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ABSTRACT

Humans are able to identify and track a target speaker amid a cacophony of acoustic
interference, an ability which is often referred to as the cocktail party phenomenon. Results
from several decades of studying this phenomenon have culminated in recent years in various
promising attempts to decode the attentional state of a listener in a competing-speaker
environment from non-invasive neuroimaging recordings such as magnetoencephalography
(MEG) and electroencephalography (EEG). To this end, most existing approaches compute
correlation-based measures by either regressing the features of each speech stream to the
M/EEG channels (the decoding approach) or vice versa (the encoding approach). To produce
robust results, these procedures require multiple trials for training purposes. Also, their decoding
accuracy drops significantly when operating at high temporal resolutions. Thus, they are not well-
suited for emerging real-time applications such as smart hearing aid devices or brain-computer
interface systems, where training data might be limited and high temporal resolutions are desired.
In this paper, we close this gap by developing an algorithmic pipeline for real-time decoding
of the attentional state. Our proposed framework consists of three main modules: 1) Real-
time and robust estimation of encoding or decoding coefficients, achieved by sparse adaptive
filtering, 2) Extracting reliable markers of the attentional state, and thereby generalizing the
widely-used correlation-based measures thereof, and 3) Devising a near real-time state-space
estimator that translates the noisy and variable attention markers to robust and statistically
interpretable estimates of the attentional state with minimal delay. Our proposed algorithms
integrate various techniques including forgetting factor-based adaptive filtering, `1-regularization,
forward-backward splitting algorithms, fixed-lag smoothing, and Expectation Maximization. We
validate the performance of our proposed framework using comprehensive simulations as well as
application to experimentally acquired M/EEG data. Our results reveal that the proposed real-time
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algorithms perform nearly as accurately as the existing state-of-the-art offline techniques, while
providing a significant degree of adaptivity, statistical robustness, and computational savings.

Keywords: attention, auditory, real-time, dynamic estimation, EEG, MEG, state-space models, Bayesian filtering

1 INTRODUCTION

The ability to select a single speaker in an auditory scene, consisting of multiple competing speakers, and
maintain attention to that speaker is one of the hallmarks of human brain function. This phenomenon has
been referred to as the cocktail party effect (Brungart, 2001; McDermott, 2009; Haykin and Chen, 2005).
The mechanisms underlying the real-time process by which the brain segregates multiple sources in a
cocktail party setting, have been the topic of active research for decades (Cherry, 1953; Middlebrooks
et al., 2017). Although the details of these mechanisms are for the most part unknown, various studies
have pointed to the role of specific neural processes involved in this function. As the acoustic signals
propagate through the auditory pathway, they are decomposed into spectrotemporal features at different
stages, and a rich representation of the complex auditory environment reaches the auditory cortex. It has
been hypothesized that the perception of an auditory object is the result of adaptive binding as well as
discounting of these features (Bregman, 1994; Griffiths and Warren, 2004; Fishman and Steinschneider,
2010; Shamma et al., 2011).

From a computational modeling perspective, there have been several attempts at designing so-called
“attention decoders”, where the goal is to reliably decode the attentional focus of a listener in a multi-speaker
environment using non-invasive neuroimaging techniques like electroencephalography (EEG) (O’Sullivan
et al., 2015; Power et al., 2012; Mirkovic et al., 2015; Zink et al., 2017) and magnetoencephalography
(MEG) (Ding and Simon, 2012a,b; Akram et al., 2014, 2016, 2017). These methods are typically based on
reverse correlation or estimating linear encoding/decoding models using off-line regression techniques,
and thereby detecting specific lags in the model coefficients that are modulated by the attentional state
(Kaya and Elhilali, 2017). For instance, encoding coefficients comprise salient peaks at a typical lag of
∼ 100 ms for MEG (Ding and Simon, 2012a), and envelope reconstruction performance is optimal at a lag
of ∼ 200 ms for EEG (O’Sullivan et al., 2015).

Although the foregoing approaches have proven successful in reliable attention decoding, they have two
major limitations that make them less appealing for emerging real-time applications such as Brain-Computer
Interface (BCI) systems and smart hearing aids. First, the temporal resolution of existing approaches for
reliable attention decoding is on the order of ∼ 10 s, and their decoding accuracy drops significantly when
operating at temporal resolutions of ∼1 s, i.e., the time scale at which humans are able to switch attention
from one speaker to another (Zink et al., 2016, 2017). Second, approaches based on linear regression (e.g.,
reverse correlation) need large training datasets, often from multiple subjects and trials, to estimate the
decoder/encoder reliably. Access to such training data is only possible through repeated calibration stages,
which may not always be possible in real-time applications with potential variations in recording settings.
While recent results (Akram et al., 2014, 2016) address the first shortcoming by employing state-space
models and thereby producing robust estimates of the attentional state from limited data at high temporal
resolutions, they are not yet suitable for real-time applications as they operate in the so-called “batch-mode”
regime, i.e., they require the entire data from a trial at once in order to estimate the attentional state.

In this paper, we close this gap by designing a modular framework for real-time attention decoding from
non-invasive M/EEG recordings that overcomes the aforementioned limitations using techniques from
Bayesian filtering. Our proposed framework includes three main modules. The first module pertains to
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estimating dynamic models of decoding/encoding in real-time. To this end, we use the forgetting factor
mechanism of the Recursive Least Squares (RLS) algorithm together with the `1 regularization penalty
from Lasso to capture the dynamics in the data while preventing overfitting (Akram et al., 2017; Sheikhattar
et al., 2015a). The real-time inference is then efficiently carried out using a Forward-Backward Splitting
(FBS) procedure (Combettes and Pesquet, 2011). In the second module, we extract an attention-modulated
feature, which we refer to as “attention marker”, as a function of the M/EEG recordings, the estimated
encoding/decoding coefficients, and the auditory stimuli. For instance, the attention marker can be a
correlation-based measure or the magnitude of certain peaks in the model coefficients. We carefully design
the attention marker features to capture the attention modulation and thereby maximally separate the
contributions of the attended and unattended speakers in the neural response in both MEG and EEG
applications.

The extracted features are then passed to a novel state-space estimator in the third module, and thereby
are translated into probabilistic, robust, and dynamic measures of the attentional state, which can be
used for soft-decision making in real-time applications. The state-space estimator is based on Bayesian
fixed-lag smoothing, and operates in near real-time with controllable delay. The fixed-lag design creates a
trade-off between real-time operation and robustness to stochastic fluctuations. In addition, we modify the
Expectation-Maximization algorithm and the nonlinear filtering and smoothing techniques of (Akram et al.,
2016) for real-time implementation. Compared to existing techniques, our algorithms require minimal
supervised data for initialization and tuning, which makes them more suitable for the applications of
real-time attention decoding with limited training data. In order to validate our real-time attention decoding
algorithms, we apply them to both simulated and experimentally recorded EEG and MEG data in dual-
speaker environments. Our results suggest that the performance of our proposed framework is comparable
to the state-of-the-art results of (O’Sullivan et al., 2015; Mirkovic et al., 2015; Akram et al., 2016), while
operating in near real-time with ∼ 2 s delay.

The rest of the paper is organized as follows: In Section 2, we develop the three main modules in our
proposed framework as well as the corresponding estimation algorithms. We present the application of our
framework to both synthetic and experimentally recorded M/EEG data in Section 3, followed by discussion
and concluding remarks in Section 4.

2 MATERIAL AND METHODS

Figure 1 summarizes our proposed framework for real-time tracking of selective auditory attention from
M/EEG. In the Dynamic Encoder/Decoder Estimation module, the encoding/decoding models are fit to
neural data in real-time. The Attention Marker module uses the estimated model coefficients as well as
the recorded data to compute a feature that is modulated by the instantaneous attentional state. Finally, in
the State-Space Model module, the foregoing features are refined through a linear state-space model with
nonlinear observations, resulting in robust and dynamic estimates of the attentional state.

In Section 2.1, we formally define the dynamic encoding and decoding models, and develop low-
complexity and real-time techniques for their estimation. This is followed by Section 2.2, in which we
define suitable attention markers for M/EEG inspired by existing literature. In Section 2.3, we propose a
state-space model that processes the extracted attention markers in order to produce near real-time estimates
of the attentional state with minimal delay.
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Figure 1. A schematic depiction of our proposed framework for real-time tracking of selective auditory
attention from M/EEG.

2.1 Dynamic Encoding and Decoding Models

The role of a neural encoding model is to map the stimulus to the neural response. Inspired by existing
literature on attention decoding (Ding and Simon, 2012a; O’Sullivan et al., 2015; Akram et al., 2016), we
take the speech envelopes as covariates representing the stimuli. The neural response is manifested in the
M/EEG recordings. Encoding models can be used to predict the neural response from the stimulus. In
contrast, in a neural decoding model, the goal is to express the stimulus as a function of the neural response.
Inspired by previous studies, we consider linear encoding and decoding models in this work.

The encoding and decoding models can be cast as mathematically dual formulations. In a dual-speaker
environment, let s(1)t and s(2)t denote the speech envelopes (in logarithmic scale), corresponding to speakers
1 and 2, respectively, for t = 1, 2, . . . , T . Also, let ect denote the neural response recorded at time t and
channel c, for c = 1, 2, . . . , C. Throughout the paper, we assume the same sampling frequency fs for both
the M/EEG channels and the envelopes. Consider consecutive and non-overlapping windows of length
W , and define K :=

⌊
T
W

⌋
. We consider piece-wise constant dynamics for the encoding and decoding

coefficients, in which the coefficients assume to be constant over each window. Note that we define the
temporal resolution in an attention decoding procedure as the duration of a data segment to which a measure
of the attentional state is attributed. Therefore, W

fs
determines the temporal resolution in our attention

decoding framework.

In the encoding setting, we define the vector s
(i)
t := [s

(i)
t , s

(i)
t−1, . . . , s

(i)
t−Le

]> for i = 1, 2, where Le is the
total lag considered in the model. Also, let Et denote a generic linear combination of e1t , e

2
t , . . . , e

C
t with

some fixed set of weights. These weights can be set to select a single channel, i.e., Et = ect for some c, or
they can be pre-estimated from training data so that Et represents the dominant auditory component of the
neural response (de Cheveigne and Simon, 2008). The encoding coefficients then relate s

(i)
t to Et. In the

decoding setting, we define the vector et := [e1t , e
2
t , . . . , e

C
t ]> and E t :=

[
1, e>t , e

>
t+1, . . . , e

>
t+Ld

]>
, where

Ld is the total lag in the decoding model and determines the extent of future neural responses affected by
the current stimuli. The decoding coefficients then relate E t to s(i)t .

Our goal is to recursively estimate the encoding/decoding coefficients in a real-time fashion as the new
data samples become available. In addtion, we aim to simultaneously induce adaptivity of the parameter
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estimates and capture their sparsity. To this end, we employ the following generic optimization problem:

θ̂k = arg min
θ

k∑
j=1

λk−j ‖yj −Xjθ ‖22 + γ ‖θ ‖1 , k = 1, 2, . . . , K (1)

where yj and Xj are respectively the vector of response variables and the matrix of covariates pertinent to
window j, θ is the parameter vector, λ ∈ (0, 1] is the forgetting factor, and γ is a regularization parameter.
The optimization problem of Eq. 1 is a modified version of the LASSO problem (Tibshirani, 1996).

For the encoding problem, we define yk :=
[
E(k−1)W+1, E(k−1)W+2, . . . , EkW

]> and X
(i)
k :=[

s
(i)
(k−1)W+1

, s
(i)
(k−1)W+2

, . . . , s
(i)
kW

]>
, for k = 1, 2, . . . , K and i = 1, 2. Therefore, the full encoding

covariate matrix at the kth window is defined as Xk :=
[
1W×1,X

(1)
k ,X

(2)
k

]
, where the all-ones vector

1W×1 corresponds to the regression intercept. In the decoding problem, we define yk = s
(i)
k :=[

s
(i)
(k−1)W+1

, s
(i)
(k−1)W+2

, . . . , s
(i)
kW

]>
, where i ∈ {1, 2}. Also, the full decoding covariate matrix at the kth

window is Xk :=
[
E(k−1)W+1,E(k−1)W+1, . . . ,EkW

]>, for k = 1, 2, . . . , K.

The optimization problem of Eq. (1) has a useful Bayesian interpretation: if the observation noise
were i.i.d. Gaussian, and the parameters were exponentially distributed, it is akin to the maximum
a posteriori (MAP) estimate of the parameters. The quadratic terms correspond to the exponentially-
weighted log-likelihood of the observations up to window k, and the `1-norm corresponds to the log-density
of an independent exponential prior on the elements of θ. The exponential prior serves as an effective
regularization to promote sparsity of the estimate θ̂k. Note that we have θ ∈ R1+2(Le+1) for the encoding
model and θ ∈ R1+C(Ld+1) for the decoding model in (1).

Remark 1. The hyperparameter λ provides a tradeoff between the adaptivity and the robustness of estimated
coefficients, and it can be determined based on the inherent dynamics in the data. The case of λ = 1
corresponds to the natural data log-likelihood, i.e., the batch-mode parameter estimates. It has been shown
that W

1−λ can serve as the effective number of recent samples used to calculate θ̂k in (1) (Sheikhattar et al.,
2015b). The parameter W

1−λ can also be viewed as the dynamic integration time: it needs to be chosen
long enough so that the estimation is stable, but also short enough to be able to capture the dynamics of
neural process involved in switching attention. The hyperparameter γ controls the tradeoff between the
Maximum Likelihood (ML) fit and the sparsity of estimated coefficients, and it is usually determined
through cross-validation.

Remark 2. In the decoding problem, Eq. (1) is solved separately at each window for each speech envelope,
resulting in a set of decoding coefficients per speaker. In the encoding setting, we combine the stimuli
as explained and solve Eq. (1) once at each window to obtain both of the encoder estimates. If the
encoding/decoding coefficients are expected to be sparse in a basis represented by the columns of a matrix
G, such as the Haar or Gabor bases, we can replace Xj in (1) by XjG, for j = 1, 2, . . . , k, and solve for
θ̂k as before. Then, the final encoding/decoding coefficients are given by Gθ̂k. In the context of encoding
models, the coefficients are referred to as the Temporal Response Function (TRF) (Ding and Simon, 2012a;
Akram et al., 2017). The TRFs are known to exhibit some degree of sparsity on a basis consisting of shifted
Gaussian kernels (see Akram et al. (2017) for details).

