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SUMMARY

A large amount of multi-species functional genomic
data from high-throughput assays are becoming
available to help understand the molecular mecha-
nisms for phenotypic diversity across species. How-
ever, continuous-trait probabilistic models, which
are key to such comparative analysis, remain un-
der-explored. Here we develop a new model, called
phylogenetic hidden Markov Gaussian processes
(Phylo-HMGP), to simultaneously infer heteroge-
neous evolutionary states of functional genomic fea-
tures in a genome-wide manner. Both simulation
studies and real data application demonstrate
the effectiveness of Phylo-HMGP. Importantly, we
applied Phylo-HMGP to analyze a new cross-spe-
cies DNA replication timing (RT) dataset from the
same cell type in five primate species (human, chim-
panzee, orangutan, gibbon, and green monkey). We
demonstrate that our Phylo-HMGP model enables
discovery of genomic regions with distinct evolu-
tionary patterns of RT. Our method provides a
generic framework for comparative analysis of
multi-species continuous functional genomic signals
to help reveal regions with conserved or lineage-
specific regulatory roles.

INTRODUCTION

Multi-species functional genomic data from various high-

throughput assays (e.g., chromatin immunoprecipitation seq-

uencing of transcription factor proteins or histone marks) are

highly informative for the comparative analysis of gene regu-

lation conservation and differences between human and

other mammalian species (Villar et al., 2015; Cotney et al.,

2013; Brawand et al., 2011). The signals from such data are

continuous in nature. However, in most analyses, the contin-

uous signals are often discretized by selected thresholds or

being transformed to discrete values for distinctive feature

patterns before subsequent cross-species comparisons,
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causing loss of information from the original data. Contin-

uous-trait models, which are key to the modeling of func-

tional genomic signals, are gaining increasing attention in

genome-wide comparative genomic studies (Naval-Sánchez

et al., 2015; Rohlfs et al., 2013). However, computational

methods are under-explored to fully model continuous func-

tional genomic data in the context of multi-species compari-

sons. In particular, to the best of our knowledge, there are no

existing algorithms available to simultaneously infer hetero-

geneous continuous-trait evolutionary models along the

entire genome.

Several types of continuous-trait evolutionary models have

been developed for individual loci. One basic model (Felsen-

stein, 1985; Pagel, 1999; Freckleton, 2012) assumes that

continuous traits evolve by Brownian motion. This model has

been extended to more complicated Gaussian processes

such as the Ornstein-Uhlenbeck (OU) process (Hansen,

1997; Butler and King, 2004; Hansen et al., 2008). However,

the existing methods that use continuous-trait evolutionary

models in comparative genomics either apply a single evolu-

tionary model to signals of selected regions, or test different

evolutionary model assumptions with prior knowledge at

selected regions (Rohlfs et al., 2013; Brawand et al., 2011;

Naval-Sánchez et al., 2015). In other words, the continuous-

trait evolutionary models have not been utilized in simulta-

neously estimating heterogeneous phylogenetic trees across

different loci along the entire genome based on functional

genomic data.

In this paper, we develop a new continuous-trait probabilistic

model for more accurate state estimation based on features

from different species using functional genomic signals. We

call our model phylogenetic hidden Markov Gaussian pro-

cesses (Phylo-HMGP). Our newmethod incorporates the evolu-

tionary affinity among multiple species into the hidden Markov

model (HMM) for exploiting both temporal dependencies

across species in the context of evolution and spatial depen-

dencies along the genome in a continuous-trait model. Note

that our Phylo-HMGP is fundamentally different from the exist-

ing models that are restricted to discrete state space of the

studied traits (Siepel and Haussler, 2005; Hobolth et al., 2007;

Liu et al., 2014; Jensen and Pedersen, 2000; Lunter and Hein,

2004; Qu et al., 2018). In particular, Phylo-HMMs define a sto-

chastic process of discrete-trait character changes (Siepel
1, July 25, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 1
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and Haussler, 2005), where different states estimated by Phylo-

HMMs can reflect different patterns of substitutions or back-

ground distributions. However, Phylo-HMMs do not handle

continuous signals. The models in (Jensen and Pedersen,

2000; Lunter and Hein, 2004) share similar mechanisms and

have the same limitations. In the recent phylo-epigenetic model

(Qu et al., 2018), the nature of the method is still based on tran-

sitions between discrete levels of observed signals, with the

need to discretize the traits. In this work, our Phylo-HMGP ex-

plores a new integrated attempt to utilize continuous-trait

evolutionary models with spatial constraints to more effectively

study the genome-wide features across species. Our model is

also flexible such that various continuous-trait evolutionary

models or assumptions can be incorporated according to the

actual problems. We believe that Phylo-HMGP provides a

generic framework, which can be applied to different types of

functional genomic signals, to more precisely capture the

evolutionary history of regulatory regions across different

species.

In this work, we generated a new cross-species DNA replica-

tion timing (RT) dataset from the same cell type in five primate

species (human, chimpanzee, orangutan, gibbon, and green

monkey). The RT program in eukaryotic cells duplicates the

genome with a highly regulated temporal pattern. Genome-

wide RT maps have revealed replication profile domains that

correlate with chromatin structure (Gindin et al., 2014; Como-

glio et al., 2015) and higher-order genome organization, such

as Hi-C A/B compartments and topologically associating do-

mains (TADs) (Rhind and Gilbert, 2013; Ryba et al., 2010;

Pope et al., 2014; Dileep et al., 2015; Solovei et al., 2016). It

is known that RT changes across half of the genome during

cell differentiation and disease (Ryba et al., 2011, 2012; Yue

et al., 2014; Rivera-Mulia et al., 2015; Dileep et al., 2015). In

addition, studies have shown conservation of RT between

human and mouse (Yaffe et al., 2010; Ryba et al., 2010; Yue

et al., 2014; Pope et al., 2014). Microscopy also revealed

that chromosome regions with early and late RT have specific

spatial localization preferences in the nucleus that are

conserved in evolution (Solovei et al., 2016). However, we

have limited understanding of how the RT program has evolved

in mammals. To the best of our knowledge, there is no existing

study to investigate the RT conservation and dynamics for

more than two mammalian species beyond the human-mouse

comparison. Here we apply Phylo-HMGP to reveal genome-

wide distributions of distinct evolutionary patterns of RT in

five primates. We found that constitutive early and constitutive

late RT regions, as defined from human embryonic stem cell

(ESC) differentiation (Ryba et al., 2011; Dileep et al., 2015),

exhibit a strong correlation with the predicted conserved early

RT and conserved late RT patterns. We also found distinct

gene functions associated with different RT evolution patterns.

In addition, the predicted RT patterns across species show

correlations with other genomic and epigenomic features,

including higher-order genome organization, cis-regulatory ele-

ments, chromatin marks, and transposable elements (TEs). Our

results from the comparative RT analysis in five primate species

demonstrate the potential of our Phylo-HMGP model to help

reveal regions with conserved or lineage-specific regulatory

roles for the entire genome.
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RESULTS

Overview of the Phylo-HMGP Model
Here we first provide an overview of the proposed model (Fig-

ure 1). The details of the model are described in the STAR

Methods. Our model aims to estimate different evolutionary pat-

terns from multi-species functional genomic signals. As illus-

trated in Figure 1C, the input contains the observed contin-

uous-trait signals from orthologous genomic regions from

multiple species. The output is a genome-wide partition where

neighboring genomic segments have different predicted states

of multi-species signals, reflecting different evolution patterns

of the signals being considered.

We define a Phylo-HMGP model as h = ðS;j;A;pÞ, where S

is the set of states, j is the set of phylogenetic models, A

is the state-transition probability matrix, and p represents the

initial state probabilities, respectively. Suppose there are M

hidden states. We have S = {s1,/,sM}, j = {j1,/,jM}, A = {aij},

1% i,j%M, and p = {p1,/,pM}. Figure 1A shows the state space

where different states are associated with varied phylogenetic

tree models. Each phylogenetic tree model is parameterized

with the OU processes, an example of which is shown in Fig-

ure 1B. Note that, in this paper, we focus on the OU process

and apply it to analyze cross-species RT data. We also discuss

and compare with Brownian motion process within the frame-

work (see the STAR Methods), which is also used as the

Gaussian process for realizations of jj to construct the emission

probability distributions, j = 1,/,M. jj differs under different

evolutionary models. The framework is flexible and other

Gaussian processes can also be embedded into the framework

by alternative definitions of jj.

Phylo-HMGP provides a generic framework to more effec-

tively incorporate multi-species functional genomic data into

the HMM for analyzing both temporal dependencies across spe-

cies in the phylogeny and spatial dependencies along the entire

genome in a continuous-trait model. The source code of Phylo-

HMGP can be accessed at: https://github.com/ma-compbio/

Phylo-HMGP.

Simulation Study Demonstrates the Robustness
of Phylo-HMGP
To explore whether incorporating evolutionary temporal con-

straints into the HMM can improve the accuracy of identifying

different evolutionary patterns, we applied our method to 12 syn-

thetic datasets in two types of simulation studies. We assessed

the performance based on Adjusted Mutual Information (AMI),

Normalized Mutual Information, Adjusted Rand Index (ARI), Pre-

cision, Recall, and F1 score (Manning et al., 2008; Vinh et al.,

2010) by comparing the predicated states with the ground truth

states (see the STAR Methods). We used HMM to generate the

samples in simulation study I (SS-I), while simulation study II

(SS-II) did not use HMM and was instead based on a Gaussian

Mixture Model (GMM). Both SS-I and SS-II contained six syn-

thetic datasets (sample size = 50,000 each), respectively.

Detailed descriptions of the simulated datasets are in the

STAR Methods.

