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Abstract: We derive the general supertrace formula for a system with N chiral super-
fields and one nilpotent chiral superfield in global and local supersymmetry. The nilpotent
multiplet is realized by taking the scalar-decoupling limit of a chiral superfield breaking
supersymmetry spontaneously. As we show, however, the modified formula is not simply
related to the scalar-decoupling limit of the supertrace in linearly-realized supersymmetry.
We also show that the supertrace formula reduces to that of a linearly realized supersym-
metric theory with a decoupled sGoldstino if the Goldstino is the fermion in the nilpotent
multiplet.
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1 Introduction

Spontaneous breaking of supersymmetry is one of the most important issues for realistic
model building in supersymmetric theories. The nonlinear realization is a useful tool for
the description of the physics below the energy scale of spontaneous SUSY breaking, which
manifests in the form of constrained superfields. Appropriate constraints reduce the physical
degrees of freedom in a given superfield in a supersymmetric manner; this corresponds to the
decoupling limit of heavy particles which acquire their mass from supersymmetry breaking
effects [1–6].

A nilpotent chiral superfield Ŝ(x, θ) satisfying Ŝ2 = 0 is particularly important to
describe supersymmetry breaking [1, 7–12]. The nilpotent condition has nontrivial solution
if and only if FS 6= 0, which means supersymmetry is broken by Ŝ. Interestingly, such a
nilpotent superfield appears in the low energy effective action of an anti-D3 brane in some
classes of superstring models [13–18]. Such an anti-D3 brane effect plays an important in
realizing de Sitter vacua in string theory [19]. The application of the nilpotent superfield
to inflationary cosmology has also been studied [20–24]. The absence of an independent
scalar S in the Ŝ superfield has an advantage in such model building.

From this perspective, it would be important to understand the properties of nonlinear
supersymmetry. In linearly realized supersymmetry, the supertrace mass formula [25–27]
shows one of the most interesting properties; it takes a simple form described in terms of the
underlying Kähler geometry. This formula also has practical uses, e.g. loop corrections to
the vacuum energy. Recently, the supertrace formula in curved spacetime was investigated
in [28].

In this work, we will derive the supertrace mass formula for a system with a nilpotent
superfield in global and local supersymmetry models. The complete component action for
such a system was recently shown in [29–33]. It turns out that the presence of a nilpotent
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superfield leads not only to the absence of the scalar S but also additional terms in the
Lagrangian, which seem to break the geometric form of the standard supergravity action.
For these reasons, one expects that the supertrace mass formula is also different from the
standard one. Indeed, as we will show, the formula consists of a standard geometric part
and a non-geometric part originating from the nilpotent superfield.

The remaining part of this paper is organized as follows. In Sec. 2, we briefly review
the general features of a system with a nilpotent superfield. We then derive the general
form of the modified supertrace mass formula, which will be used in the following sections.
We construct the explicit modified supertrace mass formula for global supersymmetry in
Sec. 3, and for supergravity in Sec. 4. Finally we conclude in Sec. 5.

2 Nilpotent condition and mass correction

In this section we briefly review the properties of the nilpotent superfield and discuss possible
corrections to the mass formulae for both bosons and fermions. The nilpotent condition
Ŝ2(x, θ) = 0 on a chiral superfield,

Ŝ(x, θ) = S(x) +
√

2θχS(x) + θ2FS(x), (2.1)

leads to [1, 9–12]

S =
χSχS

2FS
, (2.2)

where S, χS and FS are the scalar, a spinor and an auxiliary scalar field components of
S(x, θ), respectively. This equation shows the following properties of the nilpotent super-
field: 1. the scalar S is not a physical degree of freedom, and 2. a linear term of S in
Lagrangian behaves like a mass term of χS .

From the first observation, we find that the scalar mass formula should be modified
as follows. Since S is not a dynamical degree of freedom and should be projected out as
S = 0, the sum of scalar masses is given by(

1

2
trM2

0

)
nl

=gab̄Vab̄

∣∣∣∣
S=0

=
[
gαβ̄Vαβ̄ − gSb̄VSb̄ − gaS̄VaS̄ − gSS̄VSS̄

] ∣∣∣∣
S=0

(2.3)

where V is the scalar potential; the roman indices a, b denote all scalar fields aside from
S, the greek indices α, β run over all scalar fields including S and subscripts on V denote
differentiation with respect to scalar fields. gαβ̄ denotes the inverse of Kähler metric. Here,
V and its derivatives should be calculated assuming S 6= 0; in the end we take the projection
S = 0 represented by |S=0. The first term of this formula gαβ̄Vαβ̄ ≡ (trM2

0 )lin corresponds
to the total scalar mass formula for the linearly realized supersymmetric case, where Ŝ is
unconstrained.

