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ABSTRACT: We derive the general supertrace formula for a system with N chiral super-
fields and one nilpotent chiral superfield in global and local supersymmetry. The nilpotent
multiplet is realized by taking the scalar-decoupling limit of a chiral superfield breaking
supersymmetry spontaneously. As we show, however, the modified formula is not simply
related to the scalar-decoupling limit of the supertrace in linearly-realized supersymmetry.
We also show that the supertrace formula reduces to that of a linearly realized supersym-
metric theory with a decoupled sGoldstino if the Goldstino is the fermion in the nilpotent
multiplet.
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1 Introduction

Spontaneous breaking of supersymmetry is one of the most important issues for realistic
model building in supersymmetric theories. The nonlinear realization is a useful tool for
the description of the physics below the energy scale of spontaneous SUSY breaking, which
manifests in the form of constrained superfields. Appropriate constraints reduce the physical
degrees of freedom in a given superfield in a supersymmetric manner; this corresponds to the
decoupling limit of heavy particles which acquire their mass from supersymmetry breaking
effects [1-6].

A nilpotent chiral superfield S (z,0) satisfying §2 = 0 is particularly important to
describe supersymmetry breaking [1, 7-12]. The nilpotent condition has nontrivial solution
if and only if F° # 0, which means supersymmetry is broken by S. Interestingly, such a
nilpotent superfield appears in the low energy effective action of an anti-D3 brane in some
classes of superstring models [13-18]. Such an anti-D3 brane effect plays an important in
realizing de Sitter vacua in string theory [19]. The application of the nilpotent superfield
to inflationary cosmology has also been studied [20—24]. The absence of an independent
scalar S in the S superfield has an advantage in such model building.

From this perspective, it would be important to understand the properties of nonlinear
supersymmetry. In linearly realized supersymmetry, the supertrace mass formula [25-27]
shows one of the most interesting properties; it takes a simple form described in terms of the
underlying Kéhler geometry. This formula also has practical uses, e.g. loop corrections to
the vacuum energy. Recently, the supertrace formula in curved spacetime was investigated
in [28].

In this work, we will derive the supertrace mass formula for a system with a nilpotent
superfield in global and local supersymmetry models. The complete component action for
such a system was recently shown in [29-33]. It turns out that the presence of a nilpotent



superfield leads not only to the absence of the scalar S but also additional terms in the
Lagrangian, which seem to break the geometric form of the standard supergravity action.
For these reasons, one expects that the supertrace mass formula is also different from the
standard one. Indeed, as we will show, the formula consists of a standard geometric part
and a non-geometric part originating from the nilpotent superfield.

The remaining part of this paper is organized as follows. In Sec. 2, we briefly review
the general features of a system with a nilpotent superfield. We then derive the general
form of the modified supertrace mass formula, which will be used in the following sections.
We construct the explicit modified supertrace mass formula for global supersymmetry in
Sec. 3, and for supergravity in Sec. 4. Finally we conclude in Sec. 5.

2 Nilpotent condition and mass correction

In this section we briefly review the properties of the nilpotent superfield and discuss possible
corrections to the mass formulae for both bosons and fermions. The nilpotent condition
S2(x,0) = 0 on a chiral superfield,

S(x,0) = S(z) + V20x° (x) + 0*°F(x), (2.1)
leads to [1, 9-12]
S\ S
XX
S =Shs (2.2)

where S, x° and F*° are the scalar, a spinor and an auxiliary scalar field components of
S(z,0), respectively. This equation shows the following properties of the nilpotent super-
field: 1. the scalar S is not a physical degree of freedom, and 2. a linear term of S in
Lagrangian behaves like a mass term of x°.

From the first observation, we find that the scalar mass formula should be modified
as follows. Since S is not a dynamical degree of freedom and should be projected out as
S =0, the sum of scalar masses is given by

1 —
<2tI‘M§> :gab‘/vaz7
nl

= 0"Vas = Vg — 6" Vius — 9%V

S=0

(2.3)

S=0

where V' is the scalar potential; the roman indices a,b denote all scalar fields aside from
S, the greek indices «, 8 run over all scalar fields including S and subscripts on V' denote
differentiation with respect to scalar fields. gO‘B denotes the inverse of Kéahler metric. Here,
V and its derivatives should be calculated assuming .S # 0; in the end we take the projection
S = 0 represented by |s—g. The first term of this formula g“B V.5 = (trM3)iin corresponds
to the total scalar mass formula for the linearly realized supersymmetric case, where S is
unconstrained.

