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We propose a new class of bosonic dark matter (DM) detectors based on resonant absorption
onto a gas of small polyatomic molecules. Bosonic DM acts on the molecules as a narrow-band
perturbation, like an intense but weakly coupled laser. The excited molecules emit the absorbed
energy into fluorescence photons that are picked up by sensitive photodetectors with low dark count
rates. This setup is sensitive to any DM candidate that couples to electrons, photons, and nuclei,
and may improve on current searches by several orders of magnitude in coupling for DM masses
between 0.2 eV and 20 eV. This type of detector has excellent intrinsic energy resolution, along
with several control variables—pressure, temperature, external electromagnetic fields, molecular
species/isotopes—that allow for powerful background rejection methods as well as precision studies
of a potential DM signal. The proposed experiment does not require usage of novel exotic materials
or futuristic technologies, relying instead on the well-established field of molecular spectroscopy, and
on recent advances in single-photon detection. Cooperative radiation effects, which arise due to the
large spatial coherence of the nonrelativistic DM field in certain detector geometries, can tightly
focus the DM-induced fluorescence photons in a direction that depends on the DM’s velocity, possibly
permitting a detailed reconstruction of the full 3D velocity distribution in our Galactic neighborhood,
as well as further background rejection.
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I. INTRODUCTION

Dark matter (DM), a form of nonrelativistic matter
that amounts to 25% of the energy budget of the universe
but does not appear to emit light, is by now the conserva-
tive option to explain a wealth of astrophysical and cos-
mological data that can otherwise not be accommodated
for with the known interactions and particles in the Stan-
dard Model (SM). The motion of stars in galaxies, the
velocity dispersion of galaxies in clusters, gravitational
lensing by galaxy clusters, temperature anisotropies in
the cosmic microwave background, baryon acoustic oscil-
lation measurements, and early-universe structure forma-
tion; all point to a new form of matter that is largely inert
save for its gravitational interactions. Many questions re-
main unanswered: What are the properties—mass, spin,
parity—of the dark matter particle(s)? What are its non-
gravitational interactions, if any? How is it produced?

While there are many possible answers to the first two
questions, the number of dark matter candidates dwin-
dles once you focus on the ones with a realistic produc-
tion mechanism. One such great DM candidate is the so-
called WIMP, a type of particle which may be produced
with the correct relic abundance in the early Universe
through the thermal freeze-out mechanism, provided it
has a mass and interaction strength close to the elec-
troweak scale. Searches for WIMPs are still in full swing,
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but previous iterations of both direct and indirect detec-
tion experiments have come up empty, ruling out the
simplest implementations of this paradigm.

Ultralight, weakly interacting bosons constitute an-
other large category of DM candidates with a natural
production mechanism. Light spin-0 particles generically
appear as relics of inflation through field misalignment,
while massive spin-1 particles acquire an abundance set
by quantum fluctuations during the last inflationary e-
fold, among other possible production channels. As long
as they are sufficiently weakly coupled such that they
never reach thermal equilibrium throughout the cosmo-
logical evolution, bosons as light as 10−21 eV can be cold
DM, i.e. behave as an inert, pressureless, nonrelativistic
fluid.

These bosons can arise in many theories beyond the
Standard Model. The most famous example is the QCD
axion, a light remnant in a class of theories that can
explain the smallness of the neutron’s electric dipole mo-
ment. Topological complexity in string compactifications
naturally gives rise to a plenitude of bosonic states, such
as axions and spin-1 fields, also sometimes known as
“dark” or “hidden” photons. These states may easily
have extremely weak couplings to the SM, as well as very
small masses. Scalar fields associated with the shape and
size of extra dimensions, as well as those that determine
fundamental constants in our vacuum, often called mod-
uli, can also couple very weakly and be extremely light.
All of these states are associated with the same ingredi-
ents that give rise to the string landscape.

When bosons lighter than 15 eV make up a significant
fraction of the local DM energy density, their number
density is so large that there are many of them per de
Broglie wavelength volume. When that happens, their
superposition can be described as a classical field oscil-
lating at a frequency set by the mass, and a coherence
time determined by the inverse energy spread, roughly
106 periods of oscillation. This field also exhibits macro-
scopic spatial coherence on a length scale of order its
deBroglie wavelength, 103 times larger than its Compton
wavelength. The amplitude of the field oscillation is pro-
portional to

√
ρDM, where ρDM is the local DM density.

In this work, we take advantage of this behavior to
propose a novel class of DM detectors. We describe how
DM can act as a laser that resonantly excites transitions
in molecules when its mass closely matches the transi-
tion energy, thus utilizing the DM’s temporal coherence.
Resonant absorption of DM can excite molecules to a
higher-energy state that is otherwise not thermally occu-
pied. This excited internal molecular state decays via
emission of a photon, which eventually impinges onto
a sensitive photodetector. Our techniques are applica-
ble to DM masses between 0.2 eV and 20 eV, and can
probe a variety of DM candidates, including axions, dark
photons, and moduli. Two experimental configurations
are shown in fig. 4. Molecular gas is placed in a con-
tainer capable of supporting moderately high pressures.
In the “bulk” configuration, a fraction of the container

walls are instrumented with large-area photodetectors,
and the rest of the container boundary is lined with an
optically reflective coating to retain the isotropic fluores-
cence. The second, “stack” container exploits the spatial
coherence of DM to focus the fluorescence onto a much
smaller photodetector.

As we will show, the proposed setups have great intrin-
sic energy resolution and other advantages which allow
for efficient background rejection and signal discrimina-
tion. In sec. II, we review the dynamics of a two-level
system under influence of a nonrelativistic wave, and the
types of molecular states and transitions that can be ex-
cited by bosonic DM. Section III contains a more de-
tailed description of our experimental setup and strat-
egy, as well as a discussion of backgrounds and signal
discrimination techniques. We provide estimates for the
sensitivity of our setup to scalar, pseudoscalar, and vec-
tor DM candidates in sec. IV. Finally, we compare our
methods to other proposals from the literature in sec. V.
Appendix A shows that the calculations performed in
the semi-classical approximation throughout this work
give—on average—the correct results.

II. THEORETICAL OVERVIEW

In this section, we give an overview of the relevant
resonant absorption theory (sec. II A), cooperative radi-
ation effects (sec. II B), the energy eigenstates of diatomic
molecules (sec. II C), and the types of the transitions be-
tween them given certain operator structures of the dark-
matter interactions (sec. II D). Some of this material is
not new; we provide it merely to set up notation and
give a self-contained review. We use natural units with
~ = c = kB = 1 throughout.

A. Resonant excitation of a two-level system

Consider first a single molecule with two internal en-
ergy eigenstates |0〉 and |1〉 of an unperturbed Hamilto-
nian H0 under which they have a relative energy splitting
ω0 with |0〉 the lower-energy state. We may parametrize
the most general state of this system as

|Ψ〉 = sin

(
θ

2

)
|0〉+ cos

(
θ

2

)
e−iϕ|1〉, (1)

a two-parameter space in a superposition angle θ and a
relative phase ϕ which jointly define the surface of the
unit (Bloch) sphere. The unperturbed time-evolution

equations of this system are simply θ̇ = 0 and ϕ̇ = ω0,
determining the interaction-picture states |0′〉 = |0〉 and
|1′〉 = e−iω0t|1〉. We furthermore assume the excited
state has a radiative decay rate of γ0 due to spontaneous
emission of photons, which will drive θ to π.

We are interested in the dynamics of this system in-
fluenced by a weakly perturbing DM wave, in particular
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resonant absorption, which may be effected by a har-
monic interaction Hamiltonian δH(t) with a small but
nonzero matrix element

〈1|δH(t)|0〉 = Ωe−iα1 cos(ωt+ α2). (2)

with α1 an extracted phase such that the Rabi frequency
Ω is real, and α2 an arbitrary phase. In sec. II D, we
develop the necessary tools to calculate the dark mat-
ter’s Rabi frequency Ω given a nonrelativistic interaction
Hamiltonian with nucleons, electrons, and photons, for
the molecular states classified in sec. II C. Here, we first
derive the absorption rate given a certain Ω, allowing an
estimate of the minimum detectable δΩ later in sec. III.

Our treatment is valid for any two molecular levels,
but the reader may keep in mind the analogous systems
in NMR or ESR, of a spin-1/2 particle with gyromag-
netic ratio γ in a static magnetic field B0ẑ, as well as
an oscillating one δB cos(ωt + α2). There exists an ex-
act mapping of the spin projection states |0〉 ∼= | ↓〉 and
|1〉 ∼= | ↑〉 (with the interaction picture being the rotat-
ing frame), the Larmor precession frequency ω0 = γB0

and the Rabi frequency Ω = γ|δB × ẑ|, and the posi-
tion on the Bloch sphere denoting the direction of the
spin expectation value. Often the classical interpreta-
tion of precessing spins gives a useful intuition about the
dynamics of the system.

Suppose the system starts in the ground state |0〉 at
t = 0, at which point the DM wave is turned on. In
the interaction picture, where δH(t) contains a term pro-
portional to |1〉〈0| = eiω0t|1′〉〈0′|, the state vector |ψ(t)〉
evolves as (for short times t > 0):

|Ψ(t)′〉 = e−i
∫ t
0
δH′(t′)dt′ |0′〉 (3)

' |0′〉 − ie−i(α1+α2) Ω

2

ei(ω0−ω)t − 1

i(ω0 − ω)
|1′〉.

In the second line, we used perturbation theory first-
order in δH(t), and discarded rapidly oscillating terms
of frequency ω0 + ω, which give small corrections upon
integration. For times t � 1/max{|ω0 − ω|, γ0}, notice
that the system rotates into a partly excited state with
θ(t) = π−Ωt, and that the phase of the DM wave is im-
printed onto the molecule as ϕ(t) = π/2 + α1 + α2 + ωt.

Heuristically, the state vector keeps precessing into a
more excited state at angular velocity θ̇ = −Ω until
t ∼ 1/|ω0 − ω| when the DM wave and the molecule
dephase relative to each other, or until t ∼ γ−1

0 , the
1/e-lifetime of the excited state, whichever is shorter, so
that the maximum excitation probability is |〈1|Ψ′(t)〉|2 ∼
Ω2/max{|ω0−ω|, γ0}. At late times, we therefore expect
an equilibrium to be reached between DM absorption and
photon emission, each at a rate of γ0|〈1|Ψ′(t)〉|2. This
intuitive result is also borne out by the fully-quantized

treatment in ref. [1], where the absorption rate Γ
(1)
abs(ω)

for a single two-level system at late times t � γ−1
0 was

found to asymptote to:

Γ
(1)
abs(ω) = γ0

Ω2/γ2
0

1 + 4(ω0 − ω)2/γ2
0

+O
(

Ω4, e−γ0t/2
)
, (4)

for an excitation field in a coherent state. In App. A, we
show that over integration times of interest, eq. 4 gives
the correct result even when the field mode is not in a
coherent state, as well as when the average occupation
number in the mode becomes so low such that the semi-
classical approxation breaks down.

One would naively think that extending this result to
N = np0V molecules, of number density n in a volume
V , and probability p0 of occupying the state |0〉, would be

trivial, with a total absorption rate of NΓ
(1)
abs(ω). How-

ever, this is not correct, because it ignores cooperative
effects due to the fact that the molecules interact with
common excitation and radiation fields. Firstly, the non-
relativistic DM wave is expected to be phase coherent
over lengths of order 1/mv0 with v0 ∼ 10−3 a measure
of the DM’s local velocity dispersion, so that roughly
the same phase ϕ is imprinted on the molecules within a
sphere of this radius. Secondly, the radiation from nearby
phase-matched molecules generally interferes, construc-
tively so for separations close to an integer number of
photon wavelengths 2π/ω, and destructively so for sepa-
rations equal to a half-integer number of wavelengths.

In the next subsection, sec. II B, we explore these coop-
erative effects in more detail. In general, we find that the
total radiative width of N molecules is not simply Nγ0,
but Nr̄γ0, with r̄ an “average cooperation number” that
can easily be much larger than unity. This leads to the
surprising result that the radiative width per molecule is

γrad = r̄γ0, (5)

and depends on the molecular density, on the DM’s phase
coherence structure, and on the container size and geome-
try. For example, for a rectangular container of thickness
Rz > 1/m and where the other two dimensions are very
large compared to the DM’s de Broglie wavelength, we
derive in sec. II B that, for noninteracting molecules,

r̄ ' 1 +
8πnp0

m4Rz
≈ 1 +

5.1× 106

mRz

(
1 eV

m

)3(
np0

n0

)
, (6)

with n0 the number density at standard atmospheric con-
ditions with a gas pressure P = 1 bar and temperature
T = 273 K. We defined p0 as the thermal occupation
probability of the state |0〉. Indeed, we find r̄ � 1 for all
but the largest and most dilute containers (before taking
into account decoherence). For a vertical stack of slabs,
the average cooperation number can be even larger by
an amount S̄, which in an optimal arrangement is equal
to the number of slabs in the stack within a coherence
length.

An electric dipole transition has a spontaneous emis-
sion rate γ0 = |µ1,0|2ω3

0/3π, where µ1,0 is the electric
dipole matrix element between |0〉 and |1〉. In a stack of
thin slabs, this then implies a radiative width at large r̄
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of:

γrad '
8np0S̄|µ1,0|2

3mRz
(7)

≈ 5.5× 1010 Hz
p0S̄

mRz

(
n

n0

)(
|µ1,0|
0.1ea0

)2

.

For a single slab, S̄ = 1 by definition; for a large stack
of slabs, it can be as large as S̄ ∼ 1/v0 (see sec. II B for
details).

Finally, we are led to a total steady-state absorp-
tion/emission rate of:

Γ
(N)
abs (ω, ω0) ' Nγrad

Ω2/γ2
rad

1 + 4(ω0 − ω)2/γ2
rad

. (8)

We note that on-resonance, when |ω − ω0| � γrad, the
absorption rate is density independent, while the width
of the resonance scales linearly with number density, be-
cause γrad ∝ r̄ ∝ n. Off-resonance, when |ω−ω0| � γrad,
the rate of DM absorption and subsequent photon emis-
sion scales as∝ n2, where it can be regarded as a coherent
conversion of DM into photons.

Besides radiative broadening, there are several other
sources of resonance broadening, all of which we have
ignored up until now. In an initial DM search—rather
than a verification procedure of a signal—the only other
broadening mechanism of importance is collisional broad-
ening, as it is the only other one enhanced at high number
densities. We will treat both the DM signal’s frequency
width and Doppler broadening in sec. III D, and nonra-
diative quenching in sec. III B. Inhomogenous broaden-
ing is always negligible. The effects of molecular colli-
sions can be complex, but are often well-modeled by the
“impact approximation”, whereby molecules are unper-
turbed between collisions, but any state gets dephased
to a new random phase between 0 and 2π when it col-
lides elastically with other molecules [2]. (Inelastic col-
lisions, where internal energy is exchanged between the
molecules, typically occur less frequently.) Under these
assumptions, effects from collisions lead to a Lorentzian
lineshape gcol

0 (ω′0, ω0) = 2
πγcol

1
1+(ω′0−ω0)2/γ2

col
, with the

mean collision rate per molecule

γcol = nσcol

√
2T

Mmol
≈ 8.9× 109 Hz (9)

in terms of an average collision cross-section σcol, the
temperature T , and the total molecular mass Mmol [3, 4].
The size of the elastic collision cross-section as defined
above is typically somewhat larger than the geometric
size of the molecule. In the numerical estimate of eq. 9,

we used σcol ≈ 102 Å
2

as a typical benchmark value,
and also assumed Mmol = 40mp and a number density
n ≡ P/T = n0 at standard atmospheric conditions, with
a pressure of P = 1 bar and temperature T = 273 K.
In the NMR/ESR analogy, γ−1

col is the equivalent of the
transverse spin relaxation time T2, the timescale over

which a pair of spins dephase due to magnetic dipole
interactions.

We can fold in the effects of collisions into the total ab-
sorption rate formula, via the convolution Γabs(ω, ω0) =∫∞

0
dω′0g

col
0 (ω′0, ω0)Γ

(N)
abs (ω, ω′0), which yields

Γabs(ω, ω0) ' Nγ Ω2/γ2

1 + 4(ω0 − ω)2/γ2
, (10)

with γ ≡ γrad + 2γcol. We should also note that the
dephasing caused by the collisions also modifies the ra-
diative width to γrad ' γ0 +ηcoh(r̄−1)γ0 with ηcoh given
by eq. 30. Even so, it is still roughly true that γ ∝ n, so
that the absorption rate is density-independent on reso-
nance, and scales as n2 off-resonance.

A molecular sample in the gas phase will be at finite
temperature, so typically a number of states will have ap-
preciable occupation probability p0. The initial thermal
state usually has nonnegligible support over several rota-
tional states (sometimes also excited vibrational states)
of the molecule, each occupied with the Boltzmann prob-
ability

p0,j =
e−Ej/T∑
k e
−Ek/T

, (11)

with j, k labeling all possible molecular states, each with
energy Ej . One can view the total molecular population
as several independent subpopulations j with total num-
bers Nj = p0,jnV . Furthermore, each subpopulation will
be sensitive to dark-matter excitations at a set of transi-
tion energies {ω0,j} (not just one ω0 as assumed above)
far above the temperature T . This set of transition ener-
gies will be different for each subpopulation. The dense
discretuum of states makes gas-phase molecules an effec-
tive multimode resonant system.

B. Cooperative radiation

The increased per-molecule radiative width of eq. 5 is a
phenomenon known as cooperative radiation, closely re-
lated to the phenomenon of superradiance first described
at length in ref. [5]. Cooperative effects are particularly
dramatic for the emission following absorption of bosonic
dark matter rather than photons, due to the DM’s non-
relativistic nature.

This type of cooperative emission can be understood
in classical wave mechanics, as it is simply due to the
principle of superposition. Going back to the analogy
between the two-level quantum molecular system and a
precessing spin in a magnetic field, if the spins in an
NMR/ESR sample are precessing in phase, they produce
an effective magnetic dipole moment N times larger than
that of a single spin. The radiated power then scales as
N2, leading to a radiation reaction force per spin that
is linearly proportional to N , in direct analogy to the
Abraham-Lorentz force on an oscillating charge. This
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damping force leads to a characteristic damping rate—
and thus emission rate—proportional to the density of
spins, just as in eqs. 5 and 6.

In the rest of this section, we perform a semiclassical
computation of the cooperation number r̄, a dimension-
less number which parametrizes to what extent the radi-
ation of different molecules interferes. For independent
emitters, r̄ is defined to be unity. However, constructive
(or destructive) interference means that r̄ = 1 +O(n) in
general. We will find below that r̄ depends on the phase
coherence structure of the excitation source, as well as
on the container geometry. In addition, for certain con-
tainer geometries, the coherent emission can be highly
directional.

Suppose we have a container of volume V filled with
N molecules at discrete positions x′ ∈ V at large and
uniform density n = N/V . The molecules are coherently
excited by dark matter, which causes each of them to
radiate a field at a spacetime point (t, x) of the form:

A(t,x,x′) =
q

4π|x− x′|
cos [ω (t− |x− x′|) + α(v,x′)] .

(12)

In reality, the molecules will of course emit photons; as a
proxy, we use massless scalar radiation to illustrate the
essential physics. Also for simplicity, we will ignore the
kinetic-energy contributions to the frequency of the wave,
and thus take ω = m. In eq. 12, q is an effective “charge”
set by the coupling of the molecule to DM as well as to
the radiation field. The phase α(v,x′) of the DM wave is
random: for a single velocity component v of the whole
DM ensemble it can be written as

α(v,x′) = αv −mv · x′. (13)

The DM wave is, however, an incoherent superposition
of many waves of different v and randomly distributed
initial phase αv. We expect the DM to be approximately

virialized in our Galaxy, with the kinetic energy hav-
ing a Maxwell-Boltzmann probability distribution, which
translates into a velocity probability density

f(v) =

(
1

πv2
0

)3/2

exp

[
− (v − vlab)2

v2
0

]
, (14)

where v0 ≈ 235 km/s is a measure of the DM veloc-
ity dispersion [6–8]. We have boosted to the laboratory
frame which moves through the Galactic rest frame at
velocity vlab. This relative velocity vlab = v⊙ + v⊕
is a vector sum of the Sun’s velocity v⊙ ≈ 220 km/s
in the DM’s rest frame, plus the Earth’s orbital veloc-
ity v⊕ ≈ 30 km/s around the Sun [9, 10]. More accu-
rately, this distribution should have a velocity cutoff at
the Galactic escape velocity vesc ≈ 550 km/s [11], but we
shall ignore this complication, as it will not significantly
affect the results below.

The expected field at (t,x) from a single molecule at
x′ is zero trivially

〈A(t,x,x′)〉v,α ≡ (15)∫
d3vf(v)

∫ 2π

0

dαv

2π
cos [m (t− |x− x′|) + α(v,x′)] = 0

because the phase average of cos[α + . . . ] returns zero.
Note that averaging over the initial DM phases αv auto-
matically takes care of time averaging. The same must
thus also be true for the total field from all molecules in
the volume V :

〈Atot(t,x)〉v,α ≡
∑
x′∈V
〈A(t,x,x′)〉v,α = 0. (16)

The total emitted energy density m2〈A2
tot〉 does not

vanish, as the square of the total field has the expectation
value:

〈Atot(t,x)2〉v,α =
〈(∑

x′

A(t,x,x′)
)(∑

y′

A(t,x,y′)
)〉

v,α

=
∑
x′

〈
A(t,x,x′)2

〉
v,α

+
∑
x′

∑
y′ 6=x′

〈
A(t,x,x′)A(t,x,y′)

〉
v,α

'
∫
V

d3x′n(x′)
q2

2(4π)2L2
+

∫∫
V

d3x′d3y′n(x′)n(y′)
q2

2(4π)2L2

∫
d3vf(v) cos [m(x̂− v) · (x′ − y′)]

≡ q2

2(4π)2L2
nV r(x̂). (17)

In the second line, we have separated independent radi-
ation terms and “cooperative” radiation terms, the lat-
ter of which capture interference effects. To get to the
third line, we replaced sums with integrals as

∑
x′ →

∫
V

d3x′n(x′), used eq. 12, and averaged over time/phase.
We also took the far-field limit, with |x−x′| ' L− x̂ ·x′
(which gets simplified further to just L in the denomina-
tor factors) for all x′ ∈ V , and where x̂ is a unit vector



6

along the line-of-sight direction. In the last line, we wrote
the answer as the square of the total field from a single

molecule q2

2(4π)2L2 , times the number of molecules nV ,

times a “directional cooperation number”:

r(x̂) = 1 +
n

V

∫∫
V

d3x′d3y′g(x̂,x′ − y′). (18)

The correlation function g(x̂,x′ − y′) itself is defined as

g(x̂,x′ − y′) ≡
∫

d3vf(v) cos [m(x̂− v) · (x′ − y′)] .