Remark 3. It is worth discussing the rationale behind the dynamic updating of the encoding/decoding
models, as opposed to considering fixed canonical encoding/decoding models common in existing work.
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First, estimation of the canonical encoding/decoding models in existing literature requires large training
datasets. In emerging real-time applications of attention decoding, access to such large supervised training
datasets may not be feasible. In addition, slight changes to the electrode placement may require recalibration
of the canonical encoders/decoders. Thus, by dynamic updating of the encoding/decoding models we aim
at minimizing the amount of supervised training data, which can be a bottleneck in emerging real-time
applications.

Second, recent results have shown that dynamics of the encoding/decoding models indeed carry important
information regarding the underlying attention process (Ding and Simon, 2012a,b; Power et al., 2012;
Golumbic et al., 2013; Akram et al., 2017). Therefore, dynamic estimates of these models can be beneficial
in attention decoding. In order to mitigate the variability of our dynamic estimates of the encoding/decoding
models, we have employed the `1-regularized least squares estimation framework with a forgetting factor.

In summary, we argue that the dynamic framework used here is more preferable for real-time applications
with limited training data and in the presence of attention dynamics. It is worth noting that our modular
framework can still be used if the encoder/decoder models are pre-estimated and fixed. We refer the reader
to Section 2.3 and Remark 6 for more details.

Remark 4. Throughout the paper, we assume that the envelopes of the clean speech are available. Given that
this assumption does not hold in practical scenarios, recent algorithms on the extraction of speech envelopes
from acoustic mixtures (Biesmans et al., 2015; Aroudi et al., 2016; Biesmans et al., 2017; O’Sullivan et al.,
2017; Van Eyndhoven et al., 2017) can be added as a pre-processing module to our framework.

Among the many existing algorithms for solving the modified LASSO problem of Eq. (1), we choose the
Forward-Backward Splitting (FBS) algorithm (Combettes and Pesquet, 2011), also known as the proximal
gradient method. When coupled with proper step-size adjustment methods, FBS is well-suited for real-time
and low-complexity updates of θ̂k at each window. In this work, we have used the FASTA software package
(Goldstein et al., 2014) available online (Goldstein et al., 2015), which has built-in features for all the
FBS stepsize adjustment methods. A detailed overview of the FBS algorithm and its properties is given in
Section 1 of the Supplementary Material.

2.2 Attention Markers

We define the attention marker as a mapping function from the estimated encoding/decoding coefficients
for each speaker as well as the data in each window to positive real numbers. To be more precise, at window
k and for speaker i, in the context of encoding models, the attention marker takes the speaker’s estimated
encoding coefficients θ̂(i)k , the speaker’s covariate matrix X

(i)
k , and the M/EEG responses yk as inputs;

similarly, in the context of decoding models, the attention marker takes the speaker’s estimated decoding
coefficients θ̂(i)k , the M/EEG covariate matrix Xk, and the speaker’s speech envelope vector y

(i)
k as inputs.

In both cases, the attention marker outputs a positive real number, which we denote by m(i)
k henceforth, for

i = 1, 2 and k = 1, 2, . . . , K. Thus, in the modular design of Fig. 1, at each window k, the two outputs
m

(1)
k and m(2)

k are passed from the Attention Marker module to the State-Space Model module as measures
of the attentional state at window k.

In (O’Sullivan et al., 2015), a correlation-based measure has been adopted in the decoding model
to classify the attended and the unattended speeches in a dual-speaker environment. The approach in
(O’Sullivan et al., 2015) is based on estimating an attended (resp. unattended) decoder from the training
data to reconstruct the attended (resp. unattended) speech envelope from EEG for each trial. Then, the
correlation of this reconstructed envelope with each of the two speech envelopes is computed, and the
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speaker with the larger correlation coefficient is deemed as the attended (resp. unattended) speaker. This
method cannot be directly applied to the real-time setting, since the lack of abundant training data hinders
reliable estimation of these decoders. However, assuming that the auditory M/EEG response is more
influenced by the attended speaker than the unattended one, we can expect that the decoder corresponding
to the attended speaker exhibits a higher performance in reconstructing the speech envelope it has been
trained on. This can be inferred from the findings in (O’Sullivan et al., 2015), where a trained attended
decoder results in 10% more attention decoding accuracy than a trained unattended decoder, as well as
the findings in (Ding and Simon, 2012a). Inspired by these results, we can define the attention marker in
the decoding scenario as the correlation magnitude between the speech envelope and its reconstruction
by the corresponding decoder, i.e., m(i)

k = f
(
θ̂
(i)
k ,Xk,y

(i)
k

)
:=
∣∣∣corr

(
y
(i)
k ,Xkθ̂

(i)
k

)∣∣∣ for i = 1, 2 and
k = 1, 2, . . . , K. As we will demonstrate later in Section 3, this attention marker is suitable for the analysis
of EEG recordings.

In the context of cocktail party studies using MEG, it has been shown that the magnitude of the negative
peak in the TRF of the attended speaker around a lag of 100 ms, referred to as the M100 component, is
larger than that of the unattended speaker (Ding and Simon, 2012a; Akram et al., 2017, 2016). Inspired
by these findings, in the encoding scenario applied to MEG data, we can define the attention marker
m

(i)
k to be the magnitude of the θ̂

(i)
k coefficients corresponding to the M100 component, for i = 1, 2 and

k = 1, 2, . . . , K.

Due to the inherent uncertainties in the M/EEG recordings, the limitations of non-invasive neuroimaging
in isolating the relevant neural processes, and the unknown and likely nonlinear processes involved in
auditory attention, the foregoing attention markers derived from linear models are not readily reliable
indicators of the attentional state. Given ample training data, nevertheless, these attention markers have
been validated using batch-mode analysis. However, their usage in a real-time setting at high temporal
resolution requires more care, as the limited data in real-time applications and computation over small
windows add more sources of uncertainty to the foregoing list. To address this issue, a state-space model is
required in the real-time setting to correct for the uncertainties and stochastic fluctuations of the attention
markers caused by the limited integration time in real-time application. We will discuss in detail the
formulation and advantages of such a state-space model in the following subsection.

2.3 State-Space Model

In order to translate the attention markersm(1)
k andm(2)

k , for k = 1, 2, . . . , K, into a robust and statistically
interpretable measure of the attentional state, we employ state-space models. Inspired by the models used
in (Akram et al., 2016), we design a new state-space model and a corresponding estimator that operates
in a fixed-lag smoothing fashion, and thereby admits real-time processing while maintaining the benefits
of batch-mode state-space models. Recall that the index k corresponds to a window in time ranging from
t = (k−1)W + 1 to t = kW ; however, we refer to each index k as an instance when talking about the
state-space model, so as not to conflate it with the sliding window in the forthcoming treatment.

Figure 2 displays the fixed-lag smoothing design of the state-space estimator. Suppose that we are at the
instance k = k0. We consider an active sliding window of length KA := KB +KF + 1 as shown in Fig. 2,
where KF and KB are respectively called the forward-lag and the backward-lag. In order to carry out the
computations in real-time, we assume all of the attentional state estimates to be fixed prior to this window
and only update our estimates for the instances within, based on m(1)

k ’s and m(2)
k ’s inside the window. In

a fixed-lag framework, at k = k0, the goal is to provide an estimate of the attentional state at instance
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k = k∗, where k∗ = k0−KF . Thus, when using a decoding (resp. encoding) model, the built-in attention
decoding delay of our framework is (Ld + KFW )/fs (resp. KFW/fs) seconds. It is worth noting that
in addition to the built-in delay, our attention decoding results are affected by another source of delay,
which we refer to as the transition delay. The transition delay is due to the forgetting factor mechanism as
well as the smoothing effect in the state-space estimation, which we will discuss further in Section 3.1.
The parameter KF creates a tradeoff between real-time and robust estimation of the attentional state. For
KF = 0, the estimation is carried out fully in real-time; however, the estimates lack robustness to the
fluctuations of the outputs of the attention marker block. The backward-lag KB determines the attention
marker samples prior to k∗ that are used in the inference procedure, and it controls the computational cost
of the state-space model for fixed values of KF . Throughout the rest of the paper, we use the expression
real-time for referring to algorithms that operate with a fixed forward-lag of KF . We will discuss specific
choices of KF and KB and their implications in Section 3.

fixed

Figure 2. The parameters involved in state-space fixed-lag smoothing.

Suppose we have a window of length KA where the instances are indexed by k = 1, 2, . . . , KA. Inspired
by (Akram et al., 2016), we assume a linear state-space model on the logit-probability of attending to
speaker 1. We define the binary random variable nk = 1 when speaker 1 is attended and nk = 2 when
speaker 2 is attended, at instance k. The goal is to obtain estimates of pk := P (nk=1) together with its
confidence intervals for 1 ≤ k ≤ KA. The state dynamics are given by:



pk = P (nk=1) = 1− P (nk=2) = 1
1+exp(−zk)

zk = c0zk−1 + wk

wk ∼ N (0, ηk)

ηk ∼ Inverse-Gamma (a0, b0)

(2)

The dynamics of the main latent variable zk are controlled by its transition scale c0 and state variance
ηk. The hyperparameter 0 ≤ c0 ≤ 1 ensures the stability of the updates for zk. The state variance ηk
is modeled using an Inverse-Gamma conjugate prior with hyper-parameters a0 and b0. The log-prior of
the Inverse-Gamma density takes the form ln P (ηk) = −(a0 + 1) ln ηk − b0

ηk
+ C for ηk > 0, where C

is a normalization constant. By choosing a0 greater than and sufficiently close to 2, the variance of the
Inverse-Gamma distribution takes large values and therefore can serve as a non-informative conjugate prior.
Considering the fact that we do not expect the attentional state to have high fluctuations within a small
window of time, we can further tune the hyperparameters a0 and b0 for the prior to promote smaller values
of ηk’s. This way, we can avoid large consecutive fluctuations of the zk’s, and consequently the pk’s.
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Next, we develop an observation model relating the state dynamics of Eq. (2) to the observations m(1)
k

and m(2)
k for k = 1, 2, . . . , KA. To this end, we use the latent variable nk as the link between the states and

observations:




m

(i)
k

∣∣∣ nk= i ∼ Log-Normal
(
ρ(a), µ(a)

)
m

(i)
k

∣∣∣ nk 6= i ∼ Log-Normal
(
ρ(u), µ(u)

) , i = 1, 2

ρ(a) ∼ Gamma
(
α
(a)
0 , β

(a)
0

)
, µ(a)

∣∣∣ ρ(a) ∼ N (µ(a)0 , ρ(a)
)

ρ(u) ∼ Gamma
(
α
(u)
0 , β

(u)
0

)
, µ(u)

∣∣∣ ρ(u) ∼ N (µ(u)0 , ρ(u)
)

(3)

When speaker i = 1, 2 is attended to, we use a Log-Normal distribution onm(i)
k ’s, with log-density given by

ln P
(
m

(i)
k

∣∣ nk= i
)

= − lnm
(i)
k + 1

2 ln ρ(a) − ρ(a)

2

(
lnm

(i)
k −µ(a)

)2
+ C(i), where µ(a) ∈ R, ρ(a) ∈ R>0,

and C(i) is a normalization constant, for i = 1, 2, and k = 1, 2, . . . , KA. Similarly, when speaker i = 1, 2

is not attended to, we use a Log-Normal distribution on m(i)
k with parameters ρ(u) and µ(u). As mentioned

before, choosing an appropriate attention marker results in a statistical separation between m(1)
k and m(2)

k , if
only one speaker is attended. The Log-Normal distribution is a unimodal distribution on R>0 which lets us
capture this concentration in the values of m(i)

k ’s. In contrast to (Akram et al., 2016), this distribution also
leads to closed form update rules, which significantly reduces computational costs. We have also imposed
conjugate priors on the joint distribution of (ρ, µ)’s, which factorizes as ln P(ρ, µ) = ln P(ρ) + ln P(µ | ρ).
The hyperparameters α0, β0, and µ0 serve to tune the attended and the unattended Log-Normal distributions
to create separation between the attended and unattended cases. These hyperparameters can be determined
based on the mean and variance information of m(i)

k ’s in a supervised manner, in which the attended
speaker labels are known, while enforcing large enough variances for the priors not to be too restrictive in
estimating the Log-Normal distribution parameters. As will be discussed in our simulation and real-data
analysis, this tuning step can be performed using a minimal amount of labeled data, which is significantly
less than those required for reliable pre-estimation of encoder/decoder coefficients in existing approaches.

The parameters of the state-space model are therefore Ω =
{
z1:KA

, η1:KA
, ρ(a), µ(a), ρ(u), µ(u)

}
, which

have to be inferred from m
(1)
1:KA

and m(2)
1:KA

. As mentioned before, our goal in the fixed-lag smoothing
approach is to estimate pk∗ = 1/ (1 + exp (−zk∗)) as well as its confidence intervals in each window,
where k∗ = KA−KF . However, in order to do so in our model, we perform the inference step over all
the parameters in Ω and output the estimate of zk∗ ∈ Ω and its confidence intervals. The calculation of
confidence intervals is discussed in detail at the end of Section 2 of the Supplementary Material. In short,
the density of each zk given the set of observed attention markers, estimated variances, and estimated
Log-Normal distribution parameters is recursively approximated by a Gaussian density. Then, the mean of
this Gaussian approximation is reported as the estimated zk and its confidence intervals are determined
based on the corresponding variance. The estimated Ω would then serve as the initialization for parameter
estimation in the next window. The parameters in Ω can be inferred through two nested EM algorithms as
in (Akram et al., 2016). In Section 2 of the Supplementary Material, we have given a detailed derivation
of the EM framework and update rules in the real-time setting, as well as solutions to further reduce the
computational costs thereof. From here on, we refer to the output of the introduced framework, which
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operates with the discussed built-in delay, as the real-time (state-space) estimator. In Section 3.1, we
compare the performance of the real-time estimator against that of the batch-mode (state-space) estimator.
We define the batch-mode estimator as applying the state-space model in Eq. (2) and (3) on all the computed
attention markers in a trial at once, i.e., KA = K, rather than in a fixed-lag sliding window fashion. In
other words, the batch-mode estimator observes all the attention marker samples in a trial, i.e., m(i)

k for
i = 1, 2 and k = 1, . . . , K, and then infers the attention probabilities. In this sense, it is similar to the
state-space estimator used in (Akram et al., 2016). The batch-mode estimator provides a robust estimate
of the attentional state at any instance by having access to all the future and past attention markers. Thus,
it can serve as a performance benchmark for tuning the fixed-lag sliding window hyperparameters in the
real-time estimator. We will further discuss this point in Section 3.1.4.