We compared Phylo-HMGP-OU and Phylo-HMGP-BM with

the Gaussian-HMM method, the GMM method, and the

K-means clustering method in both SS-I and SS-II. For each

https://github.com/ma-compbio/Phylo-HMGP
https://github.com/ma-compbio/Phylo-HMGP
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Figure 1. Overview of the Phylo-HMGP

Model

(A) Example of the state space and state-transition

probabilities of the Phylo-HMGPmodel associated

with the continuous genomic data in (C). Si repre-

sents a hidden state. Each hidden state is deter-

mined by a phylogenetic model ji, which is

parameterized by the selection strengths ai,

Brownian motion intensities si, and the optimal

values qi of ancestor species and observed spe-

cies on the corresponding phylogenetic tree. ai, si,

and qi are all vectors.

(B) Illustration of the Ornstein-Uhlenbeck (OU)

processes along the species tree specified in (C).

X(t) represents the continuous trait at time t. The

trajectories of different colors along time corre-

spond to the evolution of the continuous trait in

different lineages specified by the corresponding

colors in (C), respectively. The time points t1, t2, t3,

and t4 represent the speciation time points, which

correspond to the speciation events shown in (C).

The observations of the five species also represent

an example of state S2 in (C).

(C) Simplified representation of input and output of

the Phylo-HMGP model. The five tracks of

continuous signals represent the observations

from five species. Si represents the underlying

hidden states. Specifically, the example is the

replication timing data, where ‘‘early’’ and ‘‘late’’

represent the early and late stages of replication

timing, respectively. The species tree alongside

the continuous data tracks shows the evolutionary

relationships among the five species in this study.

See also Figures S2, S8, and S9.
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dataset, we ran eachmethod 10 times. Eachmethodwas started

fromdifferent initializations and given the state number as 10.We

reported the average performance of the 10 runs as the final

performance of the respective method. We applied the same

regularization parameter to Phylo-HMGP-OU on all of the 12 da-

tasets, without tuning the parameter specifically on each data-

set. The results show that Phylo-HMGP-OU outperforms the

other methods on AMI, ARI, and F1 score on all of the six data-

sets in SS-I (Figure 2A; Table S1). In particular, Phylo-HMGP-

OU shows significant advantage in reaching higher ARI on

average in different datasets compared with the other methods.

In SS-II (Figure 2B; Table S2), the performance of Phylo-HMGP-

OU decreases occasionally (SS-II-1 and II-2) compared with

its performance in SS-I. However, Phylo-HMGP-OU still

outperforms the other methods in five of the six datasets.

Phylo-HMGP-BM reaches the highest performance on SS-I-1,

while Phylo-HMGP-OU maintains comparable performance

with Phylo-HMGP-BM on this dataset. These simulation results

strongly suggest that Phylo-HMGP-OU can achieve robust per-

formance even when the data are simulated from a non-HMM

model such as the GMM. Note that in the rest of the Results sec-

tion, we use ‘‘Phylo-HMGP’’ to refer to ‘‘Phylo-HMGP-OU.’’

Phylo-HMGP Reveals Genome-Wide Patterns of RT
across Primate Species
Next, we applied the Phylo-HMGP method to study different

evolutionary patterns of RT in primate genomes. We generated
genome-wide RT maps based on Repli-seq (Marchal et al.,

2018) in lymphoblastoid cells from five primate species,

including human, chimpanzee, orangutan, gibbon, and green

monkey. See the STAR Methods for the details on how we pro-

cessed the data.We then applied Phylo-HMGP to this multi-spe-

cies RT dataset. We set the state number as 30 based on estima-

tion from K-means clustering (see the STAR Methods and

Figure S3). We identified both conserved and lineage-specific

states with differences in RT patterns across species. Here we

classified the 30 states into five groups: conserved early (E),

conserved late (L), weakly conserved early (WE), weakly

conserved late (WL), and non-conserved (NC) (see the STAR

Methods). In the E group, all five species have early RT. In the

WE group, four species have early RT. We assign states to the

L group and the WL group similarly. The remaining states are

assigned to the NC group.

The representative RT signal patterns of the 30 predicted states

are shown in Figure 3A, with examples of the states and groups

shown in Figures 3B and 3D. Distributions of RT signals of the 5

species in each of the 30 states are shown in Figure S2, including

other lineage-specific patterns, conserved patterns, or divergent

patterns. States 1–8 are E or L states of RT, making up approxi-

mately 47.7% of the whole genome. States 9–18 display different

lineage-specific RT patterns. States 9 (Figure 3B) and 10 repre-

sent human-chimpanzee (hominini)-specific patterns of early RT

and late RT, respectively. State 11 shows human-chimpanzee-

orangutan (hominid)-specific early RT. States 12–18 reflect
Cell Systems 7, 1–11, July 25, 2018 3
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Figure 2. Evaluation Using Simulated Datasets

(A) Evaluation of Gaussian-HMM, GMM, K-means clustering, Phylo-HMGP-BM, and Phylo-HMGP-OU on six simulation datasets in simulation study I in terms of

AMI (Adjusted Mutual Information), ARI (Adjusted Rand Index), and F1 score.

(B) Evaluation of Gaussian-HMM, GMM, K-means clustering, Phylo-HMGP-BM, and Phylo-HMGP-OU on six simulation datasets in simulation study II in terms of

AMI, ARI, and F1 score. In both (A) and (B), the SE of the results of ten repeated runs for each method is also shown as the error bar.

See also Tables S1 and S2 and Figure S1.
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single-lineage-specific patterns, where one species differs from

all the other species.

Phylo-HMGP estimated the transition probabilities between

the 30 predicted states (Figure S4). We noticed that overall the

transition probabilities are higher within the E and L groups.

Phylo-HMGP also simultaneously estimated the model parame-

ters of selection strength, Brownian motion intensity, and

optimal values of the phylogenetic model associated with each

state (Figures S5 and S6). We found that the estimated parame-

ters correspond very well to the lineage-specific RT patterns. For

example, for states 9 and 10, the human-chimpanzee-specific

states, the estimated strongest selection strength happened

on the branch leading to human and chimpanzee, and strong

Brownianmotion intensity is also estimated for human and chim-

panzee. We observed similar correlations for other states. We

also compared Phylo-HMGP with the other methods on an eval-

uation dataset constructed from the RT data and found that

Phylo-HMGP outperforms other methods (see the STAR

Methods and Figure S7).

RT Evolution Patterns Correlate with A/B
Compartments and Histone Marks
Analysis based on Hi-C data has shown that the genome can be

divided into two compartments called A/B compartments (Lie-

berman-Aiden et al., 2009), with at least five subcompartments,

namely A1, A2, B1, B2, and B3, which have different genomic

and epigenomic properties (Rao et al., 2014). A1 and A2 sub-

compartments both show early RT, with the difference that rep-

lications in A2 regions finish later than A1. B2 and B3 subcom-

partments show late RT, while replications in B1 happen in the

middle of S-phase (Rao et al., 2014). We used the subcompart-

ment definitions in the human lymphoblastoid cell line GM12878

from (Rao et al., 2014) and calculated the enrichment of the five

subcompartments in the 30 predicted RT states. We observed

that different predicted RT evolution patterns show distinct en-

richments of the subcompartments. For example, the predicted

RT states in the E group (states 1–4) show the strongest correla-

tion with A1 or A2, while the predicted RT states in the L group

are enriched with B2 and B3. The majority of the states in the

NC group are most enriched with A2 or B1. States in the WE

group and WL group are enriched with A2/B1, and B2/B3,

respectively.

We next compared the enrichments of different histone marks

and CTCF binding site within each RT state. Figure 3A, panel 3

shows the enrichment distributions of histone marks and CTCF

binding site across the five predicted RT groups. These distribu-

tions are consistent with the epigenomic feature patterns of the

subcompartments that are enriched in the corresponding states.
Figure 3. RT Evolution Patterns Identified by Phylo-HMGP

(A) Panel 1 (leftmost): proportions of the 30 RT states on the entire genome. The RT

early (WE), weakly conserved late (WL), conserved late (L), and other stages (NC

responds to the state at the same row in panel 1, and columns are species. Each e

associated state. Panel 3: enrichment of different types of histone marks and C

enrichment of subcompartment A1, A2, B1, B2, and B3.

(B) Four examples of RT signal distributions in states with different patterns (stat

early RT).

(C) Comparison of predicted RT patterns with the constitutively early/late RT reg

(D) Examples of different RT states and RT groups in five species predicted by Phy

See also Figures S2–S7.
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We found that RT states in the E group show strong positive cor-

relation with active histone marks (e.g., H3K27ac, H3K36me3,

and H3K4me1) and the CTCF binding sites. On the contrary,

RT states in the L/WL groups show distinct depletion of these

histone marks and the CTCF binding sites. The majority of pre-

dicted states in the NC group instead exhibit variations in the en-

richments of different types of histone marks.

Among the NC states, state 9 is identified as a human-chim-

panzee-specific early RT state (Figure 3B). It displays a unique

pattern of histone mark enrichment, showing the strongest cor-

relation with H2A.Z (p < 13 10�7) compared with other predicted

states. Recent studies have reported that acetylated H2A.Z is

progressively enriched toward early RT loci (Du et al., 2018).

Another state with interesting features is state 4, an E state.

The RT is significantly early in human in state 4, similar to other

states in the E group. All of the other states in the E group (states

1–3) are strongly correlated with the A1 subcompartment. State

4, however, is enriched with the A2 subcompartment and ismore

positively correlated with H3K9me3, which generally has stron-

ger enrichment in A2 than A1 (Rao et al., 2014). Therefore, state

4 represents a distinct state in the E group. These results demon-

strate that Phylo-HMGP has the sensitivity to distinguish within

similar evolutionary patterns of RT.

Different RT Evolution Patterns Reflect Different
Functions
Previous studies have shown that different genomic regions

have different levels of cell-type specificity for RT, including

constitutively early (CE), constitutively late (CL), and more dy-

namic across different cell types (Ryba et al., 2011; Dileep

et al., 2015). We compared the states from Phylo-HMGP with

the constitutive and developmental RT patterns discovered

during ESC differentiation (Dileep et al., 2015), including CE,

CL, developmentally regulated (D), and undetermined. We found

that overall the CE or CL RT regions in the human genome

have high consistency with the strongly conserved RT

evolution patterns (Figure 3C). The findings are consistent with

previous observations in human-mouse RT comparison (Ryba

et al., 2011).

