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Figure 3: h(a,t) = |Y(o: t)|?/|Y (a,t = 0)|?> at N = 32, with various values of a. Note

(
that g(t) = h(a =0,t).

which hides the onset of the ramp. This is visible in the a = 0 curves where h(t) = g(?)
in Fig. 3. In Fig. 4 (using the optimal value of a) we can see that the ramp continues all
the way down to the Gaussian envelope, and may well continue past it. This intersection
time, which we call ¢pin, gives an upper bound to the ramp time tamp. In the data
displayed the ramp extends down to a time ¢, of order 10. The plateau time is of order
105 here, so this represents a ratio of 10* in time or energy scales. Note that there are
only 26 ~ 66 000 energy levels'? in the spectrum so rigidity extends across an appreciable
fraction of the entire spectrum!'® We should emphasize that as expected tp, is far less,
over an order of magnitude here, than t4;,.

It seems from the graph that the ramp probably extends somewhat further but is just
being masked by the Gaussian envelope. For this finite value of N it is impossible to
do better because an envelope that decays faster in time corresponds to a Gaussian filter
that is broader in energy and extends closer to the edge of the spectrum, allowing more
contamination from the sharp edge. But as N grows this effect goes away because the
edges of the spectrum are at energies +¢N (even though the standard deviation of the
energy is of order v/N). The Gaussian filter lets in an edge signal in (|Y (,%)[2) of order

e~20(eN)*+2s0N /t* where soN is the zero temperature entropy. The early time ramp signal

12 After removing the two fold fermion parity degeneracy which is the only degeneracy present for
N =32 [50].
130f course a precise comparison would require evaluating various numerical factors of order one.
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Figure 4: g(t) = |Z(t)|?/|Z(0)|* and h(a,t) = [Y(a,t)|?/|Y (a,t = 0)|*> with a = 2.9 for
N = 32, 1500 samples.

is of order one. So choosing o as small as 3% is sufficient to mask the slope contribution
from the edge. The Fourier transform of the Gaussian envelope decays ~ 25"V i where
800NN is the infinite temperature entropy. So an a ~ 1/N is small enough for the Gaussian
envelope to become order one in a time of order one, allowing the study of ¢;,mp as short
as order one. Thus this quantity provides a reliable definition of the Thouless time in
SYK and other many-body systems with similar properties. The required N values may
well be computationally prohibitive though.

We discuss our detailed algorithm for determining t.,;, in Appendix A.2. The oscilla-
tions in the data make this determination quite noisy. The values listed in Table 1 in the
Appendix provide upper bounds for ;,mp. The best we can say about the N dependence
is that it is weak. Power laws faster than N'! and exponentials, with order one coefficients,
are disfavored. A log N behavior would certainly be consistent.

To gain more experience we now examine a k- local model without a sharp edge in its

density of states.
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Figure 5: The density of shifted and renormalized eigenvalues for the 2-local RCQ model
for N = 9,10,...,16, and the averaged variance of eigenvalues with a straight line fit.
(216~ % 100) samples have been used for each N.
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Figure 6: The spectral form factor for the k-local randomly coupled qubits (RCQ) with 8
to 16 qubits. We observe the Gaussian decay at the early times, follow by a ‘bump’, ramp
and plateau.

mented with using YY*. We were unable to isolate a sizable transition region to the ramp
while excluding the bump. We do not understand its origin, unfortunately.

Nonetheless it is clear that the ramp begins early, at times between 2 and 5, increasing
slowly with N. For N = 16 (see Fig. 7) the plateau time is about 10 000 times greater

than the ramp time. The entire spectrum contains 2!6 ~ 66 000 eigenvalues. So as in the

21



<[tr U(t)[*>

a(t)

—g(t) = <jtr utf>
Linear fit

® Ramp time
— — Haar value




)
S

ramp

Ramp Time (t
w

N

* *
o _ —
. R N . PR
_ e
* ° /3/ ° . i
— ] -
° P o
~ " e u ©
O 4
™ O
- ] 8 o
e ) o
e 4
¢ Error=5%
® Error=10% 4
= Error=20%
O Error =30%
— — 2.8log N-3.16
L L L L L L L L
8 10 11 12 13 14 15 16

Number of Qubits (N)



ple)

0.18

0.16 -

0.14 -

0.12 -

0.04

0.02 -

0
-15

0
Shifted and rescaled e

N =6, 102400
N=7,51200
N =8, 25600
N =09, 12800
N =10, 6400

N =11, 3200

N =12, 1600
N =13, 800

N =14, 400

N =15, 200

N =16, 100




g(t) = 1Ztf / 1ZO)F

10°

102

107

106

1078

—N=6

N=8

—N=10
—N=11
—N=12
—N=13

N=15

——N=16

10°

102

104

108




<Jtr UH)P>

a(t)

10°

10—6 L

—g(t) = <ltr U(pf>
— Power law fit
Linear fit

® Ramp time
— — Haar value
Plateau value

10—10



250 -

~, 200

(tram

150

Ramp Time

50

—&— Crossing point

——0.85N?-14.57
- - 18.34N-105.55

6 8 10 12 14
Number of Qubits (N)

