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Abstract

Important data mining problems such as nearest-
neighbor search and clustering admit theoretical guar-
antees when restricted to objects embedded in a met-
ric space. Graphs are ubiquitous, and clustering and
classification over graphs arise in diverse areas, in-
cluding, e.g., image processing and social networks.
Unfortunately, popular distance scores used in these
applications, that scale over large graphs, are not
metrics and thus come with no guarantees. Classic
graph distances such as, e.g., the chemical and the
CKS distance are arguably natural and intuitive, and
are indeed also metrics, but they are intractable: as
such, their computation does not scale to large graphs.
We define a broad family of graph distances, that in-
cludes both the chemical and the CKS distance, and
prove that these are all metrics. Crucially, we show
that our family includes metrics that are tractable.
Moreover, we extend these distances by incorporating
auxiliary node attributes, which is important in prac-
tice, while maintaining both the metric property and
tractability.

1 Introduction

Graph similarity and the related problem of graph
isomorphism have a long history in data mining, ma-
chine learning, and pattern recognition [20, 44, 39].
Graph distances naturally arise in this literature: in-
tuitively, given two (unlabeled) graphs, their distance
is a score quanitifying their structural differences. A
highly desirable property for such a score is that it is
a metric, i.e., it is non-negative, symmetric, positive-
definite, and, crucially, satisfies the triangle inequality.
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Metrics exhibit significant computational advantages
over non-metrics. For example, operations such as
nearest-neighbor search [19, 18, 10], clustering [3],
outlier detection [7], and diameter computation [32]
admit fast algorithms precisely when performed over
objects embedded in a metric space. To this end,
proposing tractable graph metrics is of paramount
importance in applying such algorithms to graphs.

Unfortunately, graph metrics of interest are often
computationally expensive. A well-known example
is the chemical distance [41]. Formally, given graphs
GA and GB , represented by their adjacency matrices
A,B ∈ {0, 1}n×n, the chemical distance is dPn(A,B)
is defined in terms of a mapping between the two
graphs that minimizes their edge discrepancies, i.e.:

dPn(A,B) = minP∈Pn ‖AP − PB‖F , (1)

where Pn is the set of permutation matrices of size
n and ‖ · ‖F , is the Frobenius norm (see Sec. 2 for
definitions). The Chartrand-Kubiki-Shultz (CKS) [17]
distance is an alternative: CKS is again given by
(1) but, instead of edges, matrices A and B contain
the pairwise shortest path distances between any two
nodes. The chemical and CKS distances have impor-
tant properties. First, they are zero if and only if the
graphs are isomorphic, which appeals to both intu-
ition and practice; second, as desired, they are metrics;
third, they have a natural interpretation, capturing
global structural similarities between graphs. How-
ever, finding an optimal permutation P is notoriously
hard; graph isomorphism, which is equivalent to de-
ciding if there exists a permutation P s.t. AP = PB
(for both adjacency and path matrices), is famously a
problem that is neither known to be in P nor shown
to be NP-hard [8]. There is a large and expanding
literature on scalable heuristics to estimate the op-
timal permutation P [35, 9, 43, 22]. Despite their

1

a
rX

iv
:1

8
0
1
.0

4
3
0
1
v
1
  
[m

a
th

.C
O

] 
 1

2
 J

a
n
 2

0
1
8



computational advantages, unfortunately, using them
to approximate dPn(A,B) breaks the metric property.

This significantly degrades the performance of many
important tasks that rely on computing distances be-
tween graphs. For example, there is a clear separation
on the approximability of clustering over metric and
non-metric spaces [3]. We also demonstrate this em-
pirically in Section 5 (c.f. Fig. 1): attempting to clus-
ter graphs sampled from well-known families based
on non-metric distances significantly increases the
misclassification rate, compared to clustering using
metrics.

An additonal issue that arises in practice is that
nodes often have attributes not associated with ad-
jacency. For example, in social networks, nodes may
contain profiles with a user’s age or gender; simi-
larly, nodes in molecules may be labeled by atomic
numbers. Such attributes are not captured by the
chemical or CKS distances. However, in such cases,
only label-preserving permutations P may make sense
(e.g., mapping females to females, oxygens to oxygens,
etc.). Incorporating attributes while preserving the
metric property is thus important from a practical
perspective.
Contributions. We seek generalization of the chem-
ical and CKS distances that (a) satisfy the metric
property and (b) are tractable: by this, we mean that
they can be computed either by solving a convex opti-
mization problem, or by a polynomial time algorithm.
Specifically, we study generalizations of (1) of the
form:

dS(A,B) = minP∈S ‖AP − PB‖ (2)

where S ⊂ R
n×n is closed and bounded, ‖·‖ is a matrix

norm, and A,B ∈ R
n×n are arbitrary real matrices

(representing adjacency, path distances, weights, etc.).
We make the following contributions:

• We prove sufficient conditions on S and norm ‖ · ‖
for which (2) is a metric. In particular, we show
that dS is a so-called pseudo-metric (see Sec. 2)
when:

(i) S = Pn and ‖ · ‖ is any entry-wise or operator
norm;

(ii) S = W
n, the set of doubly stochastic matrices,

‖ · ‖ is an arbitrary entry-wise norm, and A,B

are symmetric; a modification on dS extends this
result to both operator norms as well as arbitrary
matrices (capturing, e.g., directed graphs); and

(iii) S = On, the set of orthogonal matrices, and
‖ · ‖ is the operator or entry-wise 2-norm.

Relaxations (ii) and (iii) are very important from a
practical standpoint. For all matrix norms, comput-
ing (2) with S = W

n is tractable, as it is a convex
optimization. For S = On, (2) is non-convex but is
still tractable, as it reduces to a spectral decompo-
sition. This was known for the Frobenius norm [57];
we prove this is the case for the operator 2-norm
also.

• We include node attributes in a natural way in the
definition of dS as both soft (i.e., penalties in the
objective) or hard constraints in Eq. (2). Crucially,
we do this without affecting the metric property
and tractability. This allows us to explore label or
feature preserving permutations, that incorporate
both (a) exogenous node attributes, such as, e.g.,
user age or gender in a social network, as well as
(b) endogenous, structural features of each node,
such as its degree or the number of triangles that
pass through it. We numerically show that adding
these constraints can speed up the computation of
dS .

From an experimental standpoint, we extensively
compare our tractable metrics to several existing
heuristic approximations. We also demonstrate the
tractability of our metrics by parallelizing their execu-
tion using the alternating method of multipliers [14],
which we implement over a compute cluster using
Apache Spark [63].