We also find the corrections to the fermion mass formula from the second observation

made above. Let us formally write a fermion mass in linear supersymmetry as mgqg, which



will be defined in the following sections. Since the linear term of S in V' becomes the
fermion mass term of x°, the fermion mass formula is corrected as
s Vs

a,B = Mqap + 555,8 707 (2'4)

1

where we have defined the mass term of the fermion in Lagrangian as —3m/, 5)(0‘)(5. Thus,

the fermion mass trace is given by

(tI‘Ml/Q) _gaﬂg'75m ’I’I’I,**

oyMs |
Vs Vs 52 | Vs [
_ gaﬂg mava,Jrg agS,B a@ferg“Sngmab :s;Jr( s5y2 5
F F F S—0
= (M) + AME] | (2.5)
S=0
where <trM1/2) = gO‘BQV‘imMmBg and
Vs Vg 50| Vs |°
Sa  Sb - S bS s SS S

A]\41/2 =g ag mabFS +ga g Map FS +( )2 S (2'6>

The first term ( 12/2> corresponds to the sum of fermion masses in linearly realized

supersymmetry, whereas the second contribution AM?Z,, comes from the extra mass term

1/2
of x¥ induced by the nilpotent condition. /

As discussed above, in both the scalar and fermion mass traces, there are corrections
originating from the nilpotent superfield S. Note that in supergravity there is no correction
to the gravitino mass aside from imposing the condition S = 0. Taking the corrections into
account, we find that the relationship between the supertrace mass formulae in linear and

nonlinear supersymmetry is given by

1 2 _ 1 2 o 2 o 2
2(Str/\/l )nl_<2trM0>nl (trM1/2>nl 2m3 s

1
_ [( trM0>l_ - (ter/Q). — 2m3, — S AMG — AM; /2}

S=0

S=0

_! (Str/\/l )iin , (2.7)

S=0

(Lo o3,

where (StrMQ)lin (nl) denotes the supertrace mass formula for (non-)linear supersymmetry
and

1 _ _ _
S AM = 9°"Vp + 9" V,g + 9% Vss. (2.8)

Note that the spin 3/2 part is absent in global supersymmetry. Using this general re-
lation (2.7), we derive the explicit form of the supertrace formulae in global and local
supersymmetry in the following section.



One may see the formula (2.7) as

1 2 1 2 2
5 (SM?) = 2 (SEMP)g e — DM . (2.9)
Here we have defined
1 2 1 2 1 2
5 (StrM )S-decouple = 5 (StrM )lin S—O_gAMO S—o (2'10)

One might expect that % (Str/\/lQ)S_ decouple
nilpotent superfield, since such a system would correspond to the decoupling limit of the

is the supertrace formula in a system with a

scalar S. However, the presence of AM12/2 shows that it is not the case: the supertrace
mass formula is unexpectedly deformed in a nonlinearly-realized-supersymmetric system.

3 Global supersymmetry

In this section, we derive the supertrace mass formula with a nilpotent superfield in global
supersymmetry. We consider a system with N chiral superfields (£%) and one nilpotent
superfield S. Since S satisfies the nilpotent condition, the general form of the Kéahler and
super-potential are restricted as

K:Ko—l—KlS—i-Kig—i-KQSg, (3.1)
W =Wy + W1S, (3.2)

where K| ;15 are functions of scalar fields 2 and ZE, and Wy 1 are holomorphic functions
of z%. In a linearly realized supersymmetry case, the scalar potential is given by

V = g PW,W;. (3.3)

We have to project S out from the actual scalar potential if S is a nilpotent superfield, and
then the scalar potential should be

(V) =g WaW;5| . (3.4)

We have an algebraic relation

Vo = Wopg® Wy + 80g” T W5 W5
= Was(g"W5) — T2 5Ws(g”W5)
= VaWs(g"1W5)
= —masF”, (3.5)

where mg is a fermion mass given by

Mag = VaWs = Wap — TL W, (3.6)



and FZ{/B = gWSga/Bg is the Kahler connection. Note that, since S satisfies the nilpotent
condition, we find Wgg = I'¢g = 0, and therefore

mgs = 0. (37)
A similar calculation yields
Voo = Magg™’maz + RaassFP FP, (3.8)

where R,s55 = K,pag — ngaﬁvKaBﬁ- Note that these identities also hold under the
projection S = 0.