We also find the corrections to the fermion mass formula from the second observation
made above. Let us formally write a fermion mass in linear supersymmetry as mαβ , which
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will be defined in the following sections. Since the linear term of S in V becomes the
fermion mass term of χS , the fermion mass formula is corrected as

m′αβ = mαβ + δSαδ
S
β

VS
FS

∣∣∣∣
S=0

, (2.4)

where we have defined the mass term of the fermion in Lagrangian as −1
2m
′
αβχ

αχβ . Thus,
the fermion mass trace is given by(

trM2
1/2

)
nl

=gαβ̄gγδ̄m′αγm̄
′
β̄δ̄

∣∣∣∣
S=0

=

[
gαβ̄gγδ̄mαγm̄β̄δ̄ + gSᾱgSβ̄m̄ᾱβ̄

VS
FS

+ gaS̄gbS̄mab
VS̄
F̄S

+ (gSS̄)2

∣∣∣∣ VSFS
∣∣∣∣2
] ∣∣∣∣

S=0

=
[
(trM2

1/2)lin + ∆M2
1/2

] ∣∣∣∣
S=0

, (2.5)

where
(
trM2

1/2

)
lin
≡ gαβ̄gγδ̄mαγm̄β̄δ̄ and

∆M2
1/2 ≡ g

SāgSb̄m̄āb̄

VS
FS

+ gaS̄gbS̄mab
VS̄
F̄S

+ (gSS̄)2

∣∣∣∣ VSFS
∣∣∣∣2 . (2.6)

The first term
(
trM2

1/2

)
lin

corresponds to the sum of fermion masses in linearly realized

supersymmetry, whereas the second contribution ∆M2
1/2 comes from the extra mass term

of χS induced by the nilpotent condition.
As discussed above, in both the scalar and fermion mass traces, there are corrections

originating from the nilpotent superfield Ŝ. Note that in supergravity there is no correction
to the gravitino mass aside from imposing the condition S = 0. Taking the corrections into
account, we find that the relationship between the supertrace mass formulae in linear and
nonlinear supersymmetry is given by

1

2

(
StrM2

)
nl =

(
1

2
trM2

0

)
nl

−
(
trM2

1/2

)
nl
− 2m2

3/2

∣∣∣∣
S=0

=

[(
1

2
trM2

0

)
lin

−
(
trM2

1/2

)
lin
− 2m2

3/2 −
1

2
∆M2

0 −∆M2
1/2

] ∣∣∣∣
S=0

=
1

2

(
StrM2

)
lin

∣∣∣∣
S=0

−
(

1

2
∆M2

0 + ∆M2
1/2

) ∣∣∣∣
S=0

, (2.7)

where
(
StrM2

)
lin (nl) denotes the supertrace mass formula for (non-)linear supersymmetry

and
1

2
∆M2

0 ≡ gSb̄VSb̄ + gaS̄VaS̄ + gSS̄VSS̄ . (2.8)

Note that the spin 3/2 part is absent in global supersymmetry. Using this general re-
lation (2.7), we derive the explicit form of the supertrace formulae in global and local
supersymmetry in the following section.
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One may see the formula (2.7) as

1

2

(
StrM2

)
nl =

1

2

(
StrM2

)
S-decouple −∆M2

1/2

∣∣∣∣
S=0

. (2.9)

Here we have defined

1

2

(
StrM2

)
S-decouple =

1

2

(
StrM2

)
lin

∣∣∣∣
S=0

−1

2
∆M2

0

∣∣∣∣
S=0

. (2.10)

One might expect that 1
2

(
StrM2

)
S-decouple is the supertrace formula in a system with a

nilpotent superfield, since such a system would correspond to the decoupling limit of the
scalar S. However, the presence of ∆M2

1/2 shows that it is not the case: the supertrace
mass formula is unexpectedly deformed in a nonlinearly-realized-supersymmetric system.