Related Work. Graph distance (or similarity) scores
find applications in varied fields such as in image
processing [20], chemistry [6, 41], and social network
analysis [44, 39]. Graph distances are easy to define
when, contrary to our setting, the correspondence
between graph nodes is known, i.e., graphs are labeled
[47, 39, 56]. Beyond the chemical distance, classic
examples of distances between unlabeled graphs are
the edit distance [27, 52] and the maximum common
subgraph distance [16, 15], both of which also have
versions for labeled graphs. Both are metrics and are
hard to compute, while existing heuristics [49, 25]
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are not metrics. The reaction distance [37] is also
a metric directly related to the chemical distance
[41] when edits are restricted to edge additions and
deletions. Jain [33] also considers an extension of
the chemical distance, limited to the Frobenius norm,
that incorporates edge attributes. However, it is not
immediately clear how to relax the above metrics
[33, 37] to attain tractability.

A metric can also be induced by embedding graphs
in a metric space and measuring the distance of these
embeddings [51, 26, 50]. Several works follow such an
approach, mapping graphs, e.g., to spaces determined
by their spectral decomposition [64, 61, 23]. In gen-
eral, in contrast to our metrics, such approaches are
not as discriminative, as embeddings summarize graph
structure. Continuous relaxations of graph isomor-
phism, both convex and non-convex [43, 4, 57], have
found applications in a variety of contexts, including
social networks [38], computer vision [53], shape de-
tection [54, 29], and neuroscience [58]. None of the
above works focus on metric properties of resulting re-
laxations, which several fail to satisfy [58, 38, 54, 29].

Metrics naturally arise in data mining tasks, includ-
ing clustering [62, 28], NN search [19, 18, 10], and
outlier detection [7]. Some of these tasks become
tractable or admit formal guarantees precisely when
performed over a metric space. For example, finding
the nearest neighbor [19, 18, 10] or the diameter of
a dataset [32] become polylogarithimic under metric
assumptions; similarly, approximation algorithms for
clustering (which is NP-hard) rely on metric assump-
tions, whose absence leads to a deterioration on known
bounds [3]. Our search for metrics is motivated by
these considerations.

2 Notation and Preliminaries

Graphs. We represent an undirected graph G(V,E)
with node set V = [n] ≡ {1, . . . , n} and edge set
E ⊆ [n] × [n] by its adjacency matrix, i.e. A =
[ai,j ]i,j∈[n] ∈ {0, 1}n×n s.t. aij = aji = 1 if and only if

(i, j) ∈ E. In particular, A is symmetric, i.e. A = A>.
We denote the set of all real, symmetric matrices
by S

n. Directed graphs are represented by (possibly
non-symmetric) binary matrices A ∈ {0, 1}n×n, and

weighted graphs by real matrices A ∈ R
n×n.

Matrix Norms. Given a matrix A = [aij ]i,j∈[n] ∈
R
n×n and a p ∈ N+ ∪ {∞}, its induced or operator p-

norm is defined in terms of the vector p-norm through
‖A‖p = supx∈Rn:‖x‖p=1 ‖Ax‖p, while its entry-wise p-

norm is given by ‖A‖p = (
∑n
i=1

∑n
j=1 |aij |

p)1/p, for
p ∈ N+, and ‖A‖∞ = maxi,j |ai,j |. We denote the
entry-wise 2-norm (i.e., the Frobenius norm) as ‖ · ‖F .
Permutation, Doubly Stochastic, and Orthog-

onal Matrices. We denote the set of permutation
matrices as Pn = {P ∈ {0, 1}n×n : P1 = 1, P>1 =
1}, the set of doubly-stochastic matrices (i.e., the
Birkhoff polytope) as W

n = {W ∈ [0, 1]n×n : W1 =
1,W>1 = 1}, and the set of orthogonal matrices
(i.e., the Stiefel manifold) as On = {U ∈ R

n×n :
UU> = U>U = I}. Note that Pn = W

n ∩ On. More-
over, the Birkoff-von Neumann Theorem [11] states
that W

n = conv(Pn), i.e., the Birkoff polytope is the
convex hull of Pn.
Metrics. Given a set Ω, a function d : Ω × Ω → R is
called a metric, and the pair (Ω, d) is called a metric
space, if for all x, y, z ∈ Ω:

d(x, y) ≥ 0 (non-negativity) (3a)

d(x, y)=0 iff x=y (pos. definiteness) (3b)

d(x, y) = d(y, x) (symmetry) (3c)

d(x, y)≤d(x, z)+d(z, y) (triangle inequality)(3d)

A function d is called a pseudometric if it satisfies (3a),
(3c), and (3d), but the positive definiteness property
(3b) is replaced by the (weaker) property:

d(x, x) = 0 for all x ∈ Ω. (3e)

If d is a pseudometric, then d(x, y) = 0 defines an
equivalence relation x ∼d y over Ω. A pseudometric
is then a metric over Ω/ ∼d, the quotient space of
∼d. A d that satisfies (3a), (3b), and (3d) but not
the symmetry property (3c) is called a quasimetric.
If d is a quasimetric, then its symmetric extension
d̄ : Ω × Ω → R, defined as d̄(x, y) = d(x, y) + d(y, x),
is a metric over Ω.
Graph Isomorphism, Chemical, and CKS Dis-

tance. Let A,B ∈ R
n×n be the adjacency matri-

ces of two graphs GA and GB. Then, GA and GB
are isomorphic if and only if there exists P ∈ Pn
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s.t. P>AP = B or, equivalently, AP = PB. The
chemical distance, given by (1), extends the latter
relationship to capture distances between graphs. Let
‖ · ‖ be a matrix norm in R

n×n. For some Ω ⊆ R
n×n,

define dS : Ω × Ω → R+ as:

dS(A,B) = minP∈S ‖AP − PB‖, (4)

where S ⊂ R
n×n is a closed and bounded set, so

that the infimum is indeed attained. Note that dS is
the chemical distance (1) when Ω = R

n×n, S = Pn

and ‖ · ‖ = ‖ · ‖F . In CKS distance [17], matrices
A,B contain pairwise path distances between any two
nodes; equivalently, CKS is the chemical distance of
two weighted complete graphs with path distances as
edge weights. Our main contribution is determining
general conditions on S and ‖ · ‖ under which dS is a
metric over Ω, for arbitrary weighted graphs, thereby
including both the chemical and CKS distances as
special cases. For concreteness, we focus on distances
between graphs of equal size. Extensions to graphs of
unequal size are described in Appendix F.