(19)

For the Boltzmann distribution of eq. 14, we can evaluate
this exactly:

gB(x̂,x′ − y′) = (20)

exp

[
−m

2v2
0

4
(x′ − y′)2

]
cos [m(x̂− vlab) · (x′ − y′)] .

One can attribute the rapidly oscillating cosine factor
mostly to the photon path length difference between
|x−x′| and |x−y′|, with a longer-range modulation pro-
portional to vlab from the coherent phase imprinted on
the molecules by DM. The much more smoothly varying
gaussian exponential factor quantifies the phase correla-
tion between the states of two molecules with a separa-
tion of |x′−y′| and a coherence length of 2/mv0, equal to
0.5 mm for m = 1 eV. A similar correlation function was
found to describe signals of bosonic dark matter in pairs
of detectors located at different points in spacetime [12].

A directional cooperation number r(x̂) greater than
unity means that the radiation constructively interferes
in the direction x̂. Take for example the simplest and also
most spectacular case, in which all N molecules are lo-
cated within a DM’s Compton wavelength of each other,
|x′ − y′| � 1/m, ∀x′,y′ ∈ V . In that case, the correla-
tion function gB(x̂,x′−y′) is unity for all directions and
all separations, so r(x̂) = N , with perfect constructive
interference.

Another instructive example is that of a rectangular
prism with sides of lengths Rx, Ry, and Rz aligned with
the x, y, and z axes, respectively. For f(v) as in eq. 14,
we can calculate r(θ, ϕ), the cooperation number for ra-
diation at an angle θ relative to the z-axis, and at an
angle ϕ in the xy-plane, as:

r(θ, ϕ) = 1 +
n

m3

I[R̃x, βx, v0]I[R̃y, βy, v0]I[R̃z, βz, v0]

R̃xR̃yR̃z
.

(21)

Above, we have defined the dimensionless lengths R̃i ≡
mRi, and the quantities βx ≡ sin θ cosϕ − vlab,x, βy ≡
sin θ sinϕ−vlab,y, and βz ≡ cos θ−vlab,z. We also defined

FIG. 1. Angular dependence of the logarithmic intensity emit-
ted by a molecular gas at large cooperation number r̄ � 1 in
a slab-shaped container with dimensions R̃x = R̃y = 103 and
R̃z = 1, whose orientation is depicted by the blue prism. The
intensity is exponentially peaked in the directions close to the
normal vector of each of the faces, and is largest by far along
the z-direction, perpendicular to the two largest faces of the
container. For illustrative purposes, we picked v0 = 10−2 and
vlab = 0, while we also exaggerated the thickness of the slab.

the integral function

I[R̃, β, v0] ≡
∫∫ R̃

0

dx′dy′e−
v20
4 (x′−y′)2+iβ(x′−y′)

'


R̃2, |β| � v0 & R̃� v−1

0
2
√
πR̃
v0

, |β| � v0 & R̃� v−1
0

2− 2e−
v20
4 R̃

2

cos R̃. |β − 1| � 1

(22)

The limiting cases quoted in the second line are correct
up to O(v0) fractional error or better. Around |β| = 0

and for large R̃, the integral function falls of very steeply
as I ∝ exp(−β2/v2

0).
For a prism smaller than a 1/m on all sides, we re-

cover the previous result of direction-independent coher-
ent emission with r(θ, ϕ) = 1 +nRxRyRz, up to O(1/N)
fractional corrections. More surprising effects occur when
some of the dimensions become large. For a “slab” with
e.g. Rx, Ry � 1/mv0, we find to a good approximation:

r(θ, ϕ) = 1 +
n

m3

8π

v2
0

1− e−
v20
4 R̃

2
z cos R̃z

R̃z
exp

[
−
β2
x + β2

y

v2
0

]
(23)

for θ � 1. The full angular dependence of the radi-
ation from a single slab is depicted in fig. 1. We find
that the coherent piece of the emission is highly focused,
with 84% of the coherent radiation contained in a cone
of angular radius v0 ≈ 0.78×10−4 rad, and 99.5% within
twice that opening angle. For random angles θ, ϕ ∼ 1
and Rz & 1/m, one would typically find a much smaller
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FIG. 2. Density plot of the logarithmic intensity as measured
by a horizontal screen placed far above a thin slab in the xy-
plane, zoomed in on the directions close to the normal vector
defined by θ = 0, which pierces the screen at the location
of the dot shown. The angular radius of the main emission
region is the expected DM velocity dispersion measure v0 ≈
0.78 × 10−4 rad. The vector shows the angular offset of the
cone’s center to the normal; its magnitude and direction are
given by the projection vlab⊥ of the average DM velocity vlab

onto the xy-plane in the lab frame.

cooperation number r(θ, ϕ) ∼ 1 + n/(m6RxRyRz). The
coherent radiation cone is very nearly perpendicular to
the slab, with the center of the cone (θc, ϕc) slightly offset
from θ = 0 by an amount determined by the lab velocity
through the DM halo:

θc = arcsin
√
v2

lab,x + v2
laby

, (24)

ϕc = arccot
vlab,x

vlab,y
. (25)

The dependence of the emission cone’s size and center on
the DM’s velocity dispersion v0 and average velocity vlab

is illustrated in fig. 1. In this way, a measurement of the
angular distribution of the coherent radiation constitutes
a measurement of the DM velocity distribution, including
precise directional information!

For a thin slab, the coherent radiation can dominate
the isotropic, incoherent fluorescence. The appropriate
measure is the average cooperation number

r̄ =
1

4π

∫ π

0

dθ

∫ 2π

0

dϕ r(θ, ϕ). (26)

When r̄ � 1, most of the outgoing radiation will be
coherent. More precisely, the fraction of the radiation
that is coherent is 1− r̄−1. For the thin slab, we find:

r̄ = 1 +
4πn

m3

1− e−
v20
4 R̃

2
z cos R̃z

R̃z
. (27)

For the small v0 under consideration, the second fraction
has a maximum value of 0.72 at R̃z ≈ 2.3, with sub-
leading local maxima of {0.21, 0.13, 0.091, . . . ,∼ 2/R̃z}

at R̃z ≈ {9.2, 15.6, 21.9, . . . , }. Numerically, we then find
that the coherent emission can easily dominate for a gas
(in absence of decoherence due to e.g. collisions) in a
slab-like container at standard atmospheric conditions
and assuming (locally) optimal thickness Rz, as we have
previously shown in eq. 6.

The fact that the cooperation number in eq. 27 is in-
versely proportional to the thickness at large Rz indicates
that cooperative radiation is a surface effect rather than
a bulk effect. We expect the scaling of r̄ inversely pro-
portional to the (smallest) linear size R of the container
to hold for any simply-connected, convex container vol-
ume for R� 1/mv0. We furthermore expect this scaling
and the overall value of r̄ to be quite insensitive to the
particular shape of the velocity distribution f(v).

For disjoint container volumes, it is clear that con-
structive interference of the radiation from any pair of
molecules in separate containers can be ignored if the
containers are separated by more than a coherence length
1/mv0. When the containers are closer together, it is
more appropriate to replace the sums

∑
x′∈V with inte-

grals
∫
V

d3x′n(x′) and a piecewise uniform density n(x′),
such that

r(x̂) = 1 +

∫∫
V

d3x′d3y′n(x′)n(y′)g(x̂,x′ − y′)∫
V

d3x′n(x′)
. (28)

Disjoint container volumes may thus be arranged such
that they interfere with each other in a controlled way.
An important example is that of a stack of Ns identical
thin slabs (from the previous example) placed at a regu-
lar intervals along the z-axis, their centers a distance L
apart. When the spatial periodicity along the z-axis is an
integer number of wavelengths L = k2π/m, k = 1, 2, . . . ,
then the radiation from each slab constructively inter-
feres with that of another, at least in the z-direction and
for slabs within a coherence length. The full calculation
of the directional cooperation number for such an ar-
rangement is quite tedious, but can be done numerically
with eq. 28. Roughly, the outcome is that the coopera-
tion number of the stack is enhanced relative to r(θ, ϕ)
for the single slab calculated in eq. 27 by an amount
S(θ, ϕ):

rstack(θ, ϕ)

r(θ, ϕ)
≡ S(θ, ϕ) ∼

{
Ns, NSL� 1/mv0

1/kv0. NSL� 1/mv0
(29)

At best, the average cooperation number can be en-
hanced by about a factor of S̄ ∼ 1/v0 for a judiciously
chosen slab separation L = 2π/m.

The above analysis has so far ignored decoherence, as
it has implicitly assumed that each identical molecular
system has retained its internal-state phase imprinted
on it by the DM wave. Elastic collisions between the
molecules will scramble the molecular phases, destroying
any constructive interference in the radiation and driving
r → 1 if it occurs at too large a rate. We estimate the
coherent part of the radiative rate to be suppressed by
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the coherence efficiency

ηcoh '
(r̄ − 1)γ0

r̄γ0 + 2γcol
, (30)

in the presence of collisional broadening of width γcol

as in eq. 9. This efficiency factor quantifies the fraction
of the radiation emitted coherently (i.e. by the second
term in eq. 17) with angular dependence proportional to
r(x̂)− 1. The rest will be emitted isotropically. To focus
the majority of the total radiative emission, one needs
ηcoh > 1/2 or (r̄ − 1)γ0 > γ0 + 2γcol.

C. Energy eigenstates of diatomic molecules

In this section, we provide a short but self-contained
review of the types of molecular states, focusing in partic-
ular on the simplest system—the diatomic molecule—for
pedagogical reasons. The classification below is a prereq-
uisite to illustrate the different types of transitions that
can be induced by dark matter; readers familiar with
this material can skip ahead to sec. II D. Our abridged
treatment below is almost entirely based on ref. [13].

The full Hamiltonian of a neutral, diatomic molecule
in absence of external fields is:

H0 =
2∑

N=1

−∇2
N

2MN
+

Z1+Z2∑
n=1

−∇2
en

2me
+

αZ1Z2

|R1 −R2|
(31)

+

Z1+Z2∑
n<m

α

|ren − rem |
−
Z1+Z2∑
n=1

2∑
N=1

αZN
|ren −RN |

.

Here M1, M2 are the two nuclear masses and the elec-
tron mass, α the fine structure constant, Z1 and Z2 the
nuclear charges, −i∇N (RN ) and −i∇en (ren) the mo-
mentum (position) operators for the Nth nucleus and nth
electron. We neglect spin-orbit coupling and relativis-
tic corrections for the rest of this discussion; the results
in this subsection and sec. II D are only valid insofar as
ZN � 1/α.

Due to the large mass splitting of the nuclear masses
and the electron mass—me/MN ranges from 10−3 to
10−5 for light and heavy nuclei—the Hamiltonian H0

is separable into “fast” electronic motion and “slow”
nuclear motion (the Born-Oppenheimer approximation).
Its internal energy (i.e. discounting translational motion)
eigenstates |Ψk〉 with energy Ek can be written as

H0|Ψk〉 = Ek|Ψk〉 (32)

'
[
Eel
k + Evib

k + Erot
k

]
|χel
k 〉|ψvib

k 〉|Y rot
k 〉

with the wavefunction |Ψk〉 factorized into one for elec-
tronic motion |χel

k 〉, one for nuclear vibrational motion
|ψvib
k 〉, and one for nuclear rotational motion |Y rot

k 〉. The
separability is manifested in the fact that transitions in
the rotational and vibrational states leave the electronic
state unaltered to a good approximation, and that the

vibrational and rotational motion are largely factorized
from each other. Different electronic states generally
have different effective vibrational and rotational Hamil-
tonians, however.

Integrating out the electronic motion gives rise to a
Hamiltonian of the form

Hcm,rot,vib =
−∇2

Rcm

2Mmol
+
−∇2

R

2M
+ U(R), (33)

where we wrote the nuclear kinetic energies in terms of
the center-of-mass momentum operator −i∇Rcm conju-
gate to Rcm ≡ (M1R1 + M2R2)/(M1 + M2), and the
relative momentum operator −i∇R conjugate to the in-
ternuclear separation vector R ≡ R2 − R1. We also de-
fined the total molecular mass Mmol ≡ M1 + M2 and
the reduced nuclear mass M ≡ M1M2/(M1 + M2). The
relative kinetic energy can be written out as:

−∇2
R

2M
=
−1

2M

[
1

R2
∂R
(
R2∂R

)
− J2

R2

]
, (34)

where J2 is the molecule’s angular momentum operator

J2 = −
[

1

sin θ
∂θ (sin θ∂θ) +

1

sin2 θ
∂2
φ

]
. (35)

Parametrically, electronic energy splittings are of order
∆Eel ∼ α2me, and so is the binding energy U(∞) −
U(Re). The equilibrium radius Re is of order the Bohr
radius a0 = 1/(αme). Vibrational energy splittings turn
out to be of order ∆Evib ∼ α2me(me/M)1/2, while ro-
tational energy splittings are yet lower at order ∆Erot ∼
α2me(me/M), as we will see below. This hierarchy of
scales is important, as it endows the molecules with a
large set of absorption lines that is finely spaced and uni-
formly distributed in terms of transition energy, as we
will explore further in sec. II D.

1. Rotational states

In anticipation of the hierarchy of vibrational and rota-
tional energies, we can take R ' Re constant and study
just the rotational spectrum (“rigid-rotor” approxima-
tion). At fixed R, the Hamiltonian simplifies to

Hrot = BeJ
2, (36)

where the energy scale Be = 1/(2MR2
e) is half the in-

verse moment of inertia of the molecule. The energy
eigenstates of this operator are just the spherical har-
monics |JM〉 ≡ |YJM (θ, φ)〉 with J = 0, 1, , 2, . . . and
M = −J, −J+1, . . . , +J which have the (2J+1)-fold
degenerate energies Erot

J = BeJ(J + 1). [These results
hold true if the electronic level has zero spin S and zero
orbital angular momentum Λ projected along the z-axis
(see sec. II C 3 for definitions). For Λ = 0 but S 6= 0, each
J level gets split into (up to) 2S + 1 sublevels, “Hund’s
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case (b)”. For Λ 6= 0, “Hund’s case (a)”, the J levels get
split into two of opposite reflection symmetry σv, and J
has a lower bound of |Ω| ≡ |Λ + Σ|, where Σ is the com-
ponent of the electron spin projected onto the molecular
axis.]

For example, the ground state J = 0 and the first
excited state J = 1 are split by 2Be ' 1/(MR2

e) ∼
α2me(me/M), after approximating Re ∼ a0 = 1/(αme).
The rotational constant Be typically varies by O(1) for
different electronic states, as they stabilize the nuclei at
different equilibrium separations. The variation of Be
among different vibrational states is much weaker, and
can be modeled by a correction factor αe:

Erot
v,J = BeJ(J + 1)− αe

(
v +

1

2

)
J(J + 1), (37)

with v the vibrational quantum number (see below). The
minus sign indicates that higher vibrational states typi-
cally have lower expectation values 〈1/R2〉. From naive
dimensional analysis, αe/Be ∼ (me/M)1/2. Other cor-
rections to the rigid-rotor approximation include cen-
trifugal distortion, usually denoted by another correc-
tion term of the form DeJ

2(J+1)2 which is even smaller
(De/Be ∼ me/M) and will be ignored hereafter.

2. Vibrational states

Allowing for a dynamical internuclear separation R,
we can integrate in the vibrational spectrum. Taking the
energy eigenstate wavefunctions to be 〈Rθφ|ψvibY rot〉 =

ψ̃v(R)YJM (θ, φ)/R, we find that the radial wavefunction

ψ̃v(R) obeys the Schrödinger equation[
− 1

2M

d2

dR2
+ U(R) +

J(J + 1)

2MR2

]
ψ̃v(R) = Evib

v . (38)

At leading order, we can ignore the R-dependence of the
third term, the centrifugal potential, since it is typically
a small correction to U(R). In that case, the vibra-
tional energy eigenvalues and eigenfunctions become J-
independent. For a bound diatomic, the potential U(R)
has a minimum at some R = Re, near which it can be
approximated by a harmonic oscillator potential:

U(R) ' Mω2
e

2
(R−Re)2, (39)

which has eigenstates |v〉 with energies

Evib
v = ωe

(
v +

1

2

)
(40)

for v = 0, 1, 2, . . . . By naive dimensional analy-
sis (NDA), U(R) must vary by an amount of O(α2me)
over distances of O(a0), so the effective spring constant
ke ≡Mω2

e must be O(α4m3
e). It follows that vibrational

energy splittings are ωe ∼ α2me(me/M)1/2.

Anharmonicities in the vibrational potential can be
modeled by the Morse potential:

Mω2
e

2
(R−Re)2 → De

[
1− e−a(R−Re)

]2
, (41)

which has closed-form eigenfunctions with the exact
eigenvalues:

Evib
v = ωe

(
v +

1

2

)
− ωexe

(
v +

1

2

)2

. (42)

where ω2
e ≡ 2a2De/M and ωexe ≡ ω2

e/4De. In other
words, one recovers a pure harmonic oscillator for disso-
ciation energy De →∞ while keeping the spring constant
fixed at ke = 2a2De.

3. Electronic states

The electronic structure and wavefunctions are more
complicated than those of vibration-rotation modes.
Nevertheless, the electronic levels can be classified ac-
cording to their symmetry structure.

Because of the mass hierarchy between the electron
and the nuclei, we can take the internuclear separation
R = Rẑ as parametrically fixed to point along the z-axis.
(Note that we are thus temporarily adopting molecule-
fixed coordinates that are co-rotating with the molecule,
rather than the space-fixed coordinates of the previous
section.) One can find the electronic wavefunction and
energy parametrically as a function of R, with the mini-
mum of energy being Te at the equilibrium radius Re of
the level under consideration. Knowing this parametric
potential energy function U(R) also allows one to com-
pute the vibration-rotation quantities like e.g. ωe and Be,
which in general depend on the electronic level. In the
Born-Oppenheimer approximation with factorizable mo-
tion of the electrons and the nuclei, we can consistently
expand the energy eigenvalues in those of the electronic
Hamiltonian with rovibrational fine structure for each
electronic level (the total level labeled by k):

Eel
k = Te,k + ωe,k

(
vk +

1

2

)
− ωe,kxe,k(vk + 1/2)2

(43)

+Be,kJk(Jk + 1)− αe,k
(
vk +

1

2

)
Jk(Jk + 1).

Conventionally, the Te,k are measured relative to the min-
imum of the lowest electronic state, which is taken to have
Te,k = 0.

A diatomic molecule exhibits cylindrical symmetry, so
the projection of the electronic angular momentum Lz
around the molecular axis is a good quantum number
when the spin-orbit coupling is small. Hence we can
classify electronic energy eigenstates according to their
(molecule-fixed) φ dependence:

Lz|χel〉 = Lze
±iΛφ|χ′el〉 = ±Λe±iΛφ|χ′el〉 = ±Λ|χel〉
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States with Λ = 0, 1, 2, 3, . . . are conventionally denoted
by the letters Σ,Π,∆,Φ, . . . . Reflections around any
plane through the molecular axis are also symmetries of
the system, so eigenstates with Λ = 0 can be labeled by
whether their wavefunctions are even (+) or odd (−) un-
der such reflections, which are denoted by the operator
σv. In absence of spin-orbit coupling, total spin S and
spin projection Sz onto the molecular axis are also good
symmetries, with quantum numbers S and Σ that can be
half-integers. Finally, homonuclear diatomics (those with
identical atoms) give rise to potentials for the electrons
that are symmetric about the molecule-fixed inversion i,
which takes (x, y, z) → (−x,−y,−z). Hence the elec-
tronic states can be categorized into those that are even
(g) and odd (u) under i. For example, a homonuclear
diatomic state with S = Λ = 0 that is even under σv
and i would be denoted by 1Σ+

g , whereas a heteronuclear
diatomic state with spin S and orbital angular momen-
tum Λ = 1 would be denoted by 2S+1Π. Finally, we note
that the electronic wavefunction must return to a sum of
separated-atom wavefunctions in the limit R � Re, so
there exists a one-to-one correspondence between molec-
ular orbitals and combinations of atomic orbitals. For the
purposes of this discussion, we shall ignore complications
due to spin-orbit coupling and nuclear spin symmetries;
more details can be found in [13].

In figure 3, we depict a typical set of potential energy
curves U(R) for five different electronic states in a hy-
pothetical diatomic molecule. Insofar as the relative nu-
clear motion factorizes from the electronic motion, one
can then compute the vibrational wavefunctions ψv(R)
in the potential well defined by U(R) for each electronic
state separately. In the Born-Oppenheimer approxima-
tion, vibrational states can be excited within one elec-
tronic level. However, transitions between different elec-
tronic levels are generally accompanied by a change in nu-
clear motion—and thus a change in vibrational quantum
number. The probability that, in an electronic transition
from |χel

i 〉 → |χel
f 〉, the vibrational state |v′i〉 in the initial

electronic level changes to the vibrational state |v′′f 〉 of
the final electronic level, is determined by the so-called
Franck-Condon (FC) factor:

∣∣〈v′′f |v′i〉∣∣2 =

∣∣∣∣∫ ∞
0

dRψ∗v′′f
(R)ψv′i(R)

∣∣∣∣2 . (44)

This factor largely controls the relative absorption rates
(and radiative emission probabilities) among the vibra-
tional states. In the case of fig. 3 for example, if the elec-
tronic state is excited from χel

i = 1Σ+
g to the first-excited

state χel
f = 1Σ+

u , the vibrational quantum number v′i = 0

is much more likely to change to v′′f = 4 than to v′′f = 0
because of the larger vibrational wavefunction overlap
(which can be read off visually from the wavefunctions
in fig. 3). Tabulations of these FC factors have been
computed and calibrated against measurement for a vast
number of molecules; we will reference them where used
in the text. In general, there are no selection rules con-
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FIG. 3. Electronic potential energy U(R) curves for a (hy-
pothetical) homonuclear diatomic molecule as a function of
internuclear separation R for five different electronic states,
labeled by their quantum numbers, X-1Σ+

g , A-1Σ+
u , a-1Σ+

g ,
b-3Σ+

u , and B-1Πu, respectively. Ticks in the potential well of
each curve indicate vibrational energy levels, e.g. labeled from
v = 0, ..., 6 in the fourth excited electronic state B-1Πu. Ex-
emplary vibrational wavefunctions ψv(R) are plotted in gray
(with arbitrary vertical units) for a few vibrational states,
including the lowest three of the ground electronic state. Ro-
tational energy splittings are not shown. The ground state
X-1Σ+

g can be excited to the first excited state a-1Σ+
g by a

monopole operator, and to A-1Σ+
u and B-1Πu by a dipole op-

erator. A spin-dipole operator can also cause transitions to
the spin-triplet state b-3Σ+

u , in addition to those caused by a
regular dipole operator.

trolling changes in vibrational quantum number in elec-
tronic molecular transitions, greatly enhancing the num-
ber of potential absorption lines, and thus accounting for
the much richer spectroscopy of diatomic and polyatomic
gases than that of monoatomics. This increased complex-
ity does not come at the cost of calculability nor spectral
resolution for sufficiently small molecules. In table I, we
list the defining spectral characteristics of several of the
electronic energy levels used throughout the text.