3 Global supersymmetry

In this section, we derive the supertrace mass formula with a nilpotent superfield in global
supersymmetry. We consider a system with N chiral superfields (ẑa) and one nilpotent
superfield Ŝ. Since Ŝ satisfies the nilpotent condition, the general form of the Kähler and
super-potential are restricted as

K =K0 +K1S +K1̄S̄ +K2SS̄, (3.1)

W =W0 +W1S, (3.2)

where K0,1,1̄,2 are functions of scalar fields za and z̄b̄, and W0,1 are holomorphic functions
of za. In a linearly realized supersymmetry case, the scalar potential is given by

V = gαβ̄WαW̄β̄ . (3.3)

We have to project S out from the actual scalar potential if S is a nilpotent superfield, and
then the scalar potential should be

(V )nl = gαβ̄WαW̄β̄

∣∣∣∣
S=0

. (3.4)

We have an algebraic relation

Vα = Wαβg
βγ̄W̄γ̄ + ∂αg

βγ̄WβW̄γ̄

= Wαβ(gβγ̄W̄γ̄)− ΓδαβWδ(g
βγ̄W̄γ̄)

= ∇αWβ(gβγ̄W̄γ̄)

= −mαβF
β , (3.5)

where mαβ is a fermion mass given by

mαβ ≡ ∇αWβ = Wαβ − ΓγαβWγ , (3.6)
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and Γγαβ = gγδ̄gαβδ̄ is the Kähler connection. Note that, since S satisfies the nilpotent
condition, we find WSS = ΓαSS = 0, and therefore

mSS ≡ 0. (3.7)

A similar calculation yields

Vαᾱ = mαβg
ββ̄m̄ᾱβ̄ +Rαᾱββ̄F

βF̄ β̄ , (3.8)

where Rαᾱββ̄ = Kαβᾱβ̄ − gγγ̄KαβγKᾱβ̄γ̄ . Note that these identities also hold under the
projection S = 0.

We derive each term in (2.7) using these identities. The first term of (2.7) corresponds
to the usual supertrace mass formula. Using the identity (3.8), we find

1

2

(
StrM2

)
lin

∣∣∣∣
S=0

=
[
gαᾱVαᾱ −mαβg

αᾱgββ̄m̄ᾱβ̄

] ∣∣∣∣
S=0

=gαᾱRαᾱββ̄F
βF̄ β̄

∣∣∣∣
S=0

. (3.9)

The second term of (2.7) can be expressed as

1

2
∆M2

0 =gSā(mSag
aᾱm̄āᾱ +RSāaᾱF

aF̄ ᾱ) + gaS̄(maαg
αām̄S̄ā +RaS̄αāF

αF̄ ā)

+ gSS̄(mSag
aāmS̄ā +RSS̄aāF

aF̄ ā), (3.10)

where we have taken into account mSS = 0 and RSᾱSβ̄ = 0, which are consequences of the
nilpotent condition. Using the identity (3.5), we find

VS
FS

= −mSS −
F a

FS
mSa = −F

a

FS
mSa. (3.11)

Note that for a nonlinear superfield VS = 0 is not realized dynamically, because of the
absence of a dynamical scalar S and hence this quantity does not vanish at the vacuum.
The third term of (2.7) can then be expressed as

∆M2
1/2 =− gSāgSb̄māb̄

F a

FS
mSa − gaS̄gbS̄mab

F̄ ā

F̄ S̄
mS̄ā + (gSS̄)2

∣∣∣∣F aFSmSa

∣∣∣∣2 . (3.12)

Finally, we find the supertrace formula with N -chiral superfields and a nilpotent chiral
superfield Ŝ is

1

2

(
StrM2

)
nl =gaāRaāαᾱF

αF̄ ᾱ − gSāmSag
aᾱm̄āᾱ − gaS̄maαg

αām̄S̄ā − gSS̄mSag
aāmS̄ā

+ gSāgSb̄māb̄

F a

FS
mSa + gaS̄gbS̄mab

F̄ ā

F̄ S̄
mS̄ā − (gSS̄)2

∣∣∣∣F aFSmSa

∣∣∣∣2 . (3.13)

Although combining all terms partially simplifies the total expression, the expression for
the supertrace mass formula is still complicated. This is a significant difference between
the formula in linear and nonlinear supersymmetry.
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3.1 Simplification: F a = 0