Remark 5. The state-space models given in Eqs. 2 and 3 have two major differences with the one used
in (Akram et al., 2016). First, in (Akram et al., 2016), the distribution over the correlative measure for
the unattended speaker is assumed to be uniform. However, this assumption may not hold for other
attention markers in general. For instance, the M100 magnitude of the TRF estimated from MEG data is a
positive random variable, which is concentrated on higher values for the attended speaker compared to the
unattended speaker. In order to address this issue, we consider a parametric distribution in Eq. (3) over
the attention marker corresponding to the unattended speaker and infer its parameters from the data. If
this distribution is indeed uniform and non-informative, the variance of the unattended distribution, which
is estimated from the data, would be large enough to capture the flatness of the distribution. Second, the
parametrization of the observations using Log-Normal densities and their corresponding priors factorized
using Gamma and Gaussian priors, admits fast and closed-form update equations in the real-time setting.
As we have shown in Section 2 of the Supplementary Material, these models also have the advantage of
incorporating low-complexity updates by simplifying the EM procedure. In addition, the Log-Normal
distribution as a generic unimodal distribution allows us to model a larger class of attention markers.

Remark 6. As mentioned in Section 1, one limitation of existing approaches based on reverse-correlation is
that their decoding accuracy drops significantly when operating at high temporal resolutions. The major
source for this performance deterioration is the stochastic fluctuations and uncertainties in correlation
values when computed over small windows of length ∼ 1 s. Therefore, when enough training data is
available for reliable pre-estimation of decoders/encoders, our real-time state-space module can be added
as a complementary final step to the foregoing approaches in order to correct for the stochastic fluctuations
in the calculated correlation values.

2.4 EEG Recording and Experiment Specifications

64-channel EEG was recorded using the actiCHamp system (Brain Vision LLC, Morrisville, NC, US) and
active EEG electrodes with Cz channel being the reference. The data was digitized at a 10 kHz sampling
frequency. Insert earphones ER-2 (Etymotic Research Inc., Elk Grove Village, IL, US) were used to deliver
sound to the subjects while sitting in a sound-attenuated booth. The earphones were driven by the clinical
audiometer Piano (Inventis SRL, Padova, Italy), and the volume was adjusted for every subject’s right and
left ears separately until the loudness in both ears was matched at a comfortably loud listening level. Three
normal-hearing adults participated in the study. The mean age of subjects was 49.5 years with the standard
deviation of 7.18 years. The study included a constant-attention experiment, where the subjects were asked
to sit in front of a computer screen and restrict motion while any audio was playing. The data used in this
paper corresponds to 3 subjects, 24 trials each.
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The stimulus set contained eight story segments, each approximately ten minutes long. Four segments
were narrated by male speaker 1 (M1) and the other four by male speaker 2 (M2). The stimuli were
presented to the subjects in a dichotic fashion, where the stories read by M1 were played in the left ear,
and stories read by M2 were played in the right ear for all the subjects. Each subject listened to twenty
four trials of the dichotic stimulus. Each trial had a duration of approximately one minute, and for each
subject, no storyline was repeated in more than one trial. During each trial, the participants were instructed
to look at an arrow at the center of the screen, which determined whether to attend to the right-ear story
or to the left one. The arrow remained fixed for the duration of each trial, making it a constant-attention
experiment. At the end of each trial, two multiple choice semantic questions about the attended story were
displayed on the screen to keep the subjects alert. The responses of the subjects as well as their reaction
time were recorded as a behavioral measure of the subjects’ level of attention, and above eighty percent
of the questions were answered correctly by each subject. Breaks and snacks were given between stories
if requested. All the audio recordings, corresponding questions, and transcripts were obtained from a
collection of stories recorded at Hafter Auditory Perception Lab at UC Berkeley.

2.5 MEG Recording and Experiment Specifications

MEG signals were recorded with a sampling rate of 1 kHz using a 160-channel whole-head system
(Kanazawa Institute of Technology, Kanazawa, Japan) in a dimly lit magnetically shielded room
(Vacuumschmelze GmbH & Co. KG, Hanau, Germany). Detection coils were arranged in a uniform
array on a helmet-shaped surface on the bottom of the dewar with 25 mm between the centers of two
adjacent 15.5 mm diameter coils. The sensors are first-order axial gradiometers with a baseline of 50 mm,
resulting in field sensitivities of 5 fT√

Hz
or better in the white noise region.

The two speech signals were presented at 65 dB SPL using the software package Presentation
(Neurobehavioral Systems Inc., Berkeley, CA, US). The stimuli were delivered to the subjects’ ears
with 50 Ω sound tubing (E-A-RTONE 3A; Etymotic Research), attached to E-A-RLINK foam plugs
inserted into the ear canal. Also, the whole acoustic delivery system was equalized to give an approximately
flat transfer function from 40 Hz to 3000 Hz. A 200 Hz low-pass filter and a notch filter at 60 Hz were
applied to the magnetic signal in an online fashion for noise removal. Three of the 160 channels are
magnetometers separated from the others and used as reference channels. Finally, to quantify the head
movement, five electromagnetic coils were used to measure each subject’s head position inside the MEG
machine once before and once after the experiment.

Nine normal-hearing, right-handed young adults (ages between 20 and 31) participated in this study.
The study includes two sets of experiments: the constant-attention experiment and the attention-switch
experiment, in each of which six subjects participated. Three subjects took part in both of the experiments.
The experimental procedure were approved by the University of Maryland Institutional Review Board
(IRB), and written informed consent was obtained from each subject before the experiment.

The stimuli included four non-overlapping segments from the book A Child’s History of England by
Charles Dickens. Two of the segments were narrated by a man and the other two by a woman. Three
different mixtures, each 60 s long, were generated and used in the experiments to prevent reduction in
the attentional focus of the subjects. Each mixture included a segment narrated by the male speaker and
one narrated the the female speaker. In all trials, the stimuli were delivered diotically to both ears using
tube phones inserted into the ear canals at a level of approximately 65 dB SPL. The constant-attention
experiment consisted of two conditions: 1) attending to the male speaker in the first mixture, 2) attending
to the female speaker in the second mixture. In the attention-switch experiment, subjects were instructed
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to focus on the female speaker in the first 28 s of the trial, switch their attention to the male speaker after
hearing a 2 s pause (28th to 30th seconds), and maintain their focus on the latter speaker through the end of
the trial. Each mixture was repeated three times in the experiments, resulting in six trials per speaker for
the constant-attention experiment and three trials per speaker for the attention-switch experiment. After the
presentation of each mixture, subjects answered comprehensive questions related to the segment they were
instructed to focused on, as a way to keep them motivated to attend to the target speaker. Eighty percent
of the questions were answered correctly on average. Furthermore, a preliminary experiment for each of
the nine participating subjects was performed prior to the main experiments. In this study, the subjects
listened to a single speech stream, first segment in the stimuli set narrated by the male speaker, for three
trials each 60 s long. The MEG recordings in the pilot study were used to calculate the subject-specific
linear combination of MEG channels which forms the auditory component of the response, as will be
explained next. Note that for each subject, all the recordings were performed in a single session resulting in
a minimal change of the subject’s head position with respect to the MEG sensors.

3 RESULTS

In this section, we apply our real-time attention decoding framework to synthetic data as well as M/EEG
recordings. Subsection 3.1 includes the simulation results, and subsections 3.2 and 3.3 demonstrate the
results for the analysis of EEG and MEG recordings, respectively.

3.1 Simulations

In order to validate our proposed framework, we perform two sets of simulations. The first simulation
pertains to our EEG analysis and employs a decoding model, which we describe below in full detail. The
second simulation, for our MEG analysis using an encoding model, is deferred to the Supplementary
Material Section 4, in the interest of space.

3.1.1 Simulation Settings

In order to simulate EEG data under a dual-speaker condition, we use the following generative model:

et = w
(1)
t

(
s
(1)
t ∗ ht

)
+ w

(2)
t

(
s
(2)
t ∗ ht

)
+ µ+ ut (4)

where s(1)t and s(2)t are respectively the speech envelopes of speakers 1 and 2 at time t; the output et is the
simulated neural response, which denotes an auditory component of the EEG or the EEG response at a
given channel at time t for t = 1, 2, . . . , T . Motivated by the analysis of LTI systems, ht can be considered
as the impulse response of the neural process resulting in et, and ∗ represents the convolution operator;
the scalar µ is an unknown constant mean, and ut denotes a zero-mean i.i.d Gaussian noise. The weight
functions w(1)

t and w(2)
t are signals modulated by the attentional state which determine the contributions of

speakers 1 and 2 to et, respectively. In order to simulate the attention modulation effect, we assume that
when speaker 1 (resp. 2) is attended to at time t, we have w(1)

t > w
(2)
t (resp. w(1)

t < w
(2)
t ).

We have chosen two 60 s-long speech segments from those used in the MEG experiment (See section
2.5) and calculated s(1)t and s(2)t as their envelopes for a sampling rate of fs = 200 Hz. Also, we have

set µ = 0.02 and ut
iid∼ N (0, 2.5×10−5) in Eq. (4). Fig. 3-A shows the location and amplitude of the

lag components in the impulse response, which is then smoothed using a Gaussian kernel with standard
deviation of 10 ms to result in the final impulse response ht, shown in Fig. 3–B. The significant components
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of ht are chosen at 50 ms and 100 ms lags, with a few smaller components at higher latencies (Akram et al.,
2016). It is noteworthy that existing results (Ding and Simon, 2012a; Power et al., 2012; Akram et al., 2017)
suggest that this impulse response (i.e., the TRF) is not the same for the attended and unattended speakers,
as discussed in Section 2.2. However, we have considered the same ht for both speakers in this simulation
for simplicity, given that our focus here is to model the stronger presence of the attended speaker in the
neural response in terms of the extracted attention markers. In Section 4 of the Supplementary Material, we
indeed use an encoding model consisting of different and attention-modulated TRFs for the two speakers.
The weight signals w(1)

t and w(2)
t in Eq. (4) are chosen to favor speaker 1 in the [0 s, 30 s) interval and

speaker 2 in the (30 s, 60 s] interval.
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sparse lag components smooth filter
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A) B)

Figure 3. Impulse response ht used in Eq. (4). A) sparse lag components, B) the smooth impulse response.

3.1.2 Parameter Selection

We aim at estimating decoders in this simulation, which linearly map et and its lags to s(1)t and s(2)t . To
estimate the decoders, we have considered consecutive non-overlapping windows of length 0.25 s resulting
in K=240 windows of length W =50 samples. Also, we have chosen γ=0.001, through cross-validation,
and λ= 0.95 in estimating the decoding coefficients, which results in an effective data length of 5 s for
decoder estimation. The forward lags of the neural response have been limited to a 0.4 s window, i.e.,
Ld = 80 samples. Given that the decoder corresponds to the inverse of a smooth kernel ht, it may not have
the same smoothness properties of ht. Hence, we do not employ a smooth basis for decoder estimation. We
have used the FASTA package (Goldstein et al., 2014) with Nesterov’s acceleration method to implement
the forward-backward splitting algorithm for encoder/decoder estimation. As for the state-space model
estimators, we have considered 20 (inner and outer) EM iterations for the batch-mode estimators, while
for the real-time estimators, we use 1 inner EM iteration and 20 outer EM iterations (See Section 2 of the
Supplementary Material for more details).

There are three criteria for choosing the fixed-lag smoothing parameters: First, how close to the true
real-time analysis the system operates is determined by KF . Second, the computational cost of the system
is determined by KA. Third, how close the output of the system is to that of the batch-mode estimator is
determined by both KF and KA. These three criteria form a tradeoff in tuning the parameters KA and KF .
Specific choices of these parameters are given in the next subsection.

For tuning the hyperparameters of the priors on the attended and unattended distributions, we have
used a separate 15 s sample trial generated from the same simulation model in Eq. (4) for each of the
three cases. The parameters

(
α
(a)
0 , α

(u)
0 , β

(a)
0 , β

(u)
0 , µ

(a)
0 , µ

(u)
0

)
have been chosen by fitting the Log-Normal

distributions to the attention marker outputs from the sample trials in a supervised manner (with known

attentional state). The variance of the Gamma priors α
(a)
0

β
(a)
0

2 and α
(u)
0

β
(u)
0

2 have been chosen large enough such
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that the priors are non-informative. This step can be thought of as the initialization of the algorithms prior
to data analysis. For the Inverse-Gamma prior on the state-space variances, we have chosen a0=2.008 and
b0=0.2016, resulting in a mean of 0.2 and a variance of 5. This prior favors small values of ηk’s to ensure
that the state estimates are immune to large fluctuations of the attention markers, while the large variance
(compared to the mean) results in a non-informative prior for smaller values of ηk’s.

3.1.3 Estimation Results

Fig. 4 shows the results of our estimation framework for a correlation-based attention marker. Row
A in Fig. 4 shows three cases considered for modulating the weights w(1)

t and w(2)
t , where the weights

are contaminated with Gaussian noise N (0, 4×10−4) to model extra uncertainties in determining the
contribution of each speech to the neural response, arising from irrelevant or background neural processes.
In order to probe the transition delay of the state-space estimates due to abrupt changes in the attentional
state, the two weight vectors undergo step-like transition at 30 s. Cases 1, 2, and 3 exhibit increasing levels
of difficulty in discriminating the contributions of the two speakers to the neural response. Rows B and
C in Fig. 4 respectively show the decoder estimates for speakers 1 and 2. As expected, the significant
components of the decoders around 50 ms, 100 ms, and 150 ms lags, are modulated by the attentional state,
and the modulation effect weakens as we move from Case 1 to 3. In Case 1, these components are less
significant overall for the decoder estimates of speaker 2 in the [0 s, 30 s] time interval and become larger as
the attention switches to speaker 2 during the rest of the trial (red boxes in row C of Case 1). On the other
hand, in Case 3, the magnitude of said components do not change notably across the 30 s mark. The TRF
ht in the forward generative model of Eq. (4) is an FIR filter with significant components at lags which
are multiples of 0.05 s (See Fig. 3-B). Therefore, the decoder estimates in Fig. 4 correspond to truncated
IIR filters, which form approximate inverse filters of the TRF. Therefore, it is expected that they comprise
significant components at lags which are multiples of 0.05 s as well, but decay exponentially fast.