Among the CE regions that are also covered in the cross-spe-

cies RT comparisons by Phylo-HMGP, 99.45% of the regions

are assigned to the states of E or WE (p < 2.2 3 10�16). Also,

86.94% of the CL regions in human are within states of L or

WL (p < 2.2 3 10�16). In contrast, the D regions show more

diverse patterns across the five RT groups predicted by Phylo-

HMGP. This also suggests that the RT regions in lymphoblastoid

cells with similar RT profile across different cell types are highly

likely to be conserved in primates. However, a significant fraction
states are categorized into five groups: conserved early (E), weakly conserved

), respectively. Panel 2: patterns of the 30 states. Each row of the matrix cor-

ntry represents themedian of the RT signals of the corresponding species in the

TCF binding site (higher fold change represents higher enrichment). Panel 4:

e 1: E; state 5: L; state 22: WE; state 9: NC with human-chimpanzee-specific

ions identified across cell types.

lo-HMGP. TADs called by the Directionality Indexmethod are shown at the top.
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Figure 4. Comparisons between the RT Evolution Patterns and Other Genomic Features
(A) Example gene ontology (GO) analysis results of states 9, 11, and 14.

(B) Percentages of the distances between TAD boundaries and boundaries of predicted states in different intervals. The expected distances are calculated based

on randomly shuffled TADs. Two types of TADs from different methods are used, namely TADs called by the Directionality Index method and TADs called by

Arrowhead.

(C) Transposable element enrichment in different RT states.

(D)Motif enrichment in different lineage-specific RT states. State 9: human-chimpanzee-specific early RT. State 11: human-chimpanzee-orangutan-specific early

RT. State 14: orangutan-specific early RT. State 18: green monkey-specific early RT. See also Figure S2, Tables S3 and S4. The GO analysis results of other

lineage-specific RT states are included in Table S4.
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of conserved RT regions in primates also shows cell-type-spe-

cific RT patterns in human. We performed gene ontology (GO)

analysis for the conserved RT early regions with respect to the

constitutive/non-constitutive RT patterns using DAVID (Huang

et al., 2007), and found clear differences in gene functions (Table

S3). We further performed GO analysis for the lineage-specific

RT states (see Figure 4A; Table S4). We found that genes asso-

ciated with different states have different functions and biolog-

ical processes. For example, the hominini-specific early RT state
(state 9) is enriched with genes having sensory functions. These

analyses suggest that regions with different RT evolution pat-

terns may contain genes with distinct functions.

Boundaries of RT Evolution Patterns Correlate with TAD
Boundaries
Earlier studies discovered that TADs defined from Hi-C data

have high correspondence with replication domains (Pope

et al., 2014; Dileep et al., 2015). We next asked whether the
Cell Systems 7, 1–11, July 25, 2018 7
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states found by Phylo-HMGP correlate with the boundaries of

TADs. We used the TADs called by two methods, Directionality

Index (DI) (Dixon et al., 2012) and Arrowhead (Rao et al., 2014).

We named the TADs as DI TADs and Arrowhead TADs, the me-

dian lengths of which are 440 and 185 kb, respectively. For each

boundary of a TAD, we calculated the distance between the TAD

boundary and the nearest state boundary fromPhylo-HMGP.We

then calculated the percentages of boundary distances that fall

into four distance intervals, respectively, and estimated the

empirical distributions of boundary distances in the different in-

tervals by shuffling the TADs (see the STAR Methods).

We found that the boundary distances between the DI TADs

and the predicted RT states are significantly more enriched in

the interval [0kb, 12kb] than expected (Figure 4B, empirical p

value < 1 3 10�3). The percentage drops in the intervals that

correspond to increased boundary distances. The percentage

is significantly lower than expected in the fourth interval, which

covers the largest distances (empirical p value < 1 3 10�3).

The comparison based on Arrowhead TADs show similar results.

This analysis demonstrates the correlation between the bound-

aries of RT evolution states and the TAD boundaries.

RT Evolution Patterns Have Enrichment of Different
Transposable Elements
It is known that RT correlates with certain TE families, e.g., the

early RT regions are typically enriched with SINE elements

(Rhind and Gilbert, 2013). We next looked at the connection be-

tween RT evolution patterns and the involvement of TEs based

on RepeatMasker annotation. We obtained the RepeatMasker

annotations for each of the five primate species from the

UCSC Genome Browser (Casper et al., 2017). For the TE fam-

ilies shared among the five primate species, we calculated the

fold change of their enrichment in the orthologous regions of

each species in each state (Figure 4C). We found that there exist

distinct patterns of TE enrichment across different RT states

and groups. Alu elements are strongly involved in conserved

early RT states and depleted in conserved late RT states across

the five species, with a clear changing correlation with RT

across the five RT groups. On the contrary, L1 and LTR ele-

ments ERVL and ERV1 correlate negatively with early RT but

positively with late RT. TEs in the LTR class and DNA class

generally have more diversity in their distributions over states

in theWE,WL, and NC groups. We also found that the repetitive

sequence elements srpRNA, scRNA, and snRNA (based on

RepeatMasker annotations) have a strong positive correlation

with conserved early RT and negative correlation with

conserved late RT (p < 1 3 10�4), having a similar enrichment

pattern to Alu in the E, WL, and L groups. Although some of

these correlations (such as those with srpRNA, scRNA, and

snRNA) have not been reported before and further investiga-

tions are needed, this nevertheless demonstrates the potential

of our method to provide new insights into the impact of

sequence evolution on DNA RT.

Lineage-Specific Early RT Regions Harbor Unique TFBS
We then asked whether there are specific transcription factor

binding sites (TFBS) that are enriched in regions with specific

types of RT evolution patterns. We used FIMO (Grant et al.,

2011) to perform motif scanning in the orthologous open chro-
8 Cell Systems 7, 1–11, July 25, 2018
matin regions of each species (STAR Methods), using 635

position weight matrices (PWMs) of TF binding motifs from the

JASPAR 2016 core vertebrate motif database (Mathelier et al.,

2016). We then computed the motif frequency for each of the

PWMs for each species, using the threshold of p < 1 3 10�4,

and normalized the frequency by the open chromatin region

size. We used two types of tests jointly to identify TF binding mo-

tifs that may be enriched in predicted lineage-specific RT states.

First, within each lineage-specific RT state, we performed bino-

mial tests to find the motifs that are more enriched in the partic-

ular lineage than expected (p < 0.05). Second, we examined if the

species-specific enrichment of a motif in a state is also signifi-

cantly different from the genome-wide background distribution

(STAR Methods).

We identified sets of motifs that show lineage-specific

enrichment for the lineage-specific early RT states (Figure 4D).

Note that we checked whether the TFs in the lineage-specific

RT states that involve human are expressed and found that the

majority of them are expressed (STAR Methods). Also, we

found that the identified lineage-specific enriched TF binding

motifs vary in different states. However, there are still a num-

ber of TF binding motifs (or motifs with similar PWMs) shared

between different states. For example, FOXC1 is significantly

enriched in human and chimpanzee in the hominini-specific

state (state 9), and also enriched in green monkey in the green

monkey-specific state (state 18). Interestingly, many of the

corresponding TFs associated with species-specific early RT

are from the FOX family (e.g., FOXC1, FOXO3, and FOXD1),

the ELF family (e.g., ELF1 and ELF3), and the ETV family

(e.g., ETV3 and ETV6). TFs of the FOX family are known regu-

lators in B cells (Laurenti et al., 2013) (lymphoblastoid cells are

B cells), and FOXO3 was previously found to be crucial for

regulating cell-cycle progression through its binding partner-

ship with DNA replication factor Cdt1 (Zhang et al., 2012).

Many of the other identified TFs are also regulators in B cells,

such as EBF1, IRF8, RUNX2, and POU5F1 (Laurenti et al.,

2013). Although these findings need further studies to evaluate

their functional significance in lineage-specific biology, our

analysis points to the direction that connects lineage-specific

changes in cis-regulatory elements with lineage-specific

changes in RT.

DISCUSSION

In this paper, we developed Phylo-HMGP, which is a new contin-

uous-trait probabilistic model for more accurate genome-wide

state estimation based on features from different species using

functional genomic signals. The proposed Phylo-HMGP ex-

plores a new integrated framework to utilize the continuous-trait

evolutionary model with spatial constraints to more effectively

study the heterogeneous evolutionary feature patterns encoded

in the genome-wide functional genomic datasets acrossmultiple

species. Both simulation studies and real data application

demonstrate the advantage of Phylo-HMGP compared with

other methods. Importantly, we generated a new cross-species

RT dataset from the same cell type in five primate species (hu-

man, chimpanzee, orangutan, gibbon, and green monkey) to

study RT evolution patterns in primates for the first time using

Phylo-HMGP. Our results from the comparative RT analysis
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demonstrate the potential of the model to help reveal regions

with conserved or lineage-specific regulatory roles for the entire

genome.

There are a number of areas that our model can be further

improved. For Phylo-HMGP, the number of model parameters

increases linearly with the number of species. There can be

many local minima in parameter estimation for large-scale

evolutionary trees. Therefore, both more effective parameter

constraints in accordance with the tree structure and more

effective optimization methods need to be developed. Also, hi-

erarchical state estimation methods can be developed to group

similar predicted patterns for state prediction refinement. In

addition, the current Phylo-HMGP assumes that all the phylo-

genetic tree models have the same tree topology. But in certain

application domains this may not be accurate. Therefore, it

would be useful to improve the model by incorporating infer-

ence of alternative tree topologies (Friedman et al., 2002).

Furthermore, we need to improve the interpretation of the esti-

mated model parameters of the evolutionary models associ-

ated with the predicted states, to gain deeper understanding

of the evolutionary mechanisms underlying the different func-

tional genomic feature patterns.