Let us consider a condition which reduces the complexity of the supertrace formula. The
particular difference between the linear and nonlinear supersymmetry comes from the addi-
tional mass contribution ∆M2

1/2. Indeed, the relation between
(
StrM2

)
nl and

(
StrM2

)
S-decouple

becomes

(
StrM2

)
nl =

(
StrM2

)
S-decouple+g

SāgSb̄māb̄

F a

FS
mSa+g

aS̄gbS̄mab
F̄ ā

F̄ S̄
mS̄ā−(gSS̄)2

∣∣∣∣F aFSmSa

∣∣∣∣2 .
(3.14)

From this expression, one finds that for F a = 0,(
StrM2

)
nl =

(
StrM2

)
S-decouple

=
[
gaāRaāSS̄F

SF̄ S̄ − gSāmSag
aᾱm̄āᾱ − gaS̄maαg

αām̄S̄ā − gSS̄mSag
aāmS̄ā

] ∣∣∣∣
S=0

.

(3.15)

In this case, the supertrace mass formula corresponds to that in linearly realized supersym-
metry with decoupling of a scalar S. The condition F a = 0 means that supersymmetry
breaking is caused only by a single superfield Ŝ. In particular for gSā = 0, χS becomes the
Goldstino. 1

This result is consistent with the observation in [34]: in the linearly realized supersym-
metry models where some superfields have non-vanishing F-terms, the infrared limit of the
model does not realize a nilpotent superfield but a constrained superfield X with a cubic
nilpotent constraint X3 = 0.2

We can further simplify the formula by imposing the vacuum condition Va = 0. This
vacuum condition leads to

Va = −maαF
α = 0. (3.16)

Since we have assumed F a = 0 (and FS 6= 0), the vacuum condition is equivalent to

maS = 0. (3.17)

Then, we find a simple expression

(
StrM2

)
nl =

[
gaāRaāSS̄F

SF̄ S̄
] ∣∣∣∣
S=0

. (3.18)

4 Supergravity

In this section, we show the supertrace mass formula in the supergravity case. The com-
ponent action of the most general supergravity system coupled to matter and a nilpotent

1For a case only with F a = 0, Wa 6= 0 is possible in general. Then, the Goldstino G is a linear
combination of the fermions, G = WSχ

S +Waχ
a.

2Conditions for X2 = 0 to be valid even in the presence of additional SUSY breaking fields are studied
in [35].
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superfield is shown in [33]. Even in the case with a nilpotent superfield, the standard super-
gravity formula can be applied although we have to take into account the condition S = 0

and the additional mass for χS . The scalar potential is given by

V |S=0 = eK
(
DαWgαβ̄Dβ̄W̄ − 3|W |2

)∣∣∣∣∣
S=0

, (4.1)

and the mass of the spin-1/2 fermion in the Lagrangian is

m̃αβ = e
K
2

(
Wαβ +KαWβ +KβWα +KαβW +KαKβW − ΓγαβDγW

)∣∣∣∣∣
S=0

, (4.2)

where DαW ≡Wα +KαW is the Kähler covariant derivative. The mass of the gravitino is
given by

m3/2 = e
K
2 W

∣∣∣∣
S=0

. (4.3)

However, there are mass mixing terms between the gravitino ψµ and spin 1/2 fields χα

in the Lagrangian, 1√
2
eK/2DαWψ̄µγ

µχα. In order to sum up the masses of fields for each
spin separately, such a mixing term should be removed by diagonalizing the fermions as
performed in [28]. The procedure is the same even if there is a nilpotent superfield, and
hence the mass formula for spin 1/2 components is

mαβ = m̃αβ −
2

m3/2X
eKDαWDβW

∣∣∣∣∣
S=0

, (4.4)

where m̃αβ is given in (4.2) and X =
DαWgαβ̄Dβ̄W̄

|W |2 . The gravitino mass is not modified by
diagonalizing fermion masses and is given by (4.3).

