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Abstract

The growth of the “size” of operators is an important diagnostic of quantum
chaos. In [1] it was conjectured that the holographic dual of the size is proportional
to the average radial component of the momentum of the particle created by the
operator. Thus the growth of operators in the background of a black hole corresponds
to the acceleration of the particle as it falls toward the horizon.

In this note we will use the momentum-size correspondence as a tool to study
scrambling in the field of a near-extremal charged black hole. The agreement with
previous work provides a non-trivial test of the momentum-size relation, as well
as an explanation of a paradoxical feature of scrambling previously discovered by
Leichenauer [2]. Naively Leichenauer’s result says that only the non-extremal entropy
participates in scrambling. The same feature is also present in the SYK model.

In this paper we find a quite different interpretation of Leichenauer’s result which
does not have to do with any decoupling of the extremal degrees of freedom. Instead
it has to do with the buildup of momentum as a particle accelerates through the
long throat of the Reissner-Nordström geometry.

Version 3: in this version of the paper, the conjectured size-momentum relation
has been significantly modified. Rather than the proportionality factor being con-
stant, we now conjecture that it varies through the throat. This result also agrees
with forthcoming direct calculations in SYK.
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1 Two Puzzles

All horizons are locally the same; namely they are Rindler-like1. Therefore one might

expect their properties as scramblers and complexifiers to be universal. For example, the

rate of growth of complexity for all neutral static black holes scales as2

dC
dt
∼ S

Rs

, (1.1)

1Extremal black holes are an exception. In this paper we consider the limit in which the non-extremality
parameter (r+−r−)/r+ is arbitrary but fixed as r+ becomes large. In this limit the horizon is Rindler-like.

2In this paper there are many undetermined numerical coefficients, partly because they depend on
precise definitions that we leave unspecified. For example the definition of complexity is ambiguous up to
a numerical factor. Our convention will be to use the symbol ∼ to mean “equal up to a numerical factor”.
By and large additive numerical ambiguities of order unity, such as in the definition of scrambling time,
will be ignored.
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where S and Rs are the entropy and Schwarzschild radius of the black hole [3]. Similarly

there is a universal formula for the scrambling time [4],

t∗ =
β

2π
log

S

δS
, (1.2)

where δS = δE/T , and δE is the energy of the initial perturbation.

It is therefore surprising that charged black holes behave differently. For charged black

holes, Eqs. 1.1 and 1.2 are modified to [3, 2]

dC
dt
∼ S − S0

Rs

(1.3)

t∗ =
β

2π
log

(
S − S0

δS

)
. (1.4)

Here Rs is the area-radius of the horizon (otherwise known as r+) and S0 is the entropy

of the extremal black hole with the same charge.

If instead of using Schwarzschild time t we use dimensionless Rindler time, defined by

τ =
2πt

β
, (1.5)

then Eqs. 1.2 and 1.4 take an especially simple form: for uncharged black holes

τ∗ = log
S

δS
, (1.6)

and for charged black holes, described by the Reissner-Nordström (RN) metric,

τ∗ = log
(S − S0)

δS
. (1.7)

Exactly the same features, namely Eqs. 1.3 and 1.4, also hold for the black holes

described by the SYK model. Because the SYK model is a precise quantum mechanical

system, we can hope to track down the microscopic origin of this behavior.

A simple explanation would be that the extremal degrees of freedom are somehow

decoupled from the chaotic behavior, leaving only the non-extremal component to actively

“compute”. But given the fact that all horizons are Rindler-like, it is hard to understand
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why this should be so.

We will propose an interpretation of Eqs. 1.3 and 1.4 that has nothing to do with any

decoupling of extremal degrees of freedom. Horizons do indeed have universal computa-

tional properties in which all S degrees of freedom actively compute. Neutral and charged

black hole horizons compute in exactly the same way.

For simplicity, in this paper we will work with asymptotically flat black holes. Our

results would apply equally to black holes of small or intermediate size in AdS.