Genetic variation can contribute to differences in RT (Koren

et al., 2014; Mukhopadhyay et al., 2014; Rivera-Mulia et al.,

2018). Our current study has the limitation that it does not specif-

ically consider the impact of intra-species variation on the RT

evolutionary patterns we identified. We did, however, compare

the RT variant loci (among different individuals) identified in hu-

man lymphoblastoid cells (Koren et al., 2014) with the cross-spe-

cies RT evolution states we found. We observed that the RT var-

iations among individuals are distributed sparsely on the

genome, with a small percentage of the whole genome and of

each predicted RT evolution state. This suggests that the impact

of the intra-species variation onRT patterns across different spe-

cies we found is likely to be very minor. However, it would be an

important methodological improvement to model both the inter-

species differences and intra-species variations when popula-

tion level functional genomic data are available for different

species.

We believe that Phylo-HMGP provides a generic framework

to more precisely capture the evolutionary history of functional

genomic signals across different species. In addition to the

cross-species RT comparisons, we also applied Phylo-

HMGP to predict the evolution of cis-regulatory modules and

demonstrated the advantage and the generic utility of our

new method (see the STAR Methods; Figures S8 and S9).

From the application to the RT data, we found that different

RT evolution patterns predicted by Phylo-HMGP correlate

with RT patterns across different cell types and various other

genomic and epigenomic features, including higher-order

genome organization features, cis-regulatory elements, trans-

posons, and gene functions. Such insights from comparative

functional genomic analysis may in turn help interpret the

impact of sequence evolution on genome organization and

function. One important future direction would be to develop

more integrated models to holistically consider sequence fea-

tures (from mutations and small insertions/deletions to large-

scale genome rearrangements) and functional genomic signals

across multiple species.
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Further information and requests for resources and algorithms should be directed to and will be fulfilled by the Lead Contact, JianMa

(jianma@cs.cmu.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The five primate species included in this study are Homo Sapiens (Human), Pan troglodytes (Common Chimpanzee), Pongo

pygmaeus (Bornean Orangutan), Nomascus leucogenys (Northern White Cheeked Gibbon), and Cercopithecus aethiops (Green

Monkey). We used GM12878 cell line from human. The GM12878 cell line is a lymphoblastoid cell line established from EBV

(Epstein-Barr Virus)-transformed B-lymphocytes from a female donor. The GM12878 cell line was obtained from the Coriell Cell Re-

positories of Coriell Institute for Medical Research. Only three passages were performed after the GM12878 cell line was received

from the Coriell Cell Repositories, and no other cell line was cultured together at the same time. We captured cell morphology image

immediately before the BrdU labeling (the first step of the Repli-seq procedure, the details of which are included in Method Details).

The image supports that the cells were from the GM12878 cell line, providing evidence for cell authentication. As shown in the cell

culture protocol defined in https://data.4dnucleome.org/biosources/4DNSRH17RFKR/, healthy lymphoblastoid cells including
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GM12878 cell line grow in suspension culture with cells clumped in loose aggregates, whichwas shown in the cell morphology image,

and this characteristic is not observed in ES cells or fibroblast cells. The information of the GM12878 cell line used in this study and

the cell morphology image are available at: https://data.4dnucleome.org/biosamples/4DNBS3I5U7BY/. We used lymphoblastoid

cell lines from the other four non-human primate species, each of which is from one biological individual. The lymphoblastoid cell

line of each of the species was derived from B-lymphoctyes by EBV transformation. The cells of Common Chimpanzee (abbreviated

as Chimpanzee) are male. The cells of Bornean Orangutan (abbreviated as Orangutan) are male. The cell lines of Chimpanzee and

Orangutan have been used in (Johnson et al., 2006). The cells of Northern White Cheeked Gibbon (abbreviated as Gibbon) are male.

The cells of Green Monkey are female and the cell line was obtained from the Coriell Cell Repositories. Authentication of the lympho-

blastoid cells from each of the four primate species was performed using standard karyotyping. For each species, metaphase chro-

mosomes were isolated for the cell line and inverted DAPI images were used to assess the full karyotype of the species, which are of

species-specific distinguishing characteristics. For each species, we only used autosomes for data analysis and excluded data from

the sex chromosomes.

METHOD DETAILS

Ornstein-Uhlenbeck Process in the Phylo-HMGP Model
Overall Framework

We define a Phylo-HMGP model as h = ðS;j;A;pÞ, where S is the set of states, j is the set of phylogenetic models, A is the state-

transition probability matrix, and p represents the initial state probabilities, respectively.

In Phylo-HMGP-OU, we can model the continuous traits with the Ornstein-Uhlenbeck process, which is a stochastic process that

extends the Brownianmotion with the trend towards equilibrium around optimal values. It is characterized by the following stochastic

differential equation (Hansen, 1997; Butler and King, 2004):

dXiðtÞ=a½q� XiðtÞ�dt + sdBiðtÞ; (Equation 1)

where Xi(t) represents the observation of the i-th species at time point t, Bi(t) is the Brownian motion, a, q, and s are parameters that

represent the selection strength, the optimal value, and the Brownian motion intensity, respectively. For example, Xi could be the

ChIP-seq signal of a certain histone mark from a specific cell type at a specific locus in a species. Under the assumption of the

OU process, we can derive the expectation, the variance, and the covariance of the observations of species given the phylogenetic

model jj. The phylogenetic model is the combination ofmultiple OU processes that share parameters along common branches. Sup-

pose that Xp is the trait value of the ancestor of the i-th species, and Xa is the trait value of the common ancestor of the i-th and j-th

species. Following Butler and King (2004); Rohlfs et al. (2013), we have:

EðXiÞ= EðXpÞe�ai tip + q
�
1� e�ai tip

�
; (Equation 2)
CovðXi; XjÞ=VarðXaÞexp �� Sk˛lijaktk � Sk˛ljiaktk
�
; (Equation 3)
VarðXiÞ= s2
i

2ai

�
1� e�2ai tip

�
+VarðXpÞe�2ai tip ; (Equation 4)

where tip is the length of the branch from p to i, and lij represents the set of the ancestor nodes of i and i itself after its divergence with j.

In the Phylo-HMGP model with OU process, jj is defined as: jj = ðqj;aj;sj;tj;bjÞ, j = 1,/,M, where qj, aj, sj denote the OU process

parameters of the j-th state, respectively. tj, bj represent the topology of the phylogenetic tree and the branch lengths, respectively.

We allow varied selection strength and Brownian motion intensity along each branch and varied optimal values at interior nodes or

leaf nodes. Suppose there are r branches. We have qj˛Rr + 1, aj;sj˛Rr . Suppose x=(x1,/,xN) are observations of consecutive regions

along a sequence of length N, and y=(y1,/,yN) are the underlying hidden states, respectively. Each observation xi is a multi-dimen-

sional vector of the trait values of the compared species with respect to a certain type of functional genomic feature for an ortholo-

gous genomic region. Suppose there are d species, which correspond to the d leaf nodes in the phylogenetic tree. We have xi˛Rd,

yi ˛ {1,/,M}, i = 1,/,N. The hidden state yi indicates a specific phylogenetic model jj from which the observation xi is generated.

fjjgMj =1
represent different evolutionary patterns of the genomic features across the multiple species. For example, one phylogenetic

model ji may represent conserved evolution of the feature across species, while another model jj may represent strong selection

strength along one lineage that results in a lineage-specific pattern. Given the input of multi-species functional genomic signals

over a range of regions, which can be processed into the observations x, we are trying to infer the underlying evolutionary patterns

and predict the evolutionary states y throughmodel parameter estimation. Each yi represents an evolutionary pattern, parameterized

by the inferred phylogenetic model jyi . The output includes the estimated model parameters bh and predicted states by. Note that our

Phylo-HMGP-OU is different from the HMMSDEmethods that use a temporal HMM to simulate a single OU process (Dittmer, 2009).

Phylo-HMGP-OU embeds phylogenetic models constructed by complex of OU processes into a spatial HMM to utilize both temporal

and spatial dependencies between variables.
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Parameter Estimation

LetQ be the model parameters. The joint probability of the observations x and states y is pðx; yjQÞ=py0

QN
i =1ayi�1 ;yi pðxijyi;QÞ (Bilmes

et al., 1998). We use Expectation-Maximization (EM) algorithm (Dempster et al., 1977) for parameter estimation. Suppose Qg is the

current estimate of model parameters. The EM algorithm computes the expectation of the complete-data log likelihood, which is

defined as the Q function QðQ;QgÞ:
QðQ;QgÞ= E½log pðx; yjQÞjx;Qg�=

X
y˛SN

pðx; yjQgÞlog pðx; yjQÞ; (Equation 5)

where SN is the set of all state sequences of length N. We have:

QðQ;QgÞ=
X
y˛SN

pðx; yjQgÞpy0 +
X
y˛SN

pðx; yjQgÞ
X
i = 1

N

log ayi�1 ;yi +
X
y˛SN

pðx; yjQgÞ
X
i =1

N

log pðxijyiÞ: (Equation 6)

Model parameters p, A and j can be updated separately in the Maximization-step (M-step), corresponding to the three parts of

QðQ;QgÞ, respectively. The parameters of the Ornstein-Uhlenbeck (OU) model are involved in pðxijyiÞ of the third term of QðQ;

QgÞ. Define that q�i = ðy1;/;yi�1;yi + 1;/;yNÞ. We represent the third part as:X
y˛SN

pðx; yjQgÞ
X
i =1

N

log pðxijyiÞ=
X
i = 1

N X
y˛SN

pðx; yjQgÞlog pðxijyiÞ

=
X
i =1

N X
l = 1

M X
q�i˛SN�1

pðx; y1;/yi�1; yi = l; yi + 1;/; yNjQgÞlog pðxijyi = lÞ

=
X
l = 1

M X
i = 1

N

pðx; yi = ljQgÞlog pðxijyi = lÞ:

(Equation 7)

pðx; yi = ljQgÞ can be computed using forward-backward algorithm (Rabiner, 1989; Bilmes et al., 1998). Assume that continuous-trait

variables follow multivariate Gaussian distributions. We have log pðx
���mðlÞ

Q ;S
ðlÞ
Q Þf� 1

2 log

����SðlÞ
Q

����� 1
2ðx � m

ðlÞ
Q ÞT ½SðlÞ

Q ��1ðx � m
ðlÞ
Q Þ for a given

state l. The underlying phylogenetic model jl is embedded into S
ðlÞ
Q and m

ðlÞ
Q by Equations 2, 3, and 4. Then the negative expected log

likelihood of state l is:

L
�
QðlÞ�= 1

2
log

���SðlÞ
Q

��� X
i = 1

N

pðx; yi = ljQgÞ+ 1

2

X
i = 1

N �
xi � m

ðlÞ
Q

�Th
S

ðlÞ
Q

i�1�
xi � m

ðlÞ
Q

�
pðx; yi = ljQgÞ: (Equation 8)

Therefore, multiplied by 2/N, the third part of the negative Q function with respect to a given state l can be represented as:

~L
�
QðlÞ�= 1

N
log

���SðlÞ
Q

��� X
i = 1

N

w
ðlÞ
i + tr

�h
S

ðlÞ
Q

i�1
~S
ðlÞ
Q

�
; (Equation 9)

wherew
ðlÞ
i = pðx;yi = ljQgÞ, ~SðlÞ

Q = 1
N

PN
i = 1w

ðlÞ
i ðxi � m

ðlÞ
Q Þðxi � m

ðlÞ
Q ÞT ; andQðlÞ represents the phylogenetic model parameters associated

with state l.

Weneed to performparameter estimation for each of the possible states.Weassume tl is given. bl canbe combined in effect toal and

sl. In practice, if the real branch lengths are unknown, we perform the transformation that ~av = avbv, ~s
2
v = s2vbv, where bv represents the

length of thebranch from the parent of node v to node v. Using this approach the branch lengths are incorporated into {al, sl}. ThenQ
ðlÞ =

fql;al;slg. A challenge is that there are approximately two timesmoremodel parameters than the feature dimension for each state. We

apply [2-norm regularization to the parametersQðlÞ. In each M-step, the objective function of a given state l is defined as:

min
QðlÞ

1

N
log

���SðlÞ
Q

���X
i = 1

N

w
ðlÞ
i + tr

�h
S

ðlÞ
Q

i�1
~S
ðlÞ
Q

�
+ l

����QðlÞ����2
2
; (Equation 10)

where w
ðlÞ
i and ~S

ðlÞ
Q are defined as above. We define l = l0=

ffiffiffiffi
N

p
, and tune l0 based on a fixed simulation dataset. We estimated the

range of l0 that can improve the performance of Phylo-HMGP-OU (see later section and Figure S1). Accordingly, we applied the same

l0 to all the simulation datasets and the real data as a fixed coefficient, without tuning l0 on each dataset specially, in order to avoid

overfitting of l0 on a particular dataset.

From the first two parts ofQðQ;QgÞwe can update the estimates ofp andA accordingly. LetA = {akl}, where akl = pðyi = ljyi�1 = kÞ,
k, l = 1,/,M. We have:

pl =
pðx; y0 = ljQgÞ

pðxjQgÞ ; (Equation 11)
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akl =

PN
i = 1pðx; yi�1 = k; yi = ljQgÞPN

i = 1pðx; yi�1 = kjQgÞ : (Equation 12)

Therefore, in each E-step, given the present estimatedmodel parametersQg, we compute pðx; yi = ljQgÞ and pðx; yi�1 = k; yi = ljQgÞ
using the forward-backward algorithm (Rabiner, 1989; Bilmes et al., 1998), k, l = 1,/,M. In each M-step, we solve the maximum ex-

pected likelihood estimation problem to update the parameters p, A, and fjjgMj =1
. Given the estimated model parameters, we can

predict a most likely sequence of hidden states by using the Viterbi algorithm (Viterbi, 1967).

Specifically, we compute w
ðlÞ
i =pðx; yi = ljQgÞ in the E-step using the forward-backward algorithm and current model parameter

estimates Qg. Let x = (x1,/,xT) be the observation sequence. We define:

alðtÞ=pðx1; x2;/; xt; yt = ljQgÞ; (Equation 13)

and

blðtÞ=pðxt + 1; xt +2;/; xT jyt = l;QgÞ: (Equation 14)

According to the forward-backward algorithm, we have:

pðx; yt = ljQgÞ=alðtÞblðtÞ: (Equation 15)

Both al(t) and bl(t) can be computed recursively. Let pl = p(y1 = l) be the initial state distribution, l = 1,/,M. The forward procedure to

compute al(t) is as follows.

alð1Þ=plpðx1jy1 = lÞ; (Equation 16)
alðt + 1Þ=
"X

j = 1

M

ajðtÞajl
#
pðxt + 1jyt +1 = lÞ; (Equation 17)
pðxjQgÞ=
XM
l = 1

alðTÞ: (Equation 18)

The backward procedure to compute bl(t) is as follows:

blðTÞ= 1; (Equation 19)
blðtÞ=
XM
j = 1

aljpðxt + 1jyt + 1 = jÞbjðt + 1Þ; (Equation 20)
pðxjQgÞ=
XM
l = 1

blð1Þplpðx1jy1 = lÞ: (Equation 21)

We also update the transition probability between any two states. Define that 3klðtÞ = pðyt = k;yt + 1 = ljx;QgÞ. We have:

3klðtÞ=pðyt = k; yt + 1 = l; xjQgÞ
pðxjQgÞ =

akðtÞaklpðxt + 1jyt + 1 = lÞblðt + 1ÞPM
k = 1

PM
l = 1akðtÞaklpðxt + 1jyt + 1 = lÞblðt + 1Þ : (Equation 22)

Equivalent to Equation 12, the transition matrix can be updated as:

akl =

PT�1
t = 1 3klðtÞPT�1

t = 1pðyt = kjx;QgÞ; k; l = 1;/;M: (Equation 23)

With pðx; yi = ljQgÞ and pðx; yi�1 = k; yi = ljQgÞ computed in each E-step, k, l = 1,/,M, we update the parameters p, A, and fjjgMj =1
in

each M-step.

Note that the existing discrete-trait Phylo-HMMs (Siepel and Haussler, 2005; Hobolth et al., 2007) can also be represented as

h = ðS;j;A;pÞ, where jj is defined according to the substitution process with respect to an alphabet Sj of discrete characters,

e.g., Sj = fA;C;G;Tg for nucleotides. In discrete-trait Phylo-HMMs, jj is defined as jj = fQj;bj;tj;bjg, where Qj is the substitution

rate matrix, bj is the vector of the background character frequencies, tj is the tree topology, and bj represents the branch

lengths. This realization of jj is limited to the discrete characters, where transition probabilities between two characters can
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be computed to model evolution of characters, e.g., the HKY85 model (Hasegawa et al., 1985). For the continuous traits, we

need to use continuous-trait evolutionary model assumptions to define jj.

Initialization of the Expectation-Maximization Algorithm in Phylo-HMGP
Phylo-HMGP uses the Expectation-Maximization (EM) algorithm for parameter estimation. The EM algorithm seeks local minima and

the results of EM algorithm are influenced by initializations.We designed different ways for parameter initialization. The first approach

is to estimate OU model parameters initially based on the primitive state estimation results from K-means clustering. We perform

model estimation for each cluster separately as single-state estimation, and use the estimates as initial model parameter values

for the EM algorithm.

The second approach is to generate initial values randomly. There are three types of parameters in the OUmodel for a single state,

which are optimal values q, selection strength a, and Brownian motion intensity s. We sample random variables from uniform distri-

butions for the initial values of q, a, and s, respectively.

The third approach is to use linear combination of the initial parameter values obtained from the first approach and the second

approach. We estimate the initial parameter values as Q0 = w1Q1 + ð1� w2ÞQ2, where Q1 and Q2 are parameter estimates from

the first and second approaches. By changing the initial weightw1, we have different initialization schemes. Based on the performance

with respect to variedw1 in simulation study I, we observed that Phylo-HMGP is not very sensitive to initialization on four datasets, while

on theotherdatasets theperformance is improvedasw1 increaseswithina range.Givenw1˛ [0.2, 1.0], theperformanceofPhylo-HMGP

on each simulated dataset is comparable to the best performance it can achieve on the corresponding dataset. For performance com-

parisonwithothermethods in the simulation study,wefixedw1 =0.8 for all thedatasets topreventoverfittingonaparticulardataset. The

initialization weight w1 is an input parameter to the implemented program and can be adjusted within [0, 1] by the user’s choice.

Estimation of the Regularization Coefficient in Phylo-HMGP
For the objective function defined in Equation 10, we define l = l0=

ffiffiffiffi
N

p
, whereN is the sample size, andwe observe howperformance

of Phylo-HMGP-OU changes with respect to l0 based on a fixed simulation dataset (simulation dataset I-1), in order to estimate a

range of l0 in which the performance of Phylo-HMGP-OU can be improved with the l2-norm regularization. We tuned l0 from 0 to

5, with the step size of 0.5, and compared the performance of the model with respect to the different choices of l0. We found that

the model with l0 ˛ [3.0, 5.0] reaches relatively higher F1 score than the other choices of l0 on this dataset (Figure S1). We selected

l0 = 4.0 and applied it to all the simulation datasets and the RT data as a fixed coefficient, without tuning l0 on each dataset specially,

in order to avoid overfitting of l0 on a particular dataset. We also repeated the experiment on dataset I-1 and observed how the per-

formance of Phylo-HMGP-OU changes with l0 on the other datasets in simulation study I. We found that the performance of Phylo-

HMGP-OU is not sensitive to l0 ranging in [3.0,5.0] on most of the simulation datasets (I-1,I-3,I-4,I-5,I-6). Phylo-HMGP-OU still rea-

ches comparable performance to the highest performance it can achieve on dataset I-2. We only used the performance resulted from

l0 = 4.0 on all the simulation datasets for performance evaluation and comparison.