We derive each term in (2.7) using these identities. The first term of (2.7) corresponds
to the usual supertrace mass formula. Using the identity (3.8), we find

1 _ o
5 (StM?) ‘ = [g“aVaa — mapg*®g™’ m&B]
= S=0
=9 Roa3s P F° (3.9)
S=0
The second term of (2.7) can be expressed as
1 _ _ o - _ -
iAM(? =9°*(msag"“Mag + RsaaaF F*) + 9°° (Maag® Mgz + RygoaF*F®)
+ gsg(mSagaamS‘a + Rggoa FF?), (3.10)

where we have taken into account mgg = 0 and Rg,g5 = 0, which are consequences of the
nilpotent condition. Using the identity (3.5), we find

Vs Fo Fa
ﬁ = —mMmss — ﬁmsa = —ﬁmsa. (311)

Note that for a nonlinear superfield Vg = 0 is not realized dynamically, because of the
absence of a dynamical scalar S and hence this quantity does not vanish at the vacuum.
The third term of (2.7) can then be expressed as

2 sa sb I o5 b5 F° ssye | F ?
AMij == 9797 Map rgmsa = 979 Map—=zMgzs + (9°7)

== (3.12)

ﬁmSa

Finally, we find the supertrace formula with N-chiral superfields and a nilpotent chiral
superfield S is

1 _ __ _ - - - - _
5 (SM?) | =g Ragoa PO F* — 9°Msag " “Maa — 9 Maag® Mgy — 97 Msag ™ mg,
_ _ Fa _ _ FZL _ Fa 2
+ 979" Mg s msa + 979" My z5msa = (9°7°)° | pgmsa (3.13)

Although combining all terms partially simplifies the total expression, the expression for
the supertrace mass formula is still complicated. This is a significant difference between
the formula in linear and nonlinear supersymmetry.



3.1 Simplification: F® =0

Let us consider a condition which reduces the complexity of the supertrace formula. The
particular difference between the linear and nonlinear supersymmetry comes from the addi-

tional mass contribution AM 12 /2 Indeed, the relation between (Stlr/\/IQ)n1 and (Str/\/l2)

S-decouple
becomes

_ & Fo ¢ .5 F° Gy | F®
2 2 Sa Sb S _bS 5542
(SteM?) = (SEMP)g ecoupre 979" M g Misa 9" 9" Map 75msa—(977) Msa

From this expression, one finds that for £'* = 0,

(Str./\/lQ) = (Str./\/lz)

nl S-decouple

a S&5  Sa 5 = S g~ S5 2
= [g“aRaang F? — ¢°"mga9*“Maa — 9" Maag Mg — g msag““mga]

S=0
(3.15)

In this case, the supertrace mass formula corresponds to that in linearly realized supersym-
metry with decoupling of a scalar S. The condition F'* = 0 means that supersymmetry
breaking is caused only by a single superfield S. In particular for ggz = 0, x° becomes the
Goldstino. !

This result is consistent with the observation in [34]: in the linearly realized supersym-
metry models where some superfields have non-vanishing F-terms, the infrared limit of the
model does not realize a nilpotent superfield but a constrained superfield X with a cubic
nilpotent constraint X3 = 0.2

We can further simplify the formula by imposing the vacuum condition V, = 0. This
vacuum condition leads to

Vo = —meo F* = 0. (3.16)
Since we have assumed F® = 0 (and F*° # 0), the vacuum condition is equivalent to
Mes = 0. (3.17)

Then, we find a simple expression

(SM?),, = [9" Roass PSP

nl

(3.18)

5=0
4 Supergravity

In this section, we show the supertrace mass formula in the supergravity case. The com-
ponent action of the most general supergravity system coupled to matter and a nilpotent

'For a case only with F* = 0, W, # 0 is possible in general. Then, the Goldstino G is a linear
combination of the fermions, G = Wsx° + Wax*.