As in the global supersymmetry case, the fermion mass of the nilpotent superfield
receives an additional mass contribution as shown in (2.4), and hence

m′SS =

(
mSS +

VS
FS

)∣∣∣∣∣
S=0

, (4.5)

and other mass matrix elements of mαβ are not corrected. Note that the bosonic part of
the F-term in supergravity is given by

Fα = −e
K
2 gαβ̄Dβ̄W̄

∣∣∣∣
S=0

. (4.6)

We find a useful expression for the first and second derivatives of the scalar potential
as [28]

Vα = −mαβF
β , (4.7)

and

Vαᾱ =(V + |m3/2|2)gαᾱ + m̃αβg
ββ̄ ¯̃mᾱβ̄ + eK(−DαWDᾱW̄ +R ββ̄

αᾱ DβWDβ̄W̄ ),

=(V + |m3/2|2)gαᾱ +mαβg
ββ̄m̄ᾱβ̄ −

(
2eK/2

m3/2X
DαWF̄ β̄m̄ᾱβ̄ +

2eK/2

m̄3/2X
DᾱW̄F βmαβ

)

+
4−X
X

eKDαWDᾱW̄ +Rαᾱββ̄F
βF̄ β̄ . (4.8)
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We also find the following identity,

m′SαF
α = mSαF

α +
VS
FS

FS = 0. (4.9)

This means that there always exists a zero mode, which corresponds to Goldstino.
Using the identities (4.7) and (4.8), we find the following expression (see [28] for the

detailed derivation)(
1

2
StrM2

)
lin

= N(V + |m3/2|2) + eKRβ̄βDβWDβ̄W̄ +
2

X

(
1

W̄
Vαg

αᾱDᾱW̄ +
1

W
Vᾱg

αᾱDαW

)
= N(V + |m3/2|2) +Rβ̄βF

βF β̄ +
2

X

(
1

m̄3/2
FαmαβF

β +
1

m3/2
F̄ ᾱm̄ᾱβ̄F̄

β̄

)
,

(4.10)

where Rαᾱ = gββ̄Rββ̄αᾱ. This expression gives the first term of (2.7).
Thus, we can formally write the supertrace formula as(

1

2
StrM2

)
nl

=
1

2

(
StrM2

)
lin

∣∣∣∣
S=0

−
(

1

2
∆M2

0 + ∆M2
1/2

) ∣∣∣∣
S=0

=

[
N(V + |m3/2|2) +RαᾱF

αF̄ ᾱ +
2

X

(
1

m̄3/2
FαmαβF

β +
1

m3/2
F̄ ᾱm̄ᾱβ̄F̄

β̄

)
− gaS̄maβg

βS̄ VS̄
F̄ S̄
− gSā VS

FS
gSβ̄m̄āβ̄ − (gSS̄)2

(
mSS

VS̄
F̄ S̄

+
VS
FS

m̄S̄S̄ +
VSVS̄
|FS |2

)
− (gaS̄VaS̄ + gSāVSā + gSS̄VSS̄)

]∣∣∣∣∣
S=0

. (4.11)

The factor VS
FS

can be rewritten as

VS
FS

= −mSS −mSa
F a

FS
, (4.12)

which follows from (4.7). Also, we can use (4.8) to derive VSᾱ and VαS̄ explicitly. However,
this manipulation complicates the expression.

Although the supertrace formula in a general scalar background is complicated, it is
somewhat simplified under the Minkowski vacuum condition Va = V = 0. Under this
condition, one finds maS = −mabF

b

FS
. We also find

gaS̄VaS̄ + gSāVSā + gSS̄VSS̄ =(3− gSS̄gSS̄)|m3/2|2 + gaS̄maβg
ββ̄m̄S̄β̄ + gSāmSβg

ββ̄m̄āβ̄

+ gSS̄mSβg
ββ̄m̄S̄β̄ +

2m̄S̄S̄

3m3/2
F̄ S̄F̄ S̄ +

2mSS

3m̄3/2
FSFS

+
2m̄S̄b̄

3m3/2
F̄ S̄F̄ b̄ +

2mSb

3m̄3/2
FSF b − 1

3
F agaāF̄

ā

+ gSS̄RSS̄αᾱF
αF̄ ᾱ + gSāRSāαᾱF

αF̄ ᾱ + gaS̄RaS̄αᾱF
αF̄ ᾱ,

(4.13)
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where we have used X = 3 following from V = 0. Using these expressions, we finally find
that the supertrace (4.11) is reduced to(

1

2
StrM2

)
nl

=

[
(N − 3 + gSS̄gSS̄)|m3/2|2 + gaāRaāαᾱF

αF̄ ᾱ +
2

3

(
1

m̄3/2
F amabF

b +
1

m3/2
F̄ ām̄āb̄F̄

b̄

)
+ gaS̄maαg

αām̄S̄ā + gSāmSag
aᾱm̄āᾱ + gSS̄mSαg

αām̄S̄ā + gSS̄mSag
aᾱm̄S̄ᾱ

− gaS̄gαS̄maα
m̄āb̄F̄

āF̄ b̄

(F̄ S̄)2
− gSāgSβ̄m̄āβ̄

mabF
aF b

(FS)2
− (gSS̄)2 |mabF

aF b|2

|FS |4
+

1

3
F agaāF̄

ā

]∣∣∣∣∣
S=0

.