Brownian Motion in the Phylo-HMGP Model
For more comprehensive method evaluation of the proposed framework, we also developed the Phylo-HMGP-Brownian Motion

(Phylo-HMGP-BM) method, where the embedded continuous-trait model is the Brownian motion model. Phylo-HMGP-BM is also

built from h = ðS;j;A;pÞ. For Phylo-HMGP-BM, jj is defined as jj = ðmj;tj;bj;ljÞ, j = 1,/,M, where mj denotes the mean values of

leaf nodes, and tj, bj, lj denote the phylogenetic tree topology, the branch lengths, and the evolution rates on branches, respectively.

Under the Brownian motion assumption, the covariance between observations of two species depends on the depth of their nearest

common ancestor in the phylogenetic tree. The covariance matrix based on the BM model can therefore be presented as a linear

combination of covariance matrices (Zwiernik et al., 2017).

Suppose r is the number of branches of the phylogenetic tree, and d is the number of leaf nodes (i.e., the number of observed

species). We have lj˛Rr , bj˛Rr , and mj˛Rd, j = 1,/,M. We number the branches with 1,/,r. For any vector f, let f(k) be the k-th

element of f. Let vj˛Rr , and vjðkÞ = ljðkÞ,bjðkÞ, k = 1,/,r, which reflects the combined effect of branch length and evolution rate along

each branch. Without loss of generality, suppose v˛Rr is the transformed branch length vector for an arbitrary state. Then v(k) rep-

resents the transformed branch length of the k-th branch. Suppose Xi is the observation of a species. Based on themodel of Brownian

motion, the mean value of Xi is identical to that of the observation of its ancestor and the variance of Xi is proportional to the evolution

time from its ancestor. We have:

E½Xi�= E½Xp�; (Equation 24)
VarðXiÞ=
X

k˛SaðiÞ
vðkÞ; (Equation 25)
CovðXi;XjÞ=
X

k˛Saði;jÞ
vðkÞ; (Equation 26)
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where Xp represents the observation of the nearest ancestor of species i, v(k) represents the transformed branch length from the near-

est ancestor of species k to species k, Sa(i) represents the set of ancestors of species i and i itself, and Sa(i, j) represents the set of

common ancestors of species i and j. The covariance matrix based on the Brownian motion model can therefore be presented as

(Zwiernik et al., 2017):

Sv =G0 +
X
k = 1

r

vðkÞGk ; (Equation 27)

where Gk is a binary matrix representing contribution of a specific branch to the covariance matrix. Suppose x=(x1,/,xN) are obser-

vations of consecutive genome regions along a sequence of lengthN, and y=(y1,/,yN) are the corresponding hidden states. Similar to

Phylo-HMGP-OU, we use EM algorithm for parameter estimation. We define theQ functionQðQ;QgÞ in the same way as Equation 6,

which is the expectation of the complete-data log likelihood function, but with different realization of pðx; yjQgÞ according to the

assumption of the Brownian motion model. Here Q represents the model parameters and Qg is the current estimate of the param-

eters. Based on the original Brownian motion model, the expectation of observation of descendant species is always identical to that

of its ancestor. We have EðXiÞ= EðX0Þ under this assumption, where X0 corresponds to the most remote ancestor. However, we can

observe shift of the mean value of the phenotype in real world problems (Thomas et al., 2009, 2006). Therefore, we relax this

constraint on the expectation of the observations, using a weaker assumption that allows the expectation to be shifted on branches.

Then we considers the phenotype expectation of each species as model parameters, allowing the expectation to vary between

species.

Similar to the derivations in Equations 7, 8, and 9, we compute the third part of the negative Q function with respect to each state,

i.e., the negative expected log likelihood of each state (multiplied by 2/N), which is denoted by ~LðQðlÞÞ, l = 1,/,M. HereQðlÞ represents
themodel parameters associated with state l. We haveQðlÞ = fvl;mlg. Weminimize ~LðQðlÞÞ to estimateQðlÞ. Accordingly, the objective
function of a given state l is:

min
vl ;ml

1

N
log

���SðlÞ
v;m

���X
i = 1

N

w
ðlÞ
i + tr

�h
SðlÞ

v;m

i�1
~S
ðlÞ
m

�
; (Equation 28)

where w
ðlÞ
i = pðx;yi = ljQgÞ, and ~S

ðlÞ
m = 1

N

PN
i = 1w

ðlÞ
i ðxi � mlÞðxi � mlÞT , l = 1,/,M. Using EM algorithm, in each E-step, given the esti-

mated parameters Qg, we compute pðx; yi = ljQgÞ using the forward-backward algorithm, l = 1,/,M. In each M-step, we solve the

maximum expected likelihood estimation problem to update the parameters associated with each state. Different optimization algo-

rithms can be applied to solve the optimization problem. Let vl;k = vlðkÞ, k = 1,/,r. For the Phylo-HMGP-BM, the gradient with respect

to vl,k can be computed explicitly (Zwiernik et al., 2017) and we implemented the gradient descent method based on the derived

gradient as an alternative optimization approach:

v~L
�
QðlÞ�

vvl;k
=VGk

~L
�
QðlÞ�= 1

N
SN

i = 1w
ðlÞ
i tr

�
Gk

h
SðlÞ

v;m

i�1�
� tr

�
~S
ðlÞ
m

h
SðlÞ

v;m

i�1

Gk

h
SðlÞ

v;m

i�1�
: (Equation 29)

Data Simulation for the Simulation Studies
We used two types of models for data simulation, corresponding to Simulation Study I (SS-I) and Simulation Study II (SS-II). Each

study consists of six synthetic datasets. In SS-I, for each dataset, samples were generated from an HMM with 10 states and with

multivariate Gaussian distribution as the emission probability distribution. The Gaussian distribution of each state follows a different

OU model on the same phylogenetic tree topology. The OU model parameters of each state were randomly generated with non-

negative constraints of selection strength fajgMj = 1 and Brownian motion intensity fsjgMj =1 (M is the state number). Phylogenetic trees

with four leaf nodes and with five leaf nodes were used as tree topologies for parameter simulation, each used for three datasets. The

transition probability matrix of the HMM was randomly generated with the assumption that self-transition probability of a state is the

dominant probability as compared to probabilities of transitions to other states.

In SS-II, samples were generated from a Gaussian mixture model instead of an HMM. For each dataset, samples were generated

based on a mixture model with 10 states where Gaussian distributions are the emission probability distributions. We defined a tran-

sition probability matrix between the 10 states as we defined in SS-I, and computed the equilibrium probability distribution of the 10

states from the transition probability matrix. We then divided the genome into continuous segments of varied lengths. Each segment

represents a series of samples that share the same state, e.g., adjacent fixed-size bins of the same state on the genome. We

randomly sampled the segment length from a truncated Normal distribution by which the length is non-negative. The state of

each segment was drawn randomly and independently from the computed equilibrium probability distribution of the 10 states. Pa-

rameters of the Gaussian distribution of each state were shared between two corresponding datasets in SS-I and SS-II. For example,

simulation dataset I-1 (dataset 1 in SS-I) and simulation dataset II-1 (dataset 1 in SS-II) are assigned with the same set of Gaussian

distributions for 10 states. However, different assumptions (HMM and non-HMM models) were used to simulate the two types of

datasets.

In both simulation study I (SS-I) and II (SS-II), phylogenetic trees with four leaf nodes and with five leaf nodes were used as tree

topologies. Datasets with even-number (I-2, I-4, I-6, II-2, II-4, and II-6) were based on the same topology of five leaf nodes, which

is identical to the topology of the species tree specified in Figure 1C and is also the topology used in the RT data study. Datasets
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with odd-number (I-1, I-3, I-5, II-1, II-3, and II-5) were based on the same topology of four leaf nodes, which is identical to the topology

of the sub-tree of the species tree specified in Figure 1C that contains human, chimpanzee, orangutan, and gibbon. 50,000 samples

were generated for each dataset.

The emission probability distribution of each state in each dataset is Gaussian distribution, parameterized by a multivariate OU

model jj = ðqj;aj;sjÞ, where j is the index of the state, and qj, aj, sj represent the optimal value vector, the selection strengths and

the Brownian motion intensities along the branches, respectively. The selection strength aj,k and Brownian motion intensity s2j;k along

each branch are each randomly and independently sampled from the uniform distribution Unif [0, 2], k = 1,/,r (r is the number of

branches). The optimal value qj,l (l = 1,/,r+1) of each node is randomly and independently sampled from a Normal distribution

Nð0;2Þ. In the transition probability matrix A of one dataset in SS-I, the self-transition probability of state j is defined as ajj = a0 +

(1�a0)3p, where p is randomly sampled from uniform distribution Unif[0, 1] and a0 is set to be 0.7. The transition probabilities of state

j to other states are first randomly sampled from uniform distribution Unif[0, 1] and then normalized to be summed to 1�ajj. In SS-II,

the fragment length (the number of continuous bins of the same state) is sampled from the a truncated Normal distributionNð50; 30Þ
with the minimal fragment length to be 5. We first sampled a transition probability matrix ~A in the same way as in SS-I. Then we esti-

mated the equilibrium probability distribution ~p of the states from ~A based on ~p = ~p ~A. We sampled the state of each fragment from ~p

randomly and independently.

We calculated the Davies-Bouldin Index (DBI) (Davies and Bouldin, 1979) for each dataset in SS-I and SS-II, to estimate the dif-

ficulty in state prediction in different datasets. DBI can be used to measure how discriminative is each cluster (state) compared to

the others. A high DBI represents that the states have large variances within themselves while the state-to-state distances are small,

making it difficult to distinguish the states. The DBIs for the six datasets in SS-I are 2.3127, 2.0770, 1.9706, 1.3127, 1.5045 and

1.4623, respectively. The DBIs for datasets in SS-II are 2.2677, 2.0608, 1.9597, 1.3116, 1.4987, and 1.4864, respectively. We found

that datasets I-1, I-2, II-1, and II-2 have relatively higher DBIs.

