume law from the maximal mixing of the density
matrix p; for QFT; as we argued in the main text. Partially tracing p; over any subsystem
produces a reduced density matrix py that is maximally mixed, and the von Neumann entropy
of a maximally mixed py, satisfies a volume law.

The maximal mixing of py, also ensures that its Renyi entropies S, () must be independent
of n and equal to the von Neumann entropy (D.4). In principle, this can also be obtained directly
from the area of cosmic branes, although their backreaction is nontrivial to calculate in this case.

We now compute the mutual information between two disjoint regions A and B in QFT;y:

I(A,B) = S(A) + 8(B) — S(AU B). (D.5)

This measures the correlations between the two regions [47]. Since the extremal surfaces always
stay at the UV slice, the sum of their areas equals the area of the union, and the mutual informa-
tion vanishes. This means that at large c there are no correlations between disjoint subsystems
of QFT; except for a small number of degrees of freedom (as we expect a subleading nonzero
correction from quantum effects in the bulk).

The vanishing of the mutual information between A and B in QFT; can be easily understood
as a consequence of QFT; being maximally entangled with QFTy (to the leading order in the
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large-c limit). It essentially follows from the monogamy of quantum entanglement. The region A
is maximally entangled with some subsystem C' of QFT9, which prevents A from being correlated
with B at all. In other words, strong subadditivity together with the pureness of AU C requires

S(AUB)=S(AUB)+8(AUC) > S(A) + S(AUBUC) = S(A) + 8(B) (D.6)

which immediately leads to a vanishing mutual information.

Let us compare this with the mutual information in CFTs with AdS dual. There are two
possible solutions for the extremal surface of AU B. One is a union of separate extremal surfaces
of A and B. There is also another solution, with a tube that connects A and B going into the
bulk. For sufficiently separated regions, the first solution dominates, and the mutual information
vanishes. However, as the regions approach each other, there is a phase transition and the
tube-like solution becomes the dominant one, giving a nonzero mutual information [38]. This is
suggestive of a Hagedorn transition.'? In contrast, in the de Sitter case, if we consider regions
smaller than the full neck, we find that this transition is absent — the mutual information always
vanishes to the leading order in 1/c.
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