(4.14)

The first and second terms are similar to the standard supertrace formula, and other terms
appear as consequences of the decoupled scalar in Ŝ and the nontrivial mass terms of χS .
In the following, we will consider simplification of this formula by imposing additional
conditions on the system.

4.1 Simplification: no Kähler mixings gaS̄ = gSā = 0

As seen in the previous section, the supertrace formula becomes very complicated in the
presence of a nilpotent superfield. The completely general formula is not necessary, and the
simplified one under certain conditions would be practically useful. Here we consider the
case with the following Kähler potential,

K = K0(za, z̄ā) +K2(za, z̄ā)SS̄, (4.15)

which implies gaS̄ = gSā = 0 on the S = 0 hypersurface. This condition reduces the terms
in the general formula (4.11), and we find(

1

2
StrM2

)
nl

=

[
N(V + |m3/2|2) +RαᾱF

αF̄ ᾱ +
2

X

(
1

m̄3/2
FαmαβF

β +
1

m3/2
F̄ ᾱm̄ᾱβ̄F̄

β̄

)

+ (gSS̄)2

(
mSSm̄S̄S̄ −

F aF̄ ā

FSF̄ S̄
mSam̄S̄ā

)
− gSS̄VSS̄

]∣∣∣∣∣
S=0

, (4.16)

where we have used VS
FS

= −mSS−mSa
Fa

FS
. Also, the condition (4.15) reads gSS̄ = (gSS̄)−1,

and we find

gSS̄VSS̄ =V + |m3/2|2 +mSαg
αᾱmSᾱg

SS̄ +

(
2

m3/2X
F̄ S̄F̄ β̄mS̄β̄ + h.c.

)
+

4−X
X

FSgSS̄F̄
S̄ + gSS̄RSS̄αᾱF

αF̄ ᾱ. (4.17)

Thus, we obtain the simplified supertrace formula(
1

2
StrM2

)
nl

=(N − 1)(V + |m3/2|2) + gaāRaāαᾱF
αF̄ ᾱ +

2

X

(
1

m̄3/2
F amaβF

β +
1

m3/2
F̄ ām̄āβ̄F̄

β̄

)
+ (gSS̄)2

(
− F

aF̄ ā

FSF̄ S̄
mSam̄S̄ā

)
−mSag

aāmS̄āg
SS̄ − 4−X

X
FSgSS̄F̄

S̄ .

(4.18)
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Note that we have only assumed the condition (4.15) and the vacuum condition Va = V = 0

is not yet imposed. Therefore, (4.18) is applicable to the general scalar field background in
the system satisfying (4.15).

Let us consider the expression under the Minkowski vacuum condition Va = V = 0.
These conditions lead to

maS = −mabF
b

FS
, X = 3. (4.19)

Then, we find(
1

2
StrM2

)
nl

∣∣∣∣∣
vac

=(N − 2)|m3/2|2 + gaāRaāαᾱF
αF̄ ᾱ +

∣∣F amabF
b
∣∣2

(FSgSS̄F̄
S̄)2

− gaāF bF̄ b̄

FSgSS̄F̄
S̄
mabm̄āb̄ +

1

3
F agaāF̄

ā, (4.20)

where we have used the relation FSgSS̄F̄ S̄ = 3|m3/2|2 − F agaāF̄ ā following from V = 0.
For further simplification, we consider a special case F a = 0, which means that the

Goldstino is equivalent to χS and there is no kinetic mixing between matter and the Gold-
stino χS by the assumption (4.15). In this case, the supertrace formula significantly sim-
plifies, (