3 A Family of Graph Metrics

Our first result establishes that dPn is a pseudometric
over all weighted graphs when ‖ · ‖ is an arbitrary
entry-wise or operator norm.

Theorem 1. If S = Pn and ‖ · ‖ is an arbitrary
entry-wise or operator norm, then dS given by (4) is
a pseudometric over Ω = R

n×n.

Hence, dPn is a pseudometric under any entry-wise
or operator norm over arbitrary directed, weighted
graphs. Our second result states that this property
extends to the relaxed version of the chemical dis-
tance, in which permutations are replaced by doubly
stochastic matrices.
Theorem 2. If S = W

n and ‖ · ‖ is an arbitrary
entry-wise norm, then dS given by (4) is a pseudo-
metric over Ω = S

n×n. If ‖ · ‖ is an arbitrary entry-
wise or operator norm, then its symmetric extension
d̄S(A,B) = dS(A,B) + dS(B,A) is a pseudometric
over Ω = R

n×n.

Hence, if S = W
n and ‖·‖ is an arbitrary entry-wise

norm, then (4) defines a pseudometric over undirected

graphs. The symmetry property (3c) breaks if ‖ · ‖
is an operator norm or graphs are directed. In either
case, dS is a quasimetric over the quotient space Ω/∼d,
and symmetry is attained via the symmetric extension
d̄S .

Theorem 2 has significant practical implications. In
contrast to dPn and its extensions implied by Theo-
rem 1, computing dWn under any operator or entry-
wise norm is tractable [13]: it involves minimizing a
convex function subject to linear constraints. A more
limited result extends to the Stiefel manifold:

Theorem 3. If S = On and ‖·‖ is either the operator
or the entry-wise (i.e., Frobenius) 2-norm, then dS
given by (4) is a pseudometric over Ω = R

n×n.

Though (4) is not a convex problem when S = On,
it is also tractable. Umeyama [57] shows that the
optimization can be solved exactly when ‖ · ‖ = ‖ · ‖F
and Ω = S

n (i.e., for undirected graphs) by performing
a spectral decomposition on A and B. We extend
this result, showing that the same procedure also
applies when ‖ · ‖ is the operator 2-norm (see Thm. 7
in Appendix C). In the general case of directed graphs,
(4) is a classic example of a problem that can be solved
through optimization on manifolds [2].

Equivalence Classes. The equivalence of matrix
norms implies that all pseudometrics dS defined
through (4) for a given S have the same quotient
space Ω/∼dS

: if dS(A,B) = 0 for one matrix norm
‖·‖ in (4), it will be so for all. When S = Pn, Ω/∼dPn

is the quotient space defined by graph isomorphism:
any two adjacency matrices A,B ∈ R

n×n satisfy
dPn(A,B) = 0 if and only if their (possibly weighted)
graphs are isomorphic. When S = W

n, the quotient
space Ω/ ∼dWn has a connection to the Weisfeiler-
Lehman (WL) algorithm [60] described in Appendix D:
Ramana et al. [48] show that dWn(A,B) = 0 if and
only if GA and GB receive identical colors by the
WL algorithm. If S = On and Ω = S

n, i.e., graphs
are undirected, then Ω/ ∼dOn is determined by co-
spectrality: dOn(A,B) = 0 if and only if A,B have
the same spectrum. When Ω = R

n×n, dOn(A,B) = 0
implies that A,B are co-spectral, but co-spectral ma-
trices A,B do not necessarily satisfy dOn(A,B) = 0.
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3.1 Proof of Theorems 1–3.

We define several properties that play a crucial role
in our proofs. We say that a set S ⊆ R

n×n is closed
under multiplication if P, P ′ ∈ S implies that P ·P ′ ∈
S. We say that S is closed under transposition if P ∈
S implies that P> ∈ S, and closed under inversion if
P ∈ S implies that P−1 ∈ S. Finally, given a matrix
norm ‖ · ‖, we say that set S is contractive w.r.t. ‖ · ‖
if ‖AP‖ ≤ ‖A‖ and ‖PA‖ ≤ ‖A‖, for all P ∈ S and
A ∈ R

n×n. Put differently, S is contractive if and
only if every P ∈ S is a contraction w.r.t. ‖ · ‖. We
rely on several lemmas, whose proofs can be found
in Appendix A. The first three establish conditions
under which (4) satisfies the triangle inequality (3d),
symmetry (3c), and weak property (3e), respectively:

Lemma 1. Given a matrix norm ‖·‖, suppose that set
S is (a) contractive w.r.t. ‖ · ‖, and (b) closed under
multiplication. Then, for any A,B,C ∈ R

n×n, dS
given by (4) satisfies dS(A,C) ≤ dS(A,B)+dS(B,C).

Lemma 2. Given a matrix norm ‖ · ‖, suppose that
S ⊂ R

n×n is (a) contractive w.r.t. ‖ · ‖, and (b)
closed under inversion. Then, for all A,B ∈ R

n×n,
dS(A,B) = dS(B,A).

Lemma 3. If I ∈ S, then dS(A,A) = 0 for all A ∈
R
n×n.

Both the set of permutation matrices Pn and the
Stiefel manifold On are groups w.r.t. matrix multipli-
cation: they are closed under multiplication, contain
the identity I, and are closed under inversion. Hence,
if they are also contractive w.r.t. a matrix norm ‖ · ‖,
dPn and dOn defined in terms of this norm satisfy all
assumptions of Lemmas 1–3. We therefore turn our
attention to this property.

Lemma 4. Let ‖ · ‖ be any operator or entry-wise
norm. Then, S = Pn is contractive w.r.t. ‖ · ‖.

Hence, Theorem 1 follows as a direct corollary of
Lemmas 1–4. Indeed, dPn is non-negative, symmetric
by Lemmas 2 and 4, satifies the triangle inequality by
Lemmas 1 and 4, as well as property (3e) by Lemma
3; hence dPn is a pseudometric over R

n×n. Our next
lemma shows that the Stiefel manifold On is contrac-
tive for 2-norms:

Lemma 5. Let ‖ · ‖ be the operator 2-norm or the
Frobenius norm. Then, S = On is contractive w.r.t. ‖·
‖.

Theorem 3 follows from Lemmas 1–3 and Lemma 5,
along with the the fact that On is a group. Note that
On is not contractive w.r.t. other norms, e.g., ‖ · ‖1 or
‖ · ‖∞. Lemma 4 along with the Birkoff-von Neumann
theorem imply that W

n is also contractive:

Lemma 6. Let ‖ · ‖ be any operator or entry-wise
norm. Then, Wn is contractive w.r.t. ‖ · ‖.