16

18




0.3

T
N = 10, 25600
N = 12, 6400
N = 14, 1600
L N =16, 400
0.25 N = 18, 200
02 |
*% 0.15 | h
01 |
0.05 [ i
0 L 1 I
-10 8 6 4 2 0 2 8 10

Shifted and rescaled ¢



-2

-
o

= <[Y(, P>/<|Y(a, 0)F>
2

)

=

S
(=2}

h(a, t

1078

XXZ,W=0.5, a=0.5

—N=10

N =14
——N=16
—N=18

10°

102

10*

108

108




XXZ,N=14,W=0.5

—h(e, t), a=0.5

® Ramp time

Fit: 0.96 log(t) - 20.31

10° 102 10*

108

XXZ,N=14,W=1.5
T

—h(a, t), =0.5
Linear fit
® Ramp time


































104? T T T T T T k ..VI:9 I_
=1 ——

3 k=2 ——

107 F !;:3 E
=4

= [ k=5

<10?} 5

= E
!

o 10"k 3

= F \

b} [ \
= .0 N\

F10f N\ 1
10" _ :
102 S — ]

L L L L L L B

Figure 17: Plot of ({|TrU*|?) —k)/N for k = 1,2,3,4,5 against ¢ for the 2-local RCQ chain
with dt = 0.2. N =9, 10° samples. These exhibit exponential decays with rates that do
not decrease as k increases.
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Figure 18: [Left] Plot of ({|TrU|?) — 1)/(4"Y — 1) against Nt for the RCQ chain with
dt = 0.2 for N = 11,10,9,8,7,6,5,4 qubits. The result of a single parameter fit by an
exponential function of Nt is also shown. [Right] Plot of ({|/TrU|*) — 1)/N against ¢ for
the RCQ chain with dt = 0.2 for N = 10,9,8,7,6,5,4 qubits. The inset shows the result
of fit for t € [10 : 14] with Ae~2°! by taking A and A, as fitting parameters. The line
corresponding to (A, Ag) = (12,0.5) is also shown in the main plot.
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Figure 19: Plot of ({|TrU*(#)|?) — k)/N against ¢ for various values of N, k = 2,3,4,5.

increases with k (see also Fig. 17)?°) which means the convergence to the Haar values at

larger k& happens earlier. Therefore, after ¢y,,; is determined from k& = 1, higher moments

have already converged.

Local RCQ Brownian circuit

Next we consider the Brownian circuit made from the local RCQ Hamiltonian introduced
in Sec. 4.2.1. We expect the same decay pattern as in the 2-local RCQ. We have used the
same number of samples as in the 2-local RC() Brownian circuit case.

As shown in the left panel of Fig. 21, the early-time decay can be fit by ({|TrU(¢)|?) —
1) ~ (4N —1) - eV~ where ¢ ~ 0.187. Therefore, the early-time decay to {|TrU(¢)|?) —
1 ~ O(1) takes place within order one time. As shown in the right panel of Fig. 21 and in
Fig. 22, the late time decay appears to be consistent with éNe 2+ for k = 1,2, 3,4 and

26 A, actually is approximately the same as A,.
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Figure 20: Plot of {|TrU*|?) — k for k = 1,2,3,4,5 for the local RCQ chain with dt = 0.2
for N = 9 qubits. The decay time scale appears to grow with k for k > 2.

5, where ¢ is an order one constant. These observations are the same as the case of the
2-local Brownian circuit. Note that here A; is larger than A,. This is not surprising given
the analysis above which shows they result from somewhat different mechanisms. But for
k > 2, A > A, indicating that k = 2 is already in the stable range for determining the

approach to random matrix behavior.
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Figure 21: [Left] Plot of ({|TrU|?) —1)/(4" — 1) against (N — 1)t for the local RCQ chain
with dt = 0.2 for N = 11,10,9,8,7,6,5,4 qubits. [Right] Plot of ({|TrU|?) —1)/N for the
local RCQ chain with dt = 0.2 for N = 10,9,8,7,6,5,4 qubits.
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shown.
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Figure 24: Y%(K) for the SYK model, N = 32 (250 samples) and N = 34 (110 sam-
ples), obtained using the unfolded spectra after shifting and rescaling. The curves for
corresponding random matrix ensembles, GOE and GUE, are also plotted.

4. Then we compute ¥.%(K).

Steps (1) and (2) are not implemented in [7]. The number variance calculated in this
manner is shown in Fig. 24, for N = 32 and N = 34. The agreement with RMT persists
to larger K, roughly a factor of two larger, than in [7]. Thus we see that the number
variance is sensitive to the unfolding procedure.

As discussed in the text we expect that RMT behavior extends to an exponentially
large value of K, much larger than shown even by these improved results. Our unfolding
procedure is still rather crude. As a first step one could try to fully unfold the spectrum
sample by sample. But it is unclear to us whether this is even in principle sufficient. At a
minimum an exponentially large number of samples would be required to get a sufficiently
accurate value of the variance.