D. Types of dark-matter induced transitions

In this section, we classify the types of transitions ac-
cording to the operator structure of δH, and derive how
they act on nuclear and electronic wavefunctions. For
each type, we derive the corresponding selection rules
for rotational, vibrational, and electronic transitions, and
give estimates of the expected transition matrix elements
in small diatomic molecules.
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molecule χel Te [cm−1] ωe [cm−1] ωexe [cm−1] Be [cm−1] αe [cm−1] Re [Å] Tb [K]

1H1H

c-3Πu 95938 2466.8 63.51 31.07 1.42 1.037

EF-1Σ+
g 100082.3 2588.9 130.5 32.68 1.818 1.011

C-1Π 100089.8 2443.77 69.524 31.362 1.664 1.0327

B-1Σ+
u 91700 1358.09 20.888 20.015 1.184 1.2928

X-1Σ+
g 0 4401.21 121.33 60.853 3.062 0.74144 20.28

1H2H

C-1Π 100092.9 2119.6 53.31 23.522 1.096 1.0329

B-1Σ+
u 91698.3 1177.16 15.59 15.071 0.820 1.2904

X-1Σ+
g 0 3813.1 91.65 45.655 1.986 0.74142

2H2H X-1Σ+
g 0 3115.50 61.82 30.443 1.0786 0.74152

16O16O X-3Σ−g 0 1580.19 11.98 1.44563 0.0159 1.20752 90.19

12C16O

A-1Π 65075.7 1518.2 19.40 1.6115 0.0232 1.2353

a’-3Σ+ 55825.4 1228.60 10.468 1.3446 0.0189 1.3523

a-3Π 48686.70 1743.4 14.3 1.69124 0.01904 1.20574

X-1Σ+ 0 2169.81358 13.28831 1.93128 0.0175 1.12832 81.65

12C18O X-1Σ+ 0 2117.5 12.66 1.839 0.0163 1.128

14N14N
A-3Σ+

u 50203.6 1460.64 13.87 1.4546 0.0180 1.2866

X-1Σ+
g 0 2358.57 14.324 1.99824 0.017318 1.09768 77.355

1H35Cl X-1Σ+ 0 2990.946 51.8 10.59341 0.30718 1.27455 188.10

127I127I
B-3Π0+u 15769.01 125.69 0.764 0.02903 0.000158 3.024

X-1Σ+
g 0 214.50 0.614 0.03737 0.000113 2.666 457.4

TABLE I. Spectroscopic properties of select diatomic molecules in the ground electronic state χel = X, as well as in a few
exemplary excited electronic states χel = A, a,B, b, . . . taken from Ref. [14]. Energetic quantities such as the electronic
excitation energy Te, vibrational energy splitting ωe and anharmonic correction ωexe, rotational constant Be, and vibration-
rotation correction constant αe are expressed in the conventional inverse photon-equivalent-wavelength units of cm−1; conversion
to units of energy is achieved via the substitution 1 cm−1 ↔ 1.23967× 10−4 eV. We also quote the equilibrium radius Re and
boiling point temperature (for ground states) at standard atmospheric pressure P = 1 bar.

1. Monopole transitions

The simplest operator structure occurs when the per-
turbing Hamiltonian δH is spherically symmetric in all
respects, in the sense that it acts trivially on the angular-
momentum eigenstates of the entire molecule, the elec-
tronic configuration, and all spin degrees of freedom. In
that case, δH must be diagonal in these angular eigen-
state bases, so any such “monopole” transition obeys the
selection rules:

∆J = ∆M = ∆Λ = ∆S = ∆Σ = ∆Ω = 0. (45)

We expect these rules to be obeyed insofar as spin-orbit
coupling can be neglected, except for the conservation of
total angular momentum (∆J = 0), which is exact.

It follows immediately that pure rotational transitions
cannot be induced by a monopole operator. Vibrational
transitions can occur, for example by the operators

δH0
I ∝ R−Re, δH0

II ∝ (R−Re)2, δH0
III ∝∇

2
R.
(46)

These act trivially on the angular wavefunction, but can
excite an initial ground vibrational state |vi = 0〉 to a
first- or second-excited vibrational state |vf 〉 via the ma-
trix elements:

〈vf = 1|(R−Re)|vi = 0〉 =
−i

(2Mωe)1/2
, (47)

〈vf = 2|(R−Re)2|vi = 0〉 =
1

Mωe
, (48)

〈vf = 2| d
2

dR2
|vi = 0〉 = Mωe. (49)

In the limit of a pure harmonic oscillator (ωexe → 0),
these are the only nonzero, off-diagonal matrix elements
connecting |vi = 0〉 to excited levels. In the presence
of anharmonicities (ωexe 6= 0), these selection rules are
weakly broken, and e.g. (R − Re) can also excite the
ground vibrational state to vf ≥ 2, with the matrix ele-
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ments:

|〈vf = 2|(R−Re)|vi = 0〉| '

(
1
8

)1/2 (ωexe
ωe

)1/2

(2Mωe)1/2
, (50)

|〈vf = 3|(R−Re)|vi = 0〉| '

(
1
24

)1/2 (ωexe
ωe

)
(2Mωe)1/2

, (51)

|〈vf = 4|(R−Re)|vi = 0〉| '

(
3

128

)1/2 (ωexe
ωe

)3/2

(2Mωe)1/2
, (52)

up to O(ωexe/ωe)
1/2-suppressed fractional corrections.

In gross sensitivity estimates using the matrix elements
of eqs. 47–52, we will often use the parametric estimates:

Mωe ∼
α4m3

e

ωe
,

ωe
ωexe

∼ α2me

4ωe
, (53)

typically correct up to a factor of 2, and “solving” for M
and ωexe in favor of the vibrational frequency ωe.

Monopole vibrational transitions are not accompanied
by a change in molecular rotation, and thus do not come
with much rotational substructure in the possible transi-
tion energies (no dependence on Be):

|vi = 0, Ji,Mi〉 → |vf , Ji,Mi〉 : (54)

ω0 = ωevf − ωexe(v2
f + vf )− αevfJi(Ji + 1).

The only dependence on the rotational quantum number
enters via the vibration-rotation coupling αe, which in
the Born-Oppenheimer approximation is suppressed by a
factor of O(me/M)3/2 relative to the vibrational splitting
ωe.

Monopole operators that can cause electronic transi-
tions include

δH0
IV ∝

∑
n

∇2
e,n, (55)

δH0
V ∝ −

∑
n,N

Zk
1

|re,n −RN |
+
∑
n,m

1

|re,n − re,m|
.

Both the inversion i and the reflection σv operations com-
mute with these operators, so electronic transitions follow
the selection rules

g ↔ g, u↔ u, g = u, (homonuclear) (56)

+↔ +, − ↔ −, + = −, (for Σ↔ Σ) (57)

in addition to the ones mentioned previously in eq. 45.
Typical sizes for transition matrix elements in nonrela-
tivistic molecules can be estimated via NDA as∣∣∣〈χel

f | −
∑
n,N

ZN
1

|re,n −RN |
+
∑
n,m

1

|re,n − re,m|
|χel
i 〉
∣∣∣

=
1

2αme

∣∣∣〈χel
f |
∑
n

∇2
e,m|χel

i 〉
∣∣∣ ∼ ω0

α
,

(58)

with Re the equilibrium radius of the initial electronic
state |χel

i 〉, usually an O(1) number times the Bohr radius
a0 = 1/αme. The off-diagonal matrix elements of δH0

IV
and δH0

V can be related as in eq. 58 because they are both
component terms of H0 in eq. 31, which itself acts diag-
onally on energy eigenstates by construction. Monopole
transitions from the ground electronic state to an excited
electronic state can occur at many different energies due
to rovibrational substructure:

ω0 = Te,f +

[
ωe,f

(
vf +

1

2

)
− ωe,i

(
vi +

1

2

)]
−

[
ωe,fxe,f

(
vf +

1

2

)2

− ωe,ixe,i
(
vi +

1

2

)2
]

+ [Be,f −Be,i] Ji(Ji + 1)

−
[
αe,f

(
vf +

1

2

)
− αe,i

(
vi +

1

2

)]
Ji(Ji + 1).

We can see that even though ∆J = 0, there is a sig-
nificant amount of rotational substructure because the
rotational constants Be of two different electronic states
generally differ by an O(1) fractional amount. As ex-
plained around eq. 44, there are no selection rules as-
sociated with changes in vibrational quantum number
for electronic transitions, introducing a large amount of
vibrational substructure, which also holds true for elec-
tronic transitions induced by other types of operators, to
which we turn next.

2. Dipole transitions

Transitions caused by operators of the form

δH1
I ∝ k̂ ·R, δH1

II ∝ k̂ ·
∑
j

re,j (59)

are perhaps the most familiar, since they include the or-
dinary electric dipole transitions from photon absorption.

Here, the unit vector k̂ denotes a unit vector in a space-
fixed (as opposed to molecule-fixed) direction, like the
direction of a vector field or the DM velocity, that acts

trivially on the wavefunction. The effective direction k̂
will in general vary in time and space, but only over scales
of order the coherence time and length of the DM field,
both much larger than the relevant temporal and spatial
scales of the molecule for the energies under considera-
tion.

The operator proportional to R = RR̂ can induce pure
rotational transitions through diagonal action of 〈R〉 =

Re on the vibrational state but nontrivial action of R̂ on
the rotational state, such that 〈JfMf |k̂ · R̂|JiMi〉 6= 0.
These well-known matrix elements have selection rules
∆J = ±1 as well as ∆M = ±1 for k̂ · ẑ = 0 and ∆M =
0 for k̂ = ẑ. The rotational transitions which increase
the internal energy are those with ∆J = +1, and have
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transition energy:

|Ji,Mi〉 → |Ji + 1,Mf 〉 : ω0 = 2

(
Be −

1

2
αe

)
(Ji + 1).

(60)

These pure rotational transitions are too low in energy
for the experimental setup under consideration in this
work, because Be (for any molecule) is lower than the
thermal energy T even at liquid nitrogen temperatures.
However, they form an important part of the substruc-
ture for vibrational transitions.

The operator R = RR̂ can also act nontrivially on

the vibrational state, e.g. 〈vf , Jf ,Mf |k̂ ·R|vi, Ji,Mi〉 =

〈vf |(R−Re)|vi〉〈JfMf |k̂·R̂|JiMi〉. The transition ampli-
tudes are products of the vibrational matrix element in
eq. 47 and the pure rotational matrix elements. Over long

time scales, the unit vector k̂ will change direction, so we
directionally average the rotational matrix elements ac-

cording to:

∣∣∣〈Jf |k̂ · R̂|Ji〉∣∣∣2
avg
≡

∑
Mf ,Mi

∑
j=x,y,z

∣∣∣〈JfMf |R̂j |JiMi〉
∣∣∣2

3(2Ji + 1)
,

(61)

with R̂x, R̂y, R̂z unit vectors in the x, y, z directions,
respectively. These average square matrix elements can
be computed to be (Ji + 1)/[3(2Ji + 1)] for ∆J = +1
transitions, and Ji/[3(2Ji + 1)] for ∆J = −1 transitions;
at large Ji, they tend to 1/6. Vibrational transitions
induced by H1

I thus obey the selection rules ∆v = ±1,
∆J = ±1, and ∆M = 0,±1. Changes in the M quantum
number are from the components of R̂ in the x and y
directions; the z-component of R̂ leaves M unchanged.
The allowed vibrational transitions and energies from the
ground vibrational state are:

|vi = 0, Ji,Mi〉 →

{
|vf = 1, Jf = Ji + 1,Mf 〉 : ω0 = ωe − 2ωexe + 2

(
Be − 1

2αe
)

(Ji + 1),

|vf = 1, Jf = Ji − 1,Mf 〉 : ω0 = ωe − 2ωexe − 2
(
Be − 1

2αe
)
Ji.

(62)

Higher-∆v are only weakly allowed (cfr. eqs. 50–52) and
occur at energies that are roughly integer multiples of
the first energy gap. To leading order in the Born-
Oppenheimer approximation, the operator H1

I does not
excite electronic transitions.

The operator δH1
II ∝

∑
n ren primarily causes transi-

tions between electronic states. The components of ren
that point along the molecular axis are unaffected by Lz
rotations, are even under σv reflections, and odd under
the inversion i. Components of ren transverse to the
molecular axis transform as Λ = 1 states under Lz rota-
tions, and are odd under σv reflections and the inversion
i. We thus find the selection rules:

∆Λ = 0,±1 (63)

+↔ +, − ↔ −, −= + (for Σ↔ Σ) (64)

g ↔ u, g = g, u= u, (homonuclear) (65)

∆S = ∆Σ = 0. (66)

The last line follows from the trivial action on the spin co-
ordinates, so both the spin multiplicity S and the projec-
tion of the spin onto the molecular axis Σ are unchanged
in absence of spin-orbit coupling. For transitions that
are allowed by these selection rules, we can estimate the
matrix elements with NDA to be parametrically of order:∣∣∣〈χel

f |
∑
n

ren |χel
i 〉
∣∣∣ ∼ Re. (67)

Alternatively, for δH1
II the above matrix elements can

also be measured via absorption or emission intensities
in electric dipole transitions.

As for any electronic transition, there are generally no
selection rules for changes in vibrational quantum num-
ber. The total rotational quantum number J has the
selection rule ∆J = ±1 for ∆Λ = 0 transitions, whereas
both ∆J = ±1 and ∆J = 0 are allowed for ∆Λ = ±1
transitions (for most initial Ji). We refer the reader to
[13] for more details about rotational fine structure in
electronic transitions. The bottom line is that the extra
rotational fine structure makes the discretuum of transi-
tion energies for electronic dipole transitions even more
rich as that of electronic monopole transitions, with lines
occurring at energies

ω0 = Te,f +

[
ωe,f

(
vf +

1

2

)
− ωe,i

(
vi +

1

2

)]
−

[
ωe,fxe,f

(
vf +

1

2

)2

− ωe,ixe,i
(
vi +

1

2

)2
]

+

[
Be,f − αe,f

(
vf +

1

2

)]
Jf (Jf + 1)

−
[
Be,i − αe,i

(
vi +

1

2

)]
Ji(Ji + 1), (68)

for transitions from the ground electronic state to one
particular excited electronic state with excitation energy
Te,f .
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3. Spin-dipole transitions

Dark matter may also interact via less-familiar opera-
tors which exhibit a simultaneous coupling to both the
spin and the momentum of nucleons or electrons:

δH1S
I ∝ σN ·∇R, δH1S

II ∝
∑
n

σe,n ·∇e,n. (69)

Despite the wholly different operator structure and be-
sides their action onto the spin coordinates, they are in
many ways similar to the dipole operators of eq. 59, with
analogous selection rules on the orbital wavefunction in
absence of spin-orbit coupling. For simplicity of discus-
sion, we will take σN to be the nuclear spin operator
on only one of the nuclear spins (e.g. if the other one
were spinless). For two spins, one would need to con-
sider a larger spin Hilbert space, and use an interac-
tion Hamiltonian of the form α1σ1 ·∇1 + α2σ2 ·∇2 =
(−α1σ1 +α2σ2)·∇R+O(∇Rcm) with coefficients α1, α2.

The first operator can cause pure rotational transi-
tions, as well as vibrational transitions with rotational
substructure. In spherical coordinates, we have

∇R = R̂∂R + θ̂
1

R
∂θ + φ̂

1

R sin θ
∂φ. (70)

Let us now see how this operator acts on a given rovi-
brational eigenstate. We have:

〈Rθφ|∇R|ψvibY rot〉 = 〈θφ|R̂|JM〉〈R|
(
d

dR
− 1

R

)
|v〉

+ 〈θφ|θ̂∂θ|JM〉〈R|
1

R
|v〉

+ 〈θφ|φ̂ 1

sin θ
∂φ|JM〉〈R|

1

R
|v〉.
(71)

where 〈R|ψvib
v 〉 = ψ̃v(R)/R with ψ̃v(R) QHO eigenstate

wavefunctions, and 〈θφ|Y rot
JM 〉 = YJM (θ, φ) are the spher-

ical harmonics.

When the radial part of σN ·∇R acts diagonally on
the vibrational state, we have that 〈v|1/R|v〉 = 1/Re and
〈v|d/dR|v〉 = 0. In this case, the angular and nuclear-
spin action can still cause pure rotational transitions
along with nuclear spin transitions:

〈ΣNfJfMf |σN ·∇R|ΣNiJiMi〉 = +
1

Re
〈ΣNf |σN,x|ΣNi〉〈JfMf |(− sin θ cosφ+ cos θ cosφ∂θ −

sinφ

sin θ
∂φ)|JiMi〉

+
1

Re
〈ΣNf |σN,y|ΣNi〉〈JfMf |(− sin θ sinφ+ cos θ sinφ∂θ +

cosφ

sin θ
∂φ)|JiMi〉

+
1

Re
〈ΣNf |σN,z|ΣNi〉〈JfMf |(cos θ − sin θ∂θ)|JiMi〉. (72)

Above we have assumed that the nucleus has a total spin
SN equal to an integer or half-integer, and of which the
component along the z-axis has the possible values ΣN =
−SN ,−SN + 1, . . . ,+SN . The selection rules for these
transitions are:

∆J = ±1,

{
∆M = ±1 & ∆ΣN = ∓1,

∆M = 0 & ∆ΣN = 0.
(73)

We distinguish between the spin-flip (from σN,x and
σN,y) and spin-preserving (from σN,z) transitions, as the
former can receive linear Zeeman energy shifts in an ex-
ternal magnetic field. They otherwise have the same ro-
tational energy splittings and selection rules as in eq. 60.
In a thermal state, the nuclear spins are in an unpo-
larized mixed state. The transition rate from an energy
level with J = Ji to one with J = Jf is thus proportional
to |〈Jf |σ̂ ·∇R|Ji〉|2avg, which can be found by averaging
the square of the matrix element 〈JfMf |σ̂ · ∇R|JiMi〉
over the spin directions σ̂, averaging over Mi and sum-

ming over the possible values of Mf . One finds that
|〈Jf |σ̂ ·∇R|Ji〉|2avg is equal to (Ji−1)2(Ji+1)/[3(2Ji−1)]

for ∆J = +1 transitions, and Ji(Ji + 2)2/[3(2Ji − 1)] for
∆J = −1. They tend to J2

i /6 at large Ji.

The operator ∇R can also induce vibrational transi-
tions through its off-diagonal action. As can be seen from
eq. 71, it acts on vibrational states |v〉 through the op-
erator terms d/dR and 1/R. The former has a matrix
element connecting the ground state to the first-excited
state:

〈vf = +1| d
dR
|vi = 0〉 = −i

(
Mωe

2

)1/2

, (74)

all other off-diagonal matrix elements from the ground
state being suppressed by the anharmonicity of the vi-
brational potential. The second operator term, 1/R, has
smaller vibrational matrix elements, as can be seen from
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expanding

1

R
=

1

Re
+
R−Re
R2
e

+ . . . (75)

and using eq. 47 to find that the dominant 1/R ma-
trix element is smaller than that of eq. 74 by a factor
of 1/MωeR

2
e ∼ O(me/M)1/2. Therefore, the dominant

vibrational transitions obey the same ∆v = ±1 selection
rules as in eq. 62. The accompanying rotational matrix
elements are the same as well, cfr. eq. 61, as long as
one remembers that changes in the orbital angular mo-
mentum projected onto any particular axis are correlated
with simultaneous changes in the nuclear spin projected
onto the same axis as in eq. 73.

The operator σe ·∇e mostly excites electronic transi-
tions, similar to δH1

II of the previous section. The opera-
tor∇e has the same transformation properties under Lz,
i, and σv as re, so δH1S

II obeys the same selection rules as
δH1

II on changes in the orbital part of the electronic mo-
tion, which are already listed in eqs. 63–65. However, the
nontrivial spin structure of δH1S

II means that it can in-
duce both spin-preserving (∆S = ∆Σ = 0) transitions—
the only ones δH1

II can excite—as well as spin-flip tran-
sitions (∆Σ = ±1 and ∆S = 0,±1):

∆Λ = 0 & ∆Σ = ∆S = 0, (76)

∆Λ = ±1 & ∆Σ = ∓1, (77)

+↔ +, − ↔ −, −= +, (for Σ↔ Σ) (78)

g ↔ u, g = g, u= u. (homonuclear) (79)

Such spin-flip transitions are highly suppressed in small
molecules for the usual dipole transitions, for which a
ground state of e.g. 1Σ can normally only be excited
to higher spin-singlet states of symmetry 1Σ and 1Π,
whereas these spin-dipole transitions can excite the same
ground state to the spin singlets 1Σ or the spin triplets
3Π. For transitions that respect the selection rules of
eqs. 76–79, we expect electronic matrix elements of size:∣∣∣〈χel

f |
∑
n

∇en

me
|χel
i 〉
∣∣∣ = ω0

∣∣∣〈χel
f |
∑
n

ren |χel
i 〉
∣∣∣ ∼ ω0Re,

(80)

with ω0 = |Ef−Ei| the transition energy. The first equal-
ity follows by virtue of the identity ∇en = −me [H0, ren ]
for the nonrelativistic H0 from eq. 31. The matrix ele-
ments for the spin-dipole transitions can thus be inferred
from those of the regular dipole transitions.

III. EXPERIMENTAL SETUP

We describe the general detector requirements and
molecular container configurations in sec. III A, along
with a detailed discussion of signal detection in sec. III B,
background levels in sec. III C, and signal discrimination
techniques in sec. III D.