The Birkhoff polytope Wn is not a group, as it is not
closed under inversion. Nevertheless, it is closed under
transposition; in establishing (partial) symmetry of
dWn , we leverage the following lemma:

Lemma 7. Suppose that ‖ · ‖ is transpose invari-
ant, and S is closed under transposition. Then,
dS(A,B) = dS(B,A) for all A,B ∈ S

n.

The first part of Theorem 2 therefore follows from
Lemmas 1, 3, and 6, as W

n is closed under trans-
position, contains the identity I, and is closed under
multiplication, while all entry-wise norms are trans-
pose invariant. Operator norms are not transpose
invariant. However, if ‖ · ‖ is an operator norm, or
Ω = R

n×n, then Lemma 6 and Lemma 1 imply that
dWn satisfies non-negativity (3a) and the triangle in-
equality (3d), while Lemma 3 implies that it satisfies
(3e). These properties are inherited by extension d̄S ,
which also satisfies symmetry (3c), and Theorem 2
follows. �

4 Incorporating Metric Embed-
dings

We have seen that the chemical distance dPn can be
relaxed to dWn or dOn , gaining tractability while still
maintaining the metric property. In practice, nodes
in a graph often contain additional atributes that one
might wish to leverage when computing distances.
In this section, we show that such attributes can be
seamlessly incorporated in dS either as soft or hard
constraints, without violating the metric property.
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Metric Embeddings. Given a graph GA of size n,
a metric embedding of GA is a mapping ψA : [n] → Ω̃
from the nodes of the graph to a metric space (Ω̃, d̃).
That is, ψA maps nodes of the graph to Ω̃, where
Ω̃ is endowed with a metric d̃. We refer to a graph
endowed with an embedding ψA as an embedded graph,
and denote this by (A,ψA), where A ∈ R

n×n is the
adjacency matrix of GA. We list two examples:

Example 1: Node Attributes. Consider an embedding
of a graph to (Rk, ‖ · ‖2) in which every node v ∈ V is
mapped to a k-dimensional vector describing “local”
attributes. These can be exogenous: e.g., features
extracted from a user’s profile (age, binarized gender,
etc.) in a social network. Alternatively, attributes
may be endogenous or structural, extracted from the
adjacency matrix A, e.g., the node’s degree, the size
of its k-hop neigborhood, its page-rank, etc.
Example 2: Node Colors. Let Ω̃ be an arbitrary finite
set endowed with the Kronecker delta as a metric,
that is, for s, s′ ∈ Ω̃, d̃(s, s′) = 0 if s = s′, while
d̃(s, s′) = ∞ if s 6= s′. Given a graph GA, a mapping
ψA : [n] → Ω̃ is then a metric embedding. The values
of Ω̃ are invariably called colors or labels, and a graph
embedded in Ω̃ is a colored or labeled graph. Colors
can again be exogenous or structural: e.g., if the graph
represents an organic molecule, colors can correspond
to atoms, while structural colors can be, e.g., the
output of the WL algorithm (see Appendix D) after
k iterations.

As discussed below, node attributes translate to
soft constraints in metric (4), while node colors corre-
spond to hard constraints. The unified view through
embeddings allows us to establish metric properties
for both simultaneously (c.f. Thm. 4 and 5) .

Embedding Distance. Consider two embedded
graphs (A,ψA), (B,ψB) of size n that are embed-
ded in the same metric space (Ω̃, d̃). For u ∈ [n]
a node in the first graph, and v ∈ [n] a node in
the second graph, the embedded distance between
the two nodes is given by d̃(ψA(u), ψB(v)). Let
DψA,ψB

= [d̃(ψA(u), ψB(v))]u∈V,v∈V ∈ R
n×n
+ be the

corresponding matrix of embedded distances. After
mapping nodes to the same metric space, it is natural
to seek P ∈ Pn that preserve the embedding distance.

This amounts to finding a P ∈ Pn that minimizes:

tr
(

P>DψA,ψB

)

=
∑

u,v∈[n] Pu,vd̃(ψA(u), ψB(v)).

(5)

Note that, in the case of colored graphs and the Kro-
necker delta distance, minimizing (5) finds a P ∈ Pn

that maps nodes in A nodes in B of equal color. It
is not hard to verify1 that minP∈Pn tr

(

P>DψA,ψB

)

induces a metric between graphs embedded in (Ω̃, d̃).
Despite the combinatorial nature of Pn, (5) is a maxi-
mum weighted matching problem, which can be solved
through, e.g., the Hungarian algorithm [40] in poly-
nomial time in n. We note that this metric is not
as expressive as (4): depending on the definition of
the embeddings ψA, ψB , attributes may only capture
“local” similarities between nodes, as opposed to the
“global” view of a mapping attained by (4).
A Unified, Tractable Metric. Motivated by the
above considerations, we focus on unifying the “global”
metric (4) with the “local” metrics induced by arbi-
trary graph embeddings. Proofs for the two theorems
below are provided in the supplement. Given a metric
space (Ω̃, d̃), let Ψn

Ω̃
= {ψ : [n] → Ω̃} be the set of all

mappings from [n] to Ω̃. Then, given two embedded
graphs (A,ψA), (B,ψB) ∈ R

n×n × Ψn
Ω̃

, we define:

dS ((A,ψA), (B,ψB)) = min
P∈S

[

‖AP − PB‖ + . . .

+ tr(P>DψA,ψB
)
]

(6)

for some compact set S ⊂ R
n×n and matrix norm ‖·‖.

Our next result states that incorporating this linear
term does not affect the pseudometric property of dS .

Theorem 4. If S = Pn and ‖ · ‖ is an arbitrary
entry-wise or operator norm, then dS given by (6)
is a pseudometric over the set of embedded graphs
Ω = R

n×n × Ψn
Ω̃

.