We have considered two different attention markers for this simulation. Row D in Fig. 4 displays
the output of a correlation-based attention marker for speakers 1 and 2, which is calculated as m(i)

k =∣∣∣corr
(
y
(i)
k ,Xkθ̂

(i)
k

)∣∣∣ for i = 1, 2 and k = 1, 2, . . . , K. As discussed in subsection 2.2, this attention
marker is a measure of how well a decoder can reconstruct its target envelope. As observed in row D of
Fig. 4, the attention marker is a highly variable surrogate of the attentional state at each instance, i.e., on
average the attention marker output for speaker 1 is higher then that of speaker 2 in the [0 s, 30 s) interval
and vice versa in the (30 s, 60 s] interval. The reliability of the attention marker significantly degrades going
from Case 1 to 3. This highlights the need for state-space modeling and estimation in order to optimally
exploit the attention marker.

Rows E and F in Fig. 4 respectively show the batch-mode and real-time estimator outputs as the
inferred attentional state probabilities pk = P (nk = 1) for k = 1, . . . , K, for the correlation-based
attention marker, where colored hulls indicate 90% confidence intervals. Row F in Fig. 4 corresponds
to the fixed-lag smoother, using a window of length 15 s (KA = b15fs/W c), and a forward-lag of 1.5 s
(KF = b1.5fs/W c). By accounting for the lag in the decoder (Ld), the built-in delay in estimating the
attentional state is 1.9 s. Note that all the relevant figures showing the outputs of the real-time estimator
are calibrated with respect to the built-in delay for the sake of illustration. Thus, these figures must be
interpreted as non-causal when KF > 0, since the estimated attentional state at each time depends on the
future KF samples of the attention marker. Recall that in the batch-mode estimator, all of the attention
marker outputs across the trial are available to the state-space estimator, as opposed to the fixed-lag
real-time estimator which has access to a limited number of the attention markers. Therefore, the output
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Figure 4. Estimation results of application to simulated EEG data for the correlation-based attention
marker: A) Input weights w(1)

t and w(2)
t in Eq. (4), which determine the relative effect of the two speeches

on the neural response. Based on our generative model, the attention is on speaker 1 for the first half of
each trial and on speaker 2 for the second half. Case 1 corresponds to a scenario where the effects of the
attended and unattended speeches in the neural response are well-separated. This separation decreases as
we move from Case 1 to Case 3. B) Estimated decoder for speaker 1. C) Estimated decoder for speaker
2. In Case 1, the significant components of the estimated decoders near the 50 ms, 100 ms, and 150 ms
lags are notably modulated by the attentional state as highlighted by the red boxes. This effect weakens in
Case 2 and visually disappears in Case 3. D) Output of the correlation-based attention marker for each
speaker. E) Output of the batch-mode state-space estimator for the correlation-based attention marker as
the estimated probability of attending to speaker 1. F) Output of the real-time state-space estimator, i.e.,
fixed-lag smoother, for the correlation-based attention marker as the estimated probability of attending to
speaker 1. The real-time estimator is not as robust as the batch-mode estimator to the stochastic fluctuations
of the attention marker in row D and is more prone to misclassifications. The red arrows in rows E and F of
Case 2 show that the batch-mode estimator correctly classifies the instance as attending to speaker 2, while
the real-time estimator is unable to determine the attentional state.

of the batch-mode estimator (Row E) is a more robust measure of the instantaneous attentional state as
compared to the real-time estimator (Row F), since it is less sensitive to the stochastic fluctuations of the
attention markers in row D. For example, in the instance marked by the red arrows in rows E and F of
Case 2 in Fig. 4, the batch-mode estimator classifies the instance correctly as attending to speaker 2, while
the real-time estimator cannot make an informed decision since pk = 0.5 falls within the 90% confidence
interval of the estimate at this instance. However, the real-time estimator exhibits performance closely
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matching that of the batch-mode estimator for most instances, while operating in real-time with limited
data access and significantly lower computational complexity. Comparing the state-space estimators with
the raw attention markers in Fig. 4-D, we observe the smoothing effect of the state-space model which
makes its output robust to the stochastic fluctuations in the attention marker at high temporal resolution.
Section 3 of the Supplementary Material includes a comparison of this smoothing effect with that of a
typical Gaussian smoothing kernel applied directly to the attention markers.

Row A in Fig. 5 exhibits the output of another attention marker computed as the `1-norm of the decoder
given by m(i)

k :=
∥∥∥ θ̂(i)k ∥∥∥1 for i = 1, 2 and k = 1, 2, . . . , K, where the first element of θ̂(i)

k ∈ RLd+2 (the
intercept parameter) is discarded in computing the `1-norm. This attention marker captures the effect of
the significant peaks in the decoder. The rationale behind using the `1-norm based attention marker is
the following: in the extreme case that the neural response is solely driven by the attended speech, we
expect the unattended decoder coefficients to be small in magnitude and randomly distributed across the
time lags. The attended decoder, however, is expected to have a sparse set of informative and significant
components corresponding to the specific latencies involved in auditory processing. Thus, the `1-norm
serves to distinguish between these two cases by capturing such significant components. Rows B and C in
Fig. 5 show the batch-mode and real-time estimates of the attentional state probabilities for the `1-based
attention marker, respectively, where colored hulls indicate 90% confidence intervals. Consistent with
the results of the correlation-based attention marker (Rows E and F in Fig. 4), the real-time estimator
exhibits performance close to that of the batch-mode estimator. Comparing Figs. 4 and 5 reveals the
dependence of the attentional state estimation performance on the choice of the attention marker: while the
correlation-based attention marker is more widely used, the `1-based attention marker provides smoother
estimates of the attention probabilities, and can be used as an alternative to the correlation-based attention
marker. Overall, this simulation illustrates that if the attended stimulus has a stronger presence in the
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Figure 5. Estimation results of application to simulated EEG data for the `1-based attention marker: A)
Output of the `1-based attention marker for each speaker, corresponding to the three cases in Figure 4.
B) Output of the batch-mode state-space estimator for the `1-based attention marker as the estimated
probability of attending to speaker 1. C) Output of the real-time state-space estimator for the `1-based
attention marker as the estimated probability of attending to speaker 1. Similar to the preceding correlation-
based attention marker, the classification performance degrades when moving from Case 1 (strong attention
modulation) to Case 3 (weak attention modulation).
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neural response than the unattended one, both the correlation-based and `1-based attention markers can be
attention modulated and can therefore potentially be used in real M/EEG analysis.

3.1.4 Discussion and Further Analysis

Going from Case 1 to Case 3 in Fig. 4 and Fig. 5, we observe that the performance of all estimators
degrades, causing a drop in the classification accuracy and confidence. This performance degradation is
due to the declining power of the attention markers in separating the contributions of the attended and
unattended speakers. However, comparing the outputs of the real-time and batch-mode estimators with
their corresponding attention marker outputs in row D of Fig. 4 and row A of Fig. 5, highlights the role
of the state-space model in suppressing the stochastic fluctuations of the attention markers and thereby
providing a robust and smooth measure of the attentional state.

In response to abrupt step-like changes in the attentional state, we define the transition delay as the
time it takes for the output of the real-time estimator to reach the pk = 0.5 level, which marks the point
at which the classification label of the attended speaker changes. We calculate the transition delay after
calibrating for the built-in delay, for all the real-time estimator outputs. Thus, the overall delay of the
system in detecting abrupt attentional state changes is equal to the sum of the built-in and transition delays.
The red intervals in Case 1 of row F in Fig. 4 and row C of Fig. 5 mark the transition delay of the real-time
estimator corresponding to the correlation-based and `1-based attention markers, respectively. From the
deflection point at 30 s, this delay is given by ∼2.3 s. The transition delay is due to the forgetting factor
mechanism and the smoothing effect of the state-space estimation given the backward- and forward-lags,
which have been set in place to increase the robustness of the decoding framework to stochastic fluctuations
of the extracted attention markers. As a result, such classification delays in response to a sudden attention
switches are expected by design. Specifically, the sole contribution of the forgetting factor mechanism to
this delay can be observed as the red interval in Case 1 of row A in Fig. 5, which precedes the application
of the state-space estimation.

Comparing the batch-mode and the real-time estimators in Fig. 4 and Fig. 5, we observe that the real-time
estimators closely follow the output of the batch-mode estimators, while having access to data in an online
fashion. A significant deviation between the batch-mode and real-time performance is observed in rows B
and C (Cases 1 and 2) of Fig. 5 in the form of sharp drops in the real-time estimates of the attentional state
probability. Given that the real-time estimator has only access to the attention marker within KF samples
in the future, the confidence intervals significantly narrow down within the first half of the trial, as all the
past and near-future observations are consistent with attention to speaker 1. However, shortly after the 30 s
mark the estimator detects the change and the confidence bounds widen accordingly (see red arrows in row
C of Case 2 in Fig. 5).

In order to further quantify the performance gap between the batch-mode and real-time estimators, we
define their relative Mean Squared Error (MSE) as:

MSE=
1

K

K∑
k=1

 1

1 + exp
(
−ẑ(B)

k

) − 1

1 + exp
(
−ẑ(R)k

)
2

(5)

where ẑ(R)1:K and ẑ(B)
1:K denote the real-time and batch-mode state estimates over a given trial, respectively.

We have considered the logistic transformation of ẑ(B)
1:K and ẑ(R)1:K , which gives the probability of attending

to speaker 1. The rationale behind this MSE metric is to measure the performance and robustness of the
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real-time estimator with respect to the batch-mode estimator, since they both operate on the same computed
attention markers, but in different algorithmic fashions.

Figure 6 shows the effect of varying the forward-lag KF from 0 s (i.e., fully real-time) to 5 s with 0.5 s
increments for the two attention markers in Case 2 of Fig. 4 and Fig. 5, as an example. All of the other
parameters in the simulation have been fixed as before. The left panels in Fig. 6 show the MSE for different
values of KF in the real-time setting. As expected, for both attention markers, the MSE decreases as
the forward-lag increases. The right panels in Fig. 6 display the incremental MSE defined as the change
in MSE when KF is increased by 0.5 s at each value, starting from KF = 0. The incremental MSE is
basically the discrete derivative of the displayed MSE plots and shows the amount of relative performance
boost between two consecutive values of KF , if we allow for a larger built-in delay. Notice that even a 0.5 s
forward-lag significantly decreases the MSE from KF = 0. The subsequent improvements of the MSE
diminish as KF is increased further. Our choice of KF corresponding to 1.5 s in the foregoing analysis was
made to maintain a reasonable tradeoff between the MSE improvement and the built-in delay in real-time
operation. In summary, Fig. 6 shows that having larger forward-lags can make our estimates more robust
but it creates a larger built-in delay. Whether higher levels of delay are tolerable or not depends on the
particular attention decoding application.
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Figure 6. Effect of the forward-lag KF on the MSE for the two attention markers in case 2 of Fig. 4
and Fig. 5. A) Correlation-based attention marker, B) `1-based attention marker. As the forward-lag
increases, the MSE decreases, and the output of the real-time estimator becomes more similar to that of
the batch-mode. This results in more robustness for the real-time estimator at the expense of more built-in
delay in decoding the attentional state. The right panels show that the incremental improvement to the
MSE decreases as KF increases.

Finally, Fig. 7 shows the estimated attention probabilities and their 90% confidence intervals for the
correlation-based attention marker in Case 2 of Fig. 4, as an example of the output of the state-space
estimator. The three curves correspond to the extreme values of KF in Fig. 6 corresponding to 0 s (blue)
and 5 s (red) forward-lags, and the batch-mode estimate (green). All the other parameters have been fixed
as described above. The fixed-lag smoothing approach with KF of 5 s is as robust as the batch-mode
estimate. The fully real-time estimate with KF of 0 s follows the same trend as the other two. However, it
is susceptible to the stochastic fluctuations of the attention marker, which may lead to misclassifications
(see the red arrows in Fig. 7). The red interval in Fig. 7 displays the difference between the transition
delays corresponding to the forward-lag of 0 s and 5 s. Although the built-in attention decoding delay of a

This is a provisional file, not the final typeset article 18



Miran et al. Real-Time Tracking of Selective Auditory Attention from M/EEG

5 s forward-lag is more than that of 0 s by 5 s, the transition delay corresponding to the former is smaller
due to observing the future attention marker samples up to 5 s. Therefore, the parameter KF also provides
a tradeoff in the overall delay of the framework in detecting abrupt attention switches, which equals the
transition delay plus the built-in delay. The choice of 1.5 s for the forward-lag in our analysis was also
aimed to minimize this overall delay.

0.8

0.6

0

0.2

0.4

1

time (s)

0 10 20 30 40 50 60

(s) = 0sKF
(s) = 5sKF

Batch-Mode

Figure 7. Estimated attention probabilities together with their 90% confidence intervals for the correlation-
based attention marker in Case 2 of Fig. 4. The blue, red and green curves correspond to KF of 0 s, KF
of 5 s, and batch-mode estimation, respectively. The estimator for KF of 5 s is nearly as robust as the
batch-mode. However, the fully real-time estimator with KF of 0 s is sensitive to the stochastic fluctuations
of the attention markers, which results in the misclassification of the attentional state at the instances
marked by red arrows.

3.2 Application to EEG

In this subsection, we apply our real-time attention decoding framework to EEG recordings in a dual-
speaker environment. Details of the experimental procedures are given in Section 2.4.

3.2.1 Preprocessing and Parameter Selection

Both the EEG data and the speech envelopes were downsampled to fs = 64 Hz using an anti-aliasing
filter. As the trials had variable lengths, we have considered the first 53 s of each trial for analysis. We
have considered consecutive windows of length 0.25 s for decoder estimation, resulting in W =16 samples
per window and K=212 instances for each trial. Also, we have considered lags up to 0.25 s for decoder
estimation, i.e., Ld = 16. The latter is motivated by the results of (O’Sullivan et al., 2015) suggesting
that the most relevant decoder components are within the first 0.25 s lags. Prior studies have argued that
the effects of auditory attention and speech perception are strongest in the frontal and close-to-ear EEG
electrodes (Power et al., 2012; Khalighinejad et al., 2017; Kähkönen et al., 2001; Bleichner et al., 2016).
We have only considered 28 EEG channels in the decoder estimation problem, i.e., C=28, including the
frontal channels Fz, F1-F8, FCz, FC1-FC6, FT7-FT10, C1-C6, and the T complex channels T7 and T8.
This subsampling of the electrodes is inspired by the results in Mirkovic et al. (2015), which show that
using an electrode subset of the same size for decoding results in nearly the same classification performance
as in the case of using all the electrodes. Note that for our real-time setting, a channel selection step can
considerably decrease the computational cost and the dimensionality of the decoder estimation step, given
that a vector of size 1+C(Ld+1) needs to be updated within each 0.25 s window.