For this reason the number variance seems not to be the best quantity to probe long
range spectral rigidity in many-body systems. As discussed in the text the spectral form

factor is less sensitive to such errors.

A.2 Estimating t.,;, in the SYK Model

In this appendix we give our detailed results for determining t.;, in the SYK model
numerically. The algorithm used to select an optimal « is as follows: In the second
panel of Figure 3 we have varied a with step size 0.5, and observed that some a between

2.5 < a < 3.0 gives the smallest value of t,;,; at @ < 2.5 the oscillation due to the sharp
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Figure 25: Unfolded level separation distribution P(s) for the RCQ model for N =
9,10,...,16 compared against the Padé approximant for GUE, and the number variance
¥2(K). L on the right panel corresponds to K in the text.

A.3 Eigenvalue Behavior for 2-local RCQ

In order to test the spectral rigidity of the energy spectrum, we performed the unfolding
with steps 1 — 4 explained in Sec. A.1. The shifted-and-rescaled energy spectrum (obtained
by performing steps 1, 2 and 3), before the unfolding, is shown in the right panel of Fig. 5.
Unlike the SYK model, the edge of the spectrum is not sharp. Due to this, the slope
of SFF decays much faster, as we will see shortly. The nearest-level separation obtained
from the unfolded spectrum is plotted in the left panel of Fig. 25. A good agreement with
GUE ensemble at large N can be seen. The number variance Y?(K) is plotted in the right
panel of Fig. 25. At N = 16, an agreement with RMT can be seen only at K < 10.

B Analytic Results for Random Quantum Circuit

In this appendix we collect several analytic results which complement the discussion in
Sec. 5.

B.1 k-th Moment of the Haar Measure

If we take the average with respect to the Haar measure on U(L), u(k,t) = (|TrU*(¢)|?)
is equal to k for k < L and is equal to L for k > L. For k =1 and k = 2, it can be seen
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Figure 26: (w/L)?|Y (a = 1,t)|* vs (w/L)?*-t, L = 100,200, 300, 400, 500, 1000, w = 50,
a = 1. 10000 samples have been taken.

Hilbert space, which connects w nearby states. This looks ‘local’ if we identify the states
with a single particle hopping on L lattice sites, but it is useful to note that this is rather
different from a many-body local Hamiltonian, say a local spin system. In the latter, in a
natural local basis, the Hamiltonian is sparse but the nonzero entries are not aligned near
the diagonal as in the banded matrix.
In local Hamiltonians with N spins, each row and column has L = 2V entries, among
which there are O(N) nonzero elements. This is much sparser than a banded matrix with
w ~ VL, but it can already be chaotic. The time scales are also very different; the ramp

time for the local Hamiltonian, tamp ~ N? ~ (log L)? (see Sec. 4.2), is much shorter than
(L/w)? when w ~ /L.

C.2 Brownian Circuit

The Brownian circuit of random band matrices can describe diffusion, because the number
of particles — which is one — is conserved. For this reason, as we will see, we can confirm
tHaar ~ (L/'w)2 ~ tdiff.

The numerical procedure is the same: we calculate U(t) = [[,_, e *f*% where t = n-dt

and Hp are L x L random band matrices with a width w. From this we calculate the
(|TrU|?).
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Figure 27: The value of (w/L)?|Y (a = 1,t)|? plotted against (w/L)? - ¢ for various (L, w)
satisfying VL < w < L/4, a = 1. The number of samples with each value of w is
10%/L = 2500, 1000, 400, 100 for L = 400, 1000, 2500, 10000 cases. For w < L/4 the initial

growth indicates that |Y(a = 1,7)|> ~ (L/w)+/t, while for all (L, w) plotted, the growth
for larger ¢ before the plateau agrees with |Y(a = 1,t)|* ~ t.

First let us see that the specific choice of dt is not important. When dt is sufficiently
small, if we take tdt = n(dt)? to be the horizontal axis, the di-dependence is gone; see
Fig. 29. This scaling can be understood if the time evolution is described as a random
walk with step-size wdt. After n steps, the typical distance from the starting point should
be /nwdt, if the random walk picture is true. Then for fixed L and w the dt-dependence
should disappear when the horizontal axis is n(dt)?. Below we fix dt to be 0.5.

In Fig. 28 we have plotted (|TrU|?) — 1 against (¢(w/L)?)/(L? — 1) for fixed w = 25
and various L, and for a fixed L/w. In both cases we can see an exponential decay. The
exponent is a function of L/w, as we can see from the right panel of Fig. 28.

As we can see from Fig. 30, we can show the exponential decay at late time as well,
(ITeU[2) — 1 ~ e~ 2/L)  Note that the exponent is different from the early time. If we
define t,,r as the time (|TrU|?) — 1 reaches to a certain value, say 0.1, then this scaling
leads to tgaar ~ (L/w)2.

It is possible to understand this scaling from the random walk picture. When the
average distance from the starting point, which is v/tw, is of order L, it is natural to

expect that the transfer matrix U is almost a random unitary. Therefore \/tgaarw ~ L, or
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equivalently, tgaar ~ (L/w)>.
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