We stress here that this result is non-obvious: is not
true that adding any linear term to dS leads to a
quantity that satisfies the triangle inequality. It is
precisely because DψA,ψB

contains pairwise distances
that Theorem 4 holds. We can similarly extend The-
orem 2:

1This follows from Thm. 4 for A = B = 0, i.e., for distances
between embedded graphs with no edges.
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clustering performance for hierarchical agglomerative
clustering using the Ward method, which performed
best in Fig. 1(a). Fig. 2(a) shows the fraction of mis-
classified graphs as the fraction of TIVs introduced
increases. To incur as small a perturmbation on dis-
tances as possible, we introduce TIVs as follows: For
every three graphs, A,B,C, with probability p, we set
d(A,C) = d(A,B) + d(B,C). Although this does not
introduce a TIV w.r.t. A,B, and C, this distortion
does introduce TIVs w.r.t. other triplets involving A
and C. We repeat this 20 times for each algorithm
and each value of p, and compute the average fraction
of TIVs, shown in the x-axis, and the average fraction
of misclassified graphs, shown in the y-axis. As little
as 1% TIVs significantly deteriorate clustering perfor-
mance. We also see that, even after introducing TIVs,
clustering based on metrics outperforms clustering
based on non-metrics.

Comparison to Chemical Distance. We compare
how different distance scores relate to the chemical dis-
tance EXACT through two experiments on the small
graphs (computation on larger graphs is prohibitive).
In Figure 2(b), we compare the distances between
small graphs with 7 nodes produced by the differ-
ent algorithms and EXACT using the DISTATIS
method of [1]. Let D ∈ R

835×835
+ be the matrix of dis-

tances between graphs under an algorithm. DISTATIS
computes the normalized Laplacian of this matrix,

given by L = −UDU/‖UDU‖2 where U = I − 11
>

n .
The DISTATIS score is the cosine similarity of such
Laplacians (vectorized). We see that our metrics
produce distances attaining high similarity with EX-

ACT, though NetAlignBP has the highest simi-
larity. We measure proximity to EXACT with an
additional test. Given D, we compute the nearest
neighbor (NN) meta-graph by connecting a graph in
D to every graph at distance less than its average
distance to other graps. This results in a (labeled)
meta-graph, which we can compare to the NN meta-
graph induced by other algorithms, measuring the
fraction of distinct edges. Fig. 2(c) shows that our
algorithms perform quite well, though Natalie yields
the smallest distance to EXACT.

Incorporating Constraints. Computation costs
can be reduced through metric embeddings, as in (6).

To show this, we produce a copy of the 5242 node col-
laboration graph with permuted node labels. We then
run the WL algorithm (see Appendix D) to produce
structural colors, which induce coloring constraints
on P ∈ W

n. The support of P (i.e., the number
of variables in the optimization (4)), the support of
AP − PA (i.e., the number of non-zero summation
terms in the objective of (4)), as well as the execu-
tion time τ of the WL algorithm, are summarized
in Fig. 3(b). The original unconstrained problem in-
volves 52422 ≈ 27.4M variables. However, after using
WL and induced costraints, the effective dimension
of the optimization problem (4) reduces considerably.
This, in turn, speeds up convergence time, shown in
Fig. 3(b): including the time to compute constraints,
a solution is found 110 times faster after the introduc-
tion of the constraints.

6 Conclusion

Our work suggests that incorporating soft and hard
constraints has a great potential to further improve
the efficiency of our metrics. In future work, we intend
to investigate and characterize the resulting equiva-
lence classes under different soft and hard constraints
and to quantify these gains in efficiency, especially in
parallel implementations like ADMM. Determining
the necessity of the conditions used in proving that
dS is a metric is also an open problem.
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A Proof of Lemmas 1–7

A.1 Proof of Lemma 1

Consider P ′ ∈ arg minP∈S ‖AP − PB‖, and P ′′ ∈
arg minP∈S ‖BP − PC‖. Then, from closure under
multiplication, P ′P ′′ ∈ S. Hence,

dS(A,C) ≤ ‖AP ′P ′′ − P ′P ′′C‖

≤ ‖AP ′P ′′ − P ′BP ′′‖ + ‖P ′BP ′′ − P ′P ′′C‖

= ‖(AP ′ − P ′B)P ′′‖ + ‖P ′(BP ′′ − P ′′C)‖

≤ ‖AP ′ − P ′B‖ + ‖BP ′′ − P ′′C‖

where the last inequality follows from the fact that
P ′, P ′′ are contractions. �

A.2 Proof of Lemma 2

Observe that property (b) implies that, for all P ∈ S,
P is invertible and P−1 ∈ S. Hence, ‖AP−PB‖ =
‖P (P−1A−BP−1)P‖ ≤ ‖BP−1 −P−1A‖, as P is a
contraction w.r.t ‖ · ‖. We can similarly show that
‖BP−1 −P−1A‖ ≤ ‖AP−PB‖, hence ‖AP−PB‖ =
‖BP−1 − P−1A‖. As S is closed under inversion,
minP∈S f(P ) = minP :P−1∈S f(P ), so dS(A,B) =
minP∈S ‖BP−1 − P−1A‖ = minP :P−1∈S ‖BP−1 −
P−1A‖ = minP∈S ‖BP − PA‖ = dS(B,A). �

A.3 Proof of Lemma 3

If I ∈ S, then 0 ≤ dS(A,A) ≤ ‖AI − IA‖ = 0. �

A.4 Proof of Lemma 4

Observe first that all vector p-norms are invariant
to permutations a vector’s entries; hence, for any
vector x ∈ R

d, if P ∈ Pn, ‖Px‖p = ‖x‖p. Hence, if
‖ · ‖ is an operator p-norm, ‖P‖ = 1, for all P ∈ S.
Every operator norm is submultiplicative; as a result
‖PA‖ ≤ ‖P‖‖A‖ = ‖A‖ and, similarly, ‖AP‖ ≤ ‖A‖,
so the lemma follows for operator norms. On the
other hand, if ‖ · ‖ is an entry-wise norm, then ‖A‖
is invariant to permutations of either A’s rows or
columns. Matrices PA and AP precisely amount to
such permutations, so ‖PA‖ = ‖AP‖ = ‖A‖ and the
lemma follows also for entrywise norms. �

A.5 Proof of Lemma 5

Any U ∈ On is an orthogonal matrix; hence, ‖U‖2 =
‖U‖F = 1. Both norms are submultiplicative: the first
as an operator norm, the second from the Cauchy-
Schwartz inequality. Hence, for U ∈ On, we have
‖UA‖ ≤ ‖U‖‖A‖ = ‖A‖. �

A.6 Proof of Lemma 6

By the Birkoff-con Neumann theorem [11], W
n =

conv(Pn). Hence, for any W ∈ W
n there exist

Pi ∈ Pn, θi > 0, i = 1, . . . , k, such that W =
∑k
i=1 θiPi and

∑k
i=1 θi = 1. Both operator and en-

trywise p-norms are convex functions; hence, by
Jensen’s inequality, for any A ∈ R

n×N : ‖WA‖ ≤
∑k
i=1 θi‖PiA‖ ≤

∑k
i=1 θi‖A‖ = ‖A‖ where the last in-

eqality follows by Lemma 4. The statement ‖AW‖ ≤
‖A‖ follows similarly. �

A.7 Proof of Lemma 7

By transpose invariance and the symmetry of A
and B, we have that: ‖AP − PB‖ = ‖BP> −
P>A‖. Moreover, as S is closed under transposition,
minP∈S f(P ) = minP>∈S f(P ). Hence, dS(A,B) =
minP∈S ‖BP> −P>A‖ = minP>∈S ‖BP> −P>A‖ =
dS(B,A). �

B Proof of Theorems 4 and 5

We begin by establishing conditions under which dS
satisfies the triangle inequality (3d). We note that,
in contrast to Lemma 1, we require the additional
condition that S ⊆ W

n, which is not satisfied by On.