We have determined the regularization coefficient γ=0.4 via cross-validation and the forgetting factor
λ= 0.975, which results in an effective data length of 10 s in the estimation of the decoder and is long
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enough for stable estimation of the decoding coefficients. It is worth noting that small values of λ, and
hence small effective data lengths, may result in an under-determined inverse problem, since the dimension
of the decoder is given by 1+C(Ld+1). Finally, in the FASTA package, we have used a tolerance of 0.01
together with Nesterov’s accelerated gradient descent method to ensure that the processing can be done in
an online fashion.

In studies involving correlation-based measures, such as (O’Sullivan et al., 2015; Akram et al., 2016),
the convention is to train attended and unattended decoders/encoders using multiple trials and then use
them to calculate the correlation measures over the test trials. The correlation-based attention marker,
however, did not produce a statistically significant segregation of the attended and the unattended speakers
in our analysis. This discrepancy seems to stem from the fact that the estimated encoders/decoders and
the resulting correlations in the aforementioned studies are more informative and robust due to the use of
batch-mode analysis with multiple trials for decoder estimation, as compared to our real-time framework.
The `1-based attention marker, however, resulted in a meaningful statistical separation between the attended
and the unattended speakers. Therefore, in what follows, we present our EEG analysis results using the
`1-based attention marker.

The parameters of the state-space models have been set similar to those used in simulations, i.e.,
KA = b15fs/W c, KF = b1.5fs/W c, a0 = 2.008, b0 = 0.2016. Considering the 0.25 s lag in the decoder
model, the built-in delay in estimating the attentional state for the real-time system is 1.75 s. For estimating
the prior distribution parameters for each subject, we use the first 15s of each trial. As mentioned before,
considering the 15 s-long sliding window, we can treat the first 15 s of each trial as a tuning step in
which the prior parameters are estimated in a supervised manner and the state-space model parameters
are initialized with the values estimated using these initial windows. Thus, similar to the simulations,(
α
(a)
0 , α

(u)
0 , β

(a)
0 , β

(u)
0 , µ

(a)
0 , µ

(u)
0

)
for each subject have been set according to the parameters of the two

fitted Log-Normal distributions on the `1-norm of the decoders in the first 15 s of the trials, while choosing
large variances for the priors to be non-informative.

3.2.2 Estimation Results

Fig. 8 shows the results of applying our proposed framework to EEG data. For graphical convenience, the
data have been rearranged so that speaker 1 is always attended. The left, middle and right panels correspond
to subjects 1, 2, and 3, respectively. For each subject, three example trials have been displayed in rows A,
B, and C. Row A includes trials in which the attention marker clearly separates the attended and unattended
speakers, while Row C contains trials in which the attention marker fails to do so. Row B displays trials
in which on average the `1-norm of the estimated decoder is larger for the attended speaker; however,
occasionally, the attention marker fails to capture the attended speaker.

Consistent with our simulations, the real-time estimates (third graphs in rows A, B and C) generally follow
the output of the batch-mode estimates (second graphs in rows A, B and C). However, the batch-mode
estimates yield smoother transitions and larger confidence intervals in general, both of which are due to
having access to future observations.

Figure 9 shows the effect of forward-lag KF on the performance of real-time estimates, similar to that
shown in Fig. 6 for the simulations. The forward-lag KF is increased from 0 s to 5 s with 0.5 s increments
while all the other parameters of the EEG analysis remain the same. The MSE in Fig. 9 has been averaged
over all trials for each subject. As we observe in the incremental MSE plot, even a 0.5 s lag can significantly
decrease the MSE from the case of 0 s forward-lag (corresponding to the fully real-time setting). Similar

This is a provisional file, not the final typeset article 20



Miran et al. Real-Time Tracking of Selective Auditory Attention from M/EEG

to the simulations, we have chosen a KF of 1.5 s for the EEG analysis, since the incremental MSE
improvements are significant at this lag, and this choice results in a tolerable built-in delay for real-time
applications.

Finally, Fig. 10 summarizes the real-time classification results of our EEG analysis at the group level,
in order to present subject-specific and individual trial performances. Fig. 10-A shows a cartoon of the
estimated attention probabilities for a generic trial in order to illustrate the classification conventions. We
define an instance (i.e., K consecutive windows of length W ) to be correctly (incorrectly) classified if the
estimated attentional state probability together with its 90% confidence intervals lie above (below) 0.5. If
the 90% confidence interval at an instance includes the 0.5 attention probability line, we do not classify it
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Figure 8. Examples of the `1-based attention markers (first panels), batch-mode (second panels), and
real-time (third panels) state-space estimation results for nine selected EEG trials. A) Representative trials
in which the attention marker reliably separates the attended and unattended speakers. B) Representative
trials in which the attention marker separates the attended and unattended speakers on average over the
trial. C) Representative trials in which the attention marker either does not separate the two speakers or
results in a larger output for the unattended speaker.
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Figure 10. Summary of the real-time classification results in application to real EEG data. A) a generic
example of the state-space output for a trial illustrating the classification conventions. B) Classification
results per trial for all subjects; each circle corresponds to a trial and the subjects are color-coded. The
trials falling below the dashed line have more incorrectly classified instances than correctly classified ones.
C) Average classification performance over all trials for the three subjects.

as either correct or incorrect. Figure 10-B displays the correctly classified instances (y-axis) versus those
incorrectly classified (x-axis) for each trial. The subjects are color-coded and each circle corresponds to
one trial. The average classification results over all trials for each subject are shown in Figure 10-C. In
summary, our framework provides ∼ 80% average hit rate and ∼ 15% average false-alarm per trial per
subject. The group-level hit rate and false alarm rate are respectively given by 79.63% and 14.84%.

3.3 Application to MEG

In this subsection, we apply our real-time attention decoding framework to MEG recordings of multiple
subjects in a dual-speaker environment. The MEG experimental procedures are discussed in Section 2.5.
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3.3.1 Preprocessing and Parameter Selection

The recorded MEG responses were band-pass filtered between 1 Hz-8 Hz (delta and theta bands),
corresponding to the slow temporal modulations in speech (Ding and Simon, 2012b,a), and downsampled
to 200 Hz. MEG recordings, like EEG, include both the stimulus-driven response as well as the background
neural activity, which is irrelevant to the stimulus. For the encoding model used in our analysis, we need to
extract the stimulus-driven portion of the response, namely the auditory component. In (Särelä and Valpola,
2005; de Cheveigne and Simon, 2008), a blind source separation algorithm called the Denoising Source
Separation (DSS) is described which decomposes the data into temporally uncorrelated components ordered
according to their trial-to-trial phase-locking reliability. In doing so, DSS only requires the responses
in different trials and not the stimuli. Similar to (Akram et al., 2017, 2016), we only use the first DSS
component as the auditory component, since it tends to capture a significant amount of stimulus information
and to produce a bilateral stereotypical auditory field pattern.

Since DSS is an offline algorithm operating on all the data at once, we cannot readily use it for real-
time attention decoding. Instead, we apply DSS to the data from preliminary trials from each subject
in order to calculate the subject-specific linear combination of the MEG channels that compose the first
DSS component. We then use these channel weights to extract the MEG auditory responses during the
constant-attention and attention-switch experiments in a real-time fashion. Note that the MEG sensors are
not fixed with respect to the head position across subjects and are densely distributed in space. Therefore, it
is not reasonable to use the same MEG channel weights for all subjects. The preliminary trials for each
subject can thus serve as a training and tuning step prior to the application of our proposed attention
decoding framework.

The MEG auditory component extracted using DSS is used as Et in our encoding model. Similar to our
foregoing EEG analysis, we have considered consecutive windows of length 0.25 s resulting in W = 50
samples per window and a total number of K = 240 instances, at a sampling frequency of 200 Hz. The
TRF length, or the total encoder lag, has been set to 0.4 s resulting in Le = 80 in order to include the most
significant TRF components (Ding and Simon, 2012a). The `1-regularization parameter γ in Eq. (1) has
been adjusted to 1 through two-fold cross-validation, and we have chosen a forgetting factor of λ = 0.975,
resulting in an effective data length of 10 s, long enough to ensure estimation stability.

As for the encoder model, we have used a Gaussian dictionary G0 to enforce smoothness in the TRF
estimates. The columns of G0 consist of overlapping Gaussian kernels with the standard deviation of 20
ms whose means cover the 0 s to 0.4 s lag range with Ts=5 ms increments. The 20 ms standard deviation
is consistent with the average full width at half maximum (FWHM) of an auditory MEG evoked response
(M50 or M100), empirically obtained from MEG studies (Akram et al., 2017). Thus, the overall dictionary
discussed in Remark 2 takes the form G = diag (1,G0,G0). Also, similar to (Akram et al., 2017), we
have used the logarithm of the speech envelopes as the regression covariates. Finally, the parameters of the
FASTA package in encoder estimation have been chosen similar to those in the foregoing EEG analysis.

The M100 component of the TRF has shown to be larger for the attended speaker than the unattended
speaker (Ding and Simon, 2012a; Akram et al., 2017). Thus, at each instance k, we extract the magnitude
of the negative peak close to the 0.1 s delay in the real-time TRF estimate of each speaker as the attention
markers m(1)

k and m(2)
k . For the state-space model and the fixed-lag window, we have used the same

configuration as in our foregoing EEG analysis, i.e. KA=b15fs/W c, KF =b1.5fs/W c, a0=2.008, and
b0 = 0.2016. Note that the built-in delay in estimating the attentional state is now only 1.5 s, given that
we use an encoding model for our MEG analysis. Furthermore, the prior distribution parameters for each
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subject were chosen according to the two fitted Log-Normal distributions on the extracted M100 values
in the first 15 s of the trials, while choosing large variances for the Gamma priors to be non-informative.
Similar to the preceding cases, the first 15 s of each trial can be thought of as an initialization stage.
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Figure 11. Examples from the constant-attention and attention-switch MEG experiments, using the M100
attention marker, for trials with reliable (cases 1 and 3) and unreliable (cases 2 and 4) separation of the
attended and unattended speakers. A) TRF estimates for speakers 1 and 2 over time with the extracted
M100 peak positions tracked by a narrow yellow line. B) Extracted M100 peak magnitudes over time
for speakers 1 and 2 as the attention marker. In cases 1 and 3, the M100 components exhibit a strong
modulation effect of the attentional state, i.e., the attended speaker has a larger M100 peak, in contrast to
cases 2 and 4, where there is a weak modulation. C) Batch-mode state-space estimates of the attentional
state. D) Real-time state-space estimates of the attentional state. The strong or weak modulation effects
of attentional state in the extracted M100 components directly affects the classification accuracy and the
width of the confidence intervals for both the batch-mode and real-time estimators.

3.3.2 Estimation Results

Figure 11 shows our estimation results for four sample trials from the constant-attention (cases 1 and
2) and attention-switch (cases 3 and 4) experiments. For graphical convenience, we have rearranged the
MEG data such that in the constant-attention experiment, the attention is always on speaker 1, and in the
attention-switch experiment, speaker 1 is attended from 0 s to 28 s. Cases 1 and 3 corresponds to trials in
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which the extracted M100 values for the attended speaker are more significant than those of the unattended
speaker during most of the trial duration. Cases 2 and 4, on the other hand, correspond to trials in which
the extracted M100 values are not reliable representatives of the attentional state. Row A in Fig. 11 shows
the estimated TRFs for speakers 1 and 2 in time for each of the four cases. The location of the M100 peaks
is shown and tracked with a narrow line (yellow) on the extracted M100 components (blue). The M50
components are also evident as positive peaks occurring around the 50 ms lag. The M50 components do not
strongly depend on the attentional state of the listener (Akram et al., 2017; Ding and Simon, 2012a; Chait
et al., 2004, 2010), which is consistent with those shown in Fig. 11-A. It is worth noting that real-time
estimation of the TRFs makes the estimates heavily affected by the dynamics of neural response and the
background neural activity. Therefore, the estimates contain longer latency components which are typically
suppressed in the offline estimates of TRFs common in the literature, which use multiple trial averaging
to extract the stimulus-driven response (Ding and Simon, 2012a; Power et al., 2012). The width of the
extracted components in Fig. 11 is due to the usage of a Gaussian dictionary matrix to represent the TRFs.

Row B in Fig. 11 displays the extracted M100 peak magnitudes over time for speakers 1 and 2. The
attention modulation effect is more significant in cases 1 and 3. Rows C and D respectively show the batch-
mode and real-time estimates of the attentional state based on the extracted M100 values. As expected, the
batch-mode output is more robust to the fluctuations in the extracted M100 peak values, with smoother
transitions and larger confidence intervals. Despite the poor attention modulation effect in cases 2 and 4,
we observe that both the real-time and the batch-mode state-space models show reasonable performance
in translating the extracted M100 peak values to a robust measure of the attentional state. This effect is
notable in Rows C and D of Case 4. We performed the same analysis as in Fig. 9 to assess the effect of
the forward-lag parameter KF . Since the results were quite similar to those in Figures 6 and 9, we have
omitted them for brevity and chose the same forward-lag of 1.5 s.

Finally, Fig. 12 summarizes the real-time classification results for the constant-attention (left panels) and
attention-switch (right panels) MEG experiments. The classification convention is similar to that used in
our EEG analysis, and is illustrated in Fig. 12-A for the completeness. For the attention-switch experiment,
the 28 s-30 s interval is removed from the classification analysis, as it pertains to a silence period during
which the subject is instructed to switch attention. Fig. 12-B shows the corresponding classification results,
consisting of 36 trials for the constant-attention and 18 trials for the attention-switch experiments. Each
circle corresponds to a single trial and the subjects in each experiment are color-coded. The average
classification results per trial are shown in Fig. 12-C for each subject. The average hit rate and false alarm
rates in the constant-attention experiments are respectively given by 71.67% and 20.81%. These quantities
for the attention-switch experiment are respectively given by 64.12% and 26.16%, showing a reduction in
hit rate and increase in false alarm.

