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Abstract

We show that certain BPS counting functions for both fundamen-
tal strings and strings arising from fivebranes wrapping divisors in
Calabi–Yau threefolds naturally give rise to skew-holomorphic Jacobi
forms at rational and attractor points in the moduli space of string
compactifications. For M5-branes wrapping divisors these are forms
of weight negative one, and in the case of multiple M5-branes skew-
holomorphic mock Jacobi forms arise. We further find that in simple
examples these forms are related to skew-holomorphic (mock) Jacobi
forms of weight two that play starring roles in moonshine. We discuss
examples involving M5-branes on the complex projective plane, del
Pezzo surfaces of degree one, and half-K3 surfaces. For del Pezzo sur-
faces of degree one and certain half-K3 surfaces we find a correspond-
ing graded (virtual) module for the degree twelve Mathieu group. This
suggests a more extensive relationship between Mathieu groups and
complex surfaces, and a broader role for M5-branes in the theory of
Jacobi forms and moonshine.
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1 Introduction

Jacobi forms and mock Jacobi forms play important roles as counting func-
tions governing black hole entropy in string theory. For a recent comprehen-
sive discussion see [1]. They also play starring roles in studies of moonshine,
as in, e.g., [2–4]. Skew-holomorphic Jacobi forms, first introduced by Sko-
ruppa in [5,6], also play an important role in moonshine. Indeed, the weight
one-half modular forms exhibiting moonshine for the Thompson group in [7]
can be recast as the theta components of skew-holomorphic Jacobi forms,
an observation extended in [8] to obtain a larger family of moonshine phe-
nomena. In this work we promote the idea that BPS counting functions
appearing in the theory of strings and wrapped fivebranes at rational and
attractor points provide a rich source of such objects and suggest further new
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possibilities for connections between moonshine, black holes, and BPS state
counting.

Our first main observation is that half-BPS state counting functions for
the heterotic string on S1 at rational points in the Narain moduli space lead
directly to skew-holomorphic Jacobi forms. Our second main observation is
that M5-branes wrapping divisors in Calabi–Yau threefolds, studied in e.g. [9]
as giving rise to black strings in M-theory, provide another natural source of
skew-holomorphic Jacobi forms. As discussed in [10–13], the modified elliptic
genera counting supersymmetric states in these theories are non-holomorphic
modular forms of a certain kind. We will see that at suitable moduli these
functions can be specialized to skew-holomorphic Jacobi forms. A number of
examples of such genera were computed in a closely related setup in [14] (note
that many of these do not satisfy the “ampleness” assumption of [9]). We will
see, in several cases, that a skew-holomorphic Jacobi form or mock Jacobi
form of weight 2 which plays a role in moonshine can be extracted. We will
focus on cases where either a single M5-brane is wrapped, or two M5-branes
are wrapped. Skew-holomorphic mock Jacobi forms appear in the latter case,
due to the presence of bound states of single wrapped M5-branes.

Another important observation concerns the particular example of a single
M5-brane wrapping a del Pezzo surface of degree one (i.e. P2 blown up at
eight points). As we explain in §5.2, the corresponding skew-holomorphic
Jacobi form of weight 2 admits an interpretation as a generating function
for the graded dimension of a graded virtual module for the sporadic simple
group M12. This suggests a non-trivial relationship between M12 and del
Pezzo surfaces, and a concrete path to begin its exploration. In §5.3 we
give evidence that this relationship can be extended to half-K3 surfaces (i.e.
blow-ups of P2 at nine points) at certain moduli. In addition to this, the
form in which the relevant skew-holomorphic Jacobi forms are found points
toward a concrete construction in terms of a vertex algebra attached to a
certain indefinite lattice.

The plan of this note is as follows. In §2 we give a brief review of skew-
holomorphic Jacobi forms. In §3 we discuss S1 heterotic string compactifica-
tions at rational points in Narain moduli space and highlight the connection
between the BPS counting function and skew-holomorphic Jacobi forms. In
§4 we review the M5-brane elliptic genus, and show that, when evaluated
at a relevant attractor point in moduli space, it gives a skew-holomorphic
Jacobi form of weight −1. In §5 we discuss several examples where weight 2
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skew-holomorphic (mock) Jacobi forms that are implicated in moonshine ap-
pear. The discussion of M12 and del Pezzo surfaces appears in §5.2, and this
is extended to half-K3 surfaces in §5.3. Some further details and supporting
data for these relationships appears in Appendix A.

2 Skew-holomorphic Jacobi forms

We briefly review skew-holomorphic Jacobi forms in this section, referring
to [1] or [15] for more details.

In very general terms, a skew-holomorphic Jacobi form of weight k and
index m is a function of the form

ϕ(τ, z) =
∑

r mod 2m

fr(τ)θm,r(τ, z) (1)

where the theta-coefficients fr are the components of a holomorphic vector-
valued modular form of weight k− 1

2
. In this work we consider m ∈ 1

2
Z, and

use

θm,r(τ, z) :=
∑

ℓ∈Z+m
ℓ=r mod 2m

e(mℓ)yℓq
ℓ2

4m , (2)

for r ∈ Z +m, where e(x) := e2πix and y := e(z) and q := e(τ). Usually it
is required that fr(τ) = O(1) as ℑ(τ) → ∞, for all r, and the term weakly

skew-holomorphic is used when this is relaxed to fr(τ) = O(eCℑ(τ)) for some
C > 0. A skew-holomorphic mock Jacobi form is a function as in (1) for
which the fr are mock modular forms in the usual sense (cf. e.g. [1]).

In order to formulate some examples define the thetanullwerte

θ0m,r(τ) :=
∑

ℓ∈Z+m
ℓ=r mod 2m

e(mℓ)q
ℓ2

4m ,

θ1m,r(τ) :=
∑

ℓ∈Z+m
ℓ=r mod 2m

e(mℓ)ℓq
ℓ2

4m .
(3)

Then for k ∈ {1, 2} and m ∈ 1
2
Z the function

tk,m(τ, z) :=
∑

r mod 2m

θk−1
m,r (τ)θm,r(τ, z) (4)
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is a skew-holomorphic Jacobi form of weight k and index m. These theta-type
skew-holomorphic Jacobi forms (cf. §3.1 of [15]) arise as shadows in umbral
moonshine. For example, if

H(2)(τ) = −2q−
1
8 + 90q

7
8 + 462q

15
8 + 1540q

23
8 + . . . (5)

is the McKay–Thompson series attached to the identity element of M24 by
Mathieu moonshine [2] then φ(2)(τ, z) := H(2)(τ)(θ2,−1(τ, z) − θ2,1(τ, z)) is
a (weakly holomorphic) mock Jacobi form of weight 1 and index 2, and its
shadow is proportional to t2,2(τ, z).

The half-integral index theta series (2), (3) include some familiar exam-
ples, which will play a role in §5. For instance, for m = 1

2
we have

θ 1
2
, 1
2
(τ, z) = i

∑

n∈Z
yn+

1
2 q

1
2
(n+ 1

2
)2

= iy
1
2 q

1
8

∏

n>0

(1− y−1qn)(1− yqn)(1− qn).
(6)

So θ01
2
, 1
2

vanishes identically, but θ11
2
, 1
2

= iη3, where η denotes the Dedekind

eta function, η(τ) := q
1
24

∏
n>0(1− qn). For m = 3

2
we have θ03

2
, 3
2

= 0 and

θ03
2
,± 1

2
(τ) = ∓i

∑

n∈Z
(−1)nq

1
6
(3n± 1

2
)2 = ∓iη(τ). (7)

Also note the identity t2, 1
2
(τ, z) = 1

2
t2,2(τ,

1
2
z), which hints at an index m = 1

2

formulation of Mathieu moonshine. A broader context for this is given in [16].

From a number theoretic point of view skew-holomorphic Jacobi forms
play a complementary role to holomorphic Jacobi forms in a particular for-
mulation of the Shimura correspondence, developed by Skoruppa and Za-
gier [6, 17, 18]. Consequently there are Waldspurger-type results relating
Fourier coefficients of holomorphic and (non theta-type) skew-holomorphic
Jacobi forms of weight at least 2 to special values of L-functions of cusp-
idal modular forms with level (cf. [18]). This mechanism plays an impor-
tant role in the arithmetic geometry of elliptic curves according to the cele-
brated Birch–Swinnerton-Dyer conjecture. Applications to moonshine have
appeared, for instance, in [15] and [19].

Our focus in §5 will be on examples of M5-brane configurations that
produce (weakly) skew-holomorphic (mock) Jacobi forms of weight 2.
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3 Rational heterotic string compactifications

In this section we analyze examples of S1 compactifications of the heterotic
string at points in the Narain moduli space that correspond to rational con-
formal field theories. By definition these are points at which there is an
extended chiral algebra with the CFT containing a finite number of irre-
ducible representations of the chiral algebra. The partition function thus
decomposes into a finite sum of the form

Z(q) =
∑

j,j̄

Njj̄χj(q)χ̄j̄(q̄) (8)

where the Njj̄ are non-negative integers and the χj (χ̄j̄) furnish holomor-
phic (anti-holomorphic) irreducible characters of the extended chiral algebra
which is larger than the Virasoro algebra. Of course, the χj and χ̄j̄ are
in general reducible with respect to the Virasoro algebra and decompose
into a possibly infinite sum of its irreducible characters. We show that the
half-BPS state counting functions which arise can be written in terms of
skew-holomorphic Jacobi forms. See [20] for a general discussion of the rela-
tionship between rational CFT and attractor points in the moduli space of
string compactifications.

3.1 The rational Gaussian model

The c = 1 Gaussian model, corresponding to string compactification on a
S1 of radius R, is defined by an embedding of the unique unimodular even
lattice of signature (1, 1) into R1,1. We denote the embedded lattice by Γ1,1

and write lattice vectors and their standard projections as p = (pL, pR). More
generally, for r = s mod 8, we will use Γr,s to denote an embedding of the
unique unimodular even lattice of signature (r, s) into Rr,s. Using conventions
in which the inverse string tension is α′ = 2 we have

pL = n
R
+ wR

2
(9)

pR = n
R
− wR

2
(10)

with n, w ∈ Z. The moduli space of the c = 1 Gaussian model is

Z2\O(1, 1;R)/O(1)× O(1) ≃ Z2\R+ (11)
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where the Z2 acts as T-duality, R 7→ 2
R
. Thus the moduli space is the half

line [
√
2,∞) parametrized by R.

The model contains holomorphic and anti-holomorphic U(1) currents J ,
J̄ with eigenvalues proportional to pL, pR. Introducing chemical potentials
ζ = (ζL, ζR) to keep track of these U(1) charges leads to the partition function

Z(τ, ζ) = Θ1,1(R; τ, ζ)|η(τ)|−2 (12)

where
Θ1,1(R; τ, ζ) :=

∑

p∈Γ1,1

q
1
2
p2L q̄

1
2
p2Re2πiζ·p . (13)

Let ΓR := {(0, pR) ∈ Γ1,1} be the lattice of right-moving momenta. We
now consider rational points in the moduli space where R2 ∈ Q, and say
that ΓR is generated by p0. In order to facilitate the comparison to skew-
holomorphic Jacobi forms using the conventions of the previous section we
specialize to the case ζ(z) = z̄p0 (this corresponds to choosing the normal-
ization of J̄ such that the associated charge has integer eigenvalues). We will
show that the Siegel–Narain theta function Θ1,1 is the complex conjugate of
a weight one skew-holomorphic Jacobi form of theta-type at such rational
points.