Lemma 8. Given a norm ‖ · ‖, suppose that
S is (a) contractive w.r.t. ‖ · ‖, (b) closed un-
der multiplication, and (c) is a subset of W

n,
i.e., contains only doubly stochastic matrices.
Then, for any (A,ψA), (B,ψB), (C,ψC) in R

n×n ×
ΨΩ̃, dS((A,ψA), (C,ψB)) ≤ dS((A,ψA), (B,ψB)) +
dS((B,ψB), (C,ψC)).

Proof. Consider

P ′ ∈ arg min
P∈S

(

‖AP − PB‖ + tr
(

P>DψA,ψB

))

,
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and

P ′′ ∈ arg min
P∈S

(

‖BP − PC‖ + tr
(

P>DψB ,ψC

))

.

Then, from closure under multiplication, P ′P ′′ ∈ S.
We have that

dS((A,ψA), (C,ψC)) ≤ ‖AP ′P ′′ − P ′P ′′C‖

+ tr
[

(P ′P ′′)>DψAψC

]

As in the proof of Lemma 1, we can show that

‖AP ′P ′′ − P ′P ′′C‖ ≤ ‖AP ′ − P ′B‖ + ‖BP ′′ − P ′′C‖

using the fact that both P ′ and P ′′ are contractions,
while

tr
[

(P ′P ′′)>DψAψC

]

=

=
∑

u,v∈[n]

∑

k∈[n]

(

P ′
ukP

′′
kvd̃(ψA(u), ψC(v)))

)

≤
∑

u,v∈[n]

∑

k∈[n]

[

P ′
ukP

′′
kv

(

d̃(ψA(u), ψB(k))

+ d̃(ψB(k), ψC(v))
)]

(as d̃ is a metric, andP ′, P ′′are non-negative)

=
∑

u,k∈[n]

P ′
uk d̃(ψA(u), ψB(k))

∑

v∈[n]

P ′′
kv

+
∑

k,v∈[n]

P ′′
kvd̃(ψB(k), ψC(v))

∑

u∈[n]

P ′
uk

≤ tr
(

(P ′)>DψA,ψB

)

+ tr
(

(P ′′)>DψB ,ψC

)

,

where the last inequality follows as both P, P> are
‖ · ‖1-norm bounded by 1 for every P ∈ S.

The weak property (3e) is again satisfied provided
the identity is included in S.

Lemma 9. If I ∈ S, then dS((A,ψA), (A,ψA)) = 0
for all A ∈ R

n×n.

Proof. Indeed, 0 ≤ dS((A,ψA, (A,ψA)) ≤ ‖AI −
IA‖ +

∑

u∈[n] d̃(ψA(u), ψA(u)) = 0.

To attain symmetry over Ω = R
n×n, we again rely

on closure under inversion, as in Lemma 10; nonethe-
less, in contrast to Lemma 10, due to the linear term,
we also need to assume orthogonality of S.

Lemma 10. Given a norm ‖ · ‖, suppose that S (a)
is contractive w.r.t. ‖ · ‖, (b) is closed under inver-
sion, and (c) is a subset of On, i.e., contains only
orthogonal matrices. Then, dS((A,ψA), (B,ψB)) =
dS((B,ψB), (A,ψA)) for all (A,ψA), (B,ψB) ∈
R
n×n × ΨΩ̃.

Proof. As in the proof of Lemma 2, we can show that
contractiveness w.r.t. ‖ · ‖ along with closure under in-
version imply that: ‖AP − PB‖ = ‖BP−1 − P−1A‖.
As S is closed under inversion, minP∈S f(P ) =
minP :P−1∈S f(P ) for all f : S → R, while orthog-
onality implies P−1 = P> for all P ∈ S. Hence,
dS((A,ψA), (B,ψB)) equals:

min
P∈S

[

‖AP − PB‖ + tr
(

P>DψA,ψB

)]

= min
P∈S

[

‖BP−1 − P−1A‖ + tr
(

P−1DψA,ψB

)]

= min
P∈S

[

‖BP−1 − P−1A‖ + tr

(

(

P−1
)>
D>
ψA,ψB

)]

= min
P−1∈S

[

‖BP−1 − P−1A‖ + tr

(

(

P−1
)>
D>
ψA,ψB

)]

= dS((B,ψB), (A,ψA)).

Theorem 4 therefore follows from the above lemmas,
as S = Pn contains I, it is closed under multiplication
and inversion, is a subset of Wn∩On, and is contractive
w.r.t. all operator and entrywise norms. Theorem 5
also follows by using the following lemma, along with
Lemmas 8 and 9.

Lemma 11. Suppose that ‖ · ‖ is transpose invari-
ant, and S is closed under transposition. Then,
dS((A,ψA), (B,ψB)) = dS((B,ψB), (A,ψA)) for all
(A,ψA), (B,ψB) ∈ S

n × ΨΩ̃.

Proof. By transpose invariance of ‖ · ‖ and the sym-
metry of A and B, we have that: ‖AP − PB‖ =
‖BP> − P>A‖. Moreover, as S is closed under
transposition, minP∈S f(P ) = minP>∈S f(P ) for any
f : S → R. Hence, dS((A,ψA), (B,ψB)) equals

min
P∈S

[

‖AP − PB‖ + tr
(

P>DψA,ψB

)]

= min
P∈S

[

‖BP> − P>A‖ + tr
(

PD>
ψA,ψB

)]

= min
P>∈S

‖BP> − P>A‖ + tr
(

(P>)>DψB ,ψA

)

= dS((B,ψB), (A,ψA)).
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C Metric Computation Over
the Stiefler Manifold.