FIG. 4. Experimental setup: Bulk (top) and Stack (bottom)
configurations. Molecular gas (depicted by light blue vol-
umes) is pumped into containers capable of supporting pres-
sures up to 10 bar. In the Bulk configuration, DM absorp-
tion events yield isotropic, single fluorescence photons, whose
paths are indicated by thick red lines. Reflective coatings
(shown as silver colored sheets) lining the container boundary
retain the signal photons until they impinge onto a large-area
photodetector, displayed as yellow tiles at the top. The Stack
configuration features a pattern of alternating molecular den-
sity in the form of multiple slabs. This container geometry
and the spatial coherence of DM can produce cooperatively
emitted photons nearly perpendicular to the slabs, making it
possible to focus them onto a tiny photodetector by a lens.
The photon direction is sensitive to the DM velocity vector
projected onto the plane defined by the slabs. For illustrative
purposes, we do not show shielding, cooling, or electromag-
netic field and pressure control systems in either setup. We
also left out the reflective coatings on the front and top faces
of the Bulk setup.
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Bulk Stack

Phase I

V = (0.3 m)3, P ∼ 0.1 bar, T = 300 K A = π(0.3 m)2, D = 1 mm, P ∼ 10 bar, T ∼ 100 K

PMT, DCR = 1 Hz, Adet = (0.3 m)2, ηγ = 0.3 MKID/TES, DCR . 10−5 Hz, Adet = (0.3 mm)2, ηγ = 0.5

any electronic → intermediate E1-allowed electronic

- E1-allowed vibrational

Stark/Zeeman tuning, tshot = 102 s collisional broadening, tshot = 106 s

δΩ ≈ 2.9× 10−7 rad s−1 δΩ ≈ 9.4× 10−9 rad s−1

Phase II

V = (2 m)3, P ∼ 0.1 bar, T ∼ 100 K A = π(2 m)2, D = 100 mm, P ∼ 10 bar, T ∼ 100 K

MKID, DCR . 10−3 Hz, Adet = (0.1 m)2, ηγ = 0.5 MKID/TES, DCR . 10−7 Hz, Adet = (2 mm)2, ηγ = 1

any electronic → intermediate E1-allowed electronic

any vibrational with optically thin fluorescence E1-allowed vibrational

Stark/Zeeman tuning, tshot = 103 s collisional broadening, tshot = 107 s

δΩ ≈ 9.9× 10−10 rad s−1 δΩ ≈ 1.8× 10−11 rad s−1

TABLE II. Experimental configurations and their specifications for Phase I prototypes, and ultimate Phase II implementations.
The six lines in each cell correspond to (1) thermodynamic variables, (2) photodetection parameters, (3) accessible electronic
transition types, (4) accessible vibrational transition types, (5) frequency coverage strategy, and (6) Rabi frequency sensitivity
at SNR = 1 over frequencies where BBR can be ignored, assuming collisional broadening dominates the absorption width. The
frequency coverage strategy of the Bulk configuration can be used by the Stack setup, and vice versa, albeit typically at lower
sensitivity in a DM search over a broad energy range. The four versions are abbreviated as BI, BII, SI, and SII.

A. Configurations and search strategies

We envision two configuration types to detect bosonic
DM in the mass range between 0.2 eV and 20 eV: one is
a “bulk” detector volume, the other a layered set of slabs
in a “stack” arrangement. We depict both configurations
in fig. 4, and summarize their specifications in table II,
which will be explained below. We consider a prototype
“Phase I” and an optimistic, ultimate “Phase II” of both
the Bulk and Stack configuration. We denote the four
versions as BI, BII, SI, and SII.

The molecules are kept in the gaseous phase so that
they can be regarded as approximately independent sub-
systems with a discretuum of energy levels, each with
a resonant response to near-monochromatic excitations;
intermolecular interactions in the liquid and solid phases
tend to produce a non-resonant continuum in all but
a few special cases. Dark matter waves of the right
frequency—i.e. DM particles of the right mass—can ex-
cite molecules from their ground state(s) in thermal equi-
librium to nonoccupied, higher-energy states, which in
turn can fluoresce or cooperatively emit single photons.
This radiation is to be read out by sensitive photodetec-
tors, and serves as the signal in our setup.

Two primary considerations are key in a DM detector
design based on resonant absorption onto molecules in
the gas phase: radiative efficiency and frequency cover-
age. We will first explain the relevant physics for both
of these requirements, and then how the Bulk and Stack
detector designs address each of them.

Radiative efficiency— Ideally, every DM absorption
quantum leads to a detectable fluorescence photon, as op-

posed to heat or fluorescence photons that are difficult to
detect (more on that in sec. III B). The dominant chan-
nel for conversion of internal energy of small polyatomic
molecules to heat is via two-body collisions wherein the
excitation quanta in electronic or vibrational state are
converted to rotational and/or translational kinetic en-
ergy, a process called radiative quenching. (Other non-
radiative pathways through which the absorbed energy
can dissipate include vibronic decays in large polyatomic
molecules, and molecular dissociation in weakly bound
ones.) By analogy to the collisional broadening rate in
eq. 9, we can thus parametrize the collisional quenching
rate as:

γquench = nσquenchvmol (81)

with a quenching cross-section σquench independent of
density. For many excited electronic states, the inelas-
tic, quenching cross-section is typically an order of mag-
nitude smaller than the elastic cross-section σcol [15].
Precise data on quenching cross-sections for excited elec-

tronic states is scarce, so we will take σel
quench ∼ 10 Å

2

as a benchmark value. Vibrational quanta are less eas-
ily quenched in diatomic molecules, an effect theoret-
ically understood in the context of Landau-Teller the-
ory [15, 16], with a quenching cross-section that depends
strongly on relative molecular velocities and thus tem-
perature. Ref. [17] found that a wide array of poly-
atomic systems obey the following empirical relation for
the quenching rate γvib

quench of vibrational quanta, to a
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precision of 50%:

log10

(
γvib

quench

Hz

1 bar

P

)
≈ 8.00 (82)

− 1.3× 102µ̃1/2ω̃4/3
e

(
T̃−1/3 − 1.5× 10−2µ̃1/4

)
,

with the definitions of the dimensionless quantities µ̃ ≡
µ/mp, ω̃e ≡ ωe/eV, and T̃ = T/K. Above, µ is
the reduced mass of the colliding pair of molecules, so
µ = Mmol/2 for a single molecular species of mass Mmol.
At sufficiently low temperature T , the quenching rate be-
comes exponentially slow, as indicated by the orange line
in fig. 6, with about a factor 10 decrease in the quench-
ing rate of carbon monoxide by lowering the tempera-
ture from 100 K to 77 K. (The long relaxation time of
the molecular sample means environmental background
rejection of cosmic rays and radioactivity may become
harder in some cases, as we discuss in sec. III C.)

We define the overall radiative efficiency ηrad as the
ratio of the fluorescence rate Γrad to the DM absorption
rate Γabs from eq. 8

Γrad = ηradΓabs. (83)

In general, ηrad is a complicated function of the DM en-
ergy ω, as there are many possible target states that can
be excited by dark matter, each having their own radia-
tive properties. Given that Γabs(ω) is highly peaked for
ω near any one out of a set of transition energies {ω0}, we
can take the overall radiative efficiency at ω to be that
of the pair of states |0〉 and |1〉 with transition energy
ω0 closest to ω. The radiative efficiency around any such
target state |1〉 can be written as:

ηrad '
γ0 +

∑
i γi

γ0 + ηcoh(r̄ − 1)γ0 +
∑
i γi + γquench

+ ηcoh,

(84)

where γ0 is the radiative width for the process |1〉 → |0〉
in vacuum, and γi is the radiative width of |1〉 → |i〉 with
|i〉 6= |0〉 any intermediate state with energy below that
of |1〉.

The fraction of absorption quanta that are coherently
radiated is given by the second term in eq. 84, and is
equal to:

ηcoh '
(r̄ − 1)γ0

(r̄γ0 +
∑
i γi + 2γcol)

(85)

which is the generalization of eq. 30 in the presence of
other radiative channels. For large cooperation numbers
r̄−1� 1 such that other radiative decays can be ignored,
the condition for most of the absorbed to be coherently
radiated is thus still (r̄− 1)γ0 � γcol. Likewise, the frac-
tion of fluorescence radiation to the intermediate state
|i〉 is

fi =
γi

γ0 + ηcoh(r̄ − 1)γ0 +
∑
i γi + γquench

. (86)

The sum over all of the intermediate-state branching ra-
tios,

∑
i fi, can become close to unity when the interme-

diate radiative decays dominate over quenching at low
number density, and when the radiative decay rate γ0

back to the initial state is small because of selection rules,
low r̄, and/or combinatoric factors.

Frequency coverage— Any one molecule can be re-
garded as a multimode resonator capable of absorbing
DM particles with energies ω near any one of the set of
transition energies {ω0}. It is important that most of
the “frequency gaps” among the adjacent ω0 can be ef-
ficiently covered, either via scanning the {ω0} by tuning
some external variable like an external electromagnetic
field, or by broadening each individual line by increasing
the molecular number density.

The splittings among the possible transition energies
are typically of order the rotational energy constants of
the ground vibrational state. A diatomic molecule has
rotational energies Erot = BeJ(J + 1), J = 0, 1, 2, . . . in
its ground state, where the magnitude of the rotational
constant Be is determined by the inverse moment of in-
ertia, i.e. the reduced mass M of the diatomic times its
mean square separation 〈R2〉 ' R2

e:

Be =
1

2M〈R2〉
≈ 2.1× 10−4 eV

(
10mP

M

)(
Å

Re

)2

.

(87)

For example, for dipole vibrational transitions, we ex-
pect a rotational fine structure with a splitting of 2Be,
as derived in eq. 62 and depicted in the lower panel of
fig. 5. Most other types of transitions have similar fine
structure splittings at the same order or lower. Poly-
atomic molecules composed out of more than two atoms
typically have multiple rotational constants (one around
each axis, unless it is a linear molecule) that are smaller,
and thus exhibit an even richer fine structure and lower
degeneracy. For example, SF6 has rotational constants
of 1.1× 10−5 eV around all three axes.

The splittings in rotational transition energies can be
scanned by tuning the magnitude of an external electric
field via the second-order Stark effect, if the molecule
exhibits a permanent electric dipole moment µe (in
molecule-fixed coordinates, not laboratory-fixed coordi-
nates of course). In an electric field E, the energy eigen-
values Erot(J,M) of the combined rotational and Stark
Hamiltonian are

Erot

Be
' J(J + 1) +

1

2
λ2 J(J + 1)− 3M2

J(J + 1)(2J − 1)(2J + 3)
,

(88)

valid up to O(λ/2)4 for λ ≡ µe|E|/Be, a dependence
plotted in the upper panel of fig. 5. Note that the
2J + 1-fold degeneracy among levels with the same J
but different M is now lifted into a two-fold degeneracy
among levels with the same (J, |M |). In the lower panel,
we plot how the rotational transition energy splittings
ωrot

0 = Erot(Jf ,Mf ) − Erot(Ji,Mi) depend on the ratio
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µeE/Be for dipole vibrational transitions. An O(1) frac-
tion of the rotational splittings can be “scanned” if the
expansion coefficient

µeE

Be
≈ 0.63

(µe
D

)( E

3× 106 V/m

)(
10−4 eV

Be

)
(89)

becomes O(1). In the above numerical estimate, we took
the electric field to be the breakdown electric field value
(for large separations) of air at standard atmospheric con-
ditions, and a dipole moment of 1 D ≈ 0.39ea0. Tran-
sitions involving an electronic spin flip can furthermore
receive linear Zeeman corrections to their transition en-
ergy in an external magnetic field B, by an amount

∆ωZeeman
0 = geµBB ≈ 5.8× 10−4 eV

(ge
2

)( B

5 T

)
(90)

with ge the effective g-factor and µB the Bohr magne-
ton. For nuclear spin flips, the Zeeman shift is of less
relevance due to the smallness of the nuclear gyromag-
netic ratio. We thus conclude that it is possible to scan
the gaps in the rotational fine structure of the absorption
spectrum for molecules with small rotational splittings,
which include heavy (large M) and weakly bound (large
〈R2〉) diatomics, or moderately large polyatomics (large
moments of inertia, usually around several axes).

Another important way to achieve contiguous fre-
quency coverage is to broaden all of the transition lines
{ω0} at high number densities n. The full width in ω at
half-maximum absorption rate in eq. 8 is

γ = γrad + 2γcol ≈ 1.1× 10−5 eV

(
1 +

γrad

2γcol

)(
n

n0

)
,

(91)

where we took T = 273 K and a molecular mass of
Mmol = 40mP in the collisional width 2γcol defined in
eq. 9. Collisional broadening alone can already bridge
the gap between typical rotational splittings, cfr. eq. 87,
at moderate pressures of 10 bar. The radiative width
γrad = γ0 +ηcoh(r̄−1)γ0 +

∑
i γi can increase the FWHM

even more, especially if r̄ & n/m3 and γ0 is an E1-allowed
decay rate, cfr. eq. 93.

Bulk configuration— The Bulk detector configura-
tion comprises of a large convex volume, V = (0.3 m)3

in Phase I, V = (2 m)3 in Phase II, filled with a single
molecular species at any time. A large-area photodetec-
tor array (PMT in Phase I, MKID array in Phase II)
detects the signal photons. The rest of the container
area is coated with a highly reflective layer, necessary
to retain the fluorescence photons since they are emit-
ted isotropically. Cooperative effects may be ignored for
a bulk container, i.e. ηcoh(r̄ − 1) � 1, as we showed in
sec. II B. Photons from the |1〉 → |0〉 fluorescence chan-
nel are at a danger of being reabsorbed elsewhere in the
detector volume, and are thus more easily quenched af-
ter multiple re-absorptions and re-emissions (we discuss
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FIG. 5. Figures of Stark frequency scanning that show how
electric fields of order Be/µe can shift rotational transition
energy splittings by an O(1) amount providing continuous
coverage. Top panel: Rotational energy levels Erot with quan-
tum numbers (J,M) as a function of electric field E = |E| for
a diatomic molecule with rotational energy constant Be and
permanent electric dipole moment µe. Bottom panel: Ro-
tational energy splittings ωrot

0 for transitions with selection
rules ∆J = ±1 and ∆M = 0,±1 (which includes E1-allowed
transitions), as a function of electric field E. Color coding
and dashing pattern indicate the initial state, and is consis-
tent with the top panel. Only levels with J ≤ 3 are shown;
Stark shifts become less dramatic with increasing J .

optical thickness issues in more detail in sec. III B). Op-
tical thickness is a problem whenever the matrix element
of the |0〉 ↔ |1〉 is E1-allowed and γ0 is thus relatively
large; on the other hand, if |0〉 ↔ |1〉 is E1-forbidden,
then γ0 can usually only dominate over the quenching
rate from eq. 81 at very low number densities, poten-
tially suppressing the absorption rate.

A Bulk detector configuration will therefore largely
rely on radiative decays |1〉 → |i〉 where |i〉 is any inter-
mediate state with negligible occupation probability in
thermal equilibrium. These decays will produce fluores-
cence photons for which the medium is optically trans-



19

parent. Hence, the detectable photon fluorescence rate
ΓB

rad for a Bulk configuration is

ΓB
rad (ω, {ω0}) =

thin∑
i

fiΓabs (ω, {ω0}) , (92)

where it is understood that fi from eq. 86 is to be evalu-
ated for the target level |1〉 with ω0 closest to ω, and that
the sum is to be performed only for intermediate levels |i〉
that produce fluorescence photons for which the molecu-
lar medium is optically thin.

Frequency coverage for a DM search over a broad range
of masses in a bulk detector can be achieved by per-
forming several narrow searches, each with a different
molecule. Covering gaps in the rotational fine structure
of the absorption spectrum can be done in the two ways
mentioned above: scanning at low density or broaden-
ing the lines at high number density. Within the scan-
ning strategy, the optimal regime is to work at a low

number density where γquench .
∑thin
i γi, such that the

fluorescence fraction is large,
∑thin
i fi ≈ 1. The result-

ing narrow linewidth γ means that many (on the or-
der of γ/Be) shots, each at a different set of {ω0}, are
needed for contiguous frequency coverage. Each shot
can thus last a small fraction of the total integration
time tint for the molecule: tshot ∼ (γ/Be)tint. At high
number densities where γ = 2γcol ' Be, only one shot
is needed, but at the cost of a lower fluorescence ra-

tio
∑thin
i fi '

∑thin
i γi/γquench ∝ 1/n. At finite back-

ground rate levels, the scanning method typically pro-
vides better optimum sensitivity. In the limit of zero
background, they yield roughly equivalent sensitivity,
though the broadening method has the advantage that
it can be used for all transitions in all molecules (includ-
ing those without permanent electromagnetic moments),
and is experimentally more straightforward.

Stack configuration— To take full advantage of the
cooperative radiation effects analyzed in sec. II B, the de-
tector volume should be composed out of a planar stack
of slab-like containers made out of highly transparent
material such as glass or silicon, as shown in the bottom
diagram of fig. 4. The signal photons are emitted nearly
perpendicularly to the planes, and could thus be focused
onto a much smaller photosensitive area by a lens or re-
flecting mirror (or an array thereof). Any deviation of
the emission direction from the normal vector is of order
the DM velocity divided by the speed of light, so a high-
resolution photodetector such as an MKID could “image”
the DM velocity distribution as in fig. 2 as a function of
time.

Alternatively, an “artificial stack”, without physical
barriers between the slabs, may be effectively created
by a standing electromagnetic wave pattern in a bulk
container. At the antinodes of the standing waves, the
ground state population could be depleted via resonant
pumping to an intermediate level, while the molecules
would be much less affected near the nodes of the
standing waves. Even if no such suitable intermedi-

ate level is available, the standing wave pattern could
create a spatially-dependent quadratic Stark shift, mov-
ing the molecules off-resonance at the antinodes and on-
resonance at the nodes (or vice versa) at sufficiently small
line widths. This artificial stack approach likely intro-
duces additional complications; an evaluation of its fea-
sibility is beyond the scope of this work.

The aim of the Stack design is to operate in a regime
where the equality

(r̄ − 1)γ0 ∼ γcol, (93)

is roughly satisfied. This accomplishes three goals simul-
taneously: radiation focusing, high radiative efficiency
(ηcoh ≈ 1), and potential contiguous frequency coverage.
The coherent, focused fluorescence rate is:

ΓS
rad(ω, {ω0}) = ηcohΓabs(ω, {ω0}). (94)

The FWHM of the DM absorption lines will be as in
eq. 91 with the radiative width dominating if eq. 93 is
satisfied. Molecules with an E1-allowed transition with
transition dipole moment µ1,0 = 〈1|µe|0〉 in a stacked-
slab configuration have a cooperative radiative width as
in eq. 7, so we have that the ratio controlling the validity
of eq. 93 is

(r̄ − 1)γ0

γcol
=

8|µ1,0|2p0S̄

3mRzσcolvmol
≈ 6.3

p0S̄

mRz
, (95)

for σcol = 102 Å
2
, T = 273 K, and Mmol = 40mp.

The radiation focusing effect analyzed in sec. II B has
several important advantages. It allows for a smaller
photosensitive area, permitting the use of highly sensi-
tive, cryogenic photodetecors such as a TES or MKID
without a prohibitively high cost. In addition, it isolates
the signal from the mostly isotropic environmental back-
grounds (see sec. III C). The direction of the coherent
photons depends on the DM velocity and dispersion as
shown in sec. II B, yielding a spectacular intrinsic sensi-
tivity to the direction of dark matter. Low-dark-count,
10-kilopixel MKIDs as large as (10 mm)2 have already
been built, and would have an intrinsic DM velocity res-
olution of . 10−5 (roughly given by the pixel size divided
by the transverse size of slab) in the two dimensions par-
allel to the stack, i.e. at the sub-percent level fractionally
given the expected DM velocity at 10−3 the speed of light.
Full 3D velocity information could be gleaned over long
integration times because of Earth’s rotation and orbit,
and/or with two experimental setups.

Sensitivity estimates— We quantify the sensitivity
of each detector version in terms of the smallest Rabi
frequency δΩ it can detect at unity signal-to-noise ratio
(SNR) after a shot time tshot. A photodetector with an
intrinsic dark count rate DCR within its bandwidth ∆ω
around an energy ω has a SNR = 1 sensitivity to detected
photon counts at a rate of

δΓdet(ω,∆ω) '

√
ηdetΓbckg + DCR + t−1

shot

tshot
, (96)
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where Γbckg is the true photon background rate imping-
ing on the photodetector with detection efficiency ηdet,
and in the same bandwidth ∆ω. If we define ηγ as the
probability that a radiated photon is detected by the pho-
todetector, then the signal detection rate is

Γdet = ηγΓrad = ηγηradΓabs. (97)

The minimum detectable Rabi frequency δΩ is the Ω for
which Γdet = δΓdet. When the absorption rate at a given
energy ω is dominated by a single resonance with transi-
tion energy ω0 closest to ω, we can write:

δΩ '

√
δΓdetγ[1 + 4(ω − ω0)2/γ2]

ηγηradnV p0
. (98)

In table II, we have compiled the typical on-resonance
sensitivity in terms of δΩ for p0 = 0.1, γ = 2γcol,

σcol = 102 Å
2
, and Mmol = 40mP for each configuration

and phase, assuming Γbckg � DCR + t−1
shot. Comparison

with the signal Rabi frequencies Ω in table III allows one
to estimate the signal-to-noise ratio for many DM can-
didates at a few benchmark frequencies. We shall see
in sec. IV that the Phase I prototypes already explore
new parameter space of some DM candidates, and that
Phase II experiments will be capable of probing previ-
ously unexplored parameter space in all of the DM mod-
els and couplings listed in table III.

In figures 6 and 7, we illustrate many of the con-
siderations in this section so far with a simple case
study, namely the first-excited vibrational level in car-
bon monoxide. Figure 6 shows the inverse time scales of
radiative and collisional dynamics as a function of pres-
sure and temperature. We also show on the same axis
the rotational energy constant Be, and the rate ΓRD to
which radioactive decays can be held in the large BII
setup with low-contaminant materials (before any active
veto). Figure 7 shows in green the absorption rate Γabs

of a kinetically-mixed hidden photon DM particle with
ε = 10−12 (see sec. IV A for more details) for the 12C16O
isotope in the SI setup. The resulting coherent radiation
rate of eq. 94 is plotted in red, about 2–3 orders of magni-
tude below. This is because CO has a rather small transi-
tion electric dipole moment, and thus ηcoh � 1 even with
the assumed stack parameters of S̄/mRz. Molecules with
stronger absorption strengths—such as e.g. HCl, CO2,
and CH4—can achieve ηcoh much closer to 1.

B. Photodetection

In sec. II A, we calculated the absorption rate of the
DM particles of energy ω given a Rabi frequency Ω, or
equivalently the rate at which molecular states with tran-
sition energy ω0 close to ω are excited. The signal de-
tection consists of reading out the fluorescence photons
spontaneously or coherently emitted from these excited
levels, at a rate Γrad = ηradΓabs. However, the photon
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FIG. 6. Dynamic rates of the two-level subsystem |v = 0, J =
1〉 ↔ |v = 1, J = 0〉 in carbon monoxide (CO), as a function
of pressure P . Plotted are the collisional broadening rate
γcol (green), the coherent emission rate in absence/presence
of decoherence—(r̄ − 1)γ0 in dashed red / ηcoh(r̄ − 1)γ0 in
solid red—and the nonradiative quenching rate γvib

quench (or-
ange), for two temperatures T = 100 K (thick) and T = 77 K
(thin). Also shown are the incoherent radiative rate γ0 (blue),
and a benchmark natural radioactive decay rate ΓRD (dashed
purple) before an active veto. The collisional width γcol comes
within a factor of 3 (30) from the rotational energy Be (dashed
black) at the boiling point pressure of 5.5 bar (0.6 bar) at
T = 100 K (T = 77 K). This shows that collisional broaden-
ing is an effective mechanism for frequency scanning. Notice
that because the collisional rate dominates every other dy-
namical timescale, it reduces the coherent emission rate so
that only 1 every O(1000) DM particles absorbed will pro-
duce a photon.

detection rate is typically lower than this radiation rate
Γrad, cfr. 97, by the overall detection efficiency factor

ηγ = ηreflηtransηthickηdet. (99)

We describe our estimates for ηγ below, and show that it
can be O(1) in our setup. We will finish this subsection
with a brief summary of potential photodetectors and
their specifications, including dark count rates.