1

2
StrM2

)
nl

∣∣∣∣∣
Fa=0

vac

= (N − 2)|m3/2|2 + gaāRaāSS̄F
SF̄ S̄ , (4.21)

where we have used FSgSS̄F̄
S̄ = 3|m3/2|2 which follows from V = 0. In pure de Sitter

supergravity [29, 30], where N = 0, this expression gives(
1

2
StrM2

)
nl

∣∣∣∣∣
pure dS

vac

= −2|m3/2|2, (4.22)

which is the correct result because only the gravitino is a massive field. Note that the
formula (4.21) seems similar to the standard supertrace formula, but there are differences.
At the Minkowski vacuum Vα = V = 0, the supertrace formula in linearly realized super-
symmetry is given by (

1

2
StrM2

)
lin

∣∣∣∣∣
vac

= N |m3/2|2 +RαᾱF
αF̄ ᾱ, (4.23)

for the case with N + 1 chiral multiplets. The difference between (4.21) and (4.23) is

∆ = 2|m3/2|2 + gSS̄RSS̄SS̄F
SF̄ S̄ . (4.24)

Here, although the second term vanishes if Ŝ is nilpotent, we have formally introduced
it. This difference is nothing but the mass of the sGoldstino S,3 and hence (4.21) can be
identified as the supertrace formula for the decoupling limit of the sGoldstino S.

3We can identify this quantity as the sGoldstino mass by the following reason: consider a linearly realized
supersymmetric system with one chiral superfield S. Suppose S breaks supersymmetry spontaneously. The
supertrace of the system is given by 1

2
StrM2 = gSS̄RSS̄SS̄F

SF̄ S̄ . Since the Goldstino is massless, this
supertrace should be 1

2
StrM2 = gSS̄VSS̄ − 2|m3/2|2, where gSS̄VSS̄ is the squared mass of the sGoldstino.

Then using these equations, we find gSS̄VSS̄ = 2|m3/2|2 + gSS̄RSS̄SS̄F
SF̄ S̄ .
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As shown above, if only the nilpotent superfield is responsible for supersymmetry break-
ing and it has no mixing with matter, we find a simple and geometric expression for the
supertrace formula (4.21). In general, however, the supertrace formula has non-geometric
terms proportional to F a. This shows that the spectrum of a system with a nilpotent
superfield is not just a simple decoupling limit of the sGoldstino.

5 Summary and discussion

In this work, we have derived the supertrace mass formula for a system with a nilpotent
superfield in global and local four dimensional N = 1 supersymmetry. Due to the nilpotent
constraint, the scalar field disappears from the physical degrees of freedom and the non-
standard fermion mass (2.4) shows up, modifying the mass of χs. These features change
the supertrace formula significantly. We have shown the general formulae (3.13) for global
supersymmetry and (4.14) for supergravity. We find that the modified supertrace formula
has extra contributions, which are absent in the standard formulae. We also find that if
only the nilpotent superfield is responsible for supersymmetry breaking, i.e. the F-terms of
matter vanish, the supertrace formula becomes simplified significantly as shown in (3.18)
and (4.21). For such simplified cases, the modification of the supertrace formula can be
understood as the decoupling limit of S in global and in local supersymmetry, respectively.

In other words, if matter fields have non-vanishing F -terms, we cannot interpret the
nilpotent constraint as the decoupling limit of the S. Such an observation is consistent with
the result in [34], which shows that in models with multiple supersymmetry breaking fields,
the decoupling limit of S field leads not to a nilpotent superfield, but a different constrained
superfield. In this sense, as an effective theory of a Goldstino superfield in the presence of
matter, a nilpotent superfield can be a good approximation if the F -terms of matter fields
are negligibly small.

One of the interesting examples with a nonlinear superfield is the KKLT [19]/LVS [36]
model in string theory. Interestingly, in such a model, supersymmetry is broken not only
by a nilpotent superfield but also by moduli fields. Therefore, we need to take into account
the additional corrections to the mass, which we discussed in Sec. 2.

It is also interesting to consider the structure of the Kähler geometry in the presence
of the nilpotent superfield. As we have seen, the modified supertrace formula contains
the factor Fa

FS
which is absent in the standard supergravity case. One beautiful aspects of

supersymmetry is that the action is described in terms of the Kähler geometry. However,
the action with a nilpotent superfield has various non-geometric terms proportional to
Fa

FS
. A new supergravity formulation studied in [37, 38] might be useful to understand the

geometrical meaning of the nilpotent superfield.
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