In this section, we describe how to compute the metric
dS in polynomial time when S = On and ‖ · ‖ is
the Frobenious norm or the operator 2-norm. The
algorithm for the Frobenius norm, and the proof of
its correctness, is due to [57]; we include it in this
appendix for completeness, along with its extension
to the operator norm.

Both cases make use of the following lemma:

Lemma 12. For any matrix M ∈ R
n×n and any

matrix P ∈ On we have that ‖PM‖ = ‖MP‖ = ‖M‖,
where ‖ · ‖ is either the Frobenius or operator 2-norm.

Proof. Recall that the operator 2-norm ‖ · ‖2 is
‖M‖2 = supx6=0 ‖Mx‖2/‖x‖2 =

√

σmax(M>M) =
√

σmax(MM>) = ‖M>‖2. where σmax denotes
the largest singular value. Hence, ‖PM‖2 =
supx6=0 ‖PMx‖2/‖x‖2 =

√

σmax(M>P>PM) =
√

σmax(M>M) = ‖M‖2. as P>P = I. Using the
fact that ‖M‖2 = ‖M>‖2 for all M ∈ R

n×n, as
well as that PP> = I, we can show that ‖MP‖2 =
‖P>M>‖2 = ‖M>‖2 = ‖M‖2.

The Frobenius norm is ‖M‖F =
√

tr(M>M) =
√

tr(MM>) = ‖M>‖F , hence ‖PM‖F =
√

tr(M>P>PM) =
√

tr(M>M) = ‖M‖F and, as
in the case of the operator norm, we can similarly
show ‖MP‖F = ‖P>M>‖F = ‖M>‖F = ‖M‖F .

In both norm cases, for A,B ∈ S
n, we can com-

pute dS using a simple spectral decomposition. Let
A = UΣAU

T and B = V ΣBV
T be the spectral de-

composition of A and B. As A and B are real and
symmetric, we can assume U, V ∈ On. Recall that
U−1 = U> and V −1 = V >, while ΣA and ΣB are
diagonal and contain the eigenvalues of A and B
sorted in increasing order; this orderning matters for
computations below.

The following theorem establishes that this decom-
position readily yields the distance dS , as well as the
optimal orthogonal matrix P ∗, when ‖ · ‖ = ‖ · ‖F :

Theorem 6 ([57]). dS(A,B) , minP∈S ‖AP −
PB‖F = ‖ΣA − ΣB‖F and the minimum is attained
by P ∗ = UV >.

Proof. The proof makes use of the following lemma
by [30].

Lemma 13. If A and B are Hermitian matrices with
eigenvalues a1 ≤ a2 ≤ ... ≤ an and b1 ≤ b2 ≤ ... ≤ bn
then

‖A−B‖2
F ≥

n
∑

i=1

(ai − bi)
2 (7)

Remark 1. Note that if ΣA and ΣB are diagonal
matrices with the ordered eigenvalues of A and B
in the diagonal, then Lemma 13 can be written as
‖A−B‖F ≥ ‖ΣA − ΣB‖F .

For any P ∈ On and ‖ · ‖ = ‖ · ‖F we have

‖AP − PB‖ = ‖(A− PBP−1)P‖
Lem. 12

= ‖A− PBP>‖

= ‖UΣAU
> − PV ΣBV

>P>‖

= ‖U(ΣA − U>PV ΣBV
>P>U)U>‖

Lem. 12
= ‖ΣA − U>PV ΣBV

>P>U‖

= ‖ΣA − ∆ΣB∆>‖

where we define ∆ , U>PV . As a product of orthog-
onal matrices, ∆ ∈ On. Notice that

‖ΣA − ∆ΣB∆>‖ =

= ‖ΣA − ∆ΣA∆> + ∆(ΣB − ΣA)∆>‖

≤ ‖ΣA − ∆ΣA∆>‖ + ‖∆(ΣB − ΣA)∆>‖

Lem. 12
= ‖ΣA − ∆ΣA∆>‖ + ‖ΣB − ΣA‖.

Therefore, for any P ∈ On, ‖ΣA − ΣB‖ ≤ dS(A,B) ≤
‖ΣA − ∆ΣA∆>‖ + ‖ΣB − ΣA‖, where the first in-
equality follows by Lemma 13 if we notice that
‖AP − PB‖ = ‖A− PBP−1‖ and that PBP−1 and
B have the same spectrum for any P . If we choose
P = UV > then ∆ = I and the result follows.

We can compute dS when S = On and ‖ · ‖ is the
operator norm in the exact same way.

Theorem 7. Let ‖ · ‖ = ‖ · ‖2 be the operator 2-norm.
Then, dS(A,B) , minP∈S ‖AP − PB‖2 = ‖ΣA −
ΣB‖2 and the minimum is attained by P ∗ = UV >.

Proof. The proof follows the same steps as the proof of
Theorem 6, using Lemma 14 below instead of Lemma
13.
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Lemma 14. If A and B are Hermitian matrices with
eigenvalues a1 ≤ a2 ≤ ... ≤ an and b1 ≤ b2 ≤ ... ≤ bn
then

‖A−B‖2 ≥ max
i

|ai − bi|. (8)

Remark 2. Note that if ΣA and ΣB are diagonal
matrices with the ordered eigenvalues of A and B
in the diagonal, then Lemma 14 can be written as
‖A−B‖2 ≥ ‖ΣA − ΣB‖2.

Proof of Lemma 14. Let B̃ = −B have eigenvalues
b̃1 ≤ b̃2 ≤ ... ≤ b̃n and let C = A+B̃ have eigenvalues
c1 ≤ c2 ≤ ... ≤ cn. We make use of the following
lemma by Weyl [31] to lower bound cn.

Lemma 15. If X and Y are Hermitian with eigen-
values x1 ≤ ... ≤ xn and y1 ≤ ... ≤ yn and if X + Y
has eigenvalues w1 ≤ ... ≤ wn then xi−j+1 + yj ≤ wi
for all i = 1, . . . , n and j = 1, . . . , i.

If we choose X = B̃, Y = A and i = n we get
aj + b̃n+1−j ≤ cn for all j = 1, . . . , n.

Since b̃n+1−j = −bj we get that aj − bj ≤ cn, for
any j. Similarly, by exchanging the role of A and B,
we can lower bound the largest eigenvalue of B −A,
say dn, by bj −aj for any j. Notice that, by definition
of the operator norm and the fact that A − B is
Hermitian, ‖A − B‖2 ≥ |cn| and ‖B − A‖2 ≥ |dn|.
Since ‖B−A‖2 = ‖A−B‖2 we have that ‖A−B‖2 ≥
max{|cn|, |dn|} ≥ max{cn, dn} ≥ max{aj − bj , bj −
aj} = |aj − bj | for all j. Taking the maximum over
j we get that ‖A − B‖2 ≥ maxj |aj − bj |, and the
lemma follows.