Cell Culture, Replication Timing Profiling, and Repli-seq Data Processing
The GM12878 cells were grown according to the protocol defined in https://data.4dnucleome.org/biosources/4DNSRH17RFKR/.

Cell cultures were maintained in T25 flasks with 10-20 ml medium in upright position at 37�C, 5% CO2-95% air to keep cell density

between 200,000 cells/ml and 500,000 cells/ml in RPMI 1640 supplemented with 15% heat-inactivated FBS. For the other primate

species, lymphoblastoid suspension cells were grown in RPMI 1640media supplemented with 15%FBS and 2mM L-glutamine. Cul-

tures were maintained in T25 flasks at 37�C, 5%CO2 and passaged to maintain adequate confluency. Next, we performed Repli-seq

for the cultured cells of each species. The Repli-seq data of one replicate of each species were used for algorithm input and analysis

in this study. The detailed procedure of Repli-seq is described in (Marchal et al., 2018). Specifically, exponentially growing cells were

pulse-labeled with 100mMBrdU for 2 hours and then harvested and fixed in 70% ethanol. The fixed cells were stained with propidium

iodide (50mg/mL) in the presence of RNase A (250 mg/mL) in phosphate-buffered saline with 1% FBS. Then early and late S fractions

were collected according to the DNA content measured by propidium iodide signal strength on BD FACS SORP. Sorted cells were

lysed in SDS-Proteinase K buffer (0.2 mg/mL Proteinase K, 50mM Tris-HCl pH 8, 10mM EDTA, 1M NaCl, 0.5% SDS). Subsequently,

10-40K cells equivalent lysate depending on the cell availability was used tomake each Repli-seq library. First, from early S and late S

fraction of each cell line, total genomic DNAwas extracted respectively using DNA Clean & Concentrator-5 (Zymo Research, cat. no.

D4014), and eluted into 50mL water. Then each DNA preparation was sheared into 200bp on average using Covaris E220 system.

Next, end-repair and adaptor ligation were done using NEBNext Ultra DNA Library Prep Kit for Illumina (NEB, cat. no. E7370) and

adaptor-ligated DNA was purified using DNA Clean & Concentrator-5 (Zymo Research, cat. no. D4014). From these adaptor-ligated

DNA samples, BrdU-labeled DNA fragments were precipitated by mouse monoclonal anti-BrdU antibody (BD, cat. no. 555627) and

rabbit anti-mouse IgG (Sigma-Aldrich, cat. no. M7023). The DNA was purified from this DNA-antibody complex using Proteinase K

digestion and subsequent DNA Clean & Concentrator-5 (Zymo Research, cat. no. D4014) procedure, indexed and amplified using

NEBNext Multiplex Oligos for Illumina (Dual-Index Primers Set 1; NEB, cat. no. E7600S), and purified using Agencourt AMPure XP

(Beckman Coulter, cat. no. A63880). After the size distribution of each library was checked on Bioanalyzer, libraries were pooled

and sequenced on HiSeq 2500 with 50 base single-end mode to obtain approximately 10 million reads/library.

We performed quality control of the Repli-seq reads using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc)

and removed adapter sequences using FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit) for data preprocessing. To obtain

RT signals in orthologous genome regions across the multiple species, we collected the RT signal values for each 6kb bin of human

genome and its orthologous regions in each of the other species if RT measurements are available. Specifically, first, we mapped the

preprocessed sequencing reads to the genome assemblies of hg19 (Human), panTro4 (Chimpanzee), ponAbe2 (Orangutan), nom-

Leu3 (Gibbon), and chlSab2 (Green Monkey), respectively, using Bowtie2 (Langmead and Salzberg, 2012). The genome assemblies

were downloaded from the UCSC genome browser (Kent et al., 2002; International Human Genome Sequencing Consortium, 2001;

The Chimpanzee Sequencing and Analysis Consortium, 2005; Locke et al., 2011; Carbone et al., 2014). Second, we used human

genome (hg19) as the reference and divided the reference genome into 6kb bins. We then aligned each bin in human genome to

each of the other species with reciprocal mapping using liftOver (Hinrichs et al., 2006) to obtain the orthologous regions. Third, for

each species, we calculated Repli-seq read count within a given genomic window (an orthologous region) in early and late phases

of RT, respectively, normalized by the total read count in early or late RT phase on the whole genome accordingly. The RT signal in

each orthologous region is defined as the base 2 logarithm ratio of read count per million reads between the early and late phases of

RT within this region.
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For each species, we identify each sequence of consecutive bins without RT signals as a gap. The bin size (6kb in human) is much

smaller than the scale of the RT signals (the replication domain is typically at the scale of 400-800kb (Pope et al., 2014)). We assume

that RT does not change sharply at a small size gap if the gap is between both early RT signals or both late RT signals. We then per-

formed data imputation for gaps smaller than 48kb using nearest neighbor imputation. In this way we can reduce missing data and

havemore continuous segments where cross-species observations are available. More specifically, if the RT signals on both sides of

a gap smaller than 48kb are both early RT signals or both late RT signals with difference smaller than 1/3, we assign to each bin in the

gap the RT signal of a signal-available bin that is nearest to this bin. We then used the software HMMSeg (Day et al., 2007) to perform

wavelet smoothing (Percival and Walden, 2006) of the RT signals in each species, using the window size of 24kb.

Next, we found the orthologous regions where the RT signals across five species are all available. We then performed data normal-

ization of the signals of each species in the regions. We observed that the different species have varied RT scales around [-5,5]. We

performed feature scaling to scale non-negative RT signals (primarily early RT) in each species to [0,5] and scale non-positive RT

signals (primarily late RT) in each species to [-5,0]. We formed the normalized RT signals in orthologous regions across five species

into a five-dimensional feature vector and assigned it to the corresponding reference 6kb bin in human genome as a sample. We

excluded the orthologous regions on the sex chromosome and only used autosomes of each species for data analysis. We obtained

419,754 samples in the orthologous regions across species.

Initial Estimation of the State Number in the RT Data Study
To apply Phylo-HMGP to the replication timing data, we first estimated the possible number of states using K-means clustering. We

performed K-means clustering to the datasets with an increasing cluster number K, computed the Sum of Squared Error (SSE) of

each clustering result, and observed how SSE changed with respect to K. We estimated the state number to be approximately

20-40 based on the K-means clustering results, as the decreasing rate of SSE with respect to the increasing K slows down in this

range (Figure S3). Based on the observation the ‘elbow point’ of the SSE curve is around 30, and small fluctuation of the state number

around 30 does not present significant change of the reduction of the SSE decreasing rate compared to the state number of 30. We

therefore set the state number to be 30.

RT State Prediction and RT State Grouping
We applied Phylo-HMGP-OU to the multi-species Repli-seq data to perform state estimation, with the state number set to be 30. We

used l0 = 4.0 for l2-norm regularization and w1 = 0.2 for parameter initialization. We repeated the estimation 10 times with different

initializations. We choose the result with the highest objective function value for further analysis.

We classified the 30RT states predicted by Phylo-HMM-OU into 5 RT groups, namely, conserved early (noted as E), conserved late

(L), weakly conserved early (WE), weakly conserved late (WL), and non-conserved (NC). If the majority (>98%) of the regions in a state

share the pattern that all of the five species consistently have positive RT signals (early in RT), we assign this state to the conserved

early (E) group. If a state does not satisfy this criteria, but instead satisfy that at least four species are consistently early in RT in more

than 90% regions of this state, we assign this state to the weakly conserved early (WE) group. We assign states to the L and WL

groups in a similar way accordingly. The remaining states are assigned to the NC group. Specifically, states 1-4 and states 5-8

are E states and L states, respectively. States 19-22, and states 13, 16, 23, 24 are WE and WL states, respectively. States 9-12,

14, 15, 17, 18, and 25-30 are NC states.

QUANTIFICATION AND STATISTICAL ANALYSIS

Performance Evaluation in the Simulation Studies
We used Adjusted Mutual Information (AMI), Normalized Mutual Information (NMI), Adjusted Rand Index (ARI), Precision, Recall and

F1 score (Manning et al., 2008; Vinh et al., 2010) for performance evaluation in the simulation studies. Suppose X = {x1,/,xN} is the set

of samples. SupposeU= fu1;/;uKg is the set of predicted stateswhich represents a partition of X intoK states, andC = {c1,/,cM} is

the ground truth set of states. Let I(U,C) be the mutual information between U and C, and NMI(U,C) be the normalized mutual infor-

mation. We have:

IðU;CÞ=
X
k = 1

K X
j = 1

M

Pðuk ; cjÞlog Pðuk ; cjÞ
PðukÞPðcjÞ ; (Equation 30)
NMIðU;CÞ= IðU;CÞ
½HðUÞ+HðCÞ�=2 ; (Equation 31)

whereH(U) andH(C) represent the entropies ofU andC, respectively. The entropy is defined asHðUÞ = �PK
k =1PðukÞlogPðukÞ.P(uk),

P(cj), and P(uk, cj) represent the probabilities that a sample is in state uk, in state cj, and in both uk and cj, respectively. The maximum

likelihood estimates of P(uk), P(cj), and P(uk, cj) are juk j=N,
��cj��=N, and ��ukXcj

��=N, respectively, where juk j denotes the size of uk and

N is the number of samples.
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Adjusted Mutual Information (AMI) is an adjustment of the mutual information to correct the effect of agreement between two par-

titions that is solely due to chance. We have:

AMIðU;CÞ= IðU;CÞ � E½IðU;CÞ�
maxfHðUÞ;HðCÞg � E½IðU;CÞ� ; (Equation 32)

where EðIðU;CÞÞ represents the expectation of I(U;C), which can be estimated using U and C (Vinh et al., 2010).

The Rand Index (RI) (Manning et al., 2008) is another metric to compare two partitions, which is defined as:

RI=
TP+TN

TP+FP+ FN+ TN
: (Equation 33)

TP (true positive) represents the number of pairs of samples in X that are in the same subset in U and also in the same subset in C.

FP (false positive) is the number of pairs of samples in X that are in the same subset in U but in different subsets in C. FN (false nega-

tive) is the number of pairs of samples in X that are in different subsets inU but in the same subset in C. TN (true negative) is the num-

ber of pairs of samples in X that are in different subsets in U and also in different subsets in C.

The Adjusted Rand Index (ARI) corrects the Rand Index for the effect of agreement that is solely due to chance between partitions.

ARI is defined as

ARI=
RI� E½RI�

maxfRIg � E½RI� ; (Equation 34)

where EðRIÞ represents the expectation of RI.

Precision, Recall, and F1 score are defined as

Precision=
TP

TP+FP
; (Equation 35)
Recall =
TP

TP+FN
; (Equation 36)
F1 =
2Precision3Recall

Precision+Recall
: (Equation 37)

For the compared methods, we used the functions GaussianMixture and KMeans in the scikit-learn library (Pedregosa et al., 2011)

to implement the Gaussian Mixture Model (GMM) method and the K-means clustering method, respectively. We used the hmmlearn

library (https://github.com/hmmlearn/) to implement the Gaussian-HMMmethod. Each compared method is repeated 10 times with

different initializations and guaranteed convergence each time. Specifically, the parameter initializations of the Gaussian-HMM

method and the GMM method were based on K-means clustering. In each experiment, the best result from 10 randomly-initialized

K-means clustering results (based on the clustering evaluation criteria used in hmmlearn or scikit-learn, respectively) was selected for

estimating the initial parameters of Gaussian-HMMor GMM, respectively. 10 random initializations were also used for K-means clus-

tering in each experiment, and the clustering with the best performance was chosen as the result. 10 experiments were repeated for

the compared methods as well as Phylo-HMGP, and the average of the 10 runs was reported as the final performance of the corre-

sponding method.

Comparison between the Predicted RT States and TADs
When calculating the distances between the TAD boundaries and the RT state boundaries, to filter the TADs that are far away from

any predicted states, we extended each boundary of a TAD with 30kb and used the states that overlap with the extended TAD to

calculate the boundary distance. We then calculated the percentages of boundary distances that fall into four intervals. The first in-

terval is [0,12kb]. The remaining three intervals are determined by the empirical distance distribution obtained from TAD shuffling, and

equally cover the distances that are larger than 12kb. We shuffled the TADs 1000 times by randomly relocating them along the

genome. We calculated and merged the boundary distances of each shuffle of TADs to form the empirical boundary distance dis-

tribution. Furthermore, for each shuffle of TADs, we computed the percentage of boundary distances that fall into each distance in-

terval to form empirical distributions for each interval.

Motif Feature Analysis in Lineage-Specific RT States Predicted by Phylo-HMGP
Weperformedmotif scanning in the orthologous open chromatin regions of each of the five primate species.We identified open chro-

matin regions in human genome as DNase-seq peak regions with +/-250bp extension, using DNase-seq data of the GM12878 cells

downloaded from the ENCODE annotation data in the UCSC genome browser (Rosenbloom et al., 2012). We used the liftOver tool

(Hinrichs et al., 2006) to project the identified open chromatin regions in human genome to genomes of the other primate species,

obtaining orthologous open chromatin regions in other species. We used FIMO (Grant et al., 2011) and 635 position weight matrices
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(PWMs) of TF binding motifs from the JASPAR 2016 core vertebrate motif database (Mathelier et al., 2016) to performmotif scanning

in the orthologous open chromatin regions of each species. In each orthologous region, we computed the motif frequency for each

PWMwithin the open chromatin area for each species (p value<1e-04 required for each motif). We then normalized the frequency by

the open chromatin area size within this orthologous region.

To identify TF binding motifs that may be lineage-specifically enriched in predicted lineage-specific RT states, we used two types

of tests and selected motifs that can pass both tests. First, within each lineage-specific RT state, we performed binomial tests to find

the motifs that are significantly more enriched in the RT-specific species than expected (p value<0.05). Second, for a motif that

passes the binomial test in a lineage-specific RT state, we calculated the fold change of its motif frequency within the RT-specific

species compared to the other species. To estimate the empirical p value, we randomly sampled the same number of regions as

the lineage-specific RT state from the whole genome for 2000 times, and calculated the same type of fold change to form empirical

distribution. We selected the motifs that have empirical p values<0.05.

We analyzed the expressions (in human) of those TFs with enriched motifs in the lineage-specific states that involve human (i.e.,

state 9 and state 11). The gene expression data were obtained from the ENCODE Project (ENCODE Project Consortium, 2012)

(ENCODE Data Coordination Center accession: ENCSR000AEC; GEO accession: GSE78550). We found that 24 out of the 28 TFs

(86%) associatedwith state 9 and 11 have FPKMgreater than 0.01 (10/13 for state 9 and 14/15 for state 11). If we use the lower bound

of the 95% credible interval for the FPKM greater than 0.1 as the threshold, 20 out of the 28 TFs (71%) associated with state 9 and 11

are expressed (10/13 for state 9 and 10/15 for state 11). For the TFswith low or no expression, we further searched for themost similar

binding motifs using TOMTOM (Gupta et al., 2007). We found that all the TFs for the matching motifs are expressed. Therefore, if

highly similar motifs are also considered, all the identified motifs correspond to expressed TFs.

Evaluation of Phylo-HMGP in Comparsion with Other Methods on RT Data
We also compared Phylo-HMGP-OU with Gaussian-HMM method, GMM method, K-means clustering method, and Phylo-HMGP-

BM on the Repli-seq dataset, based on the average performance from 10 repeated runs of each method. We have applied each

method to the RT data for state prediction, with state number set to be 30, as estimated before. However, there is no available ground

truth for the RT data. For evaluation purpose, we constructed an evaluation state set. Specifically, we discretized the signals of each

species into 5 levels, and identified 12 possible selected representative states (10 possible lineage-specific states and two conserved

states) from all the combinations of the 5 levels in orthologous regions across the species. We fit a Gaussian-HMM with five hidden

states independently for each species, with each state representing a discretized level of the RT signal values. High signal values

(level 1 and 2) and low signal values (level 3 and 4) correspond to early phase and late phase in RT, respectively. For example, human

early state represents early RT only in human and non-early RT in the other four species at the orthologous regions. The 10 possible

lineage-specific states identified from discrete levels of RT signals are human early/late, chimpanzee early/late, orangutan early/late,

gibbon early/late, and green monkey early/late, respectively. The two identified conserved states are conserved RT early and late,

respectively. The 12 selected states cover around 60% of all the orthologous regions with cross-species RT signals. We constrained

the evaluation of different methods to the regions where the 12 selected states are present. Within these regions, we used the 12

selected states as a known partition, and evaluated the relevance of the prediction of each method to this partition, using the eval-

uation metrics AMI, NMI, RI, and F1 (Figure S7). As each method predicted 30 states, which is a finer partition than 12 states, the

evaluation measures are generally lower than those in the simulation studies. For example, regions in one state in the 12-state parti-

tion may be predicted to be in different states in the 30-state partition, which affects the F1 score by reducing the Recall and also

affects the other metrics. Also, the selected states used for comparison were estimated using predictions from Gaussian-HMM in

each species, which would favor Gaussian-HMM and GMM. The regions where 12 selected states are present are less continuous

than the whole genome regions and have weaker spatial dependence between regions, which again would favor GMM. However,

Phylo-HMGP-OU still outperforms the other methods in each of the four evaluation metrics. Phylo-HMGP-BM ranks second in per-

formance. Even though the 12-state partition is not exactly ground truth, it nevertheless demonstrates that Phylo-HMGP outperforms

the other methods in the RT data application, which is consistent with the results from the simulation studies.

Evaluation Based on cis-Regulatory Module Evolution
In addition to the real data application on the Repli-seq data, we also applied the models to predict different states of cis-regulatory

module (CRM) evolution along the genome using features only from DNA sequences. We focused on a recent dataset for promoters

and enhancers marked by H3K4me3 and H3K27ac in vertebrate liver cells (Villar et al., 2015). We used four species, including human

(hg19), macaque (rheMac2), marmoset (calJac3), and mouse (mm10). We used hg19 as the reference and divide it into 5 kb bins. For

each of the orthologous regions, we used the method Cluster-Buster (Frith et al., 2003) to compute a CRM score for presence of

homotypic motif clusters within this region of the respective species, using a selected collection of 382 position weight matrices

of TF binding motifs from the JASPAR 2016 core vertebrate motif database (Mathelier et al., 2016). We only used expressed TFs

in liver cell based on gene expression data of human liver from GSE61260 (Horvath et al., 2014). We computed CRM sores for

the 286,287 orthologous regions across the four species. We applied Phylo-HMGP to perform state prediction along the genome,

with the state number set to be 16.
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Here we assumed that the calculated CRM scores are associated with the activities of regulatory elements (e.g., enhancers or pro-

moters). The ChIP-seq data, which can be used to identify and validate the existence of regulatory elements such as enhancers or

promoters, were used to prepare benchmarks to evaluate the performance of the proposed model Phylo-HMGP in discovering

different CRM patterns across species.

We used the peak regions called fromChIP-seq data of histonemodification H3K27ac and H3K4me3 (Villar et al., 2015) to evaluate

the different states estimated by Phylo-HMGP. For enhancer-evolution associated state prediction, we segmented the reference

genome into different benchmark states based on the species-specific distribution of H3K27ac peaks. We then compared the states

predicted by Phylo-HMGP-OU with the benchmark states, in comparison with the results from Gaussian-HMM, K-means clustering,

and Phylo-HMGP-BM. We also performed the state evaluation using the H3K4me3 dataset. The results are shown in Figure S9.

Phylo-HMGP-OU achieved the highest RI and F1 score among the different methods in the four experiments. Although the overall

accuracy of using the CRM score for predicting enhancer/promoter activities seems