Consider first the self-dual point R =
√
2. We then have

Θ1,1(
√
2; τ, ζ(z)) =

∑

n,w∈Z
q

(n+w)2

4 q̄
(n−w)2

4 ȳn−w (14)

with ȳ = e(−z̄). Breaking the sum into terms with n + w even and n + w
odd gives

Θ1,1(
√
2; τ, ζ(z)) =

∑

r mod 2

θ1,r(τ, z)θ
0
1,r(τ) = t1,1(τ, z) , (15)

which is of the claimed form.

It is not difficult to generalize this to general rational R2

2
, a problem which

appears as Exercise 10.21 in [21]. We write R2 = 2κ′

κ
with κ′, κ coprime

integers. We then have

Θ1,1

(√
2κ′

κ
; τ, ζ(z)

)
=

∑

(pL,pR)∈Γ1,1

q
1
2
p2L q̄

1
2
p2RȳpR

√

2κ′

κ

=
∑

n,w

q
(nκ+wκ′)2

4κκ′ q̄
(nκ−wκ′)2

4κκ′ ȳnκ−wκ′

.

(16)
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Now define r0, s0 to be integers for which κr0 − κ′s0 = 1, which is always
possible since κ, κ′ are coprime. Define ω0 and r to be the values of κr0+κ′s0
and nκ + wκ′ modulo 2κκ′ respectively. Then a short computation shows
that nκ− wκ′ = ω0r mod 2κκ′ which allows us to write

Θ1,1

(√
2κ′

κ
; τ, ζ(z)

)
=

∑

r mod 2κκ′

∑

n=ω0r mod 2κκ′

q̄
n2

4κκ′ ȳn
∑

m=r mod 2κκ′

q
m2

4κκ′ (17)

=
∑

r mod 2κκ′

θκκ′,ω0r(τ, z)θ
0
κκ′,r(τ)

This is almost of the desired form except for the factor of ω0. This factor can
be understood in terms of an automorphism of the fusion rule algebra as dis-
cussed in [20,22] and in the mathematical literature is related to well-known
objects, namely the Eichler–Zagier operators which played a prominent role
in [3].

To see this, we can perform a trivial rewriting of the previous equation,

Θ1,1

(√
2κ′

κ
; τ, ζ(z)

)
=

∑

s,r mod 2κκ′

θκκ′,s(τ, z)δs,ω0rθ
0
κκ′,r(τ) . (18)

The matrix with matrix elements δs,ω0r is an Eichler–Zagier matrix,

Ωκκ′(κ)sr = δs,ω0r , (19)

see [3] for conventions. Recall that Ωm(n)sr = 1 if s + r = 0 mod 2n and
s − r = 0 mod 2m

n
, and 0 otherwise. An easy calculation shows that the

two conditions required for a matrix element of Ωκκ′(κ) to be nonzero are
equivalent to s = ω0r mod 2κκ′:

(s− ω0r) mod 2κ = s− (κr0 + κ′s0)r mod 2κ (20)

= s+ (κr0 − κ′s0)r mod 2κ

= (s+ r) mod 2κ

(s− ω0r) mod 2κ′ = s− (κr0 + κ′s0)r mod 2κ′ (21)

= s− (κr0 − κ′s0)r mod 2κ′

= (s− r) mod 2κ′

from which it easily follows that Ωκκ′(κ)sr = δs,ω0r and thus that (18) is the
complex conjugate of a skew-holomorphic Jacobi form:

Θ1,1

(√
2κ′

κ
; τ, ζ(z)

)
= θκκ′(τ, z) · Ωκκ′(κ) · θ0κκ′(τ) (22)

8



where we have suppressed the vector indices in the above equation.

3.2 Heterotic strings with Wilson lines

We now explain the relevance of this computation to BPS state counting for
heterotic strings on S1. In this case the Narain moduli space has dimension
17, corresponding to the radius of the S1 and a choice of Wilson lines in the
Cartan subalgebra of E8 × E8 or Spin(32)/Z2. Half-BPS states correspond
to right-moving ground states with arbitrary left-moving excitations [23] and
have squared mass proportional to p2R. The generating function for these
BPS states, summed over all p2R and weighted by a chemical potential for pR
is given by1

ZBPS(τ, ζ) = Θ17,1(τ, ζ)η
−24(τ) (23)

where now
Θ17,1(τ, ζ) :=

∑

p∈Γ17,1

q
1
2
p2
L q̄

1
2
p2
Re2πiζ·p . (24)

We expect that ZBPS can be written in terms of skew-holomorphic Jacobi
forms at rational points in the Narain moduli space

N17,1 := O(17, 1,Z)\O(17, 1,R)/O(17)× O(1). (25)

We will show this explicitly for two examples below, and defer comments
about the general case to §3.3.

The first example involves considering points in the moduli space (25)
where the Wilson lines are turned off. At these points, the embedded lattice
Γ17,1 respects the standard splitting R17,1 = R16 ⊕ R1,1 in the sense that
L := Γ17,1 ∩ R16 is a positive-definite even unimodular lattice with rank 16
and Γ17,1 ∩ R1,1 is unimodular and even with signature (1,1). If we further
specialize to points in the moduli space where the Γ1,1 corresponds to a

1For the purpose of comparing to black hole microstate counts, we comment that the
partition function defined here has the same leading asymptotic behavior as the familiar
1/η24(τ), receiving only subleading corrections from the theta function. Similar comments
apply to the rest of the counting functions considered in this paper.

9



rational CFT of radius R =
√
2κ′

κ
we then find

ZBPS(τ, ζ(z)) = Θ17,1(τ, ζ(z))η
−24(τ)

=
∑

(pL,pR)∈Γ17,1

q
1
2
p2L q̄

1
2
p2R ȳpR

√
2κ′κ

= θκκ′(τ, z) · Ωκκ′(κ) · θ0κκ′(τ)ΘL(τ)η
−24(τ)

(26)

where ΘL is the theta-function attached to the lattice L. There are only two
even unimodular lattices of rank 16; namely E8 ⊕E8 and D+

16. In both cases
ΘL is the unique weight 8 modular form that satisfies ΘL(τ) = 1 + O(q) as
ℑ(τ) → ∞. The partition function ZBPS(τ, ζ(z)) is the complex conjugate of
a weakly skew-holomorphic Jacobi form of weight −3.

We can obtain a more subtle rational point by utilizing a construction
due to Nikulin [24]. Let ΛL be an even, rank 7, positive-definite lattice which
is primitively embedded into an even, unimodular, rank 24 lattice N , thus N
is the Leech lattice or one of the 23 Niemeier lattices. Let ΛR be a negative-
definite lattice bijectively isometric to ΛL (up to an overall minus sign in the
quadratic form) and primitively embedded as a sublattice of the (negative-
definite) E8 root lattice. Define ΓL := Λ⊥

L ∩N and ΓR := Λ⊥
R ∩ (−E8) to be

the orthogonal complements of ΛL and ΛR respectively. Then the lattice

Γ :=
⊕

i

(
(ΓL, 0)⊕ (0,ΓR) + (g

(i)
L , g

(i)
R )

)
(27)

is an even, unimodular lattice of signature (17, 1). In the above g
(i)
L and g

(i)
R

are glue vectors which run over the non-trivial elements of the discriminant
group of ΓL,ΓR, such that the map g

(i)
R → g

(i)
L is an isometry.

Our second example will use this construction for the choice ΛL = E7

which is embedded in the Niemeier lattice with root system A17E7, and
ΛR = (−E7) which is primitively embedded into (−E8).

2 Our conventions for
the A17E7 root lattice are as follows. Take e1, e2, . . . , e26 to be an orthonormal
basis for R26 = R8 ⊕ R18 and take the E7 root lattice to be embedded in
the first R8 with simple roots ri := ei+2 − ei+1 for i = 1, 2, . . . , 6, and r7 :=
1
2
(e1+e2+e3+e4−e5−e6−e7−e8). For the A17 root system we embed in the

R18 factor and take the simple roots to be ri := ei− ei+1 for i = 9, 10, . . . , 26.

2For details on the construction of such lattices, see e.g. [25, 26].
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Recall the construction of the Niemeier lattice N corresponding to the A17E7

root system. Letting L⋆ denote the dual of a lattice L, we have embeddings

A17E7 ⊂ N ⊂ (A17E7)
⋆ (28)

which implies that N/A17E7 is a subgroup of (A17E7)
⋆/A17E7. Moreover,

since N is an even lattice, it is an isotropic subgroup, meaning that the
quadratic form of the discriminant group restricted to N/A17E7 vanishes.
Now, the discriminant group of A17E7 is Z2 × Z18 from the E7 and A17

factors respectively.

The Z2 component of the discriminant group is generated by

v :=
1

4
(3e1 − e2 − e3 − e4 − e5 − e6 + 3e7 − e8), (29)

while the Z18 is generated by

w :=
1

18

(
17e9 −

26∑

i=10

ei

)
. (30)

One can check that the quadratic form on the discriminant group vanishes
on the isotropic subgroup 〈v + 3w〉 ≃ Z6. The Niemeier lattice is obtained
as

N =
⋃

n=0,...,5

(A17E7 + n(v + 3w)) (31)

and the orthogonal complement of the E7 root lattice in N is easily seen to
be

ΓL = A17 ∪ (A17 + 6w) ∪ (A17 + 12w). (32)

One can convince oneself that the discriminant group Γ⋆
L/ΓL = 〈3w〉 ≃ Z2.

The even unimodular lattice Γ that we obtain in this way satisfies

Θ17,1(τ, ζ(z)) = ΘΓL
(τ)θ1,0(τ, z) + ΘΓL+3w(τ)θ1,1(τ, z). (33)

and an explicit computation of the theta coefficients yields

ΘΓL
(τ) = 1 + 306q + 55488q2 + 1161984q3 + 10054242q4 (34)

+ 53585088q5 + 210351744q6 + 668519424q7 + · · · ,
ΘΓL+3w(τ) = 1632q5/4 + 134912q9/4 + 2110176q13/4 (35)

+ 15898368q17/4 + 76968384q21/4 + 286866432q25/4 + · · · .

11



We can identify the above theta coefficients further using results in [5].
Skoruppa classifies the weight k index 1 skew-holomorphic Jacobi forms:

J sk
k,1 = Mk−1(SL2(Z)) · t1,1(τ, z)⊕Mk−3(SL2(Z)) · U(τ, z). (36)

Here, Mk(SL2(Z)) is the space of weight k holomorphic modular forms for
SL2(Z), and

U(τ, z) :=
12

πi

∂

∂τ̄
t1,1(τ, z) + E2(τ)t1,1(τ, z), (37)

E2(τ) := 1− 24
∑

ℓ≥1

(∑

d|ℓ
d
)
qℓ. (38)

Letting Ek(τ) = 1+O(q) be the Eisenstein series of weight k, the weight
nine skew-holomorphic forms (and in particular the function we found above)
should be of the form

aE4(τ)2t1,1(τ, z) + bE6(τ)U(τ, z). (39)

One can verify that the theta function we computed earlier corresponds to
the choice a = 5

6
and b = 1

6
,

Θ17,1(τ, ζ(z)) =
1

6

(
5E4(τ)2t1,1(τ, z) + E6(τ)U(τ, z)

)
. (40)

We are then left with the BPS counting function

ZBPS(τ, ζ(z)) =
1

6

(
5E4(τ)

2t1,1(τ, z) + E6(τ)U(τ, z)
)
η−24(τ). (41)

It should not be hard to generalize this analysis to other rational points
in the moduli space (25) at which the BPS state counting function can be
expressed in terms of skew-holomorphic Jacobi forms.

3.3 Rational toroidal compactifications

As a technical aside, we would like to briefly sketch the general construc-
tion which underlies the examples of the previous sections. Quite generally,
toroidal string compactifications correspond to Narain lattices Γ of signature

12



(d + 8s, d). The points in the moduli space of such lattices where the asso-
ciated CFT becomes rational are specified by triples (ΓL,ΓR, φ), where we
demand that φ : Γ⋆

R/ΓR → Γ⋆
L/ΓL be an isometric bijection of the discrimi-

nant groups. The discriminant groups Γ⋆
L/ΓL and Γ⋆

R/ΓR inherit their norms
from the norms on Γ⋆

L and Γ⋆
R reduced modulo 2. Using φ to obtain so-called

glue vectors (φ(λ), λ), we may construct the full, rational, unimodular lattice
from this data as

Γ :=
⋃

λ∈Γ⋆
R
/ΓR

(
ΓL ⊕ ΓR + (φ(λ), λ)

)
. (42)

It easily follows that the Siegel–Narain theta function admits the decompo-
sition

ΘΓ(τ) =
∑

λ∈Γ⋆
R
/ΓR

ΘΓL+φ(λ)(τ)ΘΓR+λ(τ) (43)

where we have defined

ΘL+λ(τ) :=
∑

γ∈L+λ

q
γ2

2 (44)

for an arbitrary positive-definite, even lattice L. In this construction, ΓL :=
{(pL, 0) ∈ Γ} is the lattice of purely left-moving momenta, and similarly for
ΓR. See §10.2 of [20] for a more detailed discussion.

In the previous sections, we specialized to d = 1 and exploited the fact
that the right-moving momentum lattice must be of the form ΓR ≃

√
2mZ

with associated theta-function

Θ√
2mZ+r(τ) = θ0m,r(τ) (45)

for r in Γ⋆
R/ΓR ≃ Z2m. Indeed, upon flavoring by an additional J̄ quantum

number, we find that the points in the moduli space with ΓR ≃
√
2mZ

recovered (complex conjugates of) index m skew-holomorphic Jacobi forms.

In this language, the c = 1 Gaussian model with radius R =
√

2κ′

κ
corre-

sponds to the triple (
√
2κ′κZ,

√
2κ′κZ, r → ω0r), with the gluing of left and

right-moving momentum lattices specified by the isometry “multiplication by
ω0.” The different choices of isometries give rise to different Eichler–Zagier
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matrices Ωκκ′(κ) which commute with the action of the modular group on the
thetanullwerte. Similar comments should apply to the problem of classifying
the rational points in the moduli space of the heterotic string with Wilson
lines, as well as the skew-holomorphic Jacobi forms which arise.

We now turn to a richer source of strings—those arising from wrapped
M5-branes—and show that their associated elliptic genera can also be ex-
pressed in terms of skew-holomorphic Jacobi forms.

4 The M5-brane elliptic genus

Here we review basic facts about the worldsheet theory on a wrapped M5-
brane.

4.1 Multiplets

The M5-brane wrapping a divisor in a Calabi–Yau threefold gives rise, at low-
energies, to an effective string, sometimes called an “MSW string,” with (0,4)
worldsheet supersymmetry. This theory was studied in detail from various
viewpoints in, e.g., [9–11, 27]. Suppose the M5-brane is wrapping a divisor
P in a Calabi–Yau threefold X . Then the low-energy theory on the effec-
tive string (arising from dimensional reduction of the M5-brane worldvolume
fields) is as follows.

Consider the inclusion map

i : P → X .

This naturally gives rise to a pullback map i∗ : H2(X,Z) → H2(P,Z).
We define Λ to be i∗(H2(X,Z)) equipped with the bilinear form given by
(A|B) := −

∫
P A ∧ B. The pullback two-forms i∗α ∈ H2(P,Z) can be as-

sociated with chiral worldvolume fields in the (0, 4) worldsheet σ-model as
follows.

• Self-dual two-forms on P that extend non-trivially to X give rise to left-
moving scalars on the worldsheet.

• Anti self-dual two-forms on P that extend non-trivially to X give rise to
right-moving scalars on the worldsheet.
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In fact, for a Calabi–Yau threefold X , the Kähler form is the only two-
form that pulls back to an anti self-dual form on P. As a result there are
b2(X) − 1 left-moving scalars and 1 right-moving scalar coming from these
sources.

It is important to remember that the worldsheet fields include univer-
sal worldsheet multiplets arising from (super) Goldstone modes. This gives
three additional non-chiral scalars that can translate the effective string. The
total of four right-moving bosons (including the one arising from the pull-
back of the Kähler form) have four Fermi superpartners arising from the
(0,4) supersymmetry. Zero modes of these fermions lead to a modification
of the definition of the M5-brane ellliptic genus relative to the conventional
elliptic genus (see (46)) as the conventional quantity would vanish in this
circumstance.

In a model-dependent way, there are also additional fields present in the
generic wrapped M5-brane theory. These parametrize the moduli space of
motions of the wrapped divisor in the Calabi–Yau space X . Although our
subsequent discussion will be independent of these fields it should be men-
tioned that in the limit of large central charge, where the effective string can
sometimes be related to a weakly curved black string, they constitute the
most numerous degrees of freedom.

4.2 The index

For a fixed M5 theory the worldsheet elliptic genus can be defined as follows.
First define

Z ′(τ, ζ) := trR

(
F 2(−1)Feπip·Qe2πiτ(L0− cL

24 )e−2πiτ̄(L̄0− cR
24 )e2πiζ·Q

)
. (46)

Here the ζa are chemical potentials and the Qa are charges under the b2(X)
abelian currents associated with the chiral bosons; i.e. (b2 − 1) left-moving
currents, and a single right-moving current. The pa parametrize the (discrete)
choice of divisor in H4(X,Z) that the M5-brane wraps. The fermion number
is defined in the usual way as twice the charge of the U(1) generator in the
SU(2)R R-symmetry which exists in the N = 4 superconformal algebra. The
extra factor of F 2 as compared to the conventional elliptic genus is present
in order to absorb the fermion zero modes mentioned above.

This quantity isn’t quite the one we want to work with, as it includes
information about the momenta in the R3 transverse to the effective string
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in the non-compact directions of space. Instead, the generalized elliptic genus

Z(τ, ζ) is defined by requiring that

Z ′(τ, ζ) = Z(τ, ζ)

∫
d3~π (e2πiτe−2πiτ̄ )

1
2
~π2

= Z(τ, ζ) (2 Imτ)
3
2 . (47)

It is easy to see [10–12] that Z has weight
(
−3

2
, 1
2

)
, in the sense that

Z

(
aτ + b

cτ + d
,

ζ

cτ + d

)
(cτ + d)2

|cτ + d| e

(
m

cz2

cτ̄ + d

)
= χ ( a b

c d )Z(τ, ζ) (48)

for some m, and some multiplier χ : SL2(Z) → C, when ( a b
c d ) ∈ SL2(Z). This

is what we would expect from (the complex conjugate of) a skew-holomorphic
Jacobi form of weight −1 (with a multiplier system). The shift in charges
under a large gauge transformation states that the generalized index admits
a decomposition

Z(τ, ζ) =
∑

µ∈Λ∗/Λ

Θµ(τ, ζ) hµ(τ) (49)

into Siegel–Narain theta functions

Θµ(τ, ζ) :=
∑

Q∈µ+Λ+ p
2

e
(
τ
2
(Q+|Q+) +

τ̄
2
(Q−|Q−) + (Q|ζ + p

2
)
)
, (50)

where the splitting Q = Q++Q− depends on the Grassmannian O(b2−1,1)
O(b2−1)×O(1)

.
In the sequel we will always set the chemical potentials conjugate to the left-
moving currents to zero, and only keep track of the right-moving chemical
potential.

Next we will show that, at certain points in the moduli space, the gen-
eralized elliptic genus of an MSW string is naturally a skew-holomorphic
(mock) Jacobi form. First, recall that in the presence of an MSW string the
Calabi–Yau moduli which are vector multiplets in the low-energy supergrav-
ity undergo an “attractor flow.” That is, they flow to certain specific values at
the horizon of the related black string, independent of their values at infinity
in R5. This ‘attractor mechanism’ gives a natural preferred choice of moduli.
In M-theory on X , the vector multiplet moduli are the Kähler moduli of X
(excepting the overall volume, which transforms in a hypermultiplet). At the
attractor point in moduli space, the Kähler form J on X satisfies J ∼ p. As

16



a result one can find the right-moving chiral U(1) current and its associated
charge to be

Q− =
p ·Q
p2

p . (51)

As we already know that Z(τ, ζ) transforms as a weight (−3
2
, 1
2
) modular

form, what remains to check is that Z(τ, ζ), for a specific choice of ζ = ζ(z),
satisfies the elliptic transformation

Z(τ, ζ(z + λτ + µ)) e
(
m(λ2τ + 2λz + λ+ µ)

)
= Z(τ, ζ(z)) (52)

for λ, µ ∈ Z. This will imply that Z admits a decomposition as in (1).

Let ζ = z̄p. At the attractor moduli the Siegel–Narain theta function
Θµ(τ, τ̄ , ζ) becomes

θ̃µ(τ, z̄) :=
∑

Q∈µ+Λ+ p
2

(−1)p·Qq
1
2
Q2

+ q̄
1
2

(p·Q)2

p2 e2πiz̄p·Q (53)

where q = e(τ) and q̄ = e(−τ̄ ), and we used (51) in writing the power of q̄.
We can show that

θ̃µ(τ, z̄ + nτ̄ +m) = (−1)p
2(m+n) e(1

2
p2n2)θ̃µ(τ, z̄) (54)

by a shift Q 7→ Q+ pn in the sum. This verifies that, at the attractor point
in moduli space, Z(τ, pz̄) is a skew-holomorphic Jacobi form of index 1

2
p2

with elliptic variable z.

An interesting question for future work would be to determine if there
are other (non-attractor) moduli where the M5-brane elliptic genus reduces
to a skew-holomorphic Jacobi form.

5 Examples

We now discuss several examples of M5-brane elliptic genera computed in
[14]. In each case we find a natural relation to a weakly skew-holomorphic
Jacobi form of weight 2 that plays a role in a moonshine.
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5.1 The projective plane

The elliptic genus for one M5-brane wrapping P2 can be written as

Z
(1)

P2 (τ, z) = (−i)θ 1
2
, 1
2
(−τ̄ ,−z)η−3(τ) (55)

(cf. (6)) thanks to work of Göttsche [28]. In comparison with §4 we have
kept only the chemical potential for the right-moving U(1) charge, which we
henceforth denote by z.

So the function Z
(1)
P2 (τ, z) is a skew-holomorphic Jacobi form of weight −1

and index 1
2
, and since θ11

2
, 1
2

= iη3 (cf. (6)) we may write

Z
(1)
P2 (τ, z) = ϕ

(1)
P2 (τ, z̄)η

−6(τ) (56)

where ϕ
(1)

P2 (τ, z) = t2, 1
2
(τ, z) = 1

2
t2,2(τ,

1
2
z), and t2,2 is the weight 2, index 2

skew-holomorphic Jacobi form that appears as a shadow in Mathieu moon-
shine (cf. (4)).

The connection to Mathieu groups becomes stronger when we consider
two M5-branes wrapping P2. To explain this let H(n) denote the Hurwitz
class number of binary quadratic forms of discriminant −n when n > 0, and
set H(0) := − 1

12
. Then H (τ) :=

∑
n≥0H(n)qn is a mock modular form of

weight 3
2
for Γ0(4) with shadow (proportional to) θ01,0 (cf. (3)). This was first

discovered by Zagier [29]. Very recent work [30] proves that

24H (τ) = −2 + 8q3 + 12q4 + 24q7 + 24q8 + . . . (57)

is the graded dimension of a graded virtual module for the sporadic Mathieu
group M11, and 48H (τ) = −4 + 16q3 + 24q4 + . . . is the graded dimension
of a graded virtual module for M23.

Now set f̂j(τ) := 3ĥj(τ)η
−6(τ) for j ∈ {0, 1}, where ĥj is the completion

of the mock modular form

hj(τ) :=

∞∑

n=0

H(4n+ 3j)qn+
3j
4 . (58)

Then the elliptic genus of two M5-branes wrapping P2 is given [31–33] by

Z
(2)

P2 (τ, z) = f̂0(τ)θ1,1(−τ̄ ,−z)− f̂1(τ)θ1,0(−τ̄ ,−z).
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Similar to (56) we may write

Z
(2)
P2 (τ, z) = ϕ

(2)
P2 (τ, z̄)η

−6(τ) (59)

where ϕ
(2)

P2 (τ, z) := 3ĥ0(τ)θ1,0(τ, z) − 3ĥ1(τ)θ1,1(τ, z) is a skew-holomorphic
mock Jacobi form of weight 2 and index 1 that exhibits moonshine for the
Mathieu groups M11 and M23 according to [30]. Thus M5-branes on P2 give
a starting point from which we may pursue a geometric understanding of
Mathieu moonshine for (rescaled) Hurwitz class numbers.

It is interesting to note that the generating function H (τ) also arises
as an example of a function counting BPS jumping loci of maximal rank
for K3 × T 2, or equivalently, counting attractor black holes, in the precise
sense described in [35]. Also, the theta-coefficients of ϕ in (59) recur in the
elliptic genus for two M5-branes wrapping the Hirzebruch surface F1 (see §4.2
of [14]). In both these settings, and of course for two M5-branes wrapping
P2, it would be interesting to compare geometric twinings with the functions
coming from the analysis of [30].

5.2 Degree one del Pezzo surfaces

Next we consider M5-branes wrapping a del Pezzo surface of degree 1 (i.e.
P2 blown up at 8 points). The elliptic genus was first described in [10].
Start with the Fermat quintic {∑i x

5
i = 0} ⊂ P4 and quotient by the Z5

action xi → ωixi where ω := e(1
5
). The hyperplane section P of the resulting

orbifold has χ(P) = 11 and is rigid with b+2 = 1. It hasH2(P,Z) = Z⊕(−E8)
and is thus a del Pezzo surface of degree 1.

For a single M5-brane wrapping P we have Z
(1)
dP8

(τ, z) = ϕ
(1)
dP8

(τ, z̄)η−6(τ)
for the elliptic genus, where

ϕ
(1)
dP8

(τ, z) :=E4(τ)η−8(τ)t2, 1
2
(τ, z)

=E4(τ)η−5(τ)(−i)θ 1
2
, 1
2
(τ, z).

(60)

This is a weakly skew-holomorphic Jacobi form of weight 2 with a multiplier,
and may be compared to (56).

Inspired by the discussion in §5.1 we consider the possibility that the
coefficients of the anti-holomorphic factor in (60) also admit interpretations
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in terms of representations of Mathieu groups. Observe that

f
(1)
dP8

(τ) := E4(τ)η
−5(τ) (61)

is the unique modular form of weight 3
2
for SL2(Z) that has the same multi-

plier as η−5 and satisfies f
(1)
dP8

(τ) = q−
5
24 + O(q

19
24 ) as ℑ(τ) → ∞. By consid-

ering analogous functions for the congruence subgroups Γ0(n) < SL2(Z) we

are led to a family f
(1)
dP8,nZ

of modular forms of weight 3
2
with various levels

which achieves this goal for the sporadic simple Mathieu group M12. That
is, the f

(1)
dP8,nZ

serve as trace functions

f
(1)
dP8,[g]

(τ) =
∑

d∈Z+ 19
24

tr
(
g|W (1)

dP8,d

)
qd (62)

for a graded virtual M12-module W
(1)
dP8

=
⊕

dW
(1)
dP8,d

with graded dimension
given by (61).

Details on the modular forms f
(1)
dP8,nZ

are given in §A, including the first
few coefficients in their Fourier expansions (see Tables 2-3) and the decom-

positions of the corresponding W
(1)
dP8,d

into irreducible modules for M12 (see
Tables 4-8). From that information alone it is not immediate that the virtual

M12-module W
(1)
dP8

satisfying (62) exists, but we can verify this using argu-
ments very similar to those appearing in recent literature on moonshine in
weight 3

2
, including [19,30]. So we refrain from reproducing the details here.

The reader will note that f
(1)
dP8

is η3 times the graded dimension of the
basic representation VE8 of the affine Lie algebra of type E8. This space
naturally admits an action by the adjoint Lie group E8(C), so it is natural

to ask if the twining functions f
(1)
dP8,[g]

are related to this action. Here we

note that M12 is not a subgroup of E8(C) according to [34], so the virtual

M12-module W
(1)
dP8

cannot be recovered in a simple way from VE8.

We obtain an assignment of weakly skew-holomorphic Jacobi forms of
weight 2 and index 1

2
to elements of M12 simply by setting

ϕ
(1)
dP8,nZ

(τ, z) := (−i)f
(1)
dP8,nZ

(τ)θ 1
2
, 1
2
(τ, z). (63)

These forms in turn define twinings

Z
(1)
dP8,nZ

(τ, z) := ϕ
(1)
dP8,nZ

(τ, z̄)η−6(τ) (64)
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of the M5-brane elliptic genus Z
(1)
dP8

. As a result, it is natural to ask how the
twining functions (64) are related to the symmetries of M5-brane theory on
P, and whether this relationship between M12 and the del Pezzo surface of
degree 1 is connected in some way to the original Mathieu moonshine [2],
which relates M24 to the K3 elliptic genus. It would be interesting to gain a
physical or geometric understanding of the twining functions Z

(1)
dP8,nZ

.

For a pair of M5-branes on P we have Z
(2)
dP8

(τ, z) = ϕ
(2)
dP8

(τ, z̄)η−6(τ) where

ϕ
(2)
dP8

(τ, z) := E2
4(τ)η

−16(τ)
(
ĥ0(τ)θ1,0(τ, z)− ĥ1(τ)θ1,1(τ, z)

)
(65)

(cf. (58)). In light of the discussions above and in §5.1 it seems likely

that naturally defined Mathieu group twinings of Z
(2)
dP8

also exist. Are there

naturally defined twinings of Z
(n)
dP8

by g ∈ M12 for all n? What do they tell
us about M5-branes on P?

5.3 Half-K3 surfaces

In this final section we consider the elliptic genus for a single M5-brane
wrapping a half-K3 surface (i.e. P2 blown up at 9 points). Such surfaces
play an important role in the study of E-strings via geometric engineering.

To compute the genus in question we first discuss the cohomology group
H2(1

2
K3,Z). Geometrically it is generated by the hyperplane class corre-

sponding to the hyperplane intersection with P2, denoted by H , and the
nine blow-ups ci, for i = 1, . . . , 9. The quadratic form inherited from the
intersection form is then given by diag(1,−1, . . . ,−1). In fact, this lattice is
isomorphic to Z ⊕ (−Z) ⊕ (−E8), and in particular is unimodular (but not
even). The corresponding basis is given [36] by

b1 := 3H +
8∑

i=1

ci , b2 := −c9,

e8 := H +

8∑

i=6

ci , ei := ci − ci+1 for i = 1, . . . 7.

(66)

Since the lattice is unimodular there is only one term in the decomposition
(49) of the genus into theta functions. For the case at hand, the class P of
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the surface wrapped by the M5 brane is given by the anti-canonical class

P = K 1
2
K3 = b1 − b2. (67)

The theta function we are interested in will depend on the moduli of
the half-K3, and one such modulus is given by the size of the elliptic fiber,
denoted here by 1

R
. Taking the shift by 1

2
P into account, the Siegel–Narain

theta function (50) is Θ(R; τ, z) = E4(τ)Θ
odd
1,1 (R; τ, z), where

Θodd
1,1 (R; τ, z) :=
∑

a,b∈Z
(−1)a+bq

1
2R2 (R2 (a−b)

2
+ a+b+1

2 )
2

q̄
1

2R2 (R2 (b−a)
2

+ a+b+1
2 )

2

ȳ(R
2 (b−a)

2
+ a+b+1

2 ). (68)

The elliptic genus is given by

Z
(1)
1
2
K3
(R; τ, z) = E4(τ)Θ

odd
1,1 (R; τ, z)η−12(τ). (69)

The question of moonshine-type phenomena is potentially richer in this
setting due to the dependence on the parameter R. In this work we refrain
from a full analysis and restrict ourselves to some special cases. In prepara-
tion for this note that (68) specializes to theta-type skew-holomorphic Jacobi
forms of half-integral index (cf. (4)) at special values of R. Indeed, by a sim-
ilar analysis to that given for Θ1,1 in §3.1 we obtain

Θodd
1,1 (

√
2m; τ, z) = t1,m(τ, z) (70)

when m ∈ Z+ 1
2
and m > 0.

Motivated by the discussions in §5.1 and §5.2 we now consider the de-

composition Z
(1)
1
2
K3
(
√
2m; τ) = ϕ

(1)
1
2
K3,m

(τ, z)η−6(τ), where by (70) we have

ϕ
(1)
1
2
K3,m

(τ, z) = E4(τ)η−6(τ)t1,m(τ, z), (71)

which is a skew-holomorphic Jacobi form of weight 2 and index m.

The first case to consider is m = 1
2
, but t1, 1

2
vanishes identically (cf. (6)),

so we set this case aside for the moment. The next case is m = 3
2
, where,

after applying (7) we find that

ϕ
(1)
1
2
K3, 3

2

(τ, z) = E4(τ)η−5(τ)(i)
(
θ 3

2
, 1
2
(τ, z)− θ 3

2
,− 1

2
(τ, z)

)
. (72)
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Observe that the anti-holomorphic factor in (72) is precisely the same as that

which appears in ϕ
(1)
dP8

(cf. (60)), in connection with del Pezzo surfaces of
degree 1. So from the discussion in §5.2 we naturally obtain twinings

ϕ
(1)
1
2
K3, 3

2
,[g]
(τ, z) := f

(1)
dP8,[g]

(τ)(i)
(
θ 3

2
, 1
2
(τ, z)− θ 3

2
,− 1

2
(τ, z)

)
(73)

(cf. (62)) of the weight 2 skew-holomorphic Jacobi form (72) by g ∈ M12.
This in turn leads to twinings

Z
(1)
1
2
K3,[g]

(
√
3; τ, z) := ϕ

(1)
1
2
K3, 3

2
,[g]
(τ, z)η−6(τ) (74)

by g ∈ M12 of the single M5-brane elliptic genus for half-K3 surfaces at the
modulus R =

√
3.

The vanishing of (71) at m = 1
2
suggests that we modify the elliptic genus

by introducing a fermion number operator. This amounts to replacing t1,m
with t2,m in (71). Indeed, if we define

Z̃
(1)
1
2
K3
(R; τ, z) := E4(τ)Θ̃

odd
1,1 (R; τ, z)η−12(τ) (75)

where

Θ̃odd
1,1 (R; τ, z) :=

∑

a,b∈Z
(−1)a+b

(
R2 (a−b)

2
+ a+b+1

2

)
q

1
2R2 (R2 (a−b)

2
+ a+b+1

2 )
2

× q̄
1

2R2 (R2 (b−a)
2

+ a+b+1
2 )

2

ȳ(R
2 (b−a)

2
+ a+b+1

2 )

(76)

then Θ̃odd
1,1 (

√
2m; τ, z) = t2,m(τ, z) when m ∈ Z+ 1

2
and m > 0. In this setting

we consider the decomposition Z̃
(1)
1
2
K3
(
√
2m; τ) = ϕ̃

(1)
1
2
K3,m

(τ, z)η−4(τ) so that

ϕ̃
(1)
1
2
K3,m

(τ, z) = E4(τ)η−8(τ)t2,m(τ, z) (77)

is the associated weakly skew-holomorphic Jacobi form of weight 2 and index
m.

Now comparing with (60) we find that (77) at m = 1
2
is precisely the

skew-holomorphic Jacobi form of weight 2 and index 1
2
that appeared in §5.2

in connection with del Pezzo surfaces of degree 1. So it is natural to define

ϕ̃
(1)
1
2
K3, 1

2
,[g]
(τ, z) := ϕ

(1)
dP8,[g]

(τ, z) (78)
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for g ∈ M12. We then obtain twinings

Z̃
(1)
1
2
K3,[g]

(1; τ) := ϕ̃
(1)
1
2
K3, 1

2
,[g]
(τ, z)η−4(τ) (79)

of the modified single M5-brane elliptic genus for half-K3 surfaces by g ∈ M12

when R = 1.

We conclude this section with four remarks. Firstly, it is natural to ask
if twinings by M12 of the elliptic genera (69) and (75) for half-K3 surfaces
can be defined for all R. Are there special values of R for which this hidden
symmetry extends beyond M12? Secondly, it would be interesting to compare
the physical twinings of the elliptic genera (69) and (75) with the series
(74) and (79) that arise from M12 in the manner we have just described.
Thirdly, note that the given expressions (69) and (75) for the elliptic genera
considered in this section point to explicit realizations in terms of the vertex
algebra attached to the lattice Z ⊕ (−Z) ⊕ (−E8). It would be interesting
to determine if the twinings (74) and (79) by elements of M12 can also be
realized using this structure. In view of the well-known Mathieu moonshine
connection between M24 and K3 surfaces [2], it is appealing that the Euler
characteristic of a half-K3 surface is 12. So finally we ask, to what extent
is the connection between half-K3 surfaces and M12 described in this section
related to the original Mathieu moonshine?
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A New Mathieu moonshine

Here we present numerical data in support of the discussions of §5.2 and
§5.3 relating the M5-brane elliptic genera for degree one del Pezzo surfaces
and half-K3 surfaces to the Mathieu group M12. Since the relationship to
half-K3 surfaces is formulated in terms of the functions that appear in §5.2
we employ the notation of §5.2 in what follows.

The character table of M12 is Table 1, wherein b11 := −1
2
+

√
−11
2

. Tables

2-3 give the coefficients of qd in the McKay–Thompson series f
(1)
dP8,nZ

up to

d = 2275
24

. The naming of the conjugacy classes is as in Table 1. Tables
4-8 give the multiplicity generating functions for irreducible characters in
the graded virtual M12-module W

(1)
dP8,d

of (62). That is, for χ an irreducible

character of M12, the coefficient of qd in f
(1)
dP8,χ

denotes the multiplicity of χ

in the (virtual) M12-module W
(1)
dP8,d

. In Tables 4-8 the characters are named
by their dimensions, and appear in the same order as in Table 1.

The modular forms f
(1)
dP8,nZ

may be realized as Rademacher sums. Specif-
ically, consider the degree 24 permutation representation of M12 that arises
by restricting the defining permutation representation of M24. The corre-
sponding character is 2χ1 + χ2 + χ3 in the notation of Table 1. If g ∈ M12

has order n and h is the minimal length of a cycle in the cycle shape of g
(in this permutation representation) then f

(1)
dP8,[g]

is the Rademacher sum of

weight 3
2
for Γ0(n) with polar part q−

5
24 (at the infinite cusp), and multiplier

system given by γ 7→ e( cd
nh
)ǫ−5(γ) for γ = ( ∗ ∗

c d ) ∈ Γ0(n), where ǫ is the mul-
tiplier system of η. The values of n and h for each conjugacy class [g] ⊂ M12

are given in Table 1. We refer to [37] for details of the Rademacher sum
construction.

Note that since the factor e( cd
nh
) is trivial on Γ0(nh) the function f

(1)
dP8,[g]

η5

is a holomorphic modular form of weight 4 for Γ0(nh). This, together with
the Fourier coefficients in Tables 2-3 gives an alternative method for recon-
structing the f

(1)
dP8,nZ

. For example, we find in this way that

f
(1)
dP8,2B

(τ) = 1
15
(16E4(2τ)− E4(τ))η

−5(τ),

f
(1)
dP8,3A

(τ) = 1
80
(81E4(3τ)− E4(τ))η

−5(τ),

f
(1)
dP8,2A

(τ) = f
(1)
dP8,2B

(τ) + 32η3(τ)η(4τ)8η−8(2τ).

(80)
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Table 1: Character table of M12

[g] 1A 2A 2B 3A 3B 4A 4B 5A 6A 6B 8A 8B 10A 11A 11B

n|h 1|1 2|2 2|1 3|1 3|3 4|1 4|1 5|1 6|6 6|1 8|1 8|1 10|2 11|1 11|1
χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ2 11 −1 3 2 −1 −1 3 1 −1 0 −1 1 −1 0 0
χ3 11 −1 3 2 −1 3 −1 1 −1 0 1 −1 −1 0 0

χ4 16 4 0 −2 1 0 0 1 1 0 0 0 −1 b11 b11
χ5 16 4 0 −2 1 0 0 1 1 0 0 0 −1 b11 b11
χ6 45 5 −3 0 3 1 1 0 −1 0 −1 −1 0 1 1
χ7 54 6 6 0 0 2 2 −1 0 0 0 0 1 −1 −1
χ8 55 −5 7 1 1 −1 −1 0 1 1 −1 −1 0 0 0
χ9 55 −5 −1 1 1 3 −1 0 1 −1 −1 1 0 0 0
χ10 55 −5 −1 1 1 −1 3 0 1 −1 1 −1 0 0 0
χ11 66 6 2 3 0 −2 −2 1 0 −1 0 0 1 0 0
χ12 99 −1 3 0 3 −1 −1 −1 −1 0 1 1 −1 0 0
χ13 120 0 −8 3 0 0 0 0 0 1 0 0 0 −1 −1
χ14 144 4 0 0 −3 0 0 −1 1 0 0 0 −1 1 1
χ15 176 −4 0 −4 −1 0 0 1 −1 0 0 0 1 0 0
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Table 2: McKay–Thompson series f
(1)
dP8,nZ

, part 1

24d 1A 2A 2B 3A 3B 4AB 5A 6A 6B 8AB 10A 11AB

-5 1 1 1 1 1 1 1 1 1 1 1 1
19 245 21 −11 2 −7 5 −5 −3 −2 1 1 3
43 3380 −44 52 −22 14 4 5 −2 −2 0 1 −8
67 22385 113 −143 29 11 −15 10 11 1 1 −2 0
91 110110 −322 286 31 −77 −18 −15 −1 7 −6 −7 0
115 438746 602 −550 −112 77 26 −4 −7 8 −6 2 0
139 1531985 −1071 1105 113 77 17 −15 −3 −11 1 −1 4
163 4804910 1870 −2002 71 −253 −66 35 −17 −13 −6 −5 0
187 13914285 −3283 3245 −381 231 −19 35 11 −13 13 7 11
211 37674325 5525 −5291 334 145 117 −50 29 10 13 0 7
235 96580627 −8621 8723 277 −704 51 2 16 29 −5 4 0
259 236144545 13377 −13663 −911 637 −143 −80 −15 17 13 12 −23
283 554578570 −20790 20618 811 469 −86 70 −39 −1 −14 10 −4
307 1256789730 31458 −31006 534 −1617 226 105 −21 −46 −14 −7 −2
331 2760379655 −46073 46343 −2173 1364 135 −95 4 −25 7 −13 0
355 5894771883 67179 −67925 1824 924 −373 8 48 16 −13 4 0
379 12275038600 −97752 97416 1249 −3575 −168 −150 33 45 20 −12 0
403 24982062560 139584 −138528 −4420 2915 528 185 −9 36 20 −11 −7
427 49794727675 −196133 196603 3595 2002 235 175 −62 −29 −1 7 0
451 97369902630 274022 −275418 2376 −6930 −698 −245 −46 −72 14 7 11
475 187076653120 −381024 380224 −8738 5698 −400 −5 42 −62 −44 1 38
499 353616436085 524277 −522379 7079 3641 949 −290 81 35 −43 12 0
523 658376681690 −713734 714714 4727 −13300 490 315 80 123 6 11 −31
547 1208616966765 966093 −968851 −16155 10593 −1379 390 −51 89 −31 −22 32
571 2189664565985 −1302879 1301729 12908 7004 −575 −390 −144 −40 57 −24 −27
595 3918286118747 1744155 −1740453 8147 −23947 1851 −3 −111 −141 51 5 0
619 6930554664880 −2316048 2317744 −29150 18865 848 −495 45 −98 −24 −13 0
643 12125024699095 3062199 −3066921 22825 11935 −2361 595 183 45 43 −21 0
667 20994476982895 −4034001 4031599 14815 −42092 −1201 645 132 175 −57 29 −24
691 35997712990855 5283495 −5277305 −50087 32956 3095 −770 −60 133 −45 20 0
715 61152257741861 −6880923 6883877 39062 21098 1477 −14 −234 −106 13 2 11
739 102971911295570 8927122 −8935342 24530 −71194 −4110 −930 −134 −250 −38 32 42
763 171940936021855 −11542209 11538527 −84881 55132 −1841 980 120 −193 83 36 0
787 284816074366495 14858431 −14847713 65539 34552 5359 1120 280 127 75 −24 −54
811 468201092136435 −19041645 19046643 41319 −118503 2499 −1190 213 339 −1 −20 31
835 764062908896885 24320821 −24334219 −138991 90923 −6699 10 −125 233 45 −4 −51
859 1238199118586430 −30972578 30966078 106548 57057 −3250 −1445 −407 −96 −118 −43 0
883 1993162922073180 39301308 −39284388 66213 −191268 8460 1680 −264 −423 −112 −32 0
907 3187894582604875 −49688021 49696075 −224249 146146 4027 1750 118 −269 31 34 0
931 5067385763330905 62640249 −62662055 170881 90349 −10903 −1970 477 157 −75 44 −8
955 8007296783387517 −78760899 78751101 106299 −304920 −4899 17 324 507 149 1 0
979 12580745731759205 98730149 −98702747 −353800 231308 13701 −2420 −196 352 125 44 55
1003 19657853187268125 −123390883 123403293 268005 143418 6205 2500 −574 −243 −43 32 93
1027 30553454673736995 153823299 −153856989 164577 −475629 −16845 2870 −429 −639 111 −46 0
1051 47245393529211705 −191308807 191292729 −550938 359007 −8039 −3045 299 −462 −175 −67 −96
1075 72695798459621870 237317774 −237275922 414887 219776 20926 −5 752 267 −150 −1 38
1099 111322113952614145 −293640095 293659649 255274 −732809 9777 −3605 559 818 37 −45 −57
1123 169685042685799025 362516273 −362568591 −842182 550550 −26159 4025 −310 558 −119 −67 0
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Table 3: McKay–Thompson series f
(1)
dP8,nZ

, part 2

24d 1A 2A 2B 3A 3B 4AB 5A 6A 6B 8AB 10A 11AB

1147 257489647589909735 −446610297 446586855 631943 337337 −11721 4235 −963 −273 195 63 0
1171 389036935666670005 548983797 −548919371 384994 −1110824 32213 −4745 −648 −1010 189 57 0
1195 585321427870953137 −673325583 673354929 −1274347 830753 14673 12 333 −699 −39 −8 1
1219 877051946642599585 824194401 −824272735 951751 505153 −39167 −5540 1125 383 121 56 0
1243 1308987868412927175 −1006964089 1006927559 579426 −1666434 −18265 5925 770 1178 −273 81 66
1267 1946143827213299420 1227840124 −1227744804 −1900084 1241051 47660 6545 −413 852 −248 −71 80
1291 2882640700620305625 −1494261447 1494305241 1413606 753753 21897 −6875 −1347 −534 45 −57 0
1315 4254293388075663716 1815256100 −1815372956 855485 −2465848 −58428 −34 −964 −1451 −180 0 −151
1339 6256460810550333175 −2201441577 2201389047 −2806274 1830877 −26265 −8075 573 −1026 347 −87 34
1363 9169285487540907855 2665121487 −2664979633 2080578 1105104 70927 8855 1656 602 303 −73 −105
1387 13393282867503977295 −3220900017 3220964175 1257615 −3616767 32079 9420 1173 1839 −97 68 0
1411 19499387894072616035 3886321059 −3886491037 −4096807 2675288 −84989 −10340 −708 1265 235 104 0
1435 28299145776890952502 −4681963594 4681885494 3027835 1613458 −39050 2 −2050 −645 −362 6 0
1459 40942900182985321885 5631643773 −5631439203 1820005 −5246318 102285 −11990 −1398 −2151 −319 88 −32
1483 59056800250327174295 −6763471561 6763564951 −5930560 3868865 46695 12670 713 −1460 99 94 0
1507 84933501203533915790 8110930190 −8111177074 4368671 2321594 −123442 13790 2474 791 −242 −110 121
1531 121796962409191079920 −9713117456 9713006576 2623747 −7548422 −55440 −14705 1666 2519 448 −111 184
1555 174169266048720253146 11615262618 −11614967078 −8500497 5550897 147770 21 −891 1759 386 −7 0
1579 248377592707632513150 −13870493250 13870626430 6245646 3326730 66590 −16850 −2850 −1094 −58 −100 −206
1603 353253324430055413910 16541557942 −16541909098 3734813 −10760596 −175578 18410 −1988 −3067 274 −118 106
1627 501093959691581866120 −19701491768 19701331592 −12095267 7891807 −80088 19495 1231 −2191 −576 147 −160
1651 708983776598335157920 23434722304 −23434304608 8862610 4711630 208848 −21080 3418 1250 −524 124 0
1675 1000603206531275493740 −27839878548 27840067948 5292041 −15230776 94700 −10 2424 3709 124 2 0
1699 1408702624118535140395 33032707435 −33033205205 −17064938 11141053 −248885 −24230 −1379 2530 −365 160 0
1723 1978477667607266537870 −39147551762 39147329166 12473543 6641696 −111298 25620 −4172 −1317 674 148 −7
1747 2772165465354178800390 46339376966 −46338787066 7423860 −21384528 294950 27765 −2872 −4360 606 −139 0
1771 3875291180776298187905 −54788436927 54788701825 −23916919 15607823 132449 −29345 1491 −2951 −183 −137 121
1795 5405141185164404628126 64705171230 −64705866082 17441601 9274839 −347426 1 4887 1649 462 5 226
1819 7522234988258726535800 −76332974536 76332659832 10365428 −29834728 −157352 −33575 3284 5076 −768 −191 0
1843 10445828606352623315780 89952081860 −89951262908 −33278401 21724703 409476 36155 −1885 3559 −652 −165 −261
1867 14474828224085044461275 −105887271301 105887640027 24216572 12892502 184363 38150 −5626 −2112 167 154 124
1891 20015952136902352017085 124515746461 −124516712515 14350090 −41334620 −483027 −41165 −3956 −5998 −495 191 −203
1915 27621587036170435738716 −146272523812 146272092252 −46027323 30036996 −215780 −34 2336 −4179 892 −12 0
1939 38040588686504509649390 171657529358 −171656394514 33423194 17775758 567422 −46735 6710 2378 810 173 0
1963 52286338577292264775330 −201247917374 201248425378 19779820 −56935802 254002 49455 4666 7156 −162 171 0
1987 71727767470164471985970 235711210322 −235712537038 −63253216 41292251 −663358 53095 −2629 4868 558 −213 −75
2011 98210898877425806480580 −275815152540 275814555588 45846324 24403500 −298476 −56045 −7932 −2592 −1104 −215 0
2035 134220886793221405680657 322440005713 −322438454767 27064422 −77947254 775473 32 −5402 −8362 −999 −12 187
2059 183097700277061507239685 −376598728955 376599424773 −86460161 56425369 347909 −63565 2905 −5649 229 −205 328
2083 249322773322218559282605 439458518285 −439460332883 62548884 33271029 −907299 67980 9221 3160 −703 −240 0
2107 338899391506589069707460 −512358042588 512357234116 36873998 −106155721 −404236 71960 6279 9562 1288 252 −399
2131 459856714942619762629680 596828898736 −596826783696 −117510219 76706784 1057520 −76945 −3464 6585 1104 241 203
2155 622916642534098871009415 −694628315129 694629258375 84864729 45168123 471623 40 −10613 −3831 −313 −4 −329
2179 842374854253122861597685 807773972437 −807776428811 49926859 −143781275 −1228187 −86815 −7307 −11201 825 247 0
2203 1137263164627672249293665 −938574065919 938572965473 −158926840 103724390 −550223 91665 4242 −7780 −1427 301 0
2227 1532880862104682603160505 1089663943033 −1089661090375 114584796 60954696 1426329 97755 12388 4364 −1247 −257 0
2251 2062809388122724224605390 −1264058425906 1264059700430 67322939 −193818955 637262 −103235 8561 13199 302 −261 −67
2275 2771559316831560463943735 1465208427543 −1465211739849 −213852964 139592453 −1656153 −15 −4851 9012 −901 −7 0
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Table 4: Multiplicity generating functions f
(1)
dP8,χ

, part 1

24d 1 11 11′ 16 16′ 45 54 55

-5 1 0 0 0 0 0 0 0
19 0 0 0 −1 −1 1 1 −2
43 −1 1 1 2 2 0 4 4
67 2 0 0 7 7 14 8 8
91 −4 20 20 9 9 35 62 83
115 5 35 35 89 89 239 251 222
139 20 201 201 236 236 694 881 950
163 36 528 528 833 833 2323 2702 2665
187 156 1655 1655 2311 2311 6485 7918 8235
211 413 4263 4263 6423 6423 18051 21397 21498
235 1020 11382 11382 16087 16087 45358 54939 56379
259 2455 26994 26994 40021 40021 112341 134076 135889
283 5879 64617 64617 93003 93003 261869 315210 322155
307 13169 144938 144938 212050 212050 596095 713920 725468
331 29087 320286 320286 464053 464053 1305434 1568719 1600075
355 61991 680939 680939 993468 993468 2793599 3348812 3407543
379 129169 1422770 1422770 2064719 2064719 5808170 6975047 7109138
403 262777 2888505 2888505 4208325 4208325 11833971 14193562 14449220
427 524286 5767282 5767282 8379616 8379616 23570078 28293712 28827745
451 1023996 11264435 11264435 16396496 16396496 46112567 55321988 56332449
475 1968752 21659408 21659408 31488517 31488517 88564546 106295853 108283778
499 3720441 40917665 40917665 59539940 59539940 167451476 200915361 204609370
523 6927917 76215745 76215745 110825425 110825425 311704255 374082188 381045664
547 12715863 139866126 139866126 203487898 203487898 572297901 686707842 699375765
571 23041098 253459390 253459390 368608354 368608354 1036726053 1244135671 1267242033
595 41225542 453471967 453471967 659672220 659672220 1855310757 2226288378 2267426223
619 72924892 802191793 802191793 1166723003 1166723003 3281429787 3937829833 4010870330
643 127575605 1403299073 1403299073 2041300549 2041300549 5741128020 6889198936 7016622004
667 220904792 2429997813 2429997813 3534354858 3534354858 9940416134 11928705034 12149811849
691 378758456 4166294843 4166294843 6060311787 6060311787 17044567168 20453213655 20831707181
715 643445607 7077944811 7077944811 10294877321 10294877321 28954418447 34745644272 35389433549
739 1083447396 11917871022 11917871022 17335484390 17335484390 48755959253 58506711305 59589713385
763 1809154794 19900794975 19900794975 28946097935 28946097935 81411011737 97693785348 99503517664
787 2996789379 32964531410 32964531410 47949080384 47949080384 134856640526 161827223016 164823268101
811 4926375742 54190323007 54190323007 78821410398 78821410398 221685419135 266023467395 270950794599
835 8039356619 88432717409 88432717409 128630532359 128630532359 361773104706 434126499529 442164641760
859 13028224735 143310698119 143310698119 208450511320 208450511320 586267397566 703522419579 716552193823
883 20971787728 230689383931 230689383931 335549960886 335549960886 943733861399 1132478688778 1153448509388
907 33542713964 368970251977 368970251977 536681774077 536681774077 1509417984175 1811304051250 1844849248586
931 53318392379 586501744668 586501744668 853096286376 853096286376 2399332671290 2879196063095 2932511326216
955 84251935429 926772031772 926772031772 1348028436453 1348028436453 3791330807137 4549600936442 4633856811066
979 132373064244 1456102857556 1456102857556 2117972326676 2117972326676 5956796105864 7148150369696 7280518493936
1003 206837818945 2275216938197 2275216938197 3309400831213 3309400831213 9307691151506 11169235537586 11376079524539
1027 321479780918 3536276449763 3536276449763 5143681782673 5143681782673 14466603424870 17359916463414 17681388557332
1051 497110820190 5468220598525 5468220598525 7953766796046 7953766796046 22369971051653 26843974790631 27341095178372
1075 764896637498 8413860876702 8413860876702 12238353855121 12238353855121 34420367790300 41304429463648 42069314230101
1099 1171318829840 12884509771652 12884509771652 18741091700903 18741091700903 52709323491410 63251202946890 64422536456281
1123 1785406214518 19639465309775 19639465309775 28566511591466 28566511591466 80343309988087 96411953800436 98197341895753
1147 2709277080802 29802051397724 29802051397724 43348418062984 43348418062984 121917430520635 146300938919330 149010238333467
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Table 5: Multiplicity generating functions f
(1)
dP8,χ

, part 2

24d 55′ 55′′ 66 99 120 144 176

-5 0 0 0 0 0 0 0
19 0 0 0 0 0 2 0
43 3 3 1 5 2 1 9
67 12 12 21 21 36 35 37
91 65 65 72 116 130 170 207
115 244 244 303 450 572 668 809
139 910 910 1053 1625 1892 2299 2843
163 2743 2743 3380 4946 6152 7328 8873
187 8105 8105 9602 14577 17408 21007 25847
211 21733 21733 26243 39149 47808 57171 69639
235 56011 56011 66950 100712 121602 146250 178995
259 136438 136438 164139 245788 298688 357966 437126
283 321282 321282 384883 578131 699412 839873 1027282
307 726800 726800 873253 1308380 1588170 1904874 2326881
331 1598171 1598171 1916117 2876429 3483272 4181523 5112694
355 3410318 3410318 4094710 6139138 7445828 8932518 10914961
379 7105048 7105048 8522970 12788159 15494804 18597231 22733170
403 14455051 14455051 17350401 26020434 31548542 37853674 46261017
427 28819592 28819592 34577010 51873536 62864134 75443098 92215429
451 56343865 56343865 67622177 101421034 122953390 147535322 180310064
475 108267895 108267895 129908352 194879528 236191550 283442660 346445082
499 204631232 204631232 245574876 368340362 446507564 535790948 654835854
523 381015906 381015906 457195844 685822008 831254198 997529608 1219228018
547 699415924 699415924 839330695 1258957772 1526071004 1831253012 2238164410
571 1267187750 1267187750 1520582135 2280927045 2764674464 3317651311 4054954916
595 2267499033 2267499033 2721057746 4081511489 4947403906 5936828205 7256056407
619 4010773890 4010773890 4812849666 7219375201 8750602126 10500800283 12834400672
643 7016749493 7016749493 8420202262 12630174462 15309503684 18371299544 22453696426
667 12149643643 12149643643 14579440062 21869323134 26508010882 31809749824 38878728441
691 20831927400 20831927400 24998485648 37497515848 45451874944 54542074762 66662346131
715 35389146944 35389146944 42466747340 63700406402 77212161966 92654819516 113245032965
739 59590085251 59590085251 71508403663 107262225204 130015413134 156018202222 190688575918
763 99503036747 99503036747 119403255079 179105374690 217096655922 260516372674 318409337999
787 164823887402 164823887402 197789160389 296683119323 359616877840 431539751281 527436921384
811 270950001188 270950001188 325139371484 487709837991 591162203858 709395286805 867039376965
835 442165654782 442165654782 530599589906 795898389892 964726901324 1157671471836 1414930915206
859 716550903166 716550903166 859860053460 1289791366536 1563381441138 1876058749736 2292961837333
883 1153450147408 1153450147408 1384141494283 2076210582947 2516621491560 3019944492097 3691041793857
907 1844847178517 1844847178517 2213814945093 3320724518828 4025117339308 4830142466496 5903509327159
931 2932513935701 2932513935701 3519018815116 5278525605052 6398216968080 7677858253874 9384046650468
955 4633853529026 4633853529026 5560621623978 8340935682923 10110219936042 12132266566371 14828328689896
979 7280522608177 7280522608177 8736630398824 13104941535681 15884784057350 19061737583669 23297675655094
1003 11376074383581 11376074383581 13651285150689 20476932857057 24820516574124 29784623972565 36403433861254
1027 17681394966175 17681394966175 21217679111305 31826512201395 38577600704766 46293115745065 56580469055649
1051 27341087206947 27341087206947 32809298242028 49213955409660 59653266656898 71583926371636 87491472717522
1075 42069324119087 42069324119087 50483196856446 75724785382753 91787634227288 110145153118297 134621845007103
1099 64422524221421 64422524221421 77307019308615 115960541117888 140558212466154 168669864792640 206152067770248
1123 98197356999292 98197356999292 117836840441407 176755245669203 214248806330278 257098555519575 314231554534832
1147 149010219724356 149010219724356 178812248794508 268218391773495 325113172828678 390135822209555 476832688109889
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Table 6: Multiplicity generating functions f
(1)
dP8,χ

, part 3

24d 1 11 11′ 16 16′

1171 4093401506990 45027412291973 45027412291973 65494442717998 65494442717998
1195 6158685759395 67745548890523 67745548890523 98538949769247 98538949769247
1219 9228239349225 101510625677235 101510625677235 147651856584014 147651856584014
1243 13773021513812 151503245506811 151503245506811 220368311165802 220368311165802
1267 20477101283532 225248103749002 225248103749002 327633661514469 327633661514469
1291 30330817057006 333638999586028 333638999586028 485293022305906 485293022305906
1315 44763186057643 492395032232149 492395032232149 716211038247564 716211038247564
1339 65829766710070 724127452040606 724127452040606 1053276194195726 1053276194195726
1363 96478169516795 1061259841697878 1061259841697878 1543650799851638 1543650799851638
1387 140922592375703 1550148543933051 1550148543933051 2254761371678042 2254761371678042
1411 205170323111458 2256873521699226 2256873521699226 3282725299689321 3282725299689321
1435 297760377206316 3275364187275260 3275364187275260 4764165877605326 4764165877605326
1459 430796502686742 4738761484014951 4738761484014951 6892744232195987 6892744232195987
1483 621388898570251 6835277940289662 6835277940289662 9942222151968754 9942222151968754
1507 893660568325681 9830266182559709 9830266182559709 14298569361270602 14298569361270602
1531 1281533705334823 14096870841750772 14096870841750772 20504538963932962 20504538963932962
1555 1832589066704092 20158479636409529 20158479636409529 29321425454783979 29321425454783979
1579 2613400611330406 28747406838047288 28747406838047288 41814409315423788 41814409315423788
1603 3716891022406435 40885801111701610 40885801111701610 59470256913313545 59470256913313545
1627 5272453300096449 57996986464667060 57996986464667060 84359252145641326 84359252145641326
1651 7459846110139069 82058307013061490 82058307013061490 119357538538247375 119357538538247375
1675 10528232420636209 115810556863115569 115810556863115569 168451717806641647 168451717806641647
1699 14822207710919004 163044284544165030 163044284544165030 237155324477163395 237155324477163395
1723 20817315567358978 228990471562943319 228990471562943319 333077047765997253 333077047765997253
1747 29168407625477909 320852483499759068 320852483499759068 466694523558355316 466694523558355316
1771 40775370225169032 448529072932153077 448529072932153077 652405921777788429 652405921777788429
1795 56872276713083413 625595043298945690 625595043298945690 909956429556887554 909956429556887554
1819 79148095494043006 870629051078933309 870629051078933309 1266369525369451301 1266369525369451301
1843 109909812683600080 1209007938767976703 1209007938767976703 1758557005937509432 1758557005937509432
1867 152302485633902688 1675327342846829765 1675327342846829765 2436839766599162279 2436839766599162279
1891 210605556865399279 2316661124493547173 2316661124493547173 3369688914010001224 3369688914010001224
1915 290631176879715729 3196942946893625371 3196942946893625371 4650098825202784367 4650098825202784367
1939 400258719166874651 4402845909393277271 4402845909393277271 6404139512372754278 6404139512372754278
1963 550150869077258932 6051659561542349276 6051659561542349276 8802413898544613901 8802413898544613901
1987 754711357815895642 8301824934007779454 8301824934007779454 12075381732915932852 12075381732915932852
2011 1033363835278555220 11367002190347074914 11367002190347074914 16533821355238048767 16533821355238048767
2035 1412256805146747435 15534824853948167213 15534824853948167213 22596108893118543439 22596108893118543439
2059 1926533042028023191 21191863465442002954 21191863465442002954 30824528659900088909 30824528659900088909
2083 2623345678439652253 28856802459153067204 28856802459153067204 41973530869649280580 41973530869649280580
2107 3565860601400413225 39224466619703622922 39224466619703622922 57053769605360276336 57053769605360276336
2131 4838559710474916833 53224156810243842644 53224156810243842644 77416955387499037845 77416955387499037845
2155 6554257603147504112 72096833640381599416 72096833640381599416 104868121627158155768 104868121627158155768
2179 8863371782121759020 97497089596648487456 97497089596648487456 141813948540918808370 141813948540918808370
2203 11966152827447202656 131627681109732904436 131627681109732904436 191458445207879722486 191458445207879722486
2227 16128796948623520740 177416766425737654861 177416766425737654861 258060751214233038172 258060751214233038172
2251 21704644236610653731 238751086613304015784 238751086613304015784 347274307743692860669 347274307743692860669
2275 29162029847290462732 320782328307975295104 320782328307975295104 466592477605502723278 466592477605502723278
2299 39120827378017906356 430329101172286761258 430329101172286761258 625933237991633696014 625933237991633696014
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Table 7: Multiplicity generating functions f
(1)
dP8,χ

, part 4

24d 45 54 55 55′ 55′′

1171 184203114462622 221043710022343 225137084071984 225137106948035 225137106948035
1195 277140803111755 332568997319530 338727716741557 338727688687159 338727688687159
1219 415270838158915 498324964525296 507553162674521 507553197014225 507553197014225
1243 619785885692343 743743113342304 757516185209007 757516143250948 757516143250948
1267 921469660027838 1105763530523634 1126240570403383 1126240621565028 1126240621565028
1291 1364886640954779 1637864043787277 1668194935551870 1668194873292078 1668194873292078
1315 2014343526237095 2417212140959443 2461975236268978 2461975311902653 2461975311902653
1339 2962339318825550 3554807292476658 3620637169265217 3620637077537819 3620637077537819
1363 4341517847042590 5209821283094568 5306299319337420 5306299430386979 5306299430386979
1387 6341516391505723 7609819831217510 7750742584630229 7750742450426761 7750742450426761
1411 9232664864481335 11079197642782316 11284367771598830 11284367933524970 11284367933524970
1435 13399216579858759 16079060129761174 16376820741075612 16376820545992293 16376820545992293
1459 19385843094557620 23263011432427915 23693807653507039 23693807888163762 23693807888163762
1483 27962499872265004 33555000184510544 34176389421242631 34176389139433773 34176389139433773
1507 40214726244543434 48257671087653672 49151331250463847 49151331588413804 49151331588413804
1531 57669015937475566 69202819611374765 70484353802379119 70484353397662854 70484353397662854
1555 82466508969735861 98959810182387002 100792398668290829 100792399152265772 100792399152265772
1579 117603026344789245 141123632306950527 143737033611788997 143737033033854903 143737033033854903
1603 167260097396709360 200712116050021046 204429006245393365 204429006934618721 204429006934618721
1627 237260396863613020 284712477220607098 289984931505798416 289984930684900175 289984930684900175
1651 335693076895668315 402831691102628332 410291536040979311 410291537017434228 410291537017434228
1675 473770456621652456 568524549339514438 579052783152120837 579052781992128638 579052781992128638
1699 666999349746211386 800399218042669045 815221424102015049 815221425478366554 815221425478366554
1723 936779197250978703 1124135038657868408 1144952356182632432 1144952354551480412 1144952354551480412
1747 1312578347025836554 1575094014116214816 1604262419424649864 1604262421355471132 1604262421355471132
1771 1834891655568344765 2201869989419897616 2242645362384455501 2242645360101610419 2242645360101610419
1795 2559252457456586760 3071102945711666490 3127975219189577966 3127975221885611857 3127975221885611857
1819 3561664290897644899 4273997152896785912 4353145252207517405 4353145249026968359 4353145249026968359
1843 4945941578258894303 5935129889410954110 6045039697596848087 6045039701344867210 6045039701344867210
1867 6853611844665722902 8224334218891965090 8376636709820185138 8376636705408223928 8376636705408223928
1891 9477250069357366762 11372700077007117472 11583305627646850394 11583305632834988246 11583305632834988246
1915 13078402947401857383 15694083544192819487 15984714728386214908 15984714722291519041 15984714722291519041
1939 18011642376763874898 21613970843532086552 22014229554115942440 22014229561268362549 22014229561268362549
1963 24756789091754815561 29708146920173901712 30258297799313493059 30258297790928171326 30258297790928171326
1987 33962011121364327166 40754413333847397958 41509124679877898687 41509124689699169994 41509124689699169994
2011 46501372564484998594 55801647091170275277 56835010940239663338 56835010928747353467 56835010928747353467
2035 63551556258539592867 76261867494133421282 77674124283157975065 77674124296593010152 77674124296593010152
2059 86693986859883218954 104032784250684215406 105959317311542087994 105959317295850490724 105959317295850490724
2083 118050555566317547234 141660666657604661458 144284012314071615021 144284012332382347583 144284012332382347583
2107 160463727020416092994 192556472450127762662 196122333077146178381 196122333055797906898 196122333055797906898
2131 217735187021112290780 261282224395485799571 266120784076119006487 266120784100986919412 266120784100986919412
2155 294941592083627118072 353929910535079510346 360484168172958312466 360484168144015486852 360484168144015486852
2179 398851730262924276402 478622076275134635183 487485448016868002166 487485448050525203783 487485448050525203783
2203 538476877156922474149 646172252635225208162 658138405509601252323 658138405470493978887 658138405470493978887
2227 725795862778692020557 870955035279941337060 887083832174081304741 887083832219484026698 887083832219484026698
2251 976708990542309495285 1172050788713993804393 1193755433013807220005 1193755432961138141154 1193755432961138141154
2275 1312291343250192222140 1574749611826956036768 1603911641600986492613 1603911641662036771525 1603911641662036771525
2299 1760437231869163874840 2112524678327840972437 2151645505790711677538 2151645505720001135999 2151645505720001135999
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Table 8: Multiplicity generating functions f
(1)
dP8,χ

, part 5

24d 66 99 120 144 176

1171 270164546681156 405246797027805 491208274997242 589449911767971 720438760605286
1195 406473203907733 609709834093878 739042178780400 886850636998028 1083928581424780
1219 609063863910983 913595761484332 1107388855916070 1328866599517240 1624170257738622
1243 909019338414137 1363529049387265 1652762418194392 1983314935496409 2424051624958728
1267 1351488786694107 2027233129147441 2457252358138100 2948702788864913 3603970030037952
1291 2001833798159548 3002750759449688 3639697792134294 4367637400215692 5338223544445360
1315 2954370434912214 4431555576448250 5371582636389448 6445899103301566 7878321058779942
1339 4344764419512895 6517146721381044 7899571638612220 9479486039749018 11586038574903016
1363 6367559405323185 9551338996863518 11577380777243530 13892856843630246 16980158265658175
1387 9300890833306805 13951336383760152 16910710557156234 20292852776170360 24802375734252748
1411 13541241649561517 20311862312968942 24620439421902434 29544527176781278 36109977517072127
1435 19652184499179137 29478276943727693 35731244472881150 42877493523182575 52405825590524819
1459 28432569653735348 42648854245377598 51695581273866940 62034697341246448 75820185430196005
1483 41011666741538202 61517500394937483 74566666700591406 89480000266235449 109364445021070861
1507 58981598176550861 88472396926681358 107239269534589732 128687123170645012 157284261352456668
1531 84581223753771591 126871836034520310 153784043041385876 184540851973883398 225549930549289886
1555 120950879369401488 181426318571322984 219910689938939870 263892827539670898 322535677674888309
1579 172484439178360861 258726659345247778 313608071022950170 376329685689204628 459958505244752664
1603 245314808873442099 367972212619696564 446026925474876674 535232310019095576 654172822742952752
1627 347981916164512698 521972875069314411 632694392728415992 759233271930954787 927951777535669872
1651 492349845202179646 738524766826508033 895181537085930972 1074217843720999295 1312932919235178135
1675 694863337463226605 1042295007353137208 1263387885874730544 1516065463978597964 1852968901447872354
1699 978265711674229209 1467398566137307066 1778664930818030794 2134397915880732844 2608708562632879662
1723 1373942824157073997 2060914237866252831 2498077861510042094 2997693435115570067 3663847533257402807
1747 1925114907172125283 2887672358825009115 3500208922832935414 4200250705856191083 5133639749883610819
1771 2691174430294308510 4036761647727631051 4893044417887901864 5871653303292074233 7176465150500213001
1795 3753570268419902966 5630355399933081775 6824673216288466950 8189607857387351047 10009520712187446446
1819 5223774296289292241 7835661447611118530 9497771446641673624 11397325738516222932 13930064794343989332
1843 7254047644610345604 10881071463172141658 13189177537019635416 15827013041425604314 19344127047303818283
1867 10051964042960644068 15077946068852005519 18276298258323001986 21931557913514503889 26805237453771981804
1891 13899966763554443537 20849950140138817382 25272666844712164358 30327200209506516810 37066578029225470889
1915 19181657661871572164 28772486498908357454 34875741201188675430 41850889446302706172 51151087106459775710
1939 26417075479244374467 39625613211712943497 48031046328498284852 57637255588472376133 70445534601774047231
1963 36309957342408061267 54464936021991049526 66018104255873659084 79221725113760100204 96826552924265854344
1987 49810949635492675761 74716424443426330769 90565362977197226288 108678435564780334215 132829199014898120022
2011 68202013105303745330 102303019669446105608 124003660187280231114 148804392233925001344 181872034962788778272
2035 93208949166662983780 139813423736550819498 169470816671544273222 203364979995109897828 248557197759850986121
2059 127151180742462470212 190726771129397283986 231183964980593334826 277420757989266397324 339069815334173156022
2083 173140814813508567478 259711222201949509299 314801481485761998530 377761777768258741081 461708839478260064519
2107 235346799649883728800 353020199496161859438 427903272082932960552 513483926516604492932 627591465761482246451
2131 319344940941071942661 479017411386756381538 580627165356451864750 696752598407849494756 851586509143058978448
2155 432581001749665552605 648871502653437926113 786510912261590705900 943813094737053749501 1153549338037678618915
2179 584982537687562696957 877473806497670520373 1063604613989623332136 1276325536760630740267 1559953433788616761379
2203 789766086533298317643 1184649129839076522389 1435938339137237812658 1723126006995973066501 2106042897474304114574
2227 1064500598699704522077 1596750898004149803311 1935455634015967754356 2322546760782826588291 2838668263138648397534
2251 1432506519511239076275 2148759779319506061861 2604557308183097498046 3125468769861864014025 3820017385433520294132
2275 1924693970043272902043 2887040955003888251120 3499443581919069498760 4199332298254045573934 5132517253367370460268
2299 2581974606807435465725 3872961910281857647683 4694499285078708148956 5633399142151001036453 6885265618247405253843

33



References

[1] A. Dabholkar, S. Murthy and D. Zagier, “Quantum Black Holes, Wall
Crossing, and Mock Modular Forms,” arXiv:1208.4074 [hep-th].

[2] T. Eguchi, H. Ooguri, and Y. Tachikawa, “Notes on the K3 Surface and
the Mathieu Group M24,” Experiment. Math. 20 (2011), no. 1, 91–96.

[3] Miranda C.N. Cheng, John F. R. Duncan, and Jeffrey A. Harvey, “Umbral
Moonshine and the Niemeier Lattices,” Res. Math. Sci., 1(3):181, 2014.
arXiv:1307.5793 [math.RT].

[4] Miranda C.N. Cheng, John F. R. Duncan, and Jeffrey A. Harvey, “Weight
One Jacobi Forms and Umbral Moonshine,” arXiv:1703.03968 [math.NT].

[5] N.P. Skoruppa, “Developments in the theory of Jacobi forms,” in Auto-

morphic functions and their applications (Khabarovsk, 1988) 167–185.

[6] N.P. Skoruppa, “Explicit formulas for the Fourier coefficients of Jacobi
and elliptic modular forms,” Invent. Math. 102 (1990), 501–520.

[7] J. A. Harvey and B. C. Rayhaun, “Traces of Singular Moduli and Moon-
shine for the Thompson Group,” Commun. Num. Theor. Phys. 10, 23
(2016) doi:10.4310/CNTP.2016.v10.n1.a2 [arXiv:1504.08179 [math.RT]].

[8] J. F. R. Duncan, J. A. Harvey and B. C. Rayhaun, “Skew-Holomorphic
Jacobi Forms and Moonshine,” in preparation.

[9] J. M. Maldacena, A. Strominger and E. Witten, “Black hole entropy in
M theory,” JHEP 9712, 002 (1997) doi:10.1088/1126-6708/1997/12/002
[hep-th/9711053].

[10] D. Gaiotto, A. Strominger and X. Yin, “The M5-brane ellip-
tic genus: Modularity and BPS states,” JHEP 08 (2007) 070,
arXiv:hep-th/0607010.

[11] J. de Boer, M. C. N. Cheng, R. Dijkgraaf, J. Manschot and E. Ver-
linde, “A Farey Tail for Attractor Black Holes,” JHEP 0611, 024 (2006)
doi:10.1088/1126-6708/2006/11/024 [hep-th/0608059].

[12] F. Denef and G. W. Moore, “Split states, entropy enigmas, holes and
halos,” JHEP 1111, 129 (2011) [hep-th/0702146].

34

http://arxiv.org/abs/1208.4074
http://arxiv.org/abs/1307.5793
http://arxiv.org/abs/1703.03968
http://arxiv.org/abs/1504.08179
http://arxiv.org/abs/hep-th/9711053
http://arxiv.org/abs/hep-th/0607010
http://arxiv.org/abs/hep-th/0608059
http://arxiv.org/abs/hep-th/0702146


[13] J. Manschot and G. W. Moore, “A Modern Farey Tail,” Commun. Num.
Theor. Phys. 4, 103 (2010) arXiv:0712.0573 [hep-th].

[14] M. Alim, B. Haghighat, M. Hecht, A. Klemm, M. Rauch and
T. Wotschke, “Wall-crossing holomorphic anomaly and mock modularity
of multiple M5-branes,” Commun. Math. Phys. 339, no. 3, 773 (2015)
doi:10.1007/s00220-015-2436-3 [arXiv:1012.1608 [hep-th]].

[15] M. C. N. Cheng and J. F. R. Duncan, “Optimal Mock Jacobi Theta
Functions,” arXiv:1605.04480 [math.NT].

[16] M. C. N. Cheng and J. F. R. Duncan, “Meromorphic Jacobi Forms of
Half-Integral Index and Umbral Moonshine Modules,” arXiv:1707.01336
[math.RT].

[17] N.P. Skoruppa and D. Zagier, “Jacobi forms and a certain space of
modular forms,” Invent. Math. 94 (1988), 113–146.

[18] N.P. Skoruppa, “Heegner cycles, modular forms and Jacobi forms,” Sém.
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Séminaire de Théorie des Nombres de Bordeaux 4 (1975).

[30] M. Cheng, J. Duncan and M. Mertens, “Class Number Moonshine,” in
preparation.

[31] K. Yoshioka, “The Betti numbers of the moduli space of stable sheaves
of rank 2 on P2,” J. Reine Angew. Math 453 (1994) 193–220.

[32] K. Yoshioka, “The Betti numbers of the moduli space of stable sheaves
of rank 2 on a ruled surface,” Math. Ann. 302 (1995) 3, 519–540.

[33] C. Vafa and E. Witten, “A strong coupling test of S duality,” Nucl.
Phys. B431 (1994) 3-77, [hep-th/9408074].

[34] R. Griess and A. Ryba, “Finite simple groups which projectively embed
in an exceptional Lie group are classified!” Bull. Amer. Math. Soc. (N.S.)
36 (1999) 1, 75–93.

[35] S. Kachru and A. Tripathy, “Black Holes and Hurwitz Class Numbers,”
arXiv:1705.06295 [hep-th].

[36] J. Minahan, D. Nemeschansky, C. Vafa and N. Warner, “E-strings
and N=4 topological Yang-Mills theory,” Nucl. Phys. B527 (1998) 581,
arXiv:hep-th/9802168.

[37] M. C. N. Cheng and J. F. R. Duncan, “Rademacher Sums and
Rademacher Series,” in Conformal Field Theory, Automorphic Forms

and Related Topics, volume 8 of Contributions in Mathematical and Com-

putational Sciences, Springer Berlin Heidelberg, 2014, [arXiv:1210.3066
[math.NT]].

36

http://arxiv.org/abs/hep-th/9408074
http://arxiv.org/abs/1705.06295
http://arxiv.org/abs/hep-th/9802168
http://arxiv.org/abs/1210.3066

	1 Introduction
	2 Skew-holomorphic Jacobi forms
	3 Rational heterotic string compactifications
	3.1 The rational Gaussian model
	3.2 Heterotic strings with Wilson lines
	3.3 Rational toroidal compactifications

	4 The M5-brane elliptic genus
	4.1 Multiplets
	4.2 The index

	5 Examples
	5.1 The projective plane
	5.2 Degree one del Pezzo surfaces
	5.3 Half-K3 surfaces

	A New Mathieu moonshine
	References