Four main loss mechanisms are responsible for ηγ ≤ 1,
each with their own efficiency factor ηi as schematically
indicated in eq. 99. They are due to, respectively, ab-
sorption onto the reflective walls of the container with
probability 1− ηrefl, finite transmission probability ηtrans

of glass elements in the optical path, re-absorption and
subsequent fluorescence quenching (if the gas is optically
thick) with probability 1− ηthick, and the intrinsic quan-
tum detection efficiency ηdet of the single-photon counter.
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FIG. 7. Rate of absorption Γabs (solid green) and rate of
focused, coherent fluorescence ΓS

rad (solid red) as a function
of DM energy ω ' m, in the Phase I version of the Stack
configuration, filled with carbon monoxide (the 12C16O iso-
topologue) at a pressure of 5 bar, temperature of 100 K, and
“stack enhancement parameter” S̄/mRz ∼ 10, cfr. eq. 7. The
case study shown assumes a kinetically-mixed photon with
ε = 10−12, zoomed in on the energy range around CO’s first
vibrational absorption line |v = 0〉 → |v = 1〉 at ωe = 0.27 eV,
with rotational fine structure of splitting 2Be clearly visible.
This plot shows that the thermally occupied rotational levels
of the ground state allows us to expand the frequency cover-
age of vibrational and electronic transitions. In dashed green,
we also show the absorption rate for 12C18O, displaying the
isotope shift on the rovibrational structure.

In what follows, we discuss how each of the ηi can be of
order unity.

Reflection efficiency— Fluorescence photons may
be absorbed by the (not perfectly) reflective walls of
the gas container in the Bulk configuration. We en-
vision that the container walls are coated with a ma-
terial with high reflectance R, which depends on the
wavelength, polarization, and incidence angle of the in-
coming photon. Appropriately averaging over polariza-
tions and incident angles for an effective wavelength-
dependent reflectance R̄(ω), a photon can be reflected
an expected 1/[1 − R̄(ω)] times before being absorbed
onto the coating. The loss fraction of signal photons will
be small ηrefl ≈ 1, as long as Adet/[V

2/3[1− R̄(ω)] &
1 for a detector volume V with an aspect ratio near
unity, and an area Adet instrumented with photodetec-
tors. For photon energies ω . 1.9 eV or wavelengths
λγ & 650 nm, silver has 1 − R̄(ω) . 10−2. For higher-
energy light, aluminum is better with 1 − R̄(ω) . 10−1

for all λ > 100 nm. Dielectric coatings can achieve even

much lower absorbance values 1 − R̄ � 10−2 in narrow
energy ranges over all wavelengths of interest (100 nm–
10 µm). High-reflectance coatings can thus allow for
a small photodetector-instrumented area Adet, of linear

size 1/
√

1− R̄(ω) smaller than the bulk detector size,
while keeping ηrefl ∼ 1.

Transmission efficiency— A Stack detector config-
uration does not require reflective coatings, since the ra-
diation is focused; in fact, it will typically need anti -
reflective (AR) coatings on the interfaces between the
gas (with index of refraction close to 1) and the mate-
rial separating the different slabs, such as glass or silicon,
that will have a substantially higher index of refraction.
Graded-index coatings can achieve 0.1% reflection over
a broad range of wavelengths, while even better perfor-
mance may be expected over narrow wavelength ranges
with thin-film interference coatings. Bulk absorption by
the slab container material must also be considered. Syn-
thetic quartz glasses can easily achieve absorption depths
in excess of 1 cm in the wavelength range 180 nm–2.5 µm,
while silicon exhibits this property for wavelengths above
1.1 µm, covering our energy range of interest.

Optical thickness— Signal photons can get re-
absorbed and subsequently quenched if the gas sam-
ple is optically thick. For a low-density gas of two-
level molecules with an electric-dipole transition moment
µ1,0 = |〈1|µe|0〉|, the light intensity falls off exponentially
as ∝ e−αl, with l the optical path length and α(ω) the at-
tenuation coefficient for light with an angular frequency
ω near the molecular transition energy ω0:

α(ω) =
2ω0np0µ

2
1,0

γcol

1

1 + (ω−ω0)2

γ2
col

, (100)

≈
ω=ω0

1

0.09 mm

(ω0

eV

)( µ1,0

10−2ea0

)2(
p0

1/10

)
.

Here, we employ the collisionally-broadened lineshape,
though Doppler broadening can also be important at
sufficiently low densities. The inverse α(ω)−1 is the
mean absorption depth, which can be quite short for
|ω − ω0| < γcol, as the second line of eq. 100 shows. For
this reason, a Bulk detector will rely on fluorescent de-
cays to intermediate levels which are not thermally occu-
pied. It follows from eq. 100 that the associated photons
from those decays will travel macroscopic distances, be-
cause levels that could resonantly absorb them have ex-
ponentially small occupation probabilities pi ∝ e−Ei/T ,
while off-resonant absorption is highly suppressed by the
Lorentzian line-shape factor, so ηthick ≈ 1.

Even for thin Stack detectors, the on-resonance ab-
sorption depth α(ω0)−1 can be smaller than the pro-
posed integrated thickness, D = 1 mm for Phase I and
D = 100 mm for Phase II. However, in the regime of
eq. 93 where cooperative effects for DM absorption are
in action, the radiated photons themselves will also in-
teract cooperatively with the molecular medium. Dicke’s
seminal work on superradiance showed that due to a
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phase-matching effect, a photon plane wave can expe-
rience coherent scattering in the direction of the incom-
ing wave [5]. This coherent forward scattering in ex-
tended volumes was further developed in refs. [18, 19],
showing that for large-Fresnel-number samples (such as
a slab), photons are re-emitted in a narrow “lobes” pri-
marily in the forward direction. Recent theoretical [20]
and experimental [21] work shows that this effect is also
obeyed for a single photon absorbed by a sufficiently
strong dipole transition. Single-photon superradiance in
extended volumes is a complicated subject of intense re-
cent study [22, 23], and beyond the scope of this work.
Further work is needed to show how far a photon will
travel in this regime, and to what extent the directional
information is preserved after multiple coherent scatter-
ing events. This will be crucial for a Phase II version of
the Stack configuration.

Photodetector performance— The sensitivity of
our proposed setups is ultimately limited by photode-
tector parameters. The key specifications not only in-
clude the quantum detection efficiency ηdet, but also the
dark count rate (DCR), photosensitive area (Adet), en-
ergy range (ωmin—ωmax), energy resolution (∆ω), timing
jitter (∆t), and operating temperature. Reviews on these
aspects of single-photon counting detectors can be found
in refs. [24, 25].

The Bulk configuration requires a large photosensi-
tive area to keep ηrefl ≈ 1. In a prototype Phase I,
we propose utilizing off-the-shelf photomultiplier tubes
(PMT) with photosensitive area Adet = (30 cm)2. These
allow for (near-)room-temperature operation at visible
and near-infrared wavelengths with detection efficiency
ηdet ≈ 40 %, and DCR ≈ 1 Hz (when they are cooled a
few degrees below freezing) [26–29]. Timing jitter ∆t is
sub-nanosecond, aiding in timing-based rejection of en-
vironmental backgrounds, while the intrinsic energy res-
olution is quite poor.

For the Phase II Bulk setup, we assume state-of-the-
art photodetector arrays based on microwave kinetic in-
ductance detectors (MKID) [30]. These cryogenic pho-
todetectors can be operated as single-photon counters be-
tween ultraviolet wavelengths of 100 nm, all the way to
mid-infrared wavelengths greater than 5 µm, while re-
taining energy resolution of order ∆ω ∼ 0.1 eV as well
as good timing resolution ∆t ∼ 10−6 s, with further im-
provements on the horizon [31]. These devices have es-
sentially no intrinsic dark counts at energies ω a few times
above their energy resolution; any non-signal counts must
be due to true environmental photons. Their quantum
efficiency is already good even for mid-infrared photons
(ηdet > 0.2), and excellent for wavelengths above 500 nm
(ηdet > 0.5).

Crucially for our purposes, it is the first cryogenic pho-
todetector technology to have been multiplexed into ar-
rays of 2 × 104 “pixels” [32, 33], already yielding pho-
tosensitive areas as large as Adet ∼ (1 cm)2; larger ar-
rays are already under development [34]. (Most cryogenic
single-photon counters rely on the increase in tempera-

ture in a superconducting volume from the impinging
photon’s energy, so any one such volume must necessar-
ily be microscopic.) Anticipating that MKID technology
matures even further, we assume a photosensitive area
of Adet ∼ (10 cm)2 for the future BII setup volume of
V = (2 m)3, where it would occupy a 10−3 fraction of
the container area and thus require tuned dielectric coat-
ings with 1− R̄ ∼ 10−3.

In the Stack configuration, the photons can be focused
onto a small area of order 10−6 the transverse area of
the molecular container. As such, there is no need for
particularly large arrays even in the larger Phase II ver-
sion, which would require a minimal photosensitive area
Adet ∼ O(mm2). MKIDs would perform even better as
the smaller phase space of the signal photons allows them
to make use of microlenses to steer the photons on their
inductive elements [31]. Over such relatively small areas,
transition edge sensors (TES) [35] and other cryogenic
detectors [24, 25, 36] may also be employed, with similar
and potentially better specifications.

C. Environmental backgrounds

Assuming that DCR can be controlled down to the
desired levels specified above, we expect three primary
sources of background in our energy range: black body
radiation (BBR), natural and cosmogenic radioactivity,
and cosmic rays.

Blackbody radiation— The molecules in the detec-
tor volume have to be kept in the gaseous phase in order
to retain their resonant absorption characteristics. For
all but a few diatomic molecules suitable for our setup,
this corresponds to temperatures larger than 100 K. The
accompanying blackbody radiation (BBR) at a tempera-
ture T in thermal equilibrium results in an irreducible
background photon rate onto the photosensitive area
Adet of:

ΓBBR ' ∆ω
ω2

π2
e−ω/TAdet, (101)

in a band ∆ω around any frequency ω. Fake counts from
BBR will dominate over dark counts in the photodetec-
tor whenever ηdetΓBBR & DCR, cfr. eq. 96. Given the
exponential tail in eq. 101, this turnover point occurs at
an energy ω that is not very sensitive to the other experi-
mental specifications. We foresee blackbody radiation to
be the dominant background for ω < 1.5 eV in any setup
at 300 K (BI), and for ω < 0.5 eV in a 100 K detector
(BII, SI, SII). These turnover points are clearly visible as
the “kinks” in our sensitivity estimates in e.g. fig. 8.

Natural and cosmogenic radioactivity— Back-
ground photons in the energy range of interest can also
originate from radioactive decays in the surrounding ma-
terial or even the molecular gas itself. Care must be taken
to passively mitigate and, in the Phase II versions of our
setups, to actively veto this background. Gamma rays
will be the main culprit due to their large penetration
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length, which is about one and three orders of magnitude
larger than that of beta and alpha particles, respectively,
at 1 MeV. Gamma rays in the surrounding material can
dislodge surface electrons via the photoelectric effect or
directly ionize the molecules in the bulk (among other
channels), which can cause molecular excitations in the
frequency band of interest, or even directly trigger the
photodetector.

A later-stage detector proposal should include a de-
tailed detector simulation of these effects; here we pro-
vide parametric estimates showing the feasibility of pas-
sive and active mechanisms to keep the rate of radioac-
tive decays ΓRD below the inverse shot time or the DCR,
whichever is larger. When ΓRD . DCR + t−1

shot, radioac-
tive backgrounds are subdominant. The attenuation co-
efficient for gammas at 1 MeV is αγ ≈ 6× 10−2 cm2g−1,
giving an attenuation length of about 6 cm in quartz
and 1.5 cm in lead for example. The main sources of
naturally-occurring radioactivity are 238U, 232Th, and
40K, each giving roughly similar contributions, so we will
only estimate contributions from the first. The natu-
ral mass-fraction abundance of 238U is fm ≈ 10−6g/g,
while its half-life is t1/2 ≈ 4.5 × 109 y. Supposing
that the container is a cubic volume with boundary area
AδV = 6(2 m)3 surrounded by a material of quartz’s den-
sity, we find a typical radioactive decay rate of O(104 Hz)
in a boundary layer with thickness of order the pen-
etration length. The same estimate for a high-purity
lead shield with a specific density ρPb ≈ 11g/cm

3
and

a fm ∼ 10−12 mass fraction of 238U, similar to those
used by other experiments [37], gives a rate of

Γ
238U
RD ∼ ρPbfmAδV

αγm(238U)

ln 2

t1/2
∼ O(10−2 Hz). (102)

Besides naturally-occurring radioactive isotopes with
lifetimes on the order of billions of years, there will
generally also be trace concentrations of cosmogenically-
activated radiaoactive isotopes in the molecular medium
or the container materials. Even though these contami-
nants occur in much smaller mass fractions, their decay
rates are larger, so that they may compete with radioac-
tivity from 238U, 232Th, and 40K. A particularly dan-
gerous isotope is 14C, produced by cosmic-ray collisions
high up in the atmosphere, and consequently present at
a fractional number density of 10−12 relative to that of
12C in all organic material not buried for longer than its
half-life of t1/2 ≈ 5730 y. For example, if the molecular
medium contains carbon atoms (e.g. CO), then one can
expect a cosmogenic radioactivity contribution of:

Γ
14C
RD = n(14C)V

ln 2

t1/2
≈ 102 Hz

(
n(14C)

10−12nst

)
. (103)

Carbon-containing molecules derived from fossil fuels can
have greatly depleted 14C content. Certain petroleum
reservoirs have been shown to contain 10−18 fractional
concentration of the radioactive isotope [38], making this

background completely subdominant even at large pres-
sures. We foresee that similar provisions can be taken for
other cosmogenically-activated radioactive isotopes.

Even a background radioactive rate of ΓRD ∼ 10−2 Hz,
potentially achievable with a high-purity shield and keep-
ing radioactive contaminants at a minimum, poses a huge
challenge to a typical DM absorption detector in the
ω ∼ eV range. Other detector proposals [39–45] em-
ploy bulk target volumes based on nonresonant absorp-
tion onto liquids or solids, and aim to be signal-count-
limited at kg-year exposures, requiring powerful active
veto methods for large volumes. Our Bulk and Stack con-
figurations each have characteristic properties that pro-
vide additional passive mitigation mechanisms not avail-
able to the aforementioned nonresonant absorption tar-
gets.

The Bulk configuration in scanning mode has three
distinct advantages regarding passive radioactive back-
ground mitigation. Firstly, by dividing the full integra-
tion time over an O(1) bandwidth into many different
shots with independent, narrow-band DM response func-
tions, the radioactive background becomes already neg-
ligible when ΓRD . t−1

shot—a much looser criterion than

ΓRD . t−1
int .

Secondly, one can look for DM signals Γdet smaller
than ΓRD even when ΓRD > t−1

shot (as we have implic-
itly assumed in eq. 96) because there is a natural way
to modulate the DM signal rate while keeping the back-
ground rate constant. For example, when in neighbor-
ing shots one has average total background counts of
Γbckgtshot & 1, one is sensitive to signal rates as low as

Γdet ∼
√

Γbckg/tshot (assuming ηdet = 1 for simplicity).
Such averaging effects and differential response tests are
not typically available in most bulk detectors, which do
not have a natural way to “turn off” the signal while
keeping the background rate constant.

Thirdly, a Bulk detector in scanning mode can be op-
erated at such low density that a typical fast electron
only has a small probability P eex of exciting a molecular
state in the frequency band of interest, since that process
does not receive a resonant enhancement factor:

P eex ' nσeexL ∼ 10−3

(
n

10−2nst

)(
σeex

10−4αa2
0

)(
L

2 m

)
,

(104)

approximately valid for nσeexL . 1, and L the typical lin-
ear size of the detector volume. Above, σeex should be the
(velocity-averaged) cross-section for a typical electron to
excite molecular states that give rise to fluorescence pho-
tons within a detector’s bandwidth around the frequency
of interest, for which we have chosen a plausible value for
an E1-allowed transition in the numerical estimate [46,
§148]. Forbidden transitions have even lower σeex that
scale like α3a2

0 or even higher powers of the fine struc-
ture constant. When NeP

e
ex � 1, where Ne is the typical

number of electrons produced in a radioactive decay, the
radioactive background in the band of interest is further
suppressed by this factor.
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The Stack configuration has the remarkable property
that 84% of the signal is emitted in a cone of opening
angle 2v0 ≈ 5.4 arcmin and solid angle ∆Ω = πv2

0 , a
1.5× 10−7 fraction of the full solid angle ∆Ω = 4π. Ra-
dioactive backgrounds from the molecular volume can
thus likely be ignored entirely, reducing the problem
of radioactive contamination only to the photodetec-
tor material and mount, a dramatically smaller volume
V ∼ O(mm3).

Furthermore, an active veto system consisting of scin-
tillating material and PMTs surrounding the detector
volume may be employed. Radioactive decays give rise to
many high-energy particles. When they trigger the scin-
tillating material, any “signal” in the photodetector in a
short time span around the trigger time in the photode-
tector can be vetoed. We note that a typical radioactive
decay chain releases dozens of primary gammas and be-
tas, as well as a bunch of secondaries, so the trigger effi-
ciency on any one photon or electron need not be high.
As long as the photodetector has a sufficiently short jit-
ter time ∆t and the molecular medium a sufficiently fast
relaxation rate to thermal equilibrium (through radiative
and nonradiative channels), the resulting dead time can
be made negligible. Roughly, one requires

ΓRD � min

{
(∆t)−1, γ0 +

∑
i

γi + γquench

}
(105)

to leave the duty cycle of the experiment essentially unaf-
fected. The timing jitter requirements are easily satisfied
by many orders of magnitude. Figure 6 shows that the
detector relaxation is sufficiently fast even for low-lying
vibrational levels, if they have dipole-allowed radiative
decays. Only for vibrational states that have exclusively
E1-forbidden radiative decay channels, does eq. 105 be-
come hard to satisfy. Given the wealth of passive mech-
anisms on offer to keep the radioactive background un-
der control, the setups under consideration do not re-
quire extremely efficient active veto systems, especially
in comparison to other proposed experiments in this en-
ergy range. The Phase I prototypes can likely forego a
large-scale active veto system altogether.

Cosmic rays— Cosmic muons can also make up a
considerable fraction of the background. At sea level, the
vertical muon flux density is about 70 m−2s−1sr−1 [47,
48]. The cosmic muon flux is much lower under-
ground, falling to an integrated vertical flux density of
10−3 m−2s−1 about 1 km deep in standard rock (2.65 km
water-equivalent), and 10−5 m−2s−1 at 2 km depth [49–
53]. Underground operation in a mine of moderate depth
automatically ensures that the cosmic muon background
is subdominant to that of radioactivity. Phase I pro-
totypes can likely get away with surface-level operation
when outfitted with a modest muon veto system that has
a rejection power of 102, one that can possibly work in
conjunction with a radioactivity veto.

D. Signal discrimination strategies

From the discussion so far, a signal discrimination
strategy emerges. Radioactive and cosmic background
events can be identified by the fact that they result
in multiple photon counts and ionized electrons. All
environmental and detector backgrounds will be dis-
tributed over a broad energy range. In contrast, the near-
monochromatic DM signal can only excite transitions at
one particular transition energy, and cause a single fluo-
rescence photon at one frequency (or at most a handful
of frequencies, if there are decay channels to several in-
termediate states). Below, we outline that more detailed
follow-up studies can unequivocally verify the DM ori-
gin of any potential signal, and furthermore determine
properties such as mass, spin, interaction type, and 3D
velocity with pinpoint precision. The spectacular dis-
crimination power of this type of detector relies on three
different “handles”: energy response, selection rules, and
spatial coherence.

Energy response— The highly resonant response of
the detector at low number densities can be used to con-
fine the DM signal to better than 10−6 fractional fre-
quency precision, and even to perform precision studies of
its lineshape. A cryogenic photodetector with energy res-
olution of ∆ω . 0.1 eV can resolve both electronic split-
tings and vibrational fine structure in most molecules.
Temperature modulation will change the relative popu-
lations of rotational levels, and thus the absorption rates
in the rotational fine structure. By varying the pres-
sure, one can determine how far off resonance the signal
is. Scanning with external electromagnetic fields and use
of different molecular species—and isotopes of the same
species—can be employed to further hone in on the true
energy of the signal, i.e. the DM mass.

What is the ultimate energy resolution? Collisional
broadening rates can be made arbitrarily small by lower-
ing the pressure, while the fractional radiative linewidth
is (γ0 +

∑
i γi)/ω0 � α3 ≈ 4 × 10−7 and typically sev-

eral orders of magnitude smaller even for dipole-allowed
decays. For photon absorption, the Doppler width due
to molecular motion often determines the minimal frac-
tional linewidth of the signal at low number densities.

Doppler broadening of the absorption line for a non-
relativistic particle is less pronounced than for a (neces-
sarily relativistic) photon. Using momentum and energy
conservation for an inelastic collision with initial (final)
molecular velocity v1 (v2) during which a dark matter
particle with mass m, energy ω, and velocity v is ab-
sorbed onto an internal molecular state with transition
energy ω0, we find:

Mmolv1 +mv = Mmolv2;
Mmolv

2
1

2
+ ω = ω0 +

Mmolv
2
2

2

⇒ ω0 = ω −mv1 · v −
1

2

m2

Mmol
v2. (106)

The third term on the RHS is quantitatively subdomi-
nant, and also does not depend on the molecule’s initial
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velocity. Approximating the dark matter mass with its
total energy ω, and expanding in small velocities, we then
finally arrive at the condition for absorption:

ω = ω0 (1 + v1 · v) (107)

Because the molecules in the gas move at different veloc-
ities, they can absorb dark matter particles of differing
energies ω. Defining the molecular speed in the dark mat-
ter’s velocity direction as v1,‖ ≡ v1 ·v/|v|, we can express
the probability of finding a molecule between v1,‖ and
v1,‖ + dv1,‖ as proportional to the Boltzmann-weighted

exp{−Mmolv
2
1,‖/2T}dv1,‖. Translating this to a normal-

ized molecular transition energy distribution via eq. 107,
we find

gDop
0 (ω0, ω

′
0) =

1√
2π∆2

exp

[
− (ω0 − ω′0)2

2∆(v)2

]
, (108)

∆(v) ≡ ω0v

√
T

Mmol
, (109)

with a fractional width of ∆(v)/ω0 ≈ 4 × 10−9(v/10−3)
for H2 gas at room temperature, and even lower for heav-
ier molecules and/or colder temperatures. This width
∆(v) is a factor of v ∼ 10−3 smaller than the equivalent
Doppler width for photon absorption. In case Doppler
broadening does dominate over both radiative and col-
lisional broadening, when ∆(v) � γ, then the result of
eq. 10 should be convoluted with the line shape of eq. 108
to give:

ΓDop
abs (ω, ω0) ' NΩ2∆−1

√
π

8
exp

[
− (ω − ω0)2

2∆(v)2

]
, (110)

at least for |ω − ω0|/∆ not too large. The off-resonance
tails are more accurately described by the Voigt profile,
a convolution of both the Lorentzian and Gaussian line
shapes.