1.1 Complexity Growth

The explanation of 1.3 for the rate of complexity growth is simple. For near-extremal

black holes, the entropy above extremality is linear in the temperature T

S − S0

S
∼ r+T, (1.8)

where r+ is the area-radius of the outer horizon. Thus we may write 1.3 in the form,

dC
dt
∼ TS . (1.9)

We can get more insight into the meaning of 1.9 by replacing the usual Schwarzschild time

t by the dimensionless Rindler time τ = 2πt
β

(i.e. the hyperbolic angle), which gives

dC
dτ
∼ S (1.10)

Equation 1.10 expresses a universal property of horizons, charged and uncharged: they all

compute at a rate ∼ one gate per Rindler time per bit of entropy. All degrees of freedom

participate; extremal degrees of freedom do not decouple.

1.2 Scrambling

The explanation of 1.4 is not so simple. It will occupy the rest of the paper. Here is a

quick summary of the method we will employ:

The basic tool is the size-momentum relation introduced in [1]. A perturbation can be

applied to a black hole by acting with an operator W . With time the operator evolves to

the “precursor” W (t) = eiHtWe−iHt. In a holographic theory an operator like W (t) can

be characterized by its size—a measure of the average number of fundamental degrees of
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freedom making up the operator (see [6] and references therein)3. Initially this number

may be small, of order unity4. Subsequently the size grows, reaching its saturation value

at the scrambling time. The saturation value is the entropy of the black hole.

If we denote the size at time t by s(t) then the scrambling time is determined from,

s(t∗) ∼ S. (1.11)

The action of the operator W is to create a particle at the boundary (to be defined)

of the black hole geometry. The particle wave packet can be tracked as it falls toward the

horizon. The size-momentum relation is a duality between the size of the precursor and the

average radial momentum of the in-falling wave packet of the particle. By calculating the

momentum we also calculate the size and this allows us to implement 1.11 in an efficient

manner.

In [1] this method was used to calculate the scrambling time for the case of a Schwarzschild

black hole in asymptotically flat space. Here we use the same method, with one new twist,

to calculate the scrambling time for charged black holes in asymptotically flat space. The

result not only agrees with 1.4 but it does so while assuming that all degrees of freedom—

not just the non-extremal degrees of freedom—participate in the scrambling dynamics.

2 Geometry of Charged Black Holes

Consider the 3+1-dimensional Reissner-Nordström black hole,

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

f(r) =
(

1− r+

r

)(
1− r−

r

)
. (2.12)

The inner (-) and outer (+) horizons are at r± ≡ GM±
√
G2M2 −GQ2, and the Hawking

temperature is

T =
1

4π

(
r+ − r−
r2

+

)
. (2.13)

3The definition and calculations of size in [6] are appropriate to the infinite temperature limit. In this
paper our definition of ‘size’ involves a thermal averaging. See Sec. 5

4It is expected that a simple operator such as an SYK fermion has a size equal to 1.
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All Reissner-Nordström black holes must have Q2 ≤ GM2 and r− ≤ r+, and when these

inequalities are saturated the black hole is said to be ‘extremal’. In this paper, we will

be interested in near-extremal black holes, so that r+ − r− � r+. In this limit, the

temperature is small (β � r+) and the near-horizon region develops a long ‘throat’.

2.1 The Geometry of the Throat

The exterior of a near-extremal black hole can be divided into three regions, as in Fig. 1.

• The innermost region is the Rindler or near-horizon region where the geometry closely

resembles the Schwarzschild black hole with the same entropy. It is defined by

r+ < r <∼ 2r+ − r− (2.14)

0 < ∆ρ <∼ r+, (2.15)

where ∆ρ =
∫
dr/
√
f(r) is the proper distance from the outer horizon. The grav-

itational field (i.e. the proper acceleration α = ∂r
√
f(r) required to remain static

at fixed r) grows rapidly near the horizon. While the quantity (1 − r+
r

)−1 varies

significantly in the Rindler region, (1− r−
r

)−1 is essentially constant.

• The next region out is the throat, defined by

2r+ − r− <∼ r <∼ 2r+ (2.16)

r+ <∼ ∆ρ <∼ r+ log

[
r+

r+ − r−

]
. (2.17)

The throat is long and of approximately constant width (it resembles AdS2×S2) and

the gravitational field is approximately constant. We have (1 − r−
r

)−1 ∼ (1 − r+
r

)−1

and both vary significantly through the throat. The throat ends at r = 2r+ which

we will soon see is the location of a potential barrier which separates the throat from

the Newtonian region. The throat is unique to charged black holes; it is absent from

the Schwarzschild black hole.

For most purposes the geometry in the throat can be approximated by the extremal

geometry with r+ = r−.