2Conditions for X2 = 0 to be valid even in the presence of additional SUSY breaking fields are studied
in [35].



superfield is shown in [33]|. Even in the case with a nilpotent superfield, the standard super-
gravity formula can be applied although we have to take into account the condition S =0
and the additional mass for x°. The scalar potential is given by

Vi]geo = X (DanO‘BDBW - 3ywy2> : (4.1)
S=0

and the mass of the spin-1/2 fermion in the Lagrangian is

iag = €% (Wag + KaWs + KgWa + KogW + KoKgW =T, DW) |, (42)
S=0
where D, W = W, + K,W is the Kéhler covariant derivative. The mass of the gravitino is
given by
K
m3/2 =e2 W . (43)
S=0

However, there are mass mixing terms between the gravitino 1, and spin 1/2 fields x
in the Lagrangian, %eK/ 2DQW@M7/‘XQ. In order to sum up the masses of fields for each
spin separately, such a mixing term should be removed by diagonalizing the fermions as
performed in [28]. The procedure is the same even if there is a nilpotent superfield, and

hence the mass formula for spin 1/2 components is

2
Mag = Mag — D WDsW| (4.4)
mg e X S0
aB A
where Mg is given in (4.2) and X = W. The gravitino mass is not modified by

diagonalizing fermion masses and is given by (4.3).
As in the global supersymmetry case, the fermion mass of the nilpotent superfield
receives an additional mass contribution as shown in (2.4), and hence
, (4.5)

/ Vs
mgg = ( mss + 7S
5=0

and other mass matrix elements of m,g are not corrected. Note that the bosonic part of

the F-term in supergravity is given by

F* = —e5g* DWW (4.6)

S=0
We find a useful expression for the first and second derivatives of the scalar potential
as [28|

Va = _maﬁFﬁy (47)
and
Vaa =(V + ms2*)gaa + 1iapg™ s + € (=DaW DaW + Rog™ DgW D5W),
3 2€K/2 _ A 2@K/2 _
_ 2\, _ BB B - _ 8
=V + \ms/zl )9aa + Magy Maj — <m3/2XDaWF Mmsj + m3/2X DaW FPmgg
A-X i 8 i



We also find the following identity,

Vs
m:gaFa = TTLSQF& + FFS = 0. (49)
This means that there always exists a zero mode, which corresponds to Goldstino.

Using the identities (4.7) and (4.8), we find the following expression (see [28| for the
detailed derivation)

1 2 2 K pp T 2 1 ad T 1 ad
(28trM >hn = N(V + |mg)2|?) + X RF° DsW DsW + = (ang DaW + -Vag DaW)
2 [ 1 1
1% R FPFP + 2 [~ pom 4FP
N(V + |mg0|*) + 3 Ty <m3/2 Magl™ +

m3/2

_a7 7_5
FemgaF ),
(4.10)

where R = 7P Rg5a- This expression gives the first term of (2.7).
Thus, we can formally write the supertrace formula as

1 1
(28‘51"./\/12>n1 =3 (Str./\/l )

(Lav s,

S=0

_ 2 1 1 _ 7
=|N(V + |mgs|*) + Rag F*F* + — < —— FmagFP + FadeFff)
mso ms2
3 o Va V. g Vs \% VsV
S psYS _ .saS SB- S5\2 5 S _ sVs
— g% mapg 75 9 559 e — (977) (mssps Fsmss + ]FSP)
— (¢*V, 5+ ¢°"Vsa + ¢°°Vs3) (4.11)
S=0
The factor +Z can be rewritten as
\% Fe
ﬁ = —mgs — msaﬁ, (412)

which follows from (4.7). Also, we can use (4.8) to derive Vg4 and V, g explicitly. However,
this manipulation complicates the expression.