The narrow fractional width allows for extremely nar-
row spectroscopic studies of the signal line shape at low
pressures (when collisional broadening can be ignored),
and would be a great signal discriminant should anoma-
lous fluorescence be seen in the experiment. A single ve-
locity component of the dark matter field ensemble has
an energy ω = m(1 + v2/2) in terms of its square veloc-
ity in the lab frame. The DM’s 3D velocity distribution
f(v) can be expected to closely resemble the virialized
distribution of eq. 14, yielding a fractional underlying
signal frequency width of order v2

0/2 ≈ 3 × 10−7. Be-
cause ∆(v)/ω0v

2
0 � 1, the molecular resonance can re-

solve the kinetic energy distribution of DM! In this “re-
solved” regime, the absorption rate as a function of DM
mass m is :

ΓDM
abs (m,ω0) '

∫
d3v f(v)ΓDop

abs

(
m(1 + v2/2), ω0

)
' NΩ2

23/2πv3
0

∫
d3v

exp
{
− (v−vlab)2

v20
− [m(1+v2/2)−ω0]2

2∆(v)2

}
∆(v)

.

(111)

By tuning ω0 and at large enough statistics, one could
determine the DM mass m, the velocity dispersion v0,
and the magnitude of the relative velocity |vlab| (using
diurnal/annual modulation). One could possibly even
discern finer details of the velocity distribution f(v), such
as the Galactic escape velocity (not taken into account by
the virialized distribution in the second line of eq. 111).
Note that the integrand in the second line of eq. 111 is
technically only valid for velocities where ∆(v)� γ; one
should use the full Voigt absorption line shape for the low
velocities v where this is no longer a good approximation.

Selection rules— If a near-monochromatic signal
were to be detected at some frequency ω near a transi-
tion frequency ω0, then one can determine the properties
(such as the quantum numbers) of the initial and final
states. This is possible because small polyatomic sys-
tems are simple enough to have been well-characterized
both experimentally and theoretically, as is evident from
secs. II C and II D.

Any nonthermal SM background must come from in-
teractions with external photons or charged particles,
which to leading order interact with a Hamiltonian pro-
portional to the electric dipole moment µe, giving Ω ∝
|µ1,0|. This fact leads to the well-known dipole selection
rules for the leading-strength transitions.

DM absorption does not necessarily obey these rules.
A scalar DM particle may leave the angular state of the
molecule unaffected via a “monopole” transition (∆J =
0), while a pseudoscalar DM particle may cause “spin-
dipole” transitions from a spin-singlet ground state to a
spin-triplet excited state (∆S 6= 0), both at leading or-
der. These processes are normally highly forbidden in
small polyatomic systems. Even when the DM particle
primarily causes ordinary dipole transitions, one could
test if rather than coupling to the dipole moment of elec-
tric charge, it instead couples to the dipole moment of
e.g. baryon number, lepton number, or any linear com-
bination thereof. Although we do not discuss it in this
work, dark matter candidates with spin ≥ 2 would dom-
inantly cause higher multipole transitions.

The modularity of the proposed detector allows for tar-
geted studies with different types of molecules, each hav-
ing a transition energy ω0 near a potential candidate sig-
nal at ω. Should a DM signal be seen in a broad frequency
search, these targeted studies can in principle determine
the form of the interaction Hamiltonian δH.

Spatial coherence— The nonrelativistic velocity dis-
tribution f(v) leads to a characteristic spatial (and tem-
poral) coherence of the perturbing wave that is imprinted
onto the molecular emission via the correlation function
in eq. 19, in turn leading to the dramatic focusing ef-
fect for a slab-like container discussed in sec. II B. This
emission pattern cannot be mimicked by any standard
SM background. A robust prediction for such a detector
shape is that the center of the emission cones, with off-
set from the normal direction proportional to vlab (see
eqs. 24 and 25), would precess on a diurnal and annual
basis due to the Earth’s spin and orbit around the Sun,
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respectively, with known phases, directions, and ampli-
tudes. In addition, these measurements of vlab would
have to agree with the magnitude |vlab| derived from
eq. 111; likewise, v0 as determined by the opening an-
gle of the emission cone must agree with the fractional
frequency linewidth in eq. 111. These observations can
also be compared against astrophysical inferences of the
DM’s velocity distribution. Finally, a precision line study
might reveal additional information not otherwise attain-
able, such as the existence of DM streams and the relative
rotation of the DM halo and the Galactic disk.

IV. DARK MATTER SENSITIVITY

In this section, we present sensitivity projections of the
proposed setups to the parameter space of specific DM
models, after briefly reviewing the chief interactions of
each DM candidate. We have classified the models in
terms of spin and parity of the DM boson, starting off
with spin-1 vectors in sec. IV A, and then continuing with
parity-even, spin-0 scalars in sec. IV B and parity-odd,
spin-0 pseudoscalars in sec. IV C. We leave a treatment
of DM particles with spin 2 and higher to future work.
We summarize the dark matter candidates and couplings,
as well as the corresponding transitions they can mediate,
in table III.

A. Vectors

We will start with two vector dark matter candidates,
namely a hidden photon kinetically mixed with the usual
electromagnetic field, and a new photon that couples
to baryon-minus-lepton number B − L, both having a
Stückelberg mass mγ′ . We focus on these two cases be-
cause of pedagogy (simple comparisons can be made to
the interactions of the normal photon), and because they
embody simple extensions of the Standard Model that
are theoretically consistent up to very high energy scales.
Other types of vectors are certainly possible, but most of
the models include other states, like Higgs-like scalars or
anomalons, whose interactions are often independently
constrained; we ignore those theories only for the sake of
brevity.

Weakly-coupled, massive vectors can be produced in
the early Universe. A natural and calculable relic abun-
dance can arise from vector fluctuations during the infla-
tionary era (if the Stückelberg mass is “on” then), with
a present-day relic energy density of

ργ′ ≈ ρDM

( mγ′

1 eV

)1/2
(

HI

5× 1012 GeV

)2

, (112)

where HI is the Hubble scale during the last few e-folds
of inflation [54]. We see that the vector can make up
all of the DM in the mass range of interest if the Hub-
ble scale is between 1012 GeV and 1013 GeV. The field

misalignment mechanism, on the other hand, is not ef-
fective unless large interactions with curvature invariants
are present [55].

Kinetically mixed photon.— If a light vector par-
ticle is a low-energy remnant of a sector that is coupled
to the SM at high energies, the associated vector field A′µ
can and will generically have effective operators coupling
it to the SM even if none of the SM fields are charged un-
der the new U(1) gauge symmetry [56, 57]. The lowest-
dimensional such operator, one that can be expected
to capture the dominant effective interactions with the
SM at low energies, is the kinetic mixing term FµνF

′µν

wherein the “hidden” field strength F ′µν ≡ ∂µA′ν − ∂νA′µ
couples to the equivalent quantity Fµν of the SM electro-
magnetic field Aµ. The strength of this mixing is con-
ventionally quantified by a dimensionless parameter ε in
the Lagrangian:

Lgauge =− 1

4
FµνF

µν − 1

4
F ′µνF

′µν +
1

2
εFµνF

′µν

+
1

2
m2
γ′A
′
µA
′µ − eAµJµEM, (113)

with mγ′ the hidden photon’s Stückelberg mass, and
JµEM =

∑
ψ qψψ̄γ

µψ the electromagnetic vector current.
The above Lagrangian, written in the “gauge basis”, can
be made to have diagonal kinetic and mass terms with a
field redefinition, transforming it into the so-called phys-
ical basis:

Lphysical =− 1

4
FµνF

µν − 1

4
F ′µνF

′µν +
1

2
m2
γ′A
′
µA
′µ

− e(Aµ + εA′µ)JµEM, (114)

now rewritten in terms of redefined fields Aµ and A′µ.
Diagonalizing the terms that govern the propagation in
vacuum comes at the cost of introducing an interaction
of the massive photon state with the EM vector current,
suppressed by ε relative to that of the massless photon. In
the physical basis, electromagnetic charges interact with
a specific linear combination of fields Aeff

µ = Aµ+εA′µ, so
matrix elements for interactions of A′µ with the molecule
can be found simply by rescaling those of the photon
Aµ by a factor of ε. (This is strictly only true for elec-
tric dipole (E1) transitions. For magnetic dipole (M1),
electric quadrupole (E2), and even higher-order transi-
tions, whose matrix elements all involve factors of k · x,
the matrix elements of a non-relativistic A′µ are further
suppressed by factors of velocity v = |k|/mγ′ relative to
those of the necessarily relativistic photon Aµ.)

The propagation of the two vector fields is qualitatively
different, however. In vacuum, the A′µ = (φ′,A′) mass

eigenstate obeys the massive wave equation (∂2
t −∇

2 +
m2
γ′)A

′
µ = 0, which means the field can support nonrel-

ativistic solutions as well as a longitudinal modes, which
have a vector potential aligned with the propagation ve-
locity v (i.e. A′ · v 6= 0). The dark matter state is ex-
pected to be well-described by a nonrelativistic, classical
solution of this wave equation; a single momentum com-
ponent of the whole DM ensemble has a vector potential
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DM type Interaction Hamiltonian δH Transition type and selection rules Ω
[
rad s−1

]

parity-even

(dme + de)φ̃keReR vib ∆v = 1,∆J = 0 5.5× 10−9 dme
106

(3dme + 4de)φ̃
ke
2

(R−Re)2 vib ∆v = 2,∆J = 0 7.1× 10−10 dme
106

(dg +Qm̂qdm̂q )φ̃
∇2
N

2M
vib ∆v = 2,∆J = 0 2.4× 10−11 dm̂q

106

Qm̂q
0.1

(∆Qidi)M(∇φ̃ ·R)
vib ∆v = 1,∆J = ±1 3.0× 10−10 di

106
∆Qi
10−2

rot ∆J = 1 4.1× 10−13 di
102

∆Qi
10−2

(dme + de)φ̃
∇2
e

2me
el ∆Λ = 0,∆i = 0 9.5× 10−10 dme

106

spin-0
dmeme∇φ̃ · re el |∆Λ| ≤ 1,∆i = 1 7.5× 10−11 dme

106

parity-odd

GaNN ∂taσN · −i∇NM

vib ∆v = 1,∆J = ±1, |∆SN | ≤ 1 1.7× 10−10 GaNN
10−8/GeV

rot ∆J = 1, |∆SN | = 1 2.5× 10−11 GaNN
10−8/GeV

dθ
fa
aσN ·E

vib ∆v = 1,∆J = ±1, |∆SN | ≤ 1 4.0× 10−12 108 GeV
fa

rot ∆J = 1, |∆SN | ≤ 1 5.8× 10−13 108 GeV
fa

Gaee ∂taσe · −i∇e
me

el |∆Λ| ≤ 1,∆i = 1, |∆Se| ≤ 1 4.0× 10−10 Gaee
10−10/GeV

el |∆Λ| ≤ 1,∆i = 1 1.5× 10−6 ε
10−14

kinetic mixing εµe ·E′ vib ∆v = 1,∆J = ±1 1.3× 10−5 ε
10−12

spin-1
rot ∆J = 1 1.5× 10−2 ε

10−10

el |∆Λ| ≤ 1,∆i = 1 5.0× 10−6 g
10−14

B − L charge µB−L ·EB−L vib ∆v = 1,∆J = ±1 4.3× 10−7 g
10−14

rot ∆J = 1 5.0× 10−10 g
10−18

TABLE III. Dark matter candidates classified by their spin, parity, and interaction Hamiltonian δH, along with the types and
strengths of transitions they can induce. Transition types considered include those of the electronic (el), vibrational (vib), and
rotational (rot) kind; bold face is used whenever the transition type can be E1-allowed and thus used in the Stack configuration.
The fifth column contains the diatomic-molecule selection rules on molecular-axis angular momentum projection Λ and inversion
i for electronic transitions, and vibrational quantum number v and total angular momentum J for vibrational and rotational
transitions. Unless otherwise noted, the total nuclear spin SN and electronic spin Se do not change in absence of spin-orbit
coupling. Rabi frequencies Ω are quoted at ω0 = 5 meV, 0.4 eV, 0.8 eV, 8 eV for rotational, ∆v = 1, ∆v = 2 vibrational,
and electronic transitions, respectively, using experimentally allowed benchmark values of the coupling at m = ω0. Numerical
estimates use FC factors of 10−2, ∆J = 1 rotational matrix elements of 1/

√
3, Re = a0, δe = δe,1 = δe,2 = 1, ∆qB−L = 1, and

matrix element estimates from eqs. 47,48,49,53,58,67,74,80.

of the form:

A′(t,x) = A′0n̂ cos
[
mγ′(1 + v2/2)t−mγ′v · x + αv

]
.

(115)

The full state of the field should be regarded as a mixed
state composed out of many of these different velocity
components drawn from a probability distribution f(v),
each with random phases αv and possibly also random
directions n̂. We assume the velocity distribution to be
close to that of eq. 14, and the direction n̂ of the vec-
tor potential to have a coherence time at least as long as
1/mv2

0 but shorter than the time scale of the experiment.
For reasons outlined in appendix A, all of our main re-

sults remain valid even when the classical approximation
breaks down, at hidden photon masses mγ′ & 15 eV. In
this regime, the local dark-matter field occupation num-
bers become so low that e.g. 〈|A′|2〉 � 〈|A′|〉2.

In Lorenz gauge (∂µA
′µ = 0), the hidden electric

scalar potential φ′ can be determined from the relation
∂tφ
′ = −∇ · A′, from which it follows that it is sup-

pressed relative to the hidden vector potential, as typ-
ically φ′ ∼ v|A′|. The stress-energy tensor contribu-
tion Tµν = F ′µλ F

′λν+(1/4)gµνF ′λσF
′λσ+(1/2)m2

γ′A
′µA′ν

from the massive photon state can be evaluated on the
solution of eq. 115, and contributes as an effective fluid
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with nearly zero average pressure, and energy density:

ργ′ ≡ T 00 ' 1

2
m2
γ′ |A′0|

2
. (116)

Expressed as fields rather than potentials, we see that the
hidden magnetic field B′ =∇×A′ is velocity suppressed
relative to the hidden electric field E′ = −∇φ′ − ∂tA′,
which oscillates with an amplitude of

∣∣E′0∣∣ ' mγ′ |A′0| '
√

2ργ′ ≈ 3.3× 103 V/m

(
ργ′

ρDM

)1/2

.

(117)

along the direction of the A′ potential, up to velocity-
suppressed corrections. Because of the enormous size of
this hidden electric field, which in some ways is equiva-
lent to shining a kilowatt-class “hidden” laser with beam
waist of order the detector size of 30 cm (and approach-
ing megawatt power levels for a 3-meter detector size), it
is possible to have appreciable event rates in absorptive
media even for tiny values of the mixing parameter ε, as
we showed already in fig. 6.

A particle ψ with mass mψ, electromagnetic charge qψ
coupled to the two photons as in eq. 114 has nonrelativis-
tic dynamics dictated by the Hamiltonian

Hψ =
1

2mψ
(−i∇ψ − eqψAeff)

2
+ eqψφeff (118)

'
[
− 1

2mψ
∇2
ψ + V

]
+

[
i
qψεe

mψ
A′ ·∇ψ

]
+ . . . ,

where we have ignored spin-orbit coupling, and have as-
sumed in the second line that the particle moves in an
electrostatic potential well V = eqψφ of other nearby
particles, as well as in a massive hidden photon wave
of the form 115, with the ellipsis representing terms of
O(ε2) and O(v). An ambient A′ wave will also interact
with any surrounding conductive elements, including the
reflective coating of the vapor cell. The resulting screen-
ing currents will set the interacting linear combination
of vector potentials, Aeff = A + εA′, to near-zero within
a hidden photon’s Compton wavelength m−1

γ′ away from

the container wall [58]. However, A and A′ propagate
at different speeds, so for a sufficiently large container
volume V � m−3

γ′ they will oscillate in and out phase in

most of the bulk interior such that we have |Aeff| ' A′0
to a very good approximation.

In a molecule, we can thus separate the full Hamilto-
nian into the Hamiltonian H0 from eq. 31 and the inter-
action Hamiltonian δH =

∑
ψ(iqψeε/mψ)A′ ·∇ψ, with

the sum running over all particles in the molecule. Us-
ing the identity ∇ψ = −mψ[H0, rψ], we can rewrite the
off-diagonal matrix elements—the only ones that matter
for transitions—of δH between an initial state |i〉 and a
final state |f〉 as:

〈f |
∑
ψ

i
qψεe

mψ
A′ ·∇ψ|i〉 ' −〈f |

∑
ψ

qψεeE
′ · rψ|i〉. (119)

In the second equality, we have made the approximation
iω0A

′ ' E′, which holds insofar as the hidden photon
is on resonance with the transition, i.e. mγ′ ' ω0. We
also assumed that to leading order we can take A(x) and
E(x) to be spatially constant, i.e. independent of x, over
the spatial extent of the molecule. This approximation
is especially precise for a nonrelativistic wave.

To leading order, we can thus think of transitions being
caused by the familiar operator

δH = −εµe ·E
′ = −

∑
ψ

qψεeE
′ · rψ (120)

of an electric dipole µe in an effective electric field
Eeff = εE′. It can induce transitions in many systems, in-
cluding vibrational and electronic transitions in diatomic
molecules. For vibrational transitions, we can integrate
out the electronic motion and regard a neutral diatomic
molecule as a spring with charges ±δe(R) attached to the
ends, where we take the charges δe to depend on the in-
ternuclear separation R. (The dependence on R is easy
to see: e.g. as R → ∞, it must be that δe(R) → 0 if the
molecule dissociates into neutral atoms.) This function
δe(R) can be calculated from first principles or indirectly
measured in absorption spectra. In this simplistic view of
the molecule, the transition operator in eq. 120 reduces
to

δH = −εeE′ ·Rδe(R) = −εeE′ · R̂
{
Reδe(Re) (121)

+ (R−Re) [δe(Re) +Reδ
′
e(Re)]︸ ︷︷ ︸

≡δe,1

+ . . .
}
.

The first term within curly brackets acts trivially on the
vibrational state (it only induces rotational transitions),
but the second term can induce ∆v = ±1 transitions as
discussed in sec. II D 2, as long as the factor in square
brackets δe,1 is nonzero. In general, δe,1 is roughly of
order the electric dipole moment of the molecule divided
by Re for heteronuclear diatomics, and zero by symmetry
for homonuclear diatomics. The third term and higher-
order terms in the Taylor expansion contribute mostly
to higher-harmonic transition matrix elements, and can
usually be ignored to leading order, which we shall do so
for this discussion. Finally, we find the angle-averaged
squared Rabi frequency from hidden-photon dark matter
to be

Ω2 = |〈vf = 1, Jf |δH|vi = 0, Ji〉|2avg (122)

= ε2e2δ2
e,1

∣∣∣〈vf = 1|R−Re|vi = 0〉〈Jf |E′0 · R̂|Ji〉
∣∣∣2
avg

= ε2e2δ2
e,1

ρDM

Mωe

∣∣∣〈Jf |Ê′0 · R̂|, Ji〉∣∣∣2
avg

for vibrational transitions from the ground vibrational
state |vi = 0〉 to the first excited state |vf = 1〉. To
get to the second line, we used eq. 117 with ργ′ = ρDM

and eq. 47 with M the reduced mass of the diatomic and
ωe the vibrational splitting; the angle-averaged rotational
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matrix elements are given below eq. 61. For ∆v = 2 tran-
sitions, the squared Rabi frequency is reduced relative to
that for ∆v = 1 by the factor ωexe/8ωe, cfr. eq. 50.

For electronic transitions, we can repeat the same ex-
ercise to find:

Ω2 '
∣∣〈χel

f , v
′
f , Jf |δH|χel

i , v
′′
i , Ji〉

∣∣2
avg

(123)

= 2ε2
∣∣∣〈χel

f |
∑
n

ere,n|χel
i 〉〈v′f |v′′i 〉〈Jf |Ê

′
0 · R̂|, Ji〉

∣∣∣2
avg

≡ 2ε2e2δ2
e,2R

2
eρDM

∣∣〈v′f |v′′i 〉∣∣2 ∣∣∣〈Jf |Ê′0 · R̂|, Ji〉∣∣∣2
avg

where |〈v′f |v′′i 〉|2 is the Franck-Condon factor from eq. 44,
and where we have parametrized the electronic transition
moment |〈χel

f |
∑
n ere,n|χel

i | ≡ δe,2eRe in terms of the
dimensionless number δe,2.

In figure 8, we plot the estimated ε sensitivity for the
Bulk I & II configurations in thick blue bands, and for the
Stack I & II configurations in thin red bands. For these
estimates, we used the Rabi frequency reach of eq. 98 us-
ing the configuration parameters of table II in conjunc-
tion with the matrix elements of eqs. 122 and 123. We
also assumed δe,1 ∼ 1 and the parametric estimates of
eq. 53 for vibrational transitions, and a electronic tran-
sition moment with δe,2Re ∼ a0 and a typical FC factor
of |〈v′f |v′′i 〉|2 ∼ 10−2 for electronic transitions. Squared
rotational matrix elements were conservatively taken to
be 1/6.

The BI prototype, the least aggressive design, is seen
to be already capable of probing new parameter space
for electronic transitions above 1.2 eV. The BII configu-
ration would be a drastic step up in reach for the same
electronic transitions, and would also extend the reach
to lower masses via ∆v = 2 transitions. Transitions with
∆v = 1 would yield larger absorption rates, but would
produce trapped and subsequently quenched fluorescence
photons due to the high optical thickness of such a Bulk
detector, as we discussed around eq. 100.