(Later we will comment on the relation between near-extremal RN black holes and

the SYK model. For now we note that the dynamical boundary of the AdS2 dual of
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SYK should be identified with the end of the RN throat adjacent to the Newtonian

region at r = 2r+.)

• Outermost is the Newtonian region, where (1 − r−
r

)−1 ∼ (1− r+
r

)−1 ∼ 1.

r = r+ r ⇠ 2r+ � r� r ⇠ 2r+

Newtonian  

�⇢ ⇠ r+ �⇢ ⇠ r+ log[�/r+]

Figure 1: The three regions outside a near-extremal charged black hole. Unlike for un-
charged black holes, there is now a ‘throat’ separating the Rindler and Newtonian regions.

2.2 The Black Hole Boundary

Black holes in flat space evaporate but the rate is extremely slow, and for many purposes

can be ignored. The reason that the rate is so slow is that the black hole is effectively

in a reflecting box. The box is the potential barrier that quanta experience as they try

to escape the near-horizon region. Even the S-waves are inhibited by a barrier. For a

Schwarzschild black hole the barrier height is about equal to the temperature and there

is significant leakage, but for a near-extremal RN black hole the barrier height is much

higher than the temperature. The barrier provides a natural boundary of the black hole

region and may be thought of as the holographic boundary in a quantum description.

For the spherically symmetric field mode, the potential barrier takes the form [7]

V (r) =
∂r(f

2)

4r
. (2.18)
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For a RN black hole, Eq. 2.12 then gives

V (r) =
∂r(f

2)

4r
=
r+(r − r+)3

r6
. (2.19)

The barrier is well localized at the end of the throat near where it meets the Newtonian

region. The width in proper distance is of order r+ and for near-extremal RN it is much

narrower than the length of the throat.

The potential at the top of the barrier is,

Vtop =

(
1

8r+

)2

. (2.20)

(Note that the potential has units of momentum-squared. In rolling down the potential a

massless particle would gain a momentum
√
Vtop.)

We can consider the top of the potential barrier to be the boundary of the black hole.

It occurs at

r = 2r+ ≡ rb . (2.21)

Here the subscript b stands either for barrier or boundary.

It will be convenient to define a radial proper-length coordinate ρ measured from the

black hole boundary,

ρ =

∫ rb

r

dr′√
f(r′)

. (2.22)

At the boundary ρ = 0 and at the beginning of the Rindler region ρ = r+ log (β/r+).

3 Size-Momentum Relation

By the ‘size’ of a particle we mean the average number of elementary operators making

up the precursor. In [6] the average was over an infinite temperature ensemble, but in

this paper we are interested in low temperatures. The study of low temperature size and

operator growth is not well developed but we will assume that these concepts can be

generalized appropriately.

By the radial momentum of a particle we mean the momentum that an observer at rest
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would see as the particle passed her. We imagine a particle passing an observer suspended

at some distance ρ from the boundary. The momentum measured by that observer is

called P . We will generally assume that it is relativistic. Classically it is easy to track

since the mechanism for its growth is ordinary blue-shift. Quantum mechanically we will

assume that the average momentum of the wave packet follows the classical trajectory.

In [1] it was conjectured that the average momentum P at time t is dual to the size

of the precursor W (t). By time we mean the ordinary Schwarzschild time, not the proper

time of the particle.

The conjecture that size and average momentum are dual to one another requires us to

specify a proportionality factor with dimensions of length. In [1] (the case of Schwarzschild

black holes) the proportionality factor was taken to be the Schwarzschild radius, or what

is the same thing, the thermal length β,

size ∼ RsP

∼ βP . (3.23)

Although this identification is adequate for estimating the scrambling properties of

Schwarzschild black holes, there are reasons to believe that the correct connection between

size and momentum is more complicated, and that it involves not only the momentum but

also the position of the particle. To see why this is so let us first consider two situations

involving infalling particles at the same location, but of different momentum. If it is not

obvious it will soon become clear that the operator that creates the higher momentum

particle has the larger size.

But now consider the opposite case: two particles of the same momentum but at

different radial locations. It is well known that the deeper into the bulk the particle is, the

more complex the operator must be that creates it. Complexity and size are closely related

and it should not be surprising that the operator creating the deeper particle has larger

size. Therefore we should expect that size is a function of both the radial momentum and

the radial location of the particle created by W (t). This will involve the concept of a local

energy scale that varies significantly throughout the long throat of the near-extremal RN

black hole. For the Schwarzschild black hole there is no throat.