Although the supertrace formula in a general scalar background is complicated, it is
somewhat simplified under the Minkowski vacuum condition V, = V = 0. Under this
condition, one finds mqg = —m“bF . We also find

9" Vag + 9%V + 9% Vgg =(3 — 6% gg5)Imaal? + ¢*5masg™Pmgs + g5 ms g m,

3 Mg s g 2m
+ gSSmSﬁgﬁﬁm + <SS FSFS 5SS FSFS
3m3/2 3m3/2

2m§l_) S 7 2me FSFb ;Fagaapa

3m3/2 3m3/2

+ 0% Rg50a FOF® + 0% Rsaaa FO F® + g°°R

aSada

FYF%,
(4.13)



where we have used X = 3 following from V' = 0. Using these expressions, we finally find
that the supertrace (4.11) is reduced to

<18tr/\/l2> = 2
2 nl

(N -3+ QS§95§)|m3/2|2 + 9" RagaaF F* + = <

m3 /2 m3 /2

S 3.~ Sa % ~ S5 g~ S§ .
+ 9 Maag™Mmg; + 97 Msag*“Maa + 9°° Msa g™ Mg, + 97" Msag** Mgy

508 Mgl qogs o maB F' g |maFUFP 1 F
—9"7g” mmzﬁ’ig)Q A maﬁw —(977) W—FgFQQaaF(I
S=0
(4.14)

The first and second terms are similar to the standard supertrace formula, and other terms
appear as consequences of the decoupled scalar in S and the nontrivial mass terms of X°.
In the following, we will consider simplification of this formula by imposing additional
conditions on the system.

4.1 Simplification: no Kéahler mixings g,5 = gsa =0

As seen in the previous section, the supertrace formula becomes very complicated in the
presence of a nilpotent superfield. The completely general formula is not necessary, and the
simplified one under certain conditions would be practically useful. Here we consider the
case with the following Kéhler potential,

K = Ko(2% 2%) + K2(2%,2%)SS, (4.15)

which implies g,5 = gsa = 0 on the S = 0 hypersurface. This condition reduces the terms
in the general formula (4.11), and we find

1 _ - 2 - _
(Str/\/l2> =|N(V + |m3/2|?) + RaaF*F* + — ( — FmapFP + Fama5F5>
2 nl ms 2 ms/2
_ B Fefa B _
+ (985)2 <msgmg§ — FSFSmSamga> — gSSVSg , (4.16)
S=0
where we have used X—S = —mgsg —mSa%. Also, the condition (4.15) reads g5 = (955)7 %,

and we find

2
m3/2X

9V =V + |ma|? + msag®@msag™ + < FSFPmgs + h.c.>

4-X

+ 5 F 955 + g% Rogoa P F™. (4.17)

Thus, we obtain the simplified supertrace formula

) _ _2 (1 I sa_ 7B
25 Mm2) =(N -1 )+ ¢“ Rogaa FOF® + = FemagF’ Flimgs 7
<2 ™M >n1 ( )(V + |TTL3/2’ ) +g Raaaa + X <m3/2 Mag + M3/ maﬁ

_ Fa]_,:va B X =
S5\2 -\ ad, S5 S &S
+(977) (— Fsﬁgmsmsd) msag" " Mgag ~ L79sst”

(4.18)



Note that we have only assumed the condition (4.15) and the vacuum condition V, =V =0
is not yet imposed. Therefore, (4.18) is applicable to the general scalar field background in
the system satisfying (4.15).

Let us consider the expression under the Minkowski vacuum condition V, = V = 0.
These conditions lead to

Fb
Mas = —m;f’s . X =3 (4.19)
Then, we find
2
1 . o |Frmap P
Str./\/l2> :(N - 2)’77’],3 2|2 + gaaRaaa&FaFa + =z
<2 nl | e / (FSgggF™)?
gadeFI; - 1 . _

_ Wmabmab =+ §F Jaa ", (4.20)

where we have used the relation FSgSgFS = 3|m3/2|2 — F%g,5 F® following from V = 0.
For further simplification, we consider a special case F'* = 0, which means that the

Goldstino is equivalent to x° and there is no kinetic mixing between matter and the Gold-

stino x° by the assumption (4.15). In this case, the supertrace formula significantly sim-

1 2
(2StrM ) .

where we have used F*° gSgF_’g = 3|ms /2]2 which follows from V = 0. In pure de Sitter

plifies,
Fa=0

— (N = 2)lmi o> + 9" Ryp55 P FP, (4.21)

vac

supergravity [29, 30|, where N = 0, this expression gives

1 2
<2 StI‘M > .

which is the correct result because only the gravitino is a massive field. Note that the

pure dS
= —2|mga?, (4.22)

vac
formula (4.21) seems similar to the standard supertrace formula, but there are differences.