The Stack configurations are also optimally oper-
ated with molecules exhibiting strongly-allowed elec-
tronic transitions at high energies, and ∆v = 2 vibra-
tional transitions between 0.6 eV and 1.2 eV. They can
avoid the quenching issue for ∆v = 1 transitions because
of their optically thin planar design, and thus have access
to larger matrix elements at energies below 0.6 eV. They
also pick up less BBR due to their smaller photosensitive
area, with the result that even the SI prototype will likely
outperform the much larger BII detector at low masses.

In figure 8, we also show a few exemplary sensitivity
curves for the proposed experiments. In blue, we show
the reach around 2 eV–3 eV from the famous visible-light
absorption band B in 127I2, which is both so wide and
dense in frequency space that it nearly covers an octave
contiguously at standard atmospheric conditions (with-
out need for scanning), making it an attractive molecular
candidate for a proof-of-principle prototype experiment.
The blue I2 curve assumes a vapor pressure of 0.25 bar,
which occurs in equilibrium around room temperature,

and an integration time of 105 s, and otherwise Bulk
Phase I parameters. Molecular information on iodine was
taken from refs. [59–64]. Also in blue, at around 0.8 eV,
we plot the estimated sensitivity for ∆v = 2 absorption in
1H35Cl at P = 0.25 bar after a single shot of 103 s in the
Bulk Phase II experiment. We also depict the reach with
12C16O in a Stack Phase I experiment at P = 5 bar, dis-
playing both its infrared ∆v = 1 vibrational transition
(see also fig. 7) and its first allowed electronic transi-
tion X → A in the ultraviolet. Molecular data on this
electronic transition can be found in refs. [65–70]. Fi-
nally, we depict in red the sensitivity to absorption of
hidden photons heavier than 11 eV onto the first three
E1-allowed electronic transitions X→ A,B,B’ in 1H2 [71]
in the Phase II version of the Stack configuration.

The gray exclusion regions in fig. 8 depict 95% CL
constraints on ε from null observations by Xenon10 [72]
of hidden photons from the Galactic DM halo [73]
(“Xenon10”) and of hidden photons emitted by the
Sun [74] (“solar emission”). Although beyond the scope
of this work, it would be interesting to work out the de-
tection prospects of this solar emission component in our
proposed setups, even though the resonant detector re-
sponse is likely not optimal for a thermal emission spec-
trum. Finally, the black line labeled “Neff” indicates an
upper bound on ε derived from the effects that evapora-
tion of hidden photon DM into the photon bath would
otherwise have on the effective number of abundant neu-
trino species in the early Universe [55].
B − L photon.— Another possible set of interac-

tions of a new vector particle are couplings to baryon
number B and lepton number L. Here we shall focus
on the anomaly-free linear combination of B−L charges
of SM matter charged under a new massive U(1), under
which the proton, neutron, and electron have respective
charges:

qB−L,p = qB−L,n = +1, qB−L,e = −1. (124)

The small number parametrizing the strength of the DM
vector interaction is the gauge coupling g. For simplicity
of presentation, we assume the new vector does not kinet-
ically mix with the SM photon, and write its Lagrangian
as:

L = −1

4
F ′µνF

′µν +
1

2
m2
γ′A
′
µA
′µ − gεA′µJ

µ
B−L, (125)

where the B − L vector current is defined as JµB−L ≡∑
ψ qB−L,ψψ̄γ

µψ. Analogously to the analysis done for

the (kinetically mixed) photon in eqs. 118–120, we can
find that the relevant transition operator

δH = −µB−L ·E
′ (126)

is that of a B−L dipole moment µB−L ≡ g
∑
ψ qB−L,ψrψ

coupled to the electric component of the B − L field
strength E′.

We can write the B − L current JµB−L as the sum

of the electromagnetic current JµEM of eq. 113 and the
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FIG. 8. Reach for the kinetic mixing parameter ε of a hidden photon with mass mγ′ . The SNR = 1 sensitivity estimates for
the Bulk configurations (BI & BII) are shown as thick blue bands, and those of the Stack configurations (SI & SII) as thin red
bands. Sensitivity curves are also shown for a single molecular species with the following assumptions: I2 (blue) in BI, HCl
(blue) in BII, CO (red) in SI, and H2 (red) in SII. Solar emission constraints and DM-induced ionization limits in Xenon10 are
shown as gray regions. Above the black line in the top right, hidden photon DM runs afoul of contraints on Neff.

neutron vector current, as per the charge assignments of
eq. 124. Since nuclear motion can be taken to be “frozen”
for electronic transitions to leading order in the Born-
Oppenheimer approximation, a B − L vector causes the
same transition phenomenology as a kinetically mixed
hidden photon provided we make the replacement

εe↔ g. (127)

The separability of the B − L current means that we
can decompose the dipole moment as µB−L = (g/e)µe+
gµn with µn the neutron number dipole moment. Hence,
vibrational transitions in a diatomic molecule are caused
by the effective operator:

δH = −g
(µe
e

+ µn

)
·E′ (128)

= gE′ ·R
[
δe(R) +

(A2 − Z2)M1 − (A1 − Z1)M2

M1 +M2

]
In the first line, we used the same δe(R) as in eq. 121, and
took Zi, Ai, and Ri to be the atomic number, mass num-
ber, and position vector for the ith nucleus, such that the
second two terms represent the interaction with the neu-
tron number current. In the second line, we isolated the
component of these terms that depends on the internu-
clear separation R ≡ R2−R1, and neglected terms acting
on the molecular center-of-mass position. So again, we
find that, to leading order, vibrational absorption rates
of a B − L vector are exactly analogous to those of a
kinetically mixed vector, provided we make the replace-

ment:

εeδe,1 ↔ g

[
δe,1 +

(A2 − Z2)M1 − (A1 − Z1)M2

M1 +M2

]
.

(129)

This means that one can expect any E1 transition to be
sensitive to absorption of a B − L vector, barring ac-
cidental cancellations. In addition, even electric-dipole-
forbidden transitions, with δe,1 = 0, may give appreciable
absorption rates. For example, the molecule 1H2H has no
electric dipole transition moment (by symmetry), but has
[(A2 − Z2)M1 − (A1 − Z1)M2]/(M1 +M2) ≈ 2/3.

In figure 9, we plot the reach estimates for our four
proposed configurations. They are exactly analogous to
those of a kinetically mixed photon with the replacements
of eqs. 127 and 129, except now a Bulk detector can po-
tentially also look for E1-forbidden ∆v = 1 transitions
with low quenching rates. The exclusion regions from the
hidden photon apply in exactly the same way, modulo the
rescaling of eq. 127. In addition, a B−L vector mediates
a finite-range “Coulomb” force between electrically neu-
tral bodies: the electrons and proton charges cancel each
other out, leaving a like-charge repulsive force between
neutron pairs. Null results from short-distance gravity
tests [75] place significant constraints at low masses, in-
dicated by the gray exclusion region labeled “fifth forces”
in fig. 9.
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FIG. 9. Reach for the gauge coupling g of a B−L vector with
mass mγ′ . Gross sensitivity projections and exclusion regions
are as in fig. 8, with the addition of an exclusion region coming
from searches for short-range fifth forces. We also indicated
in dashed green the B − L gauge coupling that would yield
a Coulomb force between nucleons with a strength equal to
that of gravity.

B. Scalars

In this section, we first summarize the basics of scalar
dark matter, which is analogous to that of vector dark
matter in sec. IV A and nearly identical to that of pseu-
doscalar dark matter in sec. IV C. Afterwards, we will
demonstrate how the proposed experiment can be sen-
sitive to scalar couplings to electrons, photons, quarks,
and gluons

If a light scalar (or pseudoscalar) field exists in the
spectrum of the theory, then cold ensembles of scalar par-
ticles are naturally produced in the early Universe via the
field misalignment mechanism [76–78]. As in the massive
vector case, an abundance of nonrelativistic, weakly cou-
pled scalars form an effectively pressureless fluid, and are
thus excellent dark matter candidates (see [79] for a re-
view of the relevant cosmology). With a Lagrangian of
the form

L =
1

2
∂µφ∂

µφ− 1

2
m2
φφ

2 + δL, (130)

and sufficiently weak couplings of φ in δL, scalar dark
matter is expected to be a mixed-state superposition of
plane waves of the form

φ(t,x) = φ0 cos
[
mφ(1 + v2/2)t−mφv · x + αv

]
(131)

drawn from a velocity distribution f(v) like that of
eq. 14 with random phases αv. The amplitude φ0

can be thought of as the typical magnitude of the
field oscillation; more precisely, we take it to be φ0 =√

2〈φ(t,x)2〉v,α〉. The field configuration then carries an
energy density of approximately ρ = m2

φφ
2
0/2. If it makes

up all of the local DM energy density, the field amplitude
is expected to be:

φ̃0 ≡
√

4πGNφ0 ≈ 6× 10−31

(
1 eV

mφ

)
, (132)

where we have normalized the amplitude in Planck units
(GN is Newton’s gravitational constant). We will use the

same notation for the dimensionless field φ̃ ≡
√

4πGNφ.
A light, parity-even scalar may couple to parity-even

matter operators (in which case the scalar is often called
a modulus or dilaton-like field) of the form:

δL = φ̃
[
− dmemeψ̄eψe +

de
4
FµνF

µν (133)

−
∑

q=u,d,s

(
dmq + γqdg

)
mqψ̄qψq −

dgβ3

2g3
GAµνG

Aµν
]
.

Above, me is the electron mass, ψe is the electron field,
Fµν is the electromagnetic field strength, γq is the anoma-
lous dimension of the quark field ψq (up ψu, down ψd, and
strange ψs) with mass mq, β3 and g3 are the QCD beta
function and gauge coupling, and GAµν is the QCD field
strength. The dimensionless couplings dme , de, dmi , dg
parametrize the strength of the leading linear couplings
of φ to electrons, photons, quarks, and gluons, respec-
tively, here written in an effective Lagrangian at a scale
just above the QCD confinement scale Λ3. In most cases,
one can ignore the effects of other higher-dimensional op-
erators of SM fields, and couplings quadratic and higher-
order in φ. (One exception is when the linear couplings
are absent or highly suppressed, e.g. via a parity symme-
try under φ → −φ. In this case, all of our results apply
with a straightforward replacement of φ↔ φ2, ω ' 2mφ,
and an appropriate field rescaling, while constraints from
other experiments typically change qualitatively.)

We have written the couplings of the scalar field as a
low-energy effective theory at the GeV scale, only hav-
ing included the most relevant operators while remaining
agnostic about the theoretical origins of the scalar in the
ultraviolet. The simplest UV completion of the couplings
in eq. 133 is that of the linear Higgs portal [80]

δL = bφH†H, (134)

with b a dimension-1 coupling and H the SM Higgs field.
At energies far below the Higgs mass, φ inherits part
of the couplings of the Higgs to other SM fields due to
the small mixing term that eq. 134 induces. Fermion
couplings, including to electrons and quarks, are of order:

dme = dmq =
b√

4πGNm2
h

≈ 2.2× 105

(
b

eV

)
(135)

with mh ≈ 125 GeV the Higgs boson mass, while cou-
plings to gauge bosons, de and dg, are suppressed [80].
We indicate on the plots in figs. 10 and 11 the induced
couplings for the Higgs portal model for b < mφ. (Note
that the relative couplings to light SM fields in the Higgs
portal model are correlated; in particular, their ratios
are fixed, e.g. as in eq. 135.) Larger couplings naively
would destabilize the scalar potential, barring any other
mechanism or fine tuning.

Light scalar fields with parity-even couplings can also
arise in theories with an extended gravitatational sector,
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such as the dilaton in string theory [81, 82] or a radion
in a theory with extra spatial dimensions [83–85]. In
addition, theories with spontaneously broken supersym-
metry and/or flavor symmetries usually abound in light
moduli fields [86]. All of the above examples have extra
structure beyond that indicated in eq. 133. If new fields
associated with this new dynamics come in at a scale Λ,
then φ generically receives a mass-squared correction of
order:

∆m2
φ ∼

GNΛ4

4π

[
d2
mey

2
e

(4π)2
+
∑
q

d2
mqy

2
q

(4π)2
+ d2

e + d2
g

]
, (136)

where ye and yq are the electron and quark Yukawa cou-
plings to the Higgs field, and we have assumed Λ �
mh. Without accidental cancellations, one would expect
m2
φ & ∆m2

φ, an inequality we plot for each of the cou-
plings individually in figs. 10 and 11 for Λ = 10 TeV, an
energy scale not yet directly explored in collider physics.
We stress that parameter space above this “natural” re-
gion is by no means excluded or unattainable. The scalar
may be regarded as a composite particle (not unlike the
pion in QCD) at a much lower scale in some theories;
see [87] for a notable radion construction along these
lines. Alternatively, there may be anthropic pressures
for tuning the mass of the DM particle.

In a CP-violating background such as a QCD vacuum
with nonzero θ angle, the QCD axion a will also pick up
parity-even couplings to mesons and nucleons [88], which
can be expressed in terms of an equivalent quark coupling
bounded to the interval:

10−16

√
4πGNfa

. dm̂q .
3× 10−11

√
4πGNfa

(137)

with fa the QCD axion decay constant. The upper bound
comes from null results in searches for a neutron electric
dipole moment, constraining |θ| . 10−10, while the lower
“bound” is the minimum natural size predicted in the
Standard Model. At higher loop order, one would also
expect the other parity-even couplings, but here we focus
on the quark coupling only.

The effective Lagrangian in eq. 133 is written in such a
way [89] that low-energy masses and couplings have the
simple functional dependence on the background value of
φ:

me [φ(t,x)] = me

(
1 + dme φ̃(t,x)

)
; (138)

α [φ(t,x)] = α
(

1 + deφ̃(t,x)
)

; (139)

mq [φ(t,x)] = mq

(
1 + dmq φ̃(t,x)

)
; (140)

Λ3 [φ(t,x)] = Λ3

(
1 + dgφ̃(t,x)

)
. (141)

We will often focus on the symmetric combination of the
light quark masses, which has a dependence

m̂q [φ(t,x)] = m̂q

(
1 + dm̂q φ̃(t,x)

)
, (142)

with m̂q ≡ (mu + md)/2 and dm̂q ≡ (dmumu +
dmdmd)/(mu +md). A neutral atom with nucleon num-
ber A and atomic number Z has a mass M that scales
nearly linearly with Λ3 but also functionally depends
on the pion mass (and thus the sum of quark masses
mu +md) and the fine-structure constant due to binding
energy effects, as well as the electron mass:

M [φ(t,x)] 'M
{

1 + φ̃(t,x)[(dg + (dm̂q − dg)Qm̂q
(143)

+ (de − dg)Qe + dmeQme ]
}
,

where we left out subdominant terms coming from
e.g. the strange quark mass dependence of the nucluear
mass, or its dependence on the light-quark mass differ-
ence md−mu. The “dilaton charges” Qm̂q , Qe and Qme
have been worked out in ref. [89], and roughly obey the
following empirical formulae across the periodic table:

Qm̂q ≈+ 9.3× 10−2 − 3.6× 10−2 1

A1/3
(144)

− 2.0× 10−2 (A− 2Z)2

A2
− 1.4× 10−4Z(Z − 1)

A4/3
,

Qe ≈ − 1.4× 10−4 + 8.2× 10−4Z

A
(145)

+ 7.7× 10−4Z(Z − 1)

A4/3
,

Qme ≈+ 5.5× 10−4Z

A
. (146)

Spatial and temporal field oscillations in φ such as those
in eq. 131 give rise to fractional variations in e.g. the elec-
tron mass with amplitude given by the coupling constant
dme times the field amplitude in eq. 132.

The vibrational Hamiltonian of a diatomic molecule
(having integrated out electronic motion) in the presence
of a modulus field is:

H =
−∇2

R

2M [φ(t,x)]
+
ke[φ(t,x)]

2
(R−Re[φ(t,x)])2

= H0 + δH0
I + δH0

II + δH0
III + . . . ; (147)

δH0
I = φ̃(t,x)(dme + de)keRe(R−Re), (148)

δH0
II = φ̃(t,x)(3dme + 4de)

ke
2

(R−Re)2, (149)

δH0
III = φ̃(t,x)(dg +Qm̂q,effdm̂q )

∇2
R

2M
. (150)

We defined by Qm̂q,eff ≡ (Qm̂q,1M2 + Qm̂q,2M1)/(M1 +
M2) the effective dilaton quark charge of the reduced
mass M ≡ M1M2/(M1 + M2) of the diatomic molecule.

In the second line, we have only kept φ̃ terms with off-
diagonal matrix elements, and see that all monopole op-
erators listed in eq. 46 are generated. The first interac-
tion from δH0

I is the quantum-mechanical operator cor-
responding to the classical effect of fractional oscillations
in the equilibrium size of atoms, upon which the modu-
lus dark matter searches of [90, 91] are based. The other
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two terms are reminiscent of classical parametric reso-
nance, in that they primarily cause ∆v = 2 transitions
when the driving field oscillates at twice the harmonic
oscillator frequency.

To leading order, we can ignore the spatial depen-
dence in φ(t,x) in the matrix elements of the operators
in eq. 147. However, we have neglected a tidal force on
the diatomic molecule that comes about from the field-
induced spatial variation of the nuclear masses:

MN [RN ] 'MN

(
1 + djQj,NRN ·∇φ̃(t,x)

)
, (151)

Here, N = 1, 2 runs over the nuclear labels, and j runs
over the dilaton charges, the two most important of which
are listed in eqs. 144 and 145. This spatial variation leads
to a dipole Hamiltonian that acts on the internal state of
the molecules:

δH1
I =

2∑
N=1

MN [RN ] ' dj∆QjMR ·∇φ̃(t,x) + . . . ,

(152)

with ∆Qj ≡ Qj,2 −Qj,1 the difference in atomic dilaton
charges. The ellipsis indicate terms acting on the center-
of-mass degrees of freedom. Heteronuclear diatomics
with significantly different dilaton charges may thus ex-
perience dipole vibrational transitions as well. Amus-
ingly, the interaction in eq. 152 is the spectroscopic ana-
log of the differential force macroscopic bodies experience
in a dark matter background of very light moduli [92, 93].

Finally, modulus couplings to electrons and photons
can cause monopole electronic transitions of the type an-
ticipated in eq. 55. In the presence of a modulus field,
and with the nuclear motion frozen, the electronic part
of the Hamiltonian in eq. 31 becomes:

H =

Z1+Z2∑
n=1

−∇2
en

2me[φ(t,x)]
+ α[φ(t,x)] (153)

×

[
Z1+Z2∑
n<m

1

|ren − rem |
−
Z1+Z2∑
n=1

2∑
N=1

ZN
|rei −RN |

]
.

Extracting the φ-dependent parts, and using the identity
of eq. 58, we find a transition operator

δH0
IV = φ̃(t,x)(dme + de)

Z1+Z2∑
n=1

−∇2
en

2me
, (154)

whose transition matrix elements have to be estimated or
calculated from first principles. As a first approximation,
we use the NDA estimate of eq. 58.

The spatial variation in the electron mass me[φ(t,x)]
can also lead to dipole transitions via the operator

δH1
II ' dmeme∇φ̃(t,x) ·

Z1+Z2∑
n=1

re,n (155)

ω < 0.6 eV 0.6 eV < ω < 1.2 eV 1.2 eV < ω

dme , de
B δH0

I δH0
II δH0

IV

S δH1
I δH1

I δH1
II

a

dm̂q , dg
B δH1

I δH0
III —

S δH1
I δH1

I —

a dme only

TABLE IV. Operators from eqs. 148, 149, 150, 152, 154, 155
driving the optimum sensitivity projections in figs. 10 and 11
for the Bulk (B) and Stack (S) configurations. To estimate
vibrational matrix elements, we made use of eqs. 47–50 and
the parametric estimates of eq. 53. For δH1

I , we assumed
differential dilaton charges of ∆Qm̂q ∼ 1/30, ∆Qe ∼ 1/300,
and ∆Qme ∼ 1/4000. For electronic matrix elements, we
utilized eq. 58 for δH0

IV and eq. 67 for δH1
II. We also assumed

vlab ∼ 10−3 and φ makes up all of DM such that eq. 132 holds.

whose transition matrix elements are suppressed by a fac-
tor of vlab/α relative to those of the operator in eq. 154
however. It is clear from the form of eq. 155 that we
may view this interaction as that of an effective electric
dipole operator with [eE]eff =

√
4πGNdmeme∇φ(t,x).

At subleading order in the Born-Oppenheimer approxi-
mation, modulus-induced spatial variation in the nuclear
mass can also cause electronic transitions and thus ex-
tend the sensitivity to dg and dm̂q to higher masses, but
with greatly reduced transition amplitudes.

In figure 10, we show the reach of the proposed setups
to the scalar electron coupling dme as a function of the
scalar mass mφ, while the three panels of fig. 11 show
the same for the scalar couplings to photons, gluons, and
light quarks, respectively. At any point in those parame-
ter spaces, there are several operators contributing to ab-
sorption, although one is typically dominant. In general,
the Bulk and Stack setups achieve highest signal rates
for different operators even at the same point in param-
eter space, because the Stack setup is insensitive to E1-
forbidden transitions, so it can never probe e.g. monopole
operators. We have summarized in table IV which oper-
ators of eqs. 148, 149, 150, 152, 154, and 155 drive the
estimated optimal sensitivity reach in figs. 10 and 11, and
our assumptions for the matrix element sizes. We broke
down the parameter space into three regions: ω . 0.6 eV
(where both ∆v = 1 and ∆v = 2 transitions can oc-
cur), 0.6 eV . ω . 1.2 eV (only ∆v = 2 transitions),
ω & 1.2 eV (only electronic transitions).

Short-distance tests of the inverse-square law for the
gravitational force between neutral macroscopic bodies
strongly constrain the low-mass end of the parameter
space of interest [75]. Given typical dilaton charges of
neutral bodies as listed in eqs. 144 and 145 for the quark
and electromagnetic couplings, and assuming Qme ≈
me/2mp for the typical electron-mass dilaton charge, we
recast these “fifth-force” tests as constraints on the in-
dividual couplings dj . Regions excluded at 95% CL are
shown in gray in figs. 10 and 11. Absence of anoma-
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FIG. 10. Reach for the scalar dark matter coupling dme to electrons as a function of scalar mass mφ. Sensitivity projections for
the Bulk (BI, BII) and Stack (SI, SII) configurations are shown with assumptions as listed in table IV. Gray exclusion regions
depict constraints from stellar cooling processes in red giants (RG) and from short-range fifth force searches. Parameter space
below the upper green band is technically natural (i.e. not fine tuned) for a 10 TeV cutoff, while the H portal model (see
eqs. 134 and 135) populates the region below the lower green band.

lous cooling rates in red giant stars sets 95%-CL up-
per bounds of |dme | < 4.8 × 106, |dm̂q | < 4.1 × 107,

and |dg| < 4.1 × 106 [94], while solar cooling constrains
|de| < 1.3× 108 [95], all also shown in gray.

C. Pseudoscalars

Light bosonic dark matter can also consist of a pseu-
doscalar field, which we shall denote by a. Pseudoscalars
differ from the scalars in the previous section only by
their transformation under CP, simultaneous charge con-
jugation and parity (or equivalently time-reversal T by
CPT conservation), which we take to be approximately
conserved at low energies. Under a CP transforma-
tion, we assume a → −a, while φ → +φ. Equa-
tions 130 and 131 hold just as well for a pseudoscalar
with the obvious relabeling φ ↔ a, while many of the
early-Universe production mechanisms for spin-0 fields
carry over too, in particular the misalignment mecha-
nism. However, its odd transformation under CP sym-
metry means that a must couple to CP-odd operators;
we parametrize the interaction terms at energies below
the QCD confinement scale as:

L = −
∑

f=p,n,e

Gaff
2

∂µaψ̄fγ
µγ5ψf +

Gaγγ
4

aFµν F̃
µν ,

(156)

with F̃µν ≡ (1/2)εµνρσFρσ. All of the above interactions
obey a shift symmetry in a, i.e. they are invariant under
a→ a+c for any constant c. The shift symmetry implies

that the interactions of eq. 156 do not renormalize the
mass, so there is no analogous naturalness preference for
the mass ma of a as there was for that of φ, cfr. eq. 136.

The most famous light pseudoscalar particle is the
QCD axion [96, 97], whose presence in the theory would
explain the observed smallness of the neutron’s electic
dipole moment dn by a symmetry [98], thus highly mo-
tivating its existence in Nature (in addition to being a
possible DM candidate). The QCD axion, by construc-
tion, must couple to the Lagrangian operator

L ⊃ a

fa

α3

8π
GµνG̃

µν , (157)

where α3 = g2
3/4π, fa is the axion decay constant, and

G̃µν ≡ 1
2εµνρσG

ρσ is the dual to the gluon field strength
Gµν . Nonperturbative effects involving this term break
the shift symmetry, and induce a scalar potential for a,
including a mass-squared term with mass:

ma '
√
mumd

mu +md

mπfπ
fa

≈ 0.57 eV

(
107 GeV

fa

)
, (158)

with mπ and fπ the pion’s mass and decay constant
respectively. The minimum of this potential occurs at
a place where the coefficient of GG̃ is (very nearly)
zero [99], i.e. at an axion field value where the QCD theta
angle is zero and the strong CP problem is solved. How-
ever, if the axion energy density ρ makes up part or all
of the DM energy density, it will locally oscillate in its
potential with a typical amplitude relative to fa of:

a0

fa
=

√
2ρa

mafa
≈ 3.6× 10−19

√
ρa
ρDM

, (159)
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FIG. 11. Reach for scalar dark matter couplings to photons
(de), light quarks (dm̂q ), and gluons (dg) as a function of scalar
mass. Labels are as in fig. 10, except the cooling bound on
de comes from cooling processes in the Sun rather than red
giants. We also show the experimentally allowed region for
the scalar coupling dm̂q of the QCD axion.

the exact analogue of eq. 132. In other words, the neutron
EDM is no longer zero (or constant), but takes on the
field-dependent value [100]:

dn[a(t,x)] = dθσn
a(t,x)

fa
, (160)

with a coefficient dθ ≈ 2.4 × 10−16e cm carrying a 40%
fractional uncertainty [101].

The QCD axion operator of eq. 157 also gives ir-
reducible, low-energy contributions to the pseudoscalar
operators of eq. 156. In particular, one has Gaγγ ≈
−1.92(4)α/2πfa primarily from mixing with the pion,
as well as Gapp ≈ 0.47(3)/fa, Gann ≈ 0.02(3)/fa, and
a two-loop suppressed Gaee [102] for the purely hadronic
QCD axion in the KSVZ benchmark model [103, 104].

The couplings in eq. 156 are UV-dependent: e.g. in the
DFSZ benchmark model [105, 106], one expects Gaγγ ≈
0.74(4)α/2πfa, and Gaff ∼ O(1)/fa (depending on a
continuous angle) for all SM fermions [102].

Axions also generically emerge out of string theory
with exponentially suppressed masses [107, 108], and
other light axion-like particles naturally arise as pseudo-
Nambu-Goldstone bosons of global symmetries broken
at a high scale fa, with low-energy masses and couplings
typically scaling inversely proportional to fa.

The first set of derivative interactions of a with the
proton p, the neutron n, and the electron e in eq. 156
lead to the nonrelativistic interaction Hamiltonian (for
single particles)

δH = +Gaffσf ·
[
(∇a) + (∂ta)

−i∇f

mf

]
, (161)

with f = p, n, e. The first term in square brackets has
a trivial action on the molecular wavefunction, and can
only generate spin flips; it is the basis for cosmic axion
search proposals at much lower masses [100, 109–111], as
well as searches for axion-mediated monopole-dipole and
dipole-dipole forces [112–115]. The second term in square
brackets can excite (spin-)dipole transitions in molecules
at much higher energies, and is the one we focus on here.
By NDA in nonrelativistic molecules, it can be seen that
the pseudoscalar coupling to photons, the second term
in eq. 156, causes transitions subleading in strength as
compared to the nuclear and electronic coupling in typi-
cal models, so we will not discuss it here.

The coupling to protons and neutrons generates a cou-
pling to nuclei of the form δH = GaNN (∂ta)σN · −i∇N

MN
,

where we assume for brevity that GaNN = Gapp ∼ Gann
is the same for every nucleus with spin. In general,
the coefficient will depend on the nuclear species N as
GaNN = cN,pGapp + cN,nGann with cN,p and cN,n co-
efficients of O(1), but we will ignore this complication.
In a diatomic molecule with a spinless nucleus N = 2,
and in an unpolarized spin state for the N = 1 nucleus,
we find the following square Rabi frequency for ∆v = 1
vibrational transitions:

Ω2 =
∣∣∣〈vf = 1, Jf |GaNN (∂ta)σ1 ·

−i∇1

M1
|vi = 0, Ji〉

∣∣∣2
avg

' G2
aNN

M2
1

ρDMMωe

∣∣∣〈Jf |σ1 · R̂|, Ji〉
∣∣∣2
avg

. (162)

To get to the second line, we used the vibrational ampli-
tude of eqs. 71 and 74, and assumed that the pseudoscalar
is all of the DM. The averaged rotational amplitudes are
given below eq. 61. Generalizations to amplitudes with
multiple nuclear spins, polarized spin states, or nonhar-
monic ∆v = 2 transitions are straightforward.

The irreducible neutron EDM operator of the QCD
axion also gives rise to the operator

δH = −
2∑

N=1

dN ·E(RN) =
dθ
e

a

fa

2∑
N=1

σN
ZN
· [∇N , H0]

(163)
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with E(RN) the internal electric field of the molecule
evaluated at the nuclear position RN . The second equal-
ity follows from E(RN) = −∇NV (RN)/(eZN ) with V
the potential energy terms of H0 in eq. 31 and using
canonical commutation relations. Famously, this opera-
tor has vanishing diagonal matrix elements due to Schiff’s
theorem [116], but its off-diagonal matrix elements do
not vanish. Assuming that the nuclear EDM is similar
to that of the neutron, dN ∼ dn, and again starting with
a diatomic with a single, unpolarized spin σ1, we find a
square Rabi frequency:

Ω2 =
∣∣∣〈vf = 1, Jf |

dθ
e

a

fa

σ1

Z1
· [∇1, H0] |vi = 0, Ji〉

∣∣∣2
avg

' d2
θ

Z2
1e

2f2
a

ρDMMωe

∣∣∣〈Jf |σ1 · R̂|, Ji〉
∣∣∣2
avg

. (164)

We see that the nuclear pseudoscalar operator from
eq. 161 generates exactly the same transitions as the
EDM operator of eq. 163. The latter’s Rabi frequency
is always smaller though, by the fraction dθM1/Z1e '
2dθmp/e ≈ 2.2 × 10−2 for GaNNfa = 1. Since its only
effect is to give a subleading contribution to transitions
already caused by the Gapp and Gann couplings—which
are always generated as well—we will not make separate
sensitivity projections for the EDM operator. If the spin-
dipole transition acts trivially on the nuclear spin state,
then the transition can be E1-allowed; if the transition
is associated with a combined spin flip in one or more
nuclei, then it is always strongly forbidden.

Electronic transitions may be excited via the pseu-
doscalar coupling to electrons in a similar way:

〈1|δH |0〉 = iGaee(∂ta)ω0〈1|
Z1+Z2∑
n=1

σe,n · re,n|0〉; (165)

Ω2 = G2
aee2ρDMδ

2
e,2ω0R

2
e

∣∣∣〈v′f |v′′i 〉〈Jf |σ̂e · R̂|, Ji〉∣∣∣2
avg

.

(166)

We have used the matrix element identity of eq. 80 and
defined its strength with δe,2 as in eq. 123. We have
notationally suppressed spin degrees of freedom. In a
magnetic field, ∆Σ = ±1 spin-flip transitions lines will
receive Zeeman splittings relative to the spin-preserving
ones ∆Σ = 0, of size given in eq. 90. This Zeeman tuning
can be used in the Bulk configuration to achieve efficient
and uniform frequency coverage, as all lines receive a uni-
form shift by the same absolute amount. In absence of
significant spin-orbit coupling, ∆Σ 6= 0 emission rates
are suppressed, so this scanning method is less suitable
for use in the Stack setup with small molecules.

In figure 12, we plot gross sensitivity projections to the
nuclear coupling GaNN with the four proposed setups for
the ∆v = 1 vibrational transitions calculated in eq. 162,
as well as for the first higher-harmonic ∆v = 2 absorp-
tion. Figure 13 contains similar curves for the electronic
transitions of eq. 166 induced by Gaee. We also plot the
typical mass-coupling relation—f−1

a /2 < GaNN < f−1
a

with ma and fa related as in eq. 158—for the QCD
axion. Barring accidental fine tuning in two separate
couplings—Gapp and Gann—any QCD axion model must
lie in or above the green band in fig. 12. Figure 13 de-
picts by green bands the relation between the electron
coupling Gaee and the axion mass ma for the DFSZ and
KSVZ benchmark models of the QCD axion. The KSVZ
band is roughly the smallest electron coupling an untuned
model can exhibit.

In these sensitivity plots, we make the minimal but
optimistic assumption that the axion or axion-like par-
ticle makes up all of the dark matter energy density. If
the QCD axion is to make up all of the DM, most cos-
mological histories would predict or strongly favor ax-
ion masses below 1 meV if the cosmological abundance
arises due to the misalignment mechanism [117], and be-
low 4 meV (with large uncertainties on this bound) if
the axions can be produced from decays of topological
defects [117–122]. In a standard thermal history, the
QCD axion abundance scales as Ωa ∝ m1.19

a in the di-
lute instanton gas approximation. Therefore, the stan-
dard production mechanisms would predict a fractional
axion DM abundance of ρa/ρDM ∼ O(10−3) if the QCD
axion were to exist with a mass ma ∼ 1 eV. One could
conceivably construct models wherein these large-mass
axions do constitute all of the DM, but we will not at-
tempt to do so here. We note that even if the QCD
axion only makes up such a small subcomponent of the
DM, the SII setup would still be capable of detecting this
component between 0.4 eV and 1.2 eV, as the coupling
sensitivity only scales as the square root of the energy
density δGaNN ∝

√
ρa.

The dominant astrophysical bounds on the pseu-
doscalar couplings to nucleons and electrons come from
supernova and white dwarf cooling, respectively. The
observed duration of the neutrino burst originating
from SN1987a indirectly constrains other efficient cool-
ing mechanisms like the emission of light pseudoscalars.
A simple energy loss argument was long thought to set
a rough bound of GaNN . 2.5 × 10−9 GeV−1 [123]. A
more detailed analysis, correcting the omission of sev-
eral physical effects in the early literature and folding
in progenitor uncertainties, finds a much weaker robust
exclusion bound of GaNN . 1.7 × 10−7 GeV−1 [124],
which is the one plotted in fig. 12. Observations of drifts
in light-pulsation periods in white dwarfs provide an in-
direct measure of their cooling rate; the most stringent
constraint, shown in fig. 13, is Gaee < 2.5×10−10 GeV−1

at 95% CL [123, 125, 126].

V. DISCUSSION

We have presented a DM detection scheme based on
resonant absorption in molecules. Our proposed setup
is sensitive to a wide variety for bosonic DM candidates
with masses between 0.2 eV and 20 eV, including ax-
ions, dark photons and moduli, and can achieve several
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FIG. 12. Reach for the pseudoscalar coupling GaNN to nucleons as a function of pseudoscalar mass ma, for the configurations
BII (thick blue band), SI, and SII (thin red bands). The green band indicates the typical mass-coupling relation between ma

and GaNN ∼ 1/fa for the QCD axion. The gray exclusion region is a “robust” bound set by a combination of the neutrino burst
duration of SN1987a, and null observations of axion scattering events in water Čerenkov detectors after the same supernova.
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FIG. 13. Reach for the pseudoscalar coupling Gaee to elec-
trons as a function of pseudoscalar mass ma for the BI & BII
configurations (thick blue) and the SI & II configurations
(thin red). The green bands indicate the predicted coupling
in two benchmark QCD axion models, namely DFSZ (top)
and KSVZ (bottom). The gray exclusion region is excluded
by indirect determinations of white dwarf cooling rates.

orders of magnitude improvement in coupling on cur-
rent limits over the energy range under consideration.
The detector concept may be regarded as a hybrid be-
tween low-energy macroscopic oscillators—circuits, cavi-
ties, mechanical resonators, electron and nuclear spin res-
onance systems—and high-energy absorption onto high-
density targets. On the one hand, molecules can be
viewed as some of the smallest and highest-frequency
electromechanical resonators that exist in Nature. Each
molecule is tiny and extremely weakly coupled to DM,
but a gas of them contains an enormous number of es-

sentially identical copies, boosting the signal rate. On
the other hand, our setup is in some ways similar to
proposals aiming to look for DM absorption onto bulk
targets [39–45]. The crucial difference is that instead
of looking for DM-induced excitations in a continuum—
such as the free-particle continuum, a conduction band,
or a phonon spectrum—here we advocate looking for DM
absorption into a resolved discretuum of states with a
long lifetime T1 and phase-coherence time T2.

A resonant approach comes with numerous advantages,
and one major challenge: frequency coverage. Resonant
absorption onto a transition line at ω ' ω0 only yields
appreciable event rates in a narrow bandwidth of order
∆ω ∼ 1/T2 around any one nominal transition frequency.
Fortunately, small polyatomic molecules are multimode
resonators due to their wealth of electronic levels, each
with their own vibrational and rotational fine structure.
In a narrow band around each of the lines in this “forest”,
the absorption cross-section is resonantly enhanced by a
factor of ω0T2. This enhancement in the absorbing power
allows for excellent DM sensitivity at a discrete set of
energies with exposures as small as 10−5 kg year.

Most of the advantages of our proposal boil down to
one key feature of molecular spectroscopy: control. Small
polyatomics exhibit a resolved discretuum of states with
spectra, dynamics, selection rules, optical properties, and
response to external variables that are well understood
both experimentally and theoretically. As such, a gas of
molecules has many “knobs and handles” to control the
susceptibility to any DM absorption signal, unlike most
bulk absorption targets. Even if a candidate signal is first
seen in a different detector, our proposed setup is ideally
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suited to perform precision follow-up studies, so in this
sense it is complementary to other detectors.

Our detector setup allows for excellent background re-
jection and signal discrimination. Environmental back-
grounds can be naturally suppressed due to the low
density of the target material, and on otherwise for-
bidden transitions. The differential energy response of
the molecular sample allows for detectable signal rates
lower than background rates upon averaging. In ad-
dition, background events already become negligible if
they occur once per “shot”, rather than once over the
lifetime of the experiment. Active veto systems may also
be employed, as the overall detector has a fast response
and relaxation time. Finally, the spatial coherence of
the DM particles leads to a dramatic focusing effect of
the signal photons in the Stack detector, offering a factor
of greater than one million in directional isolation from
environmental backgrounds.

Should a signal be found, the combination of great
intrinsic energy resolution and energy response control
with external variables—pressure, temperature, electro-
magnetic fields, molecular species and isotope—means
that the DM mass can be pinpointed with extreme ac-
curacy and precision, easily resolving even its line shape.
By using a variety of molecules with a transition line near
this energy, detailed information can be gleaned about
the DM’s interaction Hamiltonian and selection rules. A
dedicated array of Stack detectors could be built to ex-
ploit and learn about the kinematic and directional prop-
erties of DM. Any signal can be unambiguously identified
to have a DM origin. Moreover, a positive signal in this
energy range would open up a field of observational DM
astronomy given the setup’s resolution to both the energy
and momentum vector of the DM particles.

We see ample research opportunities for the near and
far future. First and foremost, it is imperative that pro-
totypes similar to the proposed Phase I setups get off
the ground to demonstrate the feasibility of the exper-
imental strategies outlined in this work. Experimental
research and development should include: optimization
of MKIDs to deal with isotropic fluorescence photons in
the Bulk configuration or other forms of low-noise calori-
metric photon detection; manufacturing methods for a
physical or artificial set of slabs in the Stack configu-
ration; identification of optimal detector elements, in-
cluding shield and container materials, and reflective and
anti-reflective coatings. On the theoretical front, a sig-
nificant effort should be devoted to mapping out which
molecules are most promising to cover the two decades
of energy with their discretuum of transition lines. In
addition, optical thickness issues and the effects of mul-
tiple forward scatterings of emission photons need to be
studied in the context of a Phase II version of the Stack
configuration. There could be other uses of our detec-
tor concept, such as inelastic scattering of DM, or de-
tection of particles from other cosmic or astrophysical
sources. We have considered absorption via a large—but
incomplete—set of DM candidates and couplings; notable

omissions include the pseudoscalar coupling to photons,
and spin-2 DM candidates.

Molecular-gas-based DM searches define an entirely
novel class of detectors without the need for novel or
exotic material. We have shown that resonant absorp-
tion onto molecular transitions is a promising avenue
for detection of well-motivated DM candidates, and a
new application of molecular spectroscopy and low-noise
photodetectors in fundamental physics. In forthcoming
work, we will study how variants on the techniques pre-
sented here can potentially extend the reach down to DM
masses as low as 10−4 eV.
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Appendix A: Fully-quantized rate calculation

Throughout the main text, we have been assuming
that the interaction with the dark matter bosons can be
treated semiclassically, parametrizing the bosonic dark
matter as a background field with average ambient en-
ergy density 〈ρ〉. One may question the (degree of) va-
lidity of this approximation, especially because quantum
discreteness effects should become noticeable at higher
dark-matter masses. Indeed, the expected particle occu-
pation number 〈N̂ 〉 within a volume of linear size equal
to the spatial coherence length 2/mv0 is given by the
number density 〈ρ〉/m times this volume:

〈N̂ 〉 ∼ 8〈ρ〉
m4v3

0

≈
(

15 eV

m

)4

, (A1)



39

where we have taken the local DM energy density 〈ρ〉 ≈
0.4 GeV/cm3 and velocity dispersion v0 ≈ 235 km/s.

We thus find that 〈N̂ 〉 is close to unity for the up-
per end of the parameter space under consideration in
this work. The semiclassical approximation can be ex-
pected to be reasonably accurate at low masses, while
for m & 15 eV the number density becomes so low that a
more appropriate representation of the DM interaction is
that of individual DM particles impinging on molecules
with a small absorption cross-section. Below, we sketch
out a fully quantized treatment that encompasses both
regimes. The main result will be that all semiclassi-
cal results presented in this paper are valid—even when
〈N̂ 〉 . 1—for the integration times under consideration.

We can write the interaction Hamiltonian a molecu-
lar system with a bosonic field mode of energy ω and
annihilation (creation) operator a (a†) as

δH ′(t) = Ω̃e−iωteiω0tb†a+ h.c. (A2)

The molecule is approximated by a two-level system
consisting of states |0〉, |1〉 with energy splitting ω0

and interaction-picture annihilation (creation) operators
be−iω0t (b†e+iω0t) as before. In eq. A2, we have (for now)
ignored spatial dependence of the local interaction, and
absorbed all phases and other numerical constants into
Ω̃. Generalizations to interactions with multiple bosonic
field modes is straightforward.

We are interested in calculating the molecular transi-
tion rate of the process |0〉 → |1〉 given an initial dark-
matter state |DM〉 of the bosonic field mode under con-
sideration. To this end, we compute the partial rate am-

plitudes 〈1;n|
∫ t

0
δH ′(t′)dt′|0; DM〉 for a combined tran-

sition of |0〉 → |1〉 in the molecule and |DM〉 → |n〉 in the
DM field mode, as an absorption event will in general
also affect the state of the dark-matter field. We take |n〉

to be members of an orthonormal basis (e.g. Fock states).
The expected absorption probability Pabs per molecule is
found by summing over the squares of all partial ampli-
tudes with different DM final states |n〉, which to first
order in perturbation theory then gives, at short times:

Pabs =
∑
n

∣∣∣〈1;n
∣∣∣e−i ∫ t0 δH′(t′)dt′ ∣∣∣ 0; DM

〉∣∣∣2 (A3)

' |Ω̃|2
∣∣∣∣∫ t

0

dt′ e−i(ω0−ω)t′〈1|b†|0〉
∣∣∣∣2∑

n

|〈n|a|DM〉|2

= |Ω̃|2
∣∣∣∣∫ t

0

dt′ e−i(ω0−ω)t′
∣∣∣∣2 〈DM|a†a|DM〉.

To get to the third line, we have used the fact that the off-
diagonal matrix element of b† is unity, and that

∑
n |n〉〈n|

is the unit operator by construction. Matching to the
semiclassical result of eq. 2 can be done with the identi-
fication:

Ω2 = |Ω̃|2〈DM|a†a|DM〉 ≡ |Ω̃|2Tr{ρ̂DMN̂ }. (A4)

In the second equality, we defined the number operator
N̂ ≡ a†a, and wrote the expectation value as an operator
trace weighted by the DM density matrix ρ̂DM (not to be
confused with the DM energy density ρ) to allow for the
possibility of mixed states.

The identification of the expectation value |Ω̃|2〈N̂ 〉
with a semiclassical perturbation of strength Ω2 does
not quite capture all of the physics, for the operator N̂
has quantum fluctuations of its own. To see this, one
could compute the moments of N̂ , and see that its vari-
ance 〈N̂ 2〉−〈N̂ 〉2 becomes large compared to its squared

expectation value 〈N̂ 〉2 at low mode occupation num-
bers. However, these fluctuations—due to the “particle
discreteness” of the DM state—average down to negligi-
ble levels over the long integration times and macroscopic
detector volumes under consideration in this work.
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