3.1 The Local Energy Scale

This paper is about near-extremal Reissner-Nordström charged black holes in asymp-

totically flat space. It is well known that the throat-geometry of such black holes is
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AdS(2) × S(2). As with all AdS geometries, AdS(2) has a scaling symmetry, in this case

associated with the long throat. To see this, we consider black holes with a fixed total

charge Q, i.e. we fix the ground state entropy S0 = πr2e
G

= πQ2. At finite temperature the

excess entropy above the extremal value is given by

S − S0 =
πr2

+

G
− πQ2

= 4πS
r+

β
(3.24)

≈ 4πS0
r+

β
,

and it follows that d log(S − S0) ≈ −d log β
r+

, where in the differential here we hold the

ground state entropy fixed. Earlier we saw that for a near-extremal black hole with β � r+

the proper length of the throat is ρ(T ) ≈ r+ log β
r+

, and we can thus reexpress (3.24) as

d log(S − S0) = −d
(
ρ

r+

)
. (3.25)

As we lower the temperature, the throat gets longer. Assuming T1 < T2 � 1
r+

, we have

S(T1)− S0

S(T2)− S0

= exp

(
−ρ(T1)− ρ(T2)

r+

)
. (3.26)

We see that each time the length of the throat increases by r+, S − S0 is decreased by a

factor of e−1.

We can understand this from another point of view. Consider a near-extremal black

hole at some low temperature T � 1
r+

. From the holographic bound [5], the number of

degrees of freedom necessary to completely describe the region within radius r is given by

its transverse area A(r) = 4πr2. We start from the outer end of the throat r = 2r+, where

the area equals Amax, and then the area decreases as we move into the throat. The pattern

of decrease becomes clear when we use the variable ∆A(r) ≡ A(r) − A0 rather than the

area itself. Here A0 ≡ 4πGQ2 is the horizon area of the extremal black hole carrying the

same charge. The decrease in the transverse area as we go into the throat is then given

by

∆A(ρ)

∆A(0)
= exp

(
− ρ

r+

)
, (3.27)
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where ρ(r) is the proper distance from the boundary. The exponential behavior continues

until we reach the Rindler region. The area itself does not decrease very much along the

throat since 4πr2
+ < A(r) < Amax = 16πr2

+; but the difference in area varies a great deal

since at low temperature ∆A(r+) � ∆Amax. As we move in the radial direction inside

the throat, the quantity that scales with a well-defined scaling dimension is ∆A. This is

to be compared with the vacuum AdS case, where the scaling variable is the total area

A. The proper length of the throat measured in units of r+ gives the number of e-foldings

that ∆A decreases by from ∆Amax to ∆A(r+) and this number diverges as the black hole

approaches extremality. A corresponding scaling symmetry is found at low temperature

in the SYK model [9].

As in all theories with AdS symmetry the concept of a local energy scale is a familiar

feature [5]. At the AdS boundary the energy scale diverges. It decreases as one moves

deeper into the bulk. In AdS at a fixed value of lads the local energy scale at radial

coordinate r can be defined as the temperature of a black hole whose horizon is at the

radial coordinate r.

Applying the same logic we may define the local energy scale along the throat to be the

temperature T̃ of a “virtual” black hole whose Rindler region begins at distance ρ from

the boundary. If ρ denotes the start of the Rindler region of an actual black hole then

T̃ (ρ) is the temperature of the black hole, i.e., T̃ (ρ) = T. Using the fact that the length of

the throat for a black hole of temperature T is

∆ρ = r+ log β/r+

we may write,

β̃(ρ) = r+e
ρ/r+ (3.28)

where β̃ = 1/T̃ . At the outer boundary of the throat,

ρ = 0 → β̃ = r+ ; (3.29)

in the Rindler region,

ρ = r+ log β/r+ → β̃ = β . (3.30)
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Thus we see that T̃ ≡ 1/β̃ varies a great deal throughout the throat.

Our proposal for generalizing 3.23 is to simply replace 3.23 by

size ∼ P β̃(r), (3.31)

in which size depends on both momentum and position. This may simply be expressed as:

Size equals momentum measured in units of the local energy scale.

Using 3.28 the size-momentum relation takes the explicit form,

size ∼ r+e
ρ/r+ P. (3.32)

The reason that 3.23 was sufficient for Schwarzschild black holes is simply because β̃ does

not vary much between the boundary and the horizon.

3.2 The Local Energy Scale and the Surface Gravity

In Eq. 3.31, we conjectured that size and momentum are related by the position-dependent

factor β̃(r). We defined the (inverse) local energy scale β̃(r) as the temperature that a

black hole of the same charge would have if its mass were such that the event horizon lay

at that value of r. In this subsection we will present an alternative perspective on the

quantity β̃(r) by providing a more directly physical definition.

First consider the gravitational field, defined as the proper acceleration required to

remain static

g = α

∣∣∣∣
ṙ=Ω̇=0

= ∂r
√
f. (3.33)

As we approach the black hole the gravitational field gets ever stronger, but it does not do

so steadily. Instead, as we discussed in Sec. 2.1, g is gently increasing in the Newtonian

region (due to the inverse square law), then constant in the throat (g ∼ 1/r+), then rapidly

increasing in the Rindler region (g ∼ 1/(β
√
f)), becoming infinite at the event horizon.

On the other hand, the redshift factor
√
f(r) steadily decreases as we approach the

black hole. Far from the black hole it is of order one, in the throat it falls exponentially,

and then in the Rindler region it falls even faster, approaching zero at the event horizon.
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The local energy scale is the product of these two factors,

β̃(r)−1 =
√
f(r)g(r) =

√
f(r)∂r

√
f(r) =

1

2
∂rf(r). (3.34)

In the throat, g is constant, whereas
√
f is decreasing, so the product is decreasing,

β̃−1 ∼ √f/r+. In the Rindler region, the growth of g cancels the fall in
√
f and so the

local energy scale is constant β̃−1 ∼ √f/(β√f) ∼ 1/β.

A box may be held fixed near a black hole by suspending it from a rope, though this

only works if someone is holding on to the other end. Physically, the local energy scale β̃−1

is the force that must be exerted on the boundary-end of the rope to stop a unit-mass box

falling into the black hole (ignoring the weight of the rope itself). Famously, this force is

approximately constant for boxes in the Rindler region, and approaches the surface gravity

as the box approaches the event horizon, κ ∼ limr→r+ β̃
−1(r). Since it is the surface gravity

that controls the Hawking temperature, this explains the connection to the definition of

Sec. 3.1.

4 The Scrambling Time

The following facts can be verified by explicit calculation.

1. As an infalling light-like trajectory, beginning at the boundary at t = 0, passes

through the throat the time and the value of β̃ are related by,

β̃ = t+ r+. (4.35)

2. A massless particle inserted at the boundary (top of the barrier at ρ = 0) at t = 0 will

quickly attain a momentum 1/r+. From 3.29 the initial value of β̃ satisfies β̃ = r+

and the initial size is

s(0) = 1. (4.36)

In the appendix we show that as it passes through the throat the momentum linearly

increases,

P = 1/r+ + t/r2
+. (4.37)
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Using 4.35 we may write this in the form,

P = β̃/r2
+. (4.38)

3. Combining 4.38 and 4.35 and using size ∼ β̃P gives a quadratic growth for size as

the particle traverses the throat.

s(t) ∼ P β̃ =
(t+ r+)2

r2
+

. (4.39)

4. The particle arrives at the Rindler region after time β. At that point the size is,

s(β) ∼ β2

r2
+

. (4.40)

Equation 4.40 may be regarded as the initial condition when the particle enters the

Rindler region. In the Rindler region the growth of the momentum is exponential [1] and

the energy scale hardly varies. Thus as the particle passes through the Rindler region the

size grows according to,

s(τ) ∼ β2

r2
+

eτ . (4.41)

To find the scrambling time we set the size equal to the black hole entropy,

β2

r2
+

eτ∗ ∼ S (4.42)

giving,

τ∗ = log
(
S
r2

+

β2

)
, (4.43)

or using 1.8,

τ∗ = log
(

(S − S0)
r+

β

)
. (4.44)
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The final step is to use the first law of thermodynamics to relate r+/β to the increase

of entropy due to the extra energy when the particle is absorbed into the black hole. Thus

τ∗ = log
(S − S0)

δS
, (4.45)

which exactly matches 1.7.

To summarize, the scrambling time for a near-extremal Reissner-Nordström black hole

is smaller than might have been expected: it is proportional to log {(S − S0)/δS} rather

than log {S/δS}. One possible explanation would have been that the extremal entropy

is somehow frozen out of the scrambling process. But our analysis suggests a different

reason. We saw that a particle falling through the throat is rapidly accelerated, so that

its initial size is boosted by a factor β2/r2
+ by the time it enters the Rindler region. This

reduces the time required for the size to grow to S. We therefore claim that the correct

explanation for the reduced scrambling time of a charged black hole is not that the ex-

tremal degrees of freedom decouple, but instead that the size of an operator grows rapidly

at early times, so by the time it starts its exponential growth the size is already large.

The success in explaining the reduced scrambling time of charged black holes provides a

non-trivial confirmation of the connection between size and momentum.

5 Comment about GR=QM and SYK

The real justification for the rules we have postulated must be micro-physical. Thus we

turn to the SYK model [9], a model which has many feature in common with near-extremal

black holes, but which has a precise micro-physical description. The similarities between

the two are well known and include the following:

• The overall energy scale J of SYK corresponds to the RN parameter 1/r+.

• The dynamical boundary of SYK (described by the Schwarzian theory) corresponds

to the boundary of the RN black hole, i.e., the top of the barrier where the throat

meets the Newtonian region.

• Acting with a single boundary fermion operator in SYK adds an energy J . This fits

nicely with the fact that adding a particle at the top of the RN potential barrier

adds energy 1/r+.
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• A single boundary fermion operator in SYK has size 1, corresponding to our assump-

tion that the initial size of the particle at the top of the barrier is also 1.

• Until now it has not been possible to directly compare the results of size-momentum

duality with calculations in the SYK theory, the reason being that the only calcula-

tions of size-growth were at infinite temperature [6]. However one of us (Streicher)

and Xiaoliang Qi have recently carried out a finite temperature calculation using the

OTOC method [10].

Here we will just quote the result,

s(t) = 1 + 2

{
Jβ

π
sinh

(
πt

β

)}2

. (5.46)

We see that the initial size satisfies s(0) = 1, and that it grows quadratically as s =

J2t2, in agreement with 4.39. By t = β the size has grown to approximately J2β2 and

from thereon it grows exponentially as in 4.41. There appears to be close agreement

between the SYK model and our analysis based on size-momentum duality.

Finally we note that Eq. 1.4 was derived for the SYK model [9] on purely quantum

mechanical grounds, without any assumption of a dual geometry. It is extremely inter-

esting that a whole class of very generic quantum systems reproduce a formula whose

interpretation is both geometric and gravitational: the existence of a long throat (geome-

try) through which a particle will accelerate as it falls toward the horizon (gravity). This

is another example of “GR=QM”, i.e. the view that the origins of gravity are to be found

in the generic behavior of complex quantum systems [11].
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A Particle Equation of Motion

The radial part of the metric 2.12 may be written in the form,

ds2 = −f(r)dt2 + dρ2. (A.1)

The Lagrangian for a point mass moving in this metric is,

L = −m
√
f(r)− ρ̇2. (A.2)

The canonical momentum conjugate to ρ is,

P =
∂L
∂ρ̇

=
mρ̇√

f(r)− ρ̇2
. (A.3)

The conserved Hamiltonian is

H ≡ P ρ̇− L =
mf√

f(r)− ρ̇2
. (A.4)

The force on the particle is,

F =
∂L
∂ρ

= − m ∂ρf

2
√
f − ρ̇2

= − m ∂rf

2
√
f − ρ̇2

dr

dρ

= − m ∂rf

2
√
f − ρ̇2

√
f (A.5)

Using A.4 we get

F = − ∂rf

2
√
f
H (A.6)

So far this is general. Now plugging in the metric 2.12 (we use the extremal form with

16



r+ = r−) the force is given by,

F = −r+H

r2
. (A.7)

In the long throat r is almost constant and equal to r+. Furthermore, a particle dropped

from the top of the potential barrier has (conserved) energy H = 1/r+. It follows that the

force on the particle as it traverses the throat is constant and equal to,

F ∼ − 1

r2
+

. (A.8)

Finally we use the equation of motion dP/dt = F to find,

|P | = t

r2
+

+ const (A.9)

in agreement with 4.37.
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