4 DISCUSSION

In this work, we have proposed a framework for real-time decoding of the attentional state of a listener in a
dual-speaker environment from M/EEG. This framework consists of three modules. In the first module, the
encoding/decoding coefficients, relating the neural response to the envelopes of the two speech streams, are
estimated in a low-complexity and real-time fashion. Existing approaches for encoder/decoder estimation
operate in an offline fashion using multiple experiment trials or large training datasets (O’Sullivan et al.,
2015; Akram et al., 2016; Van Eyndhoven et al., 2017; Aroudi et al., 2016), and hence are not suitable for
real-time applications with limited amount of training data and potential variability in the recording setup.
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Figure 12. Summary of real-time classification results for the constant-attention (left panels) and attention-
switch (right panels) MEG experiments. A) a generic instance of the state-space output for a trial illustrating
the classification convention. B) Classification results per trial for all subjects; each circle corresponds
to a trial and the subjects are color-coded. The trials falling below the dashed line have more incorrectly
classified instances than correctly classified ones. C) Average classification performance over all trials for
the six subjects.

To address this issue, we have integrated the forgetting factor mechanism used in adaptive filtering with
`1-regularization, in order to capture the coefficient dynamics and mitigate overfitting.
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In the second module, a function of the estimated encoding/decoding coefficients and the acoustic data,
which we refer to as the attention marker, is calculated in real-time for each speaker. The role of the
attention marker is to provide dynamic features that create statistical separation between the attended and
the unattended speakers. Examples of such attention markers include correlation-based measures (e.g.
correlation of the acoustic envelopes and their reconstruction from neural response), or measures solely
based on the estimated decoding/encoding coefficients (e.g. the `1-norm of the decoder coefficients or the
M100 peak of the encoder).

Finally, the attention marker is passed to the third module consisting of a near real-time state-space
estimator. To control the delay in state estimation, we adopt a fixed-lag smoothing paradigm, in which the
past and near future data are used to estimate the states. The role of the state-space model is to translate the
noisy and highly variable attention markers to robust measures of the attentional state with minimal delay.
We have archived a publicly available MATLAB implementation of our framework on the open source
repository GitHub in order to ease reproducibility (Miran, 2017).

We validated the performance of our proposed framework using simulated EEG and MEG data, in which
the ground truth attentional states are known. We also applied our proposed methods to experimentally
recorded MEG and EEG data. As for a comparison benchmark to study the effect of the parameter choices
in our real-time estimator, we considered the offline state-space attention decoding approach of (Akram
et al., 2016). Our MEG analysis showed that although the proposed real-time estimator has access to
significantly fewer data points, it closely matches the outcome of the offline state-space estimator in (Akram
et al., 2016), for which the entire data from multiple trials are used for attention decoding. In particular,
our analysis of the MEG data in constant-attention conditions revealed a hit rate of ∼ 70% and a false
alarm rate of ∼ 20% at the group level. While the performance is slightly degraded compared to the offline
analysis of (Akram et al., 2016), our algorithms operate in real-time with 1.5 s built-in delay, over single
trials, and using minimal tuning. Similarly, our analysis of EEG data provided ∼ 80% hit rate and ∼ 15%
false alarm rate at a single trial level. These performance measures are slightly degraded compared to the
results of offline approaches such as (O’Sullivan et al., 2015).

Our proposed modular design admits the use of any attention-modulated statistic or feature as the attention
marker, three of which have been considered in this work. While some attention markers perform better
than the rest in certain applications, our goal in this work was to provide different examples of attention
markers which can be used in the encoding/decoding models based on the literature, rather than comparing
their performance against each other. The choice of the best attention marker that results in the highest
classification accuracy is a problem-specific matter. Our modular design allows to evaluate the performance
of a variety of attention markers for a given experimental setting, while fixing the encoding/decoding
estimation and state-space modules, and to choose one that provides the desired classification performance.
Our state-space module can also operate on the output of existing methods with encoder/decoder coefficients
that are pre-estimated using training datasets (O’Sullivan et al., 2015; Zink et al., 2017) to provide a robust
and statistically interpretable measure of the attentional state at high temporal resolutions.

A practical limitation of our proposed methodology in its current form is the need to have access to clean
acoustic data in order to form regressors based on the speech envelopes. In a realistic scenario, the speaker
envelopes have to be extracted from the noisy mixture of speeches recorded by microphone arrays. Thanks
to a number of fairly recent results in attention decoding literature (Van Eyndhoven et al., 2017; Biesmans
et al., 2015, 2017; Aroudi et al., 2016; O’Sullivan et al., 2017), it is possible to integrate our methodology
with a pre-processing module that extracts the acoustic features of individual speech streams from their
noisy mixtures. We view this extension as a future direction of research.
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The proposed approach requires a minimal amount of labeled training data for tuning purposes. However,
we can determine the attended speaker in an unlabeled dataset as the speaker whose speech signal best fits
the EEG data or whose encoder/decoder estimates have larger peaks at certain time lags, and then train the
decoders or hyperparameters with these data-driven labels. This can be done both in existing methods such
as that of O’Sullivan et al. (2015) for attended decoder estimation and in our approach for capturing the
statistical properties of attention markers for hyperparameter tuning. We view this extension to deal with
unlabeled data as a future direction of research.

Our proposed framework has several advantages over existing methodologies. First, our algorithms
require minimal amount of offline tuning or training. The subject-specific hyperparameters used by the
algorithms are tuned prior to real-time application in a supervised manner. The only major offline tuning
step in our framework is computing the subject-specific channel weights in the encoding model for MEG
analysis in order to extract the auditory component of the neural response. This is due to the fact that the
channel locations are not fixed with respect to the head position across subjects. It is worth noting that this
step can be avoided if the encoding model treats the MEG channels separately in a multivariate model.
Given that recent studies suggest that the M100 component of the encoder obtained from the MEG auditory
response is a reliable attention marker (Ding and Simon, 2012a,b; Akram et al., 2017), we adopted the DSS
algorithm for computing the channel weights that compose the auditory response in an offline fashion.

Second, our framework yields robust attention decoding performance at a temporal resolution in the order
of ∼ 1 second, comparable to that at which humans switch their attention from one speaker to another.
The accuracy of existing methods, however, significantly degrades when they operate at these temporal
resolutions (Zink et al., 2016, 2017). Our proposed framework operates in a near real-time fashion, where
the attention decoding delay can be adjusted for controlling the trade-off between robustness and adaptivity
of the attentional state estimates. In addition, the probabilistic output of our attentional state decoding
framework can be used for further statistical analysis and soft-decision mechanisms which are desired
in smart hearing aid applications. Finally, the modular design of our framework facilitates its adaptation
to more complex auditory scenes (e.g. with multiple speakers and realistic noise and reverberation
conditions) and integration of other covariates relevant to real-time applications (e.g. electrooculography
measurements).
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This supplementary document contains the derivations of our proposed estimation framework as well as
additional simulation studies. In Section 1, we present the parameter estimation procedures used for the
encoding and decoding models. Section 2 includes the inference algorithms for state estimation using
fixed-lag smoothing, and Section 3 discusses the smoothing effect of the proposed state-space model.
Finally, we apply our proposed techniques to simulated MEG data in Section 4.

1 DYNAMIC ENCODING AND DECODING MODELS: PARAMETER ESTIMATION

Recall that the encoder/decoder estimation problems can be posed as the following optimization problem:

θ̂k = arg min
θ

k∑
j=1

λk−j ‖yj −Xjθ ‖22 + γ ‖θ ‖1 , k = 1, 2, . . . , K. (S1)

At each window k, for k = 1, . . . , K, the encoding/decoding coefficients θ̂k are updated based on the new
measurements, i.e., yk and Xk, and previous measurements through the forgetting factor mechanism while
applying sparsity-promoting priors on the coefficients.

There are several standard optimization techniques that can be used to find the minimizer in (S1). Off-line
algorithms such as interior point methods do not meet the real-time requirements of our dynamic estimation.
The SPARLS algorithm has been introduced in (Babadi et al., 2010) to solve the problem in (S1) through
EM iterations, and it has been successfully adopted in (Akram et al., 2017) to estimate encoding coefficients
in a dynamic fashion. However, the EM algorithm and the constant step-size in SPARLS may result in
low convergence rates. Hence, to adapt our estimation procedure for real-time applications, we use the
Forward-Backward Splitting (FBS) method (Combettes and Pesquet, 2011), also known as the proximal
gradient method, to solve for θ̂k in (S1). FBS is suited for optimization problems where the objective
function can be expressed as the sum of a differentiable term, e.g., the log-likelihood term in (S1), and a
simple non-differentiable term, e.g., the `1-norm in (S1). This type of problems frequently arise in signal
processing and machine learning (Jenatton et al., 2010; Duchi and Singer, 2009; Figueiredo et al., 2007).
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In summary, each FBS iteration for the optimization problem in (S1) includes two steps: 1) taking a
descent step along the gradient of the log-likelihood term, and 2) applying a soft-thresholding shrinkage
operator (Goldstein et al., 2014; Sheikhattar et al., 2015). This procedure provides an algorithm that uses
recursive and low-complexity updates in an online fashion to solve Eq. (S1) upon the arrival of a new data
window. The optimization problem in (S1) can be rewritten as:

θ̂k = arg min
θ

θTAkθ + bTk θ + γ ‖θ ‖1 , k = 1, 2, . . . , K, (S2)

where Ak and bk can be updated recursively. Algorithm 1 summarizes the steps of the FBS algorithm
to solve for θk in (S1), when moving from window k − 1 to window k, as well as the required recursive
update rules for Ak and bk. The parameter SFBS in Algorithm 1 denotes the stopping condition for the
FBS algorithm, which can be a maximum iteration number or a convergence criterion on the objective
function.

Algorithm 1 Parameter Estimation in Dynamic Encoding and Decoding Models by Forward-Backward
Splitting

Input: yk, Xk, θ̂k−1, Ak−1, bk−1, λ, γ, SFBS
Output: θ̂k, Ak, bk

1: Ak = λAk−1 + XT
kXk

2: bk = λbk−1 − 2XT
k yk

3: initialize θ with θ̂k−1

4: while ¬SFBS do
5: choose stepsize τ
6: u = θ − τ (2Akθ + bk)
7: θi = sign(ui)×max

{
|ui| − γτ, 0

}
, for each element of θ

8: end while
9: θ̂k = θ.

Remark 1. A proper step-size choice in Alg. 1 at each FBS iteration is crucial to the convergence of the
algorithm. For a fixed step-size, it has been shown that τ < 2

L(∇fk) ensures the stability and convergence
of the algorithm (Combettes and Pesquet, 2011), where L(.) represents the Lipschitz constant, and fk
represents the log-likelihood term in (S1). Through standard Cauchy-Schwarz and triangle inequality
manipulations, we can calculate the simple upper bound L(∇fk) ≤ Lub = 2

∑k
j=1 λ

k−j trace
{
XT
kXk

}
,

implying that τ < 2
Lub

ensures stability; however, this loose upper bound may decrease the convergence
rate of the algorithm. Thus, it is more beneficial to ensure stability through backtracking and employing
acceleration schemes such as adaptive step-size selection or the Nesterov’s method (Goldstein et al., 2014).
We have used the FASTA software package (Goldstein et al., 2014) available online at (Goldstein et al.,
2015) in this work, which has built-in features for all the foregoing FBS step-size adjustment methods.

2 DYNAMIC STATE-SPACE MODEL: PARAMETER ESTIMATION

Recall that pk denotes the probability of attending to speaker 1 at instance k for k = 1, . . . , KA. Although
each k corresponds to a data window in time, we refer to it as an instance not to conflate it with the fixed-lag
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fixed

Figure S1. The parameters involved in state-space fixed-lag smoothing.

sliding window used for state estimation. The parameter KA denotes the number of instances in fixed-lag
smoothing as shown in Figure S1 (replaced from Figure 2 for completeness).

The linear state-space model which we apply on logit(pk) = ln
(

pk
1−pk

)
, can be summarized as:



pk = P (nk=1) = 1− P (nk=2) = 1
1+exp(−zk)

zk = c0zk−1 + wk

wk ∼ N (0, ηk)

ηk ∼ Inverse-Gamma (a0, b0)

(S3)

Letm(1)
k andm(2)

k represent the attention markers and nk represent a binary random variable taking values
1 or 2 depending on the attended speaker at instance k for k = 1, . . . , KA. The observation equations of the
state-space model, which relate the observed m(1)

1:KA
and m(2)

1:KA
to the hidden variables of the state-space

model in Eq. (S3), can be summarized as:



m
(i)
k

∣∣∣ nk= i ∼ Log-Normal
(
ρ(a), µ(a)

)
, i = 1, 2

m
(i)
k

∣∣∣ nk 6= i ∼ Log-Normal
(
ρ(u), µ(u)

)
, i = 1, 2

ρ(a) ∼ Gamma
(
α

(a)
0 , β

(a)
0

)
, µ(a)

∣∣∣ ρ(a) ∼ N
(
µ

(a)
0 , ρ(a)

)
ρ(u) ∼ Gamma

(
α

(u)
0 , β

(u)
0

)
, µ(u)

∣∣∣ ρ(u) ∼ N
(
µ

(u)
0 , ρ(u)

)
(S4)

The parameters of the state-space model are, therefore, Ω =
{
z1:KA

, η1:KA
, ρ(a), µ(a), ρ(u), µ(u)

}
, which

have to be inferred from m
(1)
1:KA

and m(2)
1:KA

. For notational simplicity, hereafter we use the boldface version

of a variable to denote a vector containing all its instances, e.g., z := z1:KA
and m(i) := m

(i)
1:KA

for
i = 1, 2.

The inference problem for Ω can be expressed as:

Ω̂ = arg max
Ω

ln P
(
Ω
∣∣m(1),m(2)

)
= arg max

Ω
ln P

(
m(1),m(2)

∣∣Ω)+ ln P (Ω) , (S5)

where the log-likelihood and the log-prior are respectively expanded as:
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ln P
(
m(1),m(2)

∣∣Ω) = ln

∑
n1:KA

KA∑
k=1

pk P
(
m

(1)
k

∣∣ nk,Ω)P
(
m

(2)
k

∣∣ nk,Ω)
 , (S6)

ln P(Ω) = ln P
(
ρ(a), µ(a)

)
+ ln P

(
ρ(u), µ(u)

)
+

KA∑
k=1

[
−1

2
ln ηk −

(zk − c0zk−1)2

2ηk
+ ln P(ηk)

]
︸ ︷︷ ︸

ln P(z,η)

+cnst.