The proof of Thm. 7 proceeds along the same steps
as the above proof, using again the fact that, by
Lemma 12, ‖M‖2 = ‖MP‖2 = ‖PM‖2 for any P ∈
On and any matrix M , along with Lemma 15.

D The Weisfeiler-Lehman
(WL) Algorithm.

The WL algorithm [60] is a graph isomorphism heuris-
tic. To gain some intuition on the algorithm, note
that two isomorphic graphs must have the same de-
gree distribution. More broadly, the distributions of

k-hop neighborhoods in the two graphs must also be
identical. Building on this, to test if two undirected,
unweighted graphs are isomorphic, WL colors the
nodes of a graph G(V,E) iteratively. At iteration 0,
each node v ∈ V receives the same color c0(v) := 1.
Colors at iteration k + 1 ∈ N are defined recursively

via ck+1(v) := hash

(

sort

(

clist
k
v

))

where hash is a per-

fect hash function, and clist
k
v = [ck(u) : (u, v) ∈ E)] is

a list containing the colors of all of v’s neighbors at
iteration k. Intuitively, two nodes in V share the same
color after k iterations if their k-hop neighborhoods
are isomorphic. WL terminates when the partition
of V induced by colors is stable from one iteration to
the next. This coloring extends to weighted directed
graphs by appending weights and directions to colors
in clist

k
v . After coloring two graphs GA, GB, WL de-

clares a non-isomorphism if their color distributions
differ. If not, then they may be isomorphic and WL
gives a set of constraints on candidate isomorphisms:
a permutation P under which AP = PB must map
nodes in GA to nodes in GB of the same color.

E Algorithms and Implementa-
tion Details

We outline here additional impementation details
about the algorithms summarized in Table 1.

• NetAlignBP, IsoRank, SparseIsoRank and
NetAlignMR, for which code is publicly available
[34], are described by [9]. Natalie is described in
[22]; code is again available [21]. All five algorithms
output P ∈ Pn.

• The algorithm in [43] outputs one P ∈ Pn and one
P ′ ∈ W

n. We use P ∈ Pn to compute ‖AP −PB‖1

and call this InnerPerm. We use P ′ ∈ W
n to

compute ‖AP ′ −P ′B‖1 and ‖AP ′ −P ′B‖2 and call
these algorithms InnerDSL1 and InnerDSL2 re-
spectively. We use our own CVX-based projected
gradient descent solver for the non-convex optimiza-
tion problem the authors propose.

• DSL1 and DSL2 denote dS(A,B) when S ∈ W
n

and ‖·‖ is ‖·‖1 (element-wise) and ‖·‖F , respectively.
We implement them in Matlab (using CVX) as well
as in C, aimed for medium size graphs and multi-
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core use. We also implemented a distributed version
in Apache Spark [63] that scales to very large graphs
over multiple machines based on the Alternating
Directions Method of Multipliers [14].

• ORTHOP and ORTHFR denote dS(A,B) when
S ∈ On and ‖ · ‖ is ‖ · ‖2 (operator norm) and
‖ · ‖F respectively. We compute them using an
eigendecomposition (See Appendix C).

• For small graphs, we compute dPn(A,B) using our
brute-force GPU-based code. For a single pair of
graphs with n ≥ 15 nodes, EXACT already takes
several days to finish. For ‖·‖ = ‖·‖1 in dS (element-
wise or matrix norm), we have implemented the
chemical distance as an integer value LP and solved
it using branch-and-cut. It did not scale well for
n ≥ 15.

• We implemented the WL algorithm over Spark to
run, multithreaded, on a machine with 40 CPUs.

We use all public algorithms as black boxes with their
default parameters, as provided by the authors.

F Graphs of Different Sizes

For simplicity, we described our framework for graphs
of equal sizes. However, we can extended in different
ways to produce a metric for graphs of different sizes.
These extensions all start by extending two graphs,
GA and GB, with dummy nodes such that the new
graphs G′

A and G′
B have the same number of nodes.

If GA has nA nodes and GB has nB nodes we can,
for example, add nB dummy nodes to GA and nA
dummy nodes to GA. Once we have G′

A and G′
B

of equal size, we can use the methods we already
described to compute a distance between G′

A and G′
B

and return this distance as the distance between GA
and GB .

The different ways of extending the graphs differ
in how the dummy nodes connect to existing graph
nodes, how dummy nodes connect to themselves, and
what kind of penalty we introduce for associating
dummy nodes with existing graph nodes. Method 1:
One way of extending the graphs is to add dummy
nodes and leave them isolated, i.e., with no edges to ei-
ther existing nodes or other dummy nodes. Although
this might work when both graphs are dense, it might

lead to non desirable results when one of the graphs is
sparse. For example, let GA be 3 isolated nodes and
GB be the complete graph on 4 nodes minus the edges
forming triangle {(1, 2), (2, 3), (3, 1)}. Let us assume
that S = Pn, such that, when we compute the dis-
tance between GA and GB , we produce an alignment
between the graphs. One desirable outcome would
be for GA to be aligned with the three nodes in GB
that have no edges among them. This is basically
solving the problem of finding a sparse subgraph in-
side a dense graph. However, computing dS(A′, B′),
where A′ and B′ are the extended adjacency matrices,
could equally well align GA with the 3 dummy node
of G′

B. Method 2: Add dummy nodes and connect
each dummy node to all existing nodes and all other
dummy nodes. This avoids the issue described for
method 1 but creates a similar non desirable situa-
tion: since the dummy nodes in each extended graph
form a click, we might align GA, or GB, with just
dummy nodes, instead of producing an alignment be-
tween existing nodes in GA and existing nodes in GB .
Method 3: If both GA and GB are unweighted graphs,
a method that avoids both issues above (aligning a
sparse graph with isolated dummy nodes or aligning
a dense graphs with clicks of dummy nodes) is to
connect each dummy node to all existing nodes and
all other dummy nodes with edges of weight 1/2. This
method works because, when S = Pn, it discourages
alignments of pairs existing-existing nodes in GA with
pairs dummy-dummy nodes or pairs dummy-existing
nodes in GB , and vice versa. Method 4: One can also
discourage aligning existing node with dummy nodes
by introducing a linear term as in (6).
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