At the Minkowski vacuum V, = V = 0, the supertrace formula in linearly realized super-
symmetry is given by
= Nimg)sl* + RaaFF?, (4.23)

<1Str/\/l2>
2 lin vac

for the case with N + 1 chiral multiplets. The difference between (4.21) and (4.23) is

A = 2|mgpa|* + g% Rgggg FF”. (4.24)

Here, although the second term vanishes if S is nilpotent, we have formally introduced
it. This difference is nothing but the mass of the sGoldstino S, and hence (4.21) can be
identified as the supertrace formula for the decoupling limit of the sGoldstino S.

3We can identify this quantity as the sGoldstino mass by the following reason: consider a linearly realized
supersymmetric system with one chiral superfield S. Suppose S breaks supersymmetry spontaneously. The
supertrace of the system is given by %Str/\/l2 = gngsgng?FE. Since the Goldstino is massless, this
supertrace should be %St]r/\/l2 =g Vss — 2\7713/2\27 where ¢°° Vg3 is the squared mass of the sGoldstino.

Then using these equations, we find g°°Vgg = 2|ma0|® + g% Rgs55F F®.

~10 -



As shown above, if only the nilpotent superfield is responsible for supersymmetry break-
ing and it has no mixing with matter, we find a simple and geometric expression for the
supertrace formula (4.21). In general, however, the supertrace formula has non-geometric
terms proportional to F®. This shows that the spectrum of a system with a nilpotent
superfield is not just a simple decoupling limit of the sGoldstino.

5 Summary and discussion

In this work, we have derived the supertrace mass formula for a system with a nilpotent
superfield in global and local four dimensional ' = 1 supersymmetry. Due to the nilpotent
constraint, the scalar field disappears from the physical degrees of freedom and the non-
standard fermion mass (2.4) shows up, modifying the mass of x*. These features change
the supertrace formula significantly. We have shown the general formulae (3.13) for global
supersymmetry and (4.14) for supergravity. We find that the modified supertrace formula
has extra contributions, which are absent in the standard formulae. We also find that if
only the nilpotent superfield is responsible for supersymmetry breaking, i.e. the F-terms of
matter vanish, the supertrace formula becomes simplified significantly as shown in (3.18)
and (4.21). For such simplified cases, the modification of the supertrace formula can be
understood as the decoupling limit of .S in global and in local supersymmetry, respectively.

In other words, if matter fields have non-vanishing F-terms, we cannot interpret the
nilpotent constraint as the decoupling limit of the S. Such an observation is consistent with
the result in [34], which shows that in models with multiple supersymmetry breaking fields,
the decoupling limit of .S field leads not to a nilpotent superfield, but a different constrained
superfield. In this sense, as an effective theory of a Goldstino superfield in the presence of
matter, a nilpotent superfield can be a good approximation if the F-terms of matter fields
are negligibly small.

One of the interesting examples with a nonlinear superfield is the KKLT [19]/LVS [36]
model in string theory. Interestingly, in such a model, supersymmetry is broken not only
by a nilpotent superfield but also by moduli fields. Therefore, we need to take into account
the additional corrections to the mass, which we discussed in Sec. 2.

It is also interesting to consider the structure of the Kéhler geometry in the presence
of the nilpotent superfield. As we have seen, the modified supertrace formula contains
the factor % which is absent in the standard supergravity case. One beautiful aspects of
supersymmetry is that the action is described in terms of the Kéahler geometry. However,
the action with a nilpotent superfield has various non-geometric terms proportional to
%. A new supergravity formulation studied in [37, 38] might be useful to understand the
geometrical meaning of the nilpotent superfield.
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