(S7)

Similar to the treatment in (Akram et al., 2016), we use an Expectation Maximization (EM) algorithm with
n as the latent variables to infer Ω. Note that the optimization problem in (S5) is non-convex in general;
thus, the choice of initial conditions and hyperparameters for priors are important for reaching a desirable
local maximum. Having the estimate Ω̂(`) for Ω at the `th EM iteration, we will next derive the E-step and
M-step of the (`+1)th EM iteration.

2.1 The E-step

In the E-step, the surrogate function Q
(
Ω
∣∣ Ω̂(`)

)
is calculated as:

Q
(
Ω
∣∣ Ω̂(`)

)
=

1

KA
E
{

ln P
(
m(1),m(2),n

∣∣Ω)}︸ ︷︷ ︸
A

+ ln P(Ω), (S8)

where the expectation of the complete log-likelihood ln P
(
m(1),m(2),n

∣∣Ω) needs to be calculated with

respect to n givenm(1),m(2), Ω̂(`). For notational simplicity, hereafter we drop the n
∣∣m(1),m(2), Ω̂(`)

subscript of the conditional expectations.

We have used a normalized version of the log-likelihood in Eq. (S8) for two reasons. First, the window
length KA is a hyperparameter in our framework, which we can modify to find the optimal trade-off
between the dimensionality of the state-space and history-dependence of the model. Thus, to change
the window length for fixed priors, it is important to normalize the contribution of the log-likelihood in
(S8). Second, as noted before, we have a non-convex inference problem, which makes the resulting local
maximum dependent on the conjugate priors used. We can use samples of m(i)

k ’s to estimate the attended
and the unattended Log-Normal distributions and tune the hyperparameters to these distributions. By
normalizing the log-likelihood term, we are enforcing informative and empirical prior distributions which
would guide the inference procedure towards a plausible local maximum. For instance, for the correlation-
based attention marker, we expect that a plausible solution would result in the attended Log-Normal
distribution being concentrated around larger correlation values compared to the unattended distribution.
Nevertheless, the forthcoming derivations can be carried out without the normalization factor 1/KA in a
similar fashion.

Let Iu(v) represent the indicator function, i.e., it is equal to one if v=u and zero otherwise. Conditioning
on n and using the conditional independence ofm(1) andm(2) given n and Ω, the expected log-likelihood
A in (S8) can be simplified as:
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A =
2∑
i=1

E
{

ln P
(
m(i)

∣∣ n,Ω)}+ E
{

ln P
(
n
∣∣Ω)}

=

KA∑
k=1

[
2∑
i=1

E
{

ln P
(
m

(i)
k

∣∣ nk,Ω)}+ E
{

ln P
(
nk
∣∣Ω)}] (S9)

=

KA∑
k=1

[
2∑
i=1

2∑
j=1

E {Ij(nk)} ln P
(
m

(i)
k

∣∣ nk=j,Ω
)

+ E {I1(nk)} pk + E {I2(nk)} (1−pk)︸ ︷︷ ︸
E
{

ln P
(
nk

∣∣Ω)}
]
.

Note that m(i)
k

∣∣ nk,Ω pertains to either the attended or unattended Log-Normal distributions in Eq. (S4)
depending on the values of i and nk. Considering that the nk’s are binary random variables and the
expectations are with respect to n

∣∣m(1),m(2), Ω̂(`), the term E
{
Ij(nk)

}
can be computed for j = 1, 2

using Bayes’ rule and conditional independence as:

E {Ij(nk)} = P
(
nk=j

∣∣m(1),m(2), Ω̂(`)
)

(S10)

= P
(
nk=j

∣∣m(1)
k ,m

(2)
k , Ω̂(`)

)
=

P
(
m

(1)
k ,m

(2)
k

∣∣ nk=j, Ω̂(`)
)

P
(
nk=j

∣∣ Ω̂(`)
)

P
(
m

(1)
k ,m

(2)
k

∣∣ Ω̂(`)
)

=
P
(
m

(1)
k

∣∣ nk=j, Ω̂(`)
)

P
(
m

(2)
k

∣∣ nk=j, Ω̂(`)
)

P
(
nk=j

∣∣ Ω̂(`)
)

∑
nk

P
(
m

(1)
k

∣∣ nk, Ω̂(`)
)

P
(
m

(2)
k

∣∣ nk, Ω̂(`)
)

P
(
nk
∣∣ Ω̂(`)

) .

The parameters of the Log-Normal distributions for m(i)
k

∣∣ nk, Ω̂(`) are determined from the estimated(
ρ(a), µ(a), ρ(u), µ(u)

)
in the previous EM iteration, i.e., Ω̂(`). Also, P

(
nk
∣∣ Ω̂(`)

)
= 1

1+exp
(
−ẑ(`)k

) in

(S10), where ẑ(`)
k is the estimate of zk from the previous EM iteration. Note that E

{
I1(nk)

}
= 1 −

E
{
I2(nk)

}
as nk is a binary random variable. Defining ε(`)k := E

{
I1(nk)

}
with the expectation over

nk
∣∣m(1)

k ,m
(2)
k , Ω̂(`), we can conclude the E-step by simplifying Q

(
Ω
∣∣ Ω̂(`)

)
in Eq. (S8) as:
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Q
(
Ω
∣∣ Ω̂(`)

)
=

KA∑
k=1

1

2KA

{
− ρ(a)

[
ε
(`)
k

(
lnm

(1)
k −µ(a)

)2
+
(

1−ε(`)k
)(

lnm
(2)
k −µ(a)

)2
]

(S11)

− ρ(u)

[(
1−ε(`)k

)(
lnm

(1)
k −µ(u)

)2
+ ε

(`)
k

(
lnm

(2)
k −µ(u)

)2
]

+ ln ρ(a) + ln ρ(u)

}

− ρ(a)

[
β

(a)
0 + 0.5

(
µ(a)−µ(a)

0

)2
]

+
(
α

(a)
0 −0.5

)
ln ρ(a)

− ρ(u)

[
β

(u)
0 + 0.5

(
µ(u)−µ(u)

0

)2
]

+
(
α

(u)
0 −0.5

)
ln ρ(u)

+

KA∑
k=1

{
ε
(`)
k pk +

(
1−ε(`)k

)
(1−pk)− (a0 + 1.5) ln ηk −

1

ηk

[
b0 + 0.5(zk − c0zk−1)2

]}
+ cnst.

where the cnst. term includes all the terms that are independent of Ω.

2.2 The M Step

In the M step, we maximize Q
(
Ω
∣∣ Ω̂(`)

)
in Eq. (S11) with respect to Ω. The maximizers form the

parameter updates for the (`+1)th EM iteration. As we observe in Eq. (S11), having n as the latent variables
separates the terms in Q

(
Ω
∣∣ Ω̂(`)

)
depending on the distribution parameters, i.e.,

(
ρ(a), µ(a), ρ(u), µ(u)

)
,

and the terms depending on the state-space parameters, i.e., z and η. The derivation of the update rules for
the distribution parameters is straightforward through taking the derivatives of Q

(
Ω
∣∣ Ω̂(`)

)
and solving

for their joint zero-crossings. Consequently, the closed-form formulas for the distribution parameters
maximizing Q

(
Ω
∣∣ Ω̂(`)

)
can be expressed as:

µ(a)∗ =
1

2

{
µ

(a)
0 +

1

KA

KA∑
k=1

[
ε
(`)
k lnm

(1)
k +

(
1−ε(`)k

)
lnm

(2)
k

]}
, (S12)

µ(u)∗ =
1

2

{
µ

(u)
0 +

1

KA

KA∑
k=1

[(
1−ε(`)k

)
lnm

(1)
k + ε

(`)
k lnm

(2)
k

]}
, (S13)
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ρ(a)∗ =
2KAα

(a)
0

KA∑
k=1

[
ε
(`)
k

(
lnm

(1)
k −µ(a)∗

)2
+
(

1−ε(`)k
)(

lnm
(2)
k −µ(a)∗

)2
]

+KA

[
2β

(a)
0 +

(
µ(a)∗ − µ(a)

0

)2
] ,

(S14)

ρ(u)∗ =
2KAα

(u)
0

KA∑
k=1

[(
1−ε(`)k

)(
lnm

(1)
k −µ(u)∗

)2
+ ε

(`)
k

(
lnm

(2)
k −µ(u)∗

)2
]

+KA

[
2β

(u)
0 +

(
µ(u)∗ − µ(u)

0

)2
] ,

(S15)

where
(
ρ(a)∗, µ(a)∗, ρ(u)∗, µ(u)∗

)
will be the updated distribution parameters in Ω̂(`+1).

The next step is to maximize Q
(
Ω
∣∣ Ω̂(`)

)
with respect to z and η. Note that this joint maximization

is non-convex in general. Consider the following state-space model with parameters (z′,η′) and binary
observations n′.



n′k ∼ Bernoulli
(

1
1+exp(−z′k)

)
z′k = c0z

′
k−1 + w′k

w′k ∼ N (0, η′k)

η′k ∼ Inverse-Gamma (a0, b0)

(S16)

For the inference problem in (S16), the log-posterior can be expressed as:

arg max
z′,η′

ln P
(
z′,η′

∣∣ n′) = arg max
z′,η′

[
ln P

(
η′
∣∣ n′)+ P

(
z′
∣∣ η′,n′) ]. (S17)

If we replace the observations n′k in (S17) with ε(`)k , for k = 1, 2, . . . , KA, the inference problem becomes

equivalent to maximizing Q
(
Ω
∣∣ Ω̂(`)

)
in (S11) with respect to z and η.

In (Smith and Brown, 2003; Smith et al., 2004), the inference of the parameters in (S16) has been carried
out through the EM algorithm, where in each iteration, a Kalman filtering and smoothing algorithm has
been employed together with Gaussian approximations. Similar to (Akram et al., 2016), we refer to this
EM algorithm as the inner EM not to confuse it with the EM algorithm we have already adopted, which we
call the outer EM hereafter. The basic idea behind the inner EM is to approximate the solutions to (S17) as:

η
′∗ = arg maxη′ P

(
η′
∣∣ n′)

z′
∗

= arg maxz′ P
(
z′
∣∣ η′∗,n′) , (S18)
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where η′∗ are estimated through the inner EM with z′ as the latent variables, and z′∗ are just the result of
a Kalman filtering and smoothing algorithm in (S16) for η′ = η′

∗.

In order to make the inference procedure suitable for real-time implementation, we can avoid the inner
EM and instead use crude estimates of η′∗ in (S18). Note that ε(`)k , which acts as the observation n′k in (S16)

for k = 1, 2, . . . , KA, is equal to P
(
nk=1

∣∣m(1)
k ,m

(2)
k , Ω̂(`)

)
calculated as in (S10). Assuming that ε(`)k ≈

P
(
n′k=1

)
= 1

1+exp(−z′k)
, in the `th outer EM iteration, we can consider

[
logit

(
ε
(`)
k

)
− c0 logit

(
ε
(`)
k−1

)]
as a sample of N (0, η′k). Therefore, considering the Inverse-Gamma prior, a crude estimate for η′∗k can be
calculated for k=1, 2, . . . , KA as:

η′
∗
k =

2b0 +
[
logit

(
ε
(`)
k

)
− c0 logit

(
ε
(`)
k−1

)]2

2a0 − 1
. (S19)

If KA is small enough, we can simplify the state-space model of (S16) by assuming a single variance, i.e.,
η′= η′k for k= 1, 2, . . . , KA, and using an estimate similar to (S19) for η′∗. However, in this model, the
crude estimate would be more reliable as it is based onKA samples rather than a single sample. Considering
a normalized log-likelihood and the same Inverse-Gamma prior on η′, the estimate for η′∗ can be computed
as:

η′
∗

=
2b0 + 1

KA

∑KA
k=1

[
logit

(
ε
(`)
k

)
− c0 logit

(
ε
(`)
k−1

)]2

2a0 − 1
. (S20)

After estimating η′∗k in (S19) for k= 1, 2, . . . , KA, or η′∗ in (S20), we can proceed as before to estimate
z′
∗, i.e., using a Kalman filtering and smoothing algorithm with Gaussian approximations to estimate

z′
∗ in (S18). These estimates, namely z∗ and η∗, form approximate solutions for z and η in the original

problem of maximizing Q(Ω
∣∣ Ω̂(`)) in (S11) with respect to the state-space parameters.

Next, we discuss the details of the inner EM algorithm, as in (Akram et al., 2016), used to solve for z′ and
η′ in (S16). As mentioned before, the idea is to use an EM algorithm together with Gaussian approximations
to maximize P

(
η′
∣∣ n′), and then maximize the likelihood of z′ with respect to the observations and

estimated variances. Considering z′ as the latent variables, the surrogate function Q(η′
∣∣η̂′(`)) at `th EM

iteration is calculated as:

Q

(
η′
∣∣η̂′(`)) = E

{
ln P

(
n′, z′

∣∣ η′)}+ ln P(η′) (S21)

=

KA∑
k=1

[
E
{

(z′k−c0z′k−1)2
}

+ 2b0

2η′k
+ (a0+1.5) ln η′k

]
+ cnst.,

where the expectations are with respect to z′
∣∣ n′, η̂′(`), and the cnst. term contains all the terms that are

independent of η′.

8
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In the M-step of the inner EM algorithm, Q
(
η′
∣∣η̂′(`)) is maximized with respect to η′ to calculate the

updated variances for the next EM iteration. Taking the derivative of (S21) with respect to η′ and equating

it to zero results in the following update rule for η̂′
(`+1)

:

η̂′
(`+1)

k =
1

2a0 + 3

[
E
{

(z′k−c0z′k−1)2
}

+ 2b0
]

(S22)

=
1

2a0 + 3

[
E
{
z′k

2
}

+ c20E
{
z′k−1

2
}
− 2c0E

{
z′kz
′
k−1

}
+ 2b0

]
=

1

2a0 + 3

[
σ2
k|KA

+z̄2
k|KA

+c20σ
2
k−1|KA

+c20z̄
2
k−1|KA

−2c0σ
2
k,k−1|KA

−2c0z̄k|KA
z̄k−1|KA

+2b0

]
,

where the parameters z̄k|KA
and σ2

k|KA
in Eq. (S22) are respectively the mean and the variance of

z′k | n′, η̂′
(`)

.

If we consider the Gaussian approximationN
(
z̄k1|k2 , σ

2
k1|k2

)
to the density z′k1 |n

′
1:k2

, η̂′
(`)

for 1 ≤ k1 ≤
k2 ≤ KA, these parameters can be computed in a forward and backward pass similar to the conventional
Kalman filtering and smoothing algorithms. The corresponding filtering equations for 1 ≤ k ≤ KA are
summarized as:



z̄k|k−1 = c0z̄k−1|k−1

σ2
k|k−1 = c20σ

2
k−1|k−1 + η′k

(l)

z̄k|k = z̄k|k−1 + σ2
k|k−1

[
n′k −

exp(z̄k|k)

1+exp(z̄k|k)

]
σ2
k|k =

[
1

σ2
k|k−1

+
exp(z̄k|k)

(1+exp(z̄k|k))
2

]−1

(S23)

Note that the third equation in (S23) is a non-linear equation whose solution can be approximated through
standard approaches such as the Newton’s method. The last two equations in (S23) come from the Gaussian

approximation: assuming that z′k−1 | n′1:k−1, η̂
′(`) v N

(
z̄k−1|k−1, σ

2
k−1|k−1

)
we calculate the Gaussian

approximation for z′k | n′1:k, η̂
′(`). The mean of the Gaussian approximation z̄k|k is calculated as the

mode of ln P

(
z′k | n′1:k, η̂

′(`)
)

, and its variance σ2
k|k is computed as the negative inverse Hessian of

ln P

(
z′k | n′1:k, η̂

′(`)
)

evaluated at the estimated mean z̄k|k (Tanner, 1991). The smoothing equations are

the same as those used for fixed interval smoothing. Therefore, for 1 ≤ k ≤ KA − 1, we have:
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sk = σ2

k|k

/
σ2
k+1|k

z̄k|KA
= z̄k|k + sk

(
z̄k+1|KA

− z̄k+1|k
)

σ2
k|KA

= σ2
k|k + s2

k

(
σ2
k+1|KA

− σ2
k+1|k

) (S24)

The σ2
k,k−1|KA

term in (S22) is a lagged covariance term that can be computed using the covariance
smoothing algorithm (De Jong and Mackinnon, 1988):

σ2
k,k−1|KA

= Cov

{
z′k, z

′
k−1

∣∣ n′, η̂′
(`)
}

=
σ2
k−1|k−1σ

2
k|KA

σ2
k|k−1

. (S25)

Having calculated the variances η′∗ from the inner EM algorithm, z′∗ can be estimated using a single
forward and backward pass for η′ = η′

∗, similar to that used in the inner EM algorithm. In summary, we
have transformed the problem of maximizing (S11) with respect to z and η into inferring z′ and η′ in
(S16) by identifying n′k with ε(l)k for k = 1, . . . , KA. We have then solved the latter problem through an
EM algorithm combined with Gaussian approximations and Kalman filtering and smoothing. Therefore,
we have z∗ = z′∗ and η∗ = η′∗ in the original problem.

Algorithm 2 Parameter Estimation in Dynamic State-Space Model

Input: m(1)
1:KA

, m(2)
1:KA

, α(a)
0 , α(u)

0 , β(a)
0 , β(u)

0 , µ(a)
0 , µ(u)

0 , a0, b0, SEM
Output: Ω̂ =

{
ẑ1:KA

, η̂1:KA
, ρ̂(a), µ̂(a), ρ̂(u), µ̂(u)

}
1: Set Ω̂(0) as the initialization for state-space model parameter set based on estimates in the previous

instance
2: ` = 0
3: while ¬SEM do
4: calculate ε(`)1:KA

using (S10)
5: update the parameters of the Log-Normal distributions, i.e., µ(a), µ(u), ρ(a), ρ(u), based on

equations (S12), (S13), (S14), and (S15) respectively
6: update the state-space variances, i.e., η1:KA

, using the inner-EM algorithm or the crude estimates
in equations (S19) and (S20)

7: update the hidden states in the state-space model, i.e., z1:KA
, using a Kalman filtering and

smoothing algorithm with Gaussian approximations
8: set Ω̂(`+1) as the updated parameter set including the updated distribution parameters, variances,

and hidden states in the state-space model
9: `← `+ 1

10: end while
11: Ω̂ = Ω̂(`).

Algorithm 2 summarizes the overall inference procedure within a fixed-lag window of length KA.
Going back to Fig. S1, copied from the paper, we assume k = k0 is the current instance and the
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goal is to infer the attentional state at instance k = k0 − KF based on the attention markers within
the window indexed from 1 to KA, given by m

(i)
k for i = 1, 2 and k = 1, . . . , KA. We initialize

the state-space model parameter set Ω using the estimates at the previous instance, and the output
of Algorithm 2, i.e., Ω̂, is used for initialization in the next instance. Defining f(.) as the sigmoid
function, f

(
ẑKA−KF

)
determines the estimated probability of attending to speaker 1 at k = k0 −KF ,

and
[
f
(
ẑKA−KF

−1.65σ̂2
KA−KF |KA

)
, f
(
ẑKA−KF

+1.65σ̂2
KA−KF |KA

)]
represents the 90% confidence

intervals of this estimate, where σ̂2
KA−KF |KA

represents the inferred variance of ẑKA−KF
calculated through

the discussed Gaussian approximations. The parameter SEM in Algorithm 2 is a stopping condition for the
outer EM, which can be a limit on the number of iterations.

3 SMOOTHING EFFECT OF STATE-SPACE MODELING

In this section, we discuss the smoothing effect of the proposed state-space estimation and compare it
with that of sliding Gaussian kernel smoothers. Recall that the Inverse-Gamma conjugate prior on ηk’s in
Eq. (S3) controls the degree of smoothing in the state-space model. If this prior favors smaller values of
ηk’s, the consecutive changes in zk’s and thereby pk’s will be smaller, which results in a larger smoothing
effect. We tune the Inverse-Gamma prior through the hyperparameters a0 and b0 as in Eq. (S3) to match
the auditory attention dynamics. Therefore, we expect that the corresponding smoothing effect will make
the state-space estimates robust to the stochastic fluctuations in the attention markers, while capturing the
attention switching instances with a small transition delay.

Fig. S2-A shows the output of the correlation-based attention marker in Case 2 of the simulation study in
the main manuscript (row D of Fig. 4). The output of the real-time estimator with 1.5 s forward-lag (as
in row F of Fig. 4) is shown in Fig. S2-B. We also consider two non-causal Gaussian kernel smoothers
with the same delay of 1.5 s for fairness of comparison. Fig. S2-C and S2-E show the attention markers of
Fig. S2-A convolved with the two Gaussian kernels, respectively. The two kernels are shown as insets in
Fig. S2-C and S2-D. Gaussian kernel 1 in Fig. S2-C favors the current values of the attention marker while
Gaussian kernel 2 in Fig. S2-D gives more weight to its future values.

Both kernels provide a clearer picture of the attentional state by smoothing out the stochastic fluctuations
of Fig. S2-A. However, unlike the output of the state-space estimator, they do not provide statistically
interpretable results. First, based on Figs. S2-C and -D, we can only obtain a binary decision on the
attended speaker at each instance. The state-space estimates, however, provide a probabilistic measure
of the attentional state as shown in Fig. S2-B, together with statistical confidence intervals. The red
arrows in Fig. S2-C and -D mark instances where strong fluctuations in the attention markers result in
misclassification. For instance, the smoothed markers with kernel 2 imply an attention switch earlier
than the 30 s mark (upward arrow, Fig. S2-D). Such abrupt classification errors could be undesirable for
applications such as BCI systems or smart hearing aids, as the devices need to modify their settings back
and forth in a small time period. The state-space model prevents these instances of misclassification, thanks
to the confidence intervals of the estimated pk’s (the middle arrows) which help rule out such false alarm
events.

4 ENCODING MODEL SIMULATION

This section provides a simulated example to motivate our MEG analysis, in which we use an encoding
model and take the M100 component of the Temporal Response Function (TRF) as the attention marker.
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Figure S2. Smoothing effect of the state-space model in comparison to simple kernel smoothers: A)
Output of the correlation-base attention marker corresponding to Case 2 of the simulation study in the
main manuscript. B) Real-time estimator with 1.5 s forward-lag. C) Convolution of the correlation-based
attention marker with Gaussian kernel 1 (shown as inset). D) Convolution of the correlation-based attention
marker with Gaussian kernel 2 (shown as inset).

4.1 Simulation Settings

Consider the following generative model:

et = s
(1)
t ∗ τ

(1)
t + s

(2)
t ∗ τ

(2)
t + µ+ nt, (S26)

where et, s
(1)
t , and s(2)

t respectively denote the auditory component of the neural response, speech envelope
for speaker 1, and speech envelope for speaker 2. We have used the same speech signals for s(1)

t and s(2)
t as

in the EEG simulation, with the same sampling rate of fs=200 Hz. In the context of MEG processing, τ (1)
t

and τ (2)
t are referred to as the TRF for speakers 1 and 2. We have set µ = 0.001 as the unknown constant
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mean and nt
iid∼N (0, 2.5×10−7) as the observation noise. We assume an attention modulation effect on the

M100 component of the TRFs.

Figure S3 shows two cases for the TRFs τ (1)
t and τ (2)

t : In the left panels (case 1), there is a strong
attention modulation effect on the M100 components, and in the right panels (case 2), this effect is
weakened. In both cases, the attention is on speaker 1 during the [0, 30) s interval and on speaker 2 during
the (30, 60] s interval. Also, we have considered a length of 0.4 s for the TRFs. Row B in Fig. S3 shows
examples of the attended and the unattended TRFs for each of the two cases. In case 1, there is a large
difference between the magnitude of the M100 components in the attended and the unattended TRFs,
while in case 2, this difference is small compared to our estimation accuracy. We have also considered
three higher latency components in the TRFs which are not modulated by the attentional state, similar
to the M50 component. As shown in row A of Fig. S3, a zero-mean Gaussian i.i.d. noise is added to the
TRF components as well. Note that similar to the EEG simulation, we have used a Gaussian kernel with
the standard deviation of 10 ms to smooth the TRFs. This smoothness property is also observed in TRFs
estimated from experimentally-recorded MEG signals (Ding and Simon, 2012a,b).

4.2 Parameter Selection

For the encoder estimation parameters in Algorithm 1, we have considered consecutive non-overlapping
windows of length 0.25 s, i.e., W = 50, resulting in K = 240 instances, and we have assumed the
same 0.4 s length for the TRFs, i.e., Le = 80. We have chosen γ = 0.005 through cross-validation and
λ = 0.9167, which results in an effective window length of 3 s for encoder estimation. Considering the
smoothing Gaussian kernel used in the forward model, we have used the Gaussian dictionary matrix
G0 ∈ R(Le+1)×(Le+1) for each speaker in the encoder estimation step to enforce smoothness in the TRFs.
The dictionary columns consist of overlapping Gaussian kernels with the standard deviation of 10 ms,
whose means cover the 0 s to 0.4 s lag with Ts=5 ms increments. As a result, considering the simultaneous
estimation of the two TRFs, the overall dictionary matrix would be G = diag (1,G0,G0).

We have used the FASTA package (Goldstein et al., 2014) with Nesterov’s acceleration method to
implement the forward-backward splitting algorithm. All the prior distribution parameters of the state-
space models are set similar to the EEG simulation in the paper, where a0 = 2.008, b0 = 0.2016, and
the prior parameters for the attended and unattended distributions were tuned based on a separate 15 s
sample trial. For the real-time state-space estimator, we have used a sliding window of length 15 s with a
fixed forward-lag of 1.5 s, i.e., KA = b15fs/W c and KF = b1.5fs/W c. The sample trial for tuning the
distribution parameters can be thought of as an initialization step for the estimator prior to its real-time
application.

4.3 Estimation Results

Figure S4 shows the results of our estimation framework. Row A contains the estimated TRFs for the
encoding model. The major components of the TRFs are retrieved in the estimates while the `1-norm
penalty in Eq. (S1) has significantly denoised these components as compared with the original noisy
versions in row A of Fig. S3. Row B in Fig. S4 displays the extracted magnitudes of the M100 components
from the estimated TRFs at each instance. The attention marker in this case is defined as the magnitude of
the M100 component, where the M100 component is calculated as the minimum value of the TRF estimate
around the 100 ms lag. Notice that there is a significant statistical difference between the extracted M100
components for the attended and unattended speakers in case 1, while the estimated M100 components are
highly variable in case 2 and do not show a strong attention modulation effect.
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Figure S3. The TRFs τ (1)
t and τ (2)

t used for the simulation model in Eq. (S26). A) TRFs for case 1 (strong
modulation in M100 components) and case 2 (weak modulation in M100 components). B) Snapshots of
the attended and unattended TRFs for the two cases.

Rows C and D of Fig. S4 show the output of the batch-mode and real-time state-space estimators,
respectively. In case 1, both the batch-mode and real-time estimators perform well in tracking the attentional
state. Note that the sharp drop of the attention probability near ∼ 30 s in Row D is due to the fact that
at each instance the real-time estimator does not observe the attention markers beyond the 1.5 s forward
lag, whereas the batch-mode estimator estimates the probabilities given the entire trial. In case 2, the
batch-mode estimator performs well even though the M100 components are not visually indicative of the
attentional state. However, the classification confidence decreases considerably specially in the (30, 60] s
interval. The real-time estimator in case 2 closely follows the batch-mode estimator, but is more sensitive
to the fluctuations of the extracted M100 components. Thus, its performance undergoes further degradation
going from case 1 to 2, as compared with that of the batch-mode estimator. The red arrows in rows C
and D of case 2 in Fig. S4 mark instances where the less robustness of real-time estimator resulted in
misclassifications, while the batch-mode estimator classified the attended speaker correctly.
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Figure S4. Estimation results of application to simulated MEG data: A) Estimated TRFs for case 1 (strong
modulation in M100 components) and case 2 (weak modulation in M100 components). B) Estimated M100
magnitudes as the attention markers. C) Outputs of the batch-mode estimator as the estimated probability
of attending to speaker 1. D) Outputs of the real-time estimator as the estimated probability of attending
to speaker 1. The real-time estimator is less robust to the statistical fluctuations in the extracted M100
components, which can result in misclassifications as shown for two example instances marker by red
arrows. However, it follows the general trend of the batch-mode estimator closely despite its online access
to data.

Frontiers 15



Frontiers Supplementary Material

It is worth noting that as we are using an encoding model in this case, the overall delay in estimating the
attentional state is the forward-lag window, i.e., 1.5 s, and unlike the case of using the decoding model, the
encoder lag does not contribute to the delay. Our analysis of the effect of KF on the MSE of the real-time
estimator with respect to the batch-mode was nearly identical to that presented for the EEG simulation, and
is thus omitted for brevity.
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