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Fi g ur e 3: h (α, t ) ≡ | Y (α, t )|2 / |Y (α, t = 0) |2 at N = 3 2, wit h v ari o us v al u es of α . N ot e
t h at g (t) = h (α = 0 , t).

w hi c h hi d es t h e o ns et of t h e r a m p. T his is visi bl e i n t h e α = 0 c ur v es w h er e h (t) = g (t)

i n Fi g. 3 . I n Fi g. 4 ( usi n g t h e o pti m al v al u e of α ) w e c a n s e e t h at t h e r a m p c o nti n u es all

t h e w a y d o w n t o t h e G a ussi a n e n v el o p e, a n d m a y w ell c o nti n u e p ast it. T his i nt ers e cti o n

ti m e, w hi c h w e c all tmi n , gi v es a n u p p er b o u n d t o t h e r a m p ti m e tr a m p . I n t h e d at a

dis pl a y e d t h e r a m p e xt e n ds d o w n t o a ti m e tmi n of or d er 1 0. T h e pl at e a u ti m e is of or d er

1 0 5 h er e, s o t his r e pr es e nts a r ati o of 1 0 4 i n ti m e or e n er g y s c al es. N ot e t h at t h er e ar e

o nl y 2 1 6 ∼ 6 6 0 0 0 e n er g y l e v els 1 2 i n t h e s p e ctr u m s o ri gi dit y e xt e n ds a cr oss a n a p pr e ci a bl e

fr a cti o n of t h e e ntir e s p e ctr u m!1 3 We s h o ul d e m p h asi z e t h at as e x p e ct e d tmi n is f ar l ess,

o v er a n or d er of m a g nit u d e h er e, t h a n tdi p .

It s e e ms fr o m t h e gr a p h t h at t h e r a m p pr o b a bl y e xt e n ds s o m e w h at f urt h er b ut is j ust

b ei n g m as k e d b y t h e G a ussi a n e n v el o p e. F or t his fi nit e v al u e of N it is i m p ossi bl e t o

d o b ett er b e c a us e a n e n v el o p e t h at d e c a ys f ast er i n ti m e c orr es p o n ds t o a G a ussi a n filt er

t h at is br o a d er i n e n er g y a n d e xt e n ds cl os er t o t h e e d g e of t h e s p e ctr u m, all o wi n g m or e

c o nt a mi n ati o n fr o m t h e s h ar p e d g e. B ut as N gr o ws t his e ff e ct g o es a w a y b e c a us e t h e

e d g es of t h e s p e ctr u m ar e at e n er gi es ± c N ( e v e n t h o u g h t h e st a n d ar d d e vi ati o n of t h e

e n er g y is of or d er
√

N ). T h e G a ussi a n filt er l ets i n a n e d g e si g n al i n |Y (α, t )|2 of or d er

e − 2 α ( c N ) 2 + 2 s 0 N /t 3 w h er e s 0 N is t h e z er o t e m p er at ur e e ntr o p y. T h e e arl y ti m e r a m p si g n al

1 2 Aft e r r e m o vi n g t h e t w o f ol d f e r mi o n p a rit y d e g e n e r a c y w hi c h i s t h e o nl y d e g e n e r a c y p r e s e nt f o r
N = 3 2 [ 5 0 ].

1 3 Of c o u r s e a pr e ci s e c o m p a ri s o n w o ul d r e q ui r e e v al u ati n g v a ri o u s n u m e ri c al f a ct or s of or d er o n e.
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Fi g ur e 4: g (t) = |Z (t)|2 / |Z ( 0)|2 a n d h (α, t ) = |Y (α, t )|2 / |Y (α, t = 0) |2 wit h α = 2 .9 f or
N = 3 2, 1 5 0 0 s a m pl es.

is of or d er o n e. S o c h o osi n g α as s m all as s 0

c 2 N
is s u ffi ci e nt t o m as k t h e sl o p e c o ntri b uti o n

fr o m t h e e d g e. T h e F o uri er tr a nsf or m of t h e G a ussi a n e n v el o p e d e c a ys ∼ e 2 s ∞ N − t 2

4 α w h er e

s ∞ N is t h e i n fi nit e t e m p er at ur e e ntr o p y. S o a n α ∼ 1 / N is s m all e n o u g h f or t h e G a ussi a n

e n v el o p e t o b e c o m e or d er o n e i n a ti m e of or d er o n e, all o wi n g t h e st u d y of tr a m p as s h ort

as or d er o n e. T h us t his q u a ntit y pr o vi d es a r eli a bl e d e fi niti o n of t h e T h o ul ess ti m e i n

S Y K a n d ot h er m a n y- b o d y s yst e ms wit h si mil ar pr o p erti es. T h e r e q uir e d N v al u es m a y

w ell b e c o m p ut ati o n all y pr o hi biti v e t h o u g h.

We dis c uss o ur d et ail e d al g orit h m f or d et er mi ni n g tmi n i n A p p e n di x A. 2 . T h e os cill a-

ti o ns i n t h e d at a m a k e t his d et er mi n ati o n q uit e n ois y. T h e v al u es list e d i n T a bl e 1 i n t h e

A p p e n di x pr o vi d e u p p er b o u n ds f or tr a m p . T h e b est w e c a n s a y a b o ut t h e N d e p e n d e n c e

is t h at it is w e a k. P o w er l a ws f ast er t h a n N 1 a n d e x p o n e nti als, wit h or d er o n e c o e ffi ci e nts,

ar e disf a v or e d. A l o g N b e h a vi or w o ul d c ert ai nl y b e c o nsist e nt.

T o g ai n m or e e x p eri e n c e w e n o w e x a mi n e a k - l o c al m o d el wit h o ut a s h ar p e d g e i n its

d e nsit y of st at es.
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Fi g ur e 5: T h e d e nsit y of s hift e d a n d r e n or m ali z e d ei g e n v al u es f or t h e 2-l o c al R C Q m o d el
f or N = 9 , 1 0 , . . . , 1 6, a n d t h e a v er a g e d v ari a n c e of ei g e n v al u es wit h a str ai g ht li n e fit.
( 2 1 6 − N × 1 0 0) s a m pl es h a v e b e e n us e d f or e a c h N
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Fi g ur e 6: T h e s p e ctr al f or m f a ct or f or t h e k -l o c al r a n d o ml y c o u pl e d q u bits ( R C Q) wit h 8
t o 1 6 q u bits. We o bs er v e t h e G a ussi a n d e c a y at t h e e arl y ti m es, f oll o w b y a ‘ b u m p’, r a m p
a n d pl at e a u.

m e nt e d wit h usi n g Y Y ∗ . We w er e u n a bl e t o is ol at e a si z a bl e tr a nsiti o n r e gi o n t o t h e r a m p

w hil e e x cl u di n g t h e b u m p. We d o n ot u n d erst a n d its ori gi n, u nf ort u n at el y.

N o n et h el ess it is cl e ar t h at t h e r a m p b e gi ns e arl y, at ti m es b et w e e n 2 a n d 5, i n cr e asi n g

sl o wl y wit h N . F or N = 1 6 (s e e Fi g. 7 ) t h e pl at e a u ti m e is a b o ut 1 0 0 0 0 ti m es gr e at er

t h a n t h e r a m p ti m e. T h e e ntir e s p e ctr u m c o nt ai ns 2 1 6 ∼ 6 6 0 0 0 ei g e n v al u es. S o as i n t h e
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Fi g ur e 1 8: [ L eft] Pl ot of ( |Tr U |2 − 1) / ( 4 N − 1) a g ai nst N t f or t h e R C Q c h ai n wit h
dt = 0 .2 f or N = 1 1 , 1 0 , 9 , 8 , 7 , 6 , 5 , 4 q u bits. T h e r es ult of a si n gl e p ar a m et er fit b y a n
e x p o n e nti al f u n cti o n of N t is als o s h o w n. [ Ri g ht] Pl ot of ( |Tr U |2 − 1) / N a g ai nst t f or
t h e R C Q c h ai n wit h dt = 0 .2 f or N = 1 0 , 9 , 8 , 7 , 6 , 5 , 4 q u bits. T h e i ns et s h o ws t h e r es ult
of fit f or t ∈ [ 1 0 : 1 4] wit h A e − ∆ 0 t b y t a ki n g A a n d ∆ 0 as fitti n g p ar a m et ers. T h e li n e
c orr es p o n di n g t o ( A, ∆ 0 ) = ( 1 2, 0 .5) is als o s h o w n i n t h e m ai n pl ot.
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Fi g ur e 1 9: Pl ot of ( |Tr U k ( t̃)|2 − k )/ N a g ai nst t f or v ari o us v al u es of N , k = 2 , 3 , 4 , 5.

i n cr e as es wit h k (s e e als o Fi g. 1 7 ) 2 6 , w hi c h m e a ns t h e c o n v er g e n c e t o t h e H a ar v al u es at

l ar g er k h a p p e ns e arli er. T h er ef or e, aft er tH a a r is d et er mi n e d fr o m k = 1, hi g h er m o m e nts

h a v e alr e a d y c o n v er g e d.

L o c al R C Q B r o w ni a n ci r c ui t

N e xt w e c o nsi d er t h e Br o w ni a n cir c uit m a d e fr o m t h e l o c al R C Q H a milt o ni a n i ntr o d u c e d

i n S e c. 4. 2. 1 . We e x p e ct t h e s a m e d e c a y p att er n as i n t h e 2-l o c al R C Q. We h a v e us e d t h e

s a m e n u m b er of s a m pl es as i n t h e 2-l o c al R C Q Br o w ni a n cir c uit c as e.

As s h o w n i n t h e l eft p a n el of Fi g. 2 1 , t h e e arl y-ti m e d e c a y c a n b e fit b y ( |Tr U (t)|2 −

1) ( 4 N − 1) · e − c ( N − 1 ) t w h er e c 0 .1 8 7. T h er ef or e, t h e e arl y-ti m e d e c a y t o |Tr U (t)|2 −

1 ∼ O ( 1) t a k es pl a c e wit hi n or d er o n e ti m e. As s h o w n i n t h e ri g ht p a n el of Fi g. 2 1 a n d i n

Fi g. 2 2 , t h e l at e ti m e d e c a y a p p e ars t o b e c o nsist e nt wit h c̃ N e − ∆ k t f or k = 1 , 2 , 3 , 4 a n d

2 6 ∆ 1 a ct u all y i s a p pr o xi m at el y t h e s a m e a s ∆ 2 .
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5, w h er e c̃ i s a n or d er o n e c o nst a nt. T h es e o bs er v ati o ns ar e t h e s a m e as t h e c as e of t h e
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k > 2, ∆ k > ∆ 2 i n di c ati n g t h at k = 2 is alr e a d y i n t h e st a bl e r a n g e f or d et er mi ni n g t h e

a p pr o a c h t o r a n d o m m atri x b e h a vi or.
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4 q u bits.

Fi g ur e 2 2: Pl ot of ( |Tr U k |2 − k )/ N 2 a g ai nst t f or t h e l o c al R C Q c h ai n wit h dt = 0 .2 f or
N = 1 0 , 9 , 8 , 7 , 6 , 5 , 4 q u bits, k = 2 , 3 , 4 , 5. A n e x p o n e nti al fit of t h e N = 9 c ur v e is als o
s h o w n.
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Fi g ur e 2 4: Σ 2 (K ) f or t h e S Y K m o d el, N = 3 2 ( 2 5 0 s a m pl es) a n d N = 3 4 ( 1 1 0 s a m-
pl es), o bt ai n e d usi n g t h e u nf ol d e d s p e ctr a aft er s hifti n g a n d r es c ali n g. T h e c ur v es f or
c orr es p o n di n g r a n d o m m atri x e ns e m bl es, G O E a n d G U E, ar e als o pl ott e d.

4. T h e n w e c o m p ut e Σ 2 (K ).

St e ps ( 1) a n d ( 2) ar e n ot i m pl e m e nt e d i n [ 7 ]. T h e n u m b er v ari a n c e c al c ul at e d i n t his

m a n n er is s h o w n i n Fi g. 2 4 , f or N = 3 2 a n d N = 3 4. T h e a gr e e m e nt wit h R M T p ersists

t o l ar g er K , r o u g hl y a f a ct or of t w o l ar g er, t h a n i n [7 ]. T h us w e s e e t h at t h e n u m b er

v ari a n c e is s e nsiti v e t o t h e u nf ol di n g pr o c e d ur e.

As dis c uss e d i n t h e t e xt w e e x p e ct t h at R M T b e h a vi or e xt e n ds t o a n e x p o n e nti all y

l ar g e v al u e of K , m u c h l ar g er t h a n s h o w n e v e n b y t h es e i m pr o v e d r es ults. O ur u nf ol di n g

pr o c e d ur e is still r at h er cr u d e. As a first st e p o n e c o ul d tr y t o f ull y u nf ol d t h e s p e ctr u m

s a m pl e b y s a m pl e. B ut it is u n cl e ar t o us w h et h er t his is e v e n i n pri n ci pl e s u ffi ci e nt. At a

mi ni m u m a n e x p o n e nti all y l ar g e n u m b er of s a m pl es w o ul d b e r e q uir e d t o g et a s u ffi ci e ntl y

a c c ur at e v al u e of t h e v ari a n c e.

F or t his r e as o n t h e n u m b er v ari a n c e s e e ms n ot t o b e t h e b est q u a ntit y t o pr o b e l o n g

r a n g e s p e ctr al ri gi dit y i n m a n y- b o d y s yst e ms. As dis c uss e d i n t h e t e xt t h e s p e ctr al f or m

f a ct or is l ess s e nsiti v e t o s u c h err ors.

A. 2 E s ti m a ti n g tmi n i n t h e S Y K M o d el

I n t his a p p e n di x w e gi v e o ur d et ail e d r es ults f or d et er mi ni n g tmi n i n t h e S Y K m o d el

n u m eri c all y. T h e al g orit h m us e d t o s el e ct a n o pti m al α is as f oll o ws: I n t h e s e c o n d

p a n el of Fi g ur e 3 w e h a v e v ari e d α wit h st e p si z e 0. 5, a n d o bs er v e d t h at s o m e α b et w e e n

2 .5 < α < 3 .0 gi v es t h e s m all est v al u e of tmi n ; at α ≤ 2 .5 t h e os cill ati o n d u e t o t h e s h ar p
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Fi g ur e 2 5: U nf ol d e d l e v el s e p ar ati o n distri b uti o n P (s ) f or t h e R C Q m o d el f or N =
9 , 1 0 , . . . , 1 6 c o m p ar e d a g ai nst t h e P a d é a p pr o xi m a nt f or G U E, a n d t h e n u m b er v ari a n c e
Σ 2 (K ). L o n t h e ri g ht p a n el c orr es p o n ds t o K i n t h e t e xt.

A. 3 Ei g e n v al u e B e h a vi o r f o r 2-l o c al R C Q

I n or d er t o t est t h e s p e ctr al ri gi dit y of t h e e n er g y s p e ctr u m, w e p erf or m e d t h e u nf ol di n g

wit h st e ps 1 – 4 e x pl ai n e d i n S e c. A. 1 . T h e s hift e d- a n d-r es c al e d e n er g y s p e ctr u m ( o bt ai n e d

b y p erf or mi n g st e ps 1, 2 a n d 3), b ef or e t h e u nf ol di n g, is s h o w n i n t h e ri g ht p a n el of Fi g. 5 .

U nli k e t h e S Y K m o d el, t h e e d g e of t h e s p e ctr u m is n ot s h ar p. D u e t o t his, t h e sl o p e

of S F F d e c a ys m u c h f ast er, as w e will s e e s h ortl y. T h e n e ar est-l e v el s e p ar ati o n o bt ai n e d

fr o m t h e u nf ol d e d s p e ctr u m is pl ott e d i n t h e l eft p a n el of Fi g. 2 5 . A g o o d a gr e e m e nt wit h

G U E e ns e m bl e at l ar g e N c a n b e s e e n. T h e n u m b er v ari a n c e Σ 2 (K ) is pl ott e d i n t h e ri g ht

p a n el of Fi g. 2 5 . At N = 1 6, a n a gr e e m e nt wit h R M T c a n b e s e e n o nl y at K 1 0.

B A n al y ti c R e s ul t s f o r R a n d o m Q u a n t u m Ci r c ui t

I n t his a p p e n di x w e c oll e ct s e v er al a n al yti c r es ults w hi c h c o m pl e m e nt t h e dis c ussi o n i n

S e c. 5 .

B. 1 k - t h M o m e n t of t h e H a a r M e a s u r e

If w e t a k e t h e a v er a g e wit h r es p e ct t o t h e H a ar m e as ur e o n U( L ), u (k, t ) = |Tr U k (t)|2

is e q u al t o k f or k ≤ L a n d is e q u al t o L f or k > L . F or k = 1 a n d k = 2, it c a n b e s e e n
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Fi g ur e 2 6: ( w / L ) 2 |Y (α = 1 , t)|2 vs ( w / L ) 2 · t, L = 1 0 0 , 2 0 0 , 3 0 0 , 4 0 0 , 5 0 0 , 1 0 0 0, w = 5 0,
α = 1. 1 0 0 0 0 s a m pl es h a v e b e e n t a k e n.

Hil b ert s p a c e, w hi c h c o n n e cts w n e ar b y st at es. T his l o o ks ‘l o c al’ if w e i d e ntif y t h e st at es

wit h a si n gl e p arti cl e h o p pi n g o n L l atti c e sit es, b ut it is us ef ul t o n ot e t h at t his is r at h er

di ff er e nt fr o m a m a n y- b o d y l o c al H a milt o ni a n, s a y a l o c al s pi n s yst e m. I n t h e l att er, i n a

n at ur al l o c al b asis, t h e H a milt o ni a n is s p ars e b ut t h e n o n z er o e ntri es ar e n ot ali g n e d n e ar

t h e di a g o n al as i n t h e b a n d e d m atri x.

I n l o c al H a milt o ni a ns wit h N s pi ns, e a c h r o w a n d c ol u m n h as L = 2 N e ntri es, a m o n g

w hi c h t h er e ar e O (N ) n o n z er o el e m e nts. T his is m u c h s p ars er t h a n a b a n d e d m atri x wit h

w ∼
√

L , b ut it c a n alr e a d y b e c h a oti c. T h e ti m e s c al es ar e als o v er y di ff er e nt; t h e r a m p

ti m e f or t h e l o c al H a milt o ni a n, tr a m p ∼ N 2 ∼ (l o g L ) 2 (s e e S e c. 4. 2 ), is m u c h s h ort er t h a n

(L / w ) 2 w h e n w ∼
√

L .

C. 2 B r o w ni a n Ci r c ui t

T h e Br o w ni a n cir c uit of r a n d o m b a n d m atri c es c a n d es cri b e di ff usi o n, b e c a us e t h e n u m b er

of p arti cl es — w hi c h is o n e — is c o ns er v e d. F or t his r e as o n, as w e will s e e, w e c a n c o n fir m

tH a a r ∼ (L / w ) 2 ∼ tdi ff .

T h e n u m eri c al pr o c e d ur e is t h e s a m e: w e c al c ul at e U (t) = n
k = 1 e − i Hk dt , w h er e t = n ·dt

a n d H k ar e L × L r a n d o m b a n d m atri c es wit h a wi dt h w . Fr o m t his w e c al c ul at e t h e

|T r U |2 .
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Fi g ur e 2 7: T h e v al u e of ( w / L ) 2 |Y (α = 1 , t)|2 pl ott e d a g ai nst ( w / L ) 2 · t f or v ari o us (L, w )
s atisf yi n g

√
L ≤ w ≤ L / 4, α = 1. T h e n u m b er of s a m pl es wit h e a c h v al u e of w is

1 0 6 / L = 2 5 0 0 , 1 0 0 0 , 4 0 0 , 1 0 0 f or L = 4 0 0 , 1 0 0 0 , 2 5 0 0 , 1 0 0 0 0 c as es. F or w L / 4 t h e i niti al
gr o wt h i n di c at es t h at |Y (α = 1 , τ)|2 ∼ (L / w )

√
t, w hil e f or all (L, w ) pl ott e d, t h e gr o wt h

f or l ar g er t b ef or e t h e pl at e a u a gr e es wit h |Y (α = 1 , t)|2 ∼ t.

First l et us s e e t h at t h e s p e ci fi c c h oi c e of dt is n ot i m p ort a nt. W h e n dt is s u ffi ci e ntl y

s m all, if w e t a k e t dt = n (dt ) 2 t o b e t h e h ori z o nt al a xis, t h e dt - d e p e n d e n c e is g o n e; s e e

Fi g. 2 9 . T his s c ali n g c a n b e u n d erst o o d if t h e ti m e e v ol uti o n is d es cri b e d as a r a n d o m

w al k wit h st e p-si z e w dt . Aft er n st e ps, t h e t y pi c al dist a n c e fr o m t h e st arti n g p oi nt s h o ul d

b e
√

n w dt , if t h e r a n d o m w al k pi ct ur e is tr u e. T h e n f or fi x e d L a n d w t h e dt - d e p e n d e n c e

s h o ul d dis a p p e ar w h e n t h e h ori z o nt al a xis is n (dt ) 2 . B el o w w e fi x dt t o b e 0.5.

I n Fi g. 2 8 w e h a v e pl ott e d |Tr U |2 − 1 a g ai nst ( t(w / L ) 2 )/ (L 2 − 1) f or fi x e d w = 2 5

a n d v ari o us L , a n d f or a fi x e d L / w . I n b ot h c as es w e c a n s e e a n e x p o n e nti al d e c a y. T h e

e x p o n e nt is a f u n cti o n of L / w , as w e c a n s e e fr o m t h e ri g ht p a n el of Fi g. 2 8 .

As w e c a n s e e fr o m Fi g. 3 0 , w e c a n s h o w t h e e x p o n e nti al d e c a y at l at e ti m e as w ell,

|Tr U |2 − 1 ∼ e − 2 t( w / L ) 2
. N ot e t h at t h e e x p o n e nt is di ff er e nt fr o m t h e e arl y ti m e. If w e

d e fi n e tH a a r as t h e ti m e |Tr U |2 − 1 r e a c h es t o a c ert ai n v al u e, s a y 0. 1, t h e n t his s c ali n g

l e a ds t o tH a a r ∼ (L / w ) 2 .

It is p ossi bl e t o u n d erst a n d t his s c ali n g fr o m t h e r a n d o m w al k pi ct ur e. W h e n t h e

a v er a g e dist a n c e fr o m t h e st arti n g p oi nt, w hi c h is
√

t w, is of or d er L , it is n at ur al t o

e x p e ct t h at t h e tr a nsf er m atri x U is al m ost a r a n d o m u nit ar y. T h er ef or e
√

tH a a r w ∼ L , or
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Fi g ur e 2 8: Pl ot of ( |Tr U |2 − 1) / (L 2 − 1) a g ai nst t f or w = 2 5 a n d v ari o us v al u es of L
(l eft) a n d f or L / w = 2 0 wit h L = 5 0 0 , 2 0 0 , 1 0 0 (ri g ht). dt = 0 .5 is fi x e d.

e q ui v al e ntl y, tH a a r ∼ (L / w ) 2 .
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Fi g ur e 3 0: L o g pl ot of |Tr U |2 − 1 a g ai nst t(w / L ) 2 f or w = 2 5 a n d v ari o us v al u es of L .
dt = 0 .5 is fi x e d. 1 0 5 s a m pl es h a v e b e e n us e d f or L = 3 0 0 , 2 0 0 , 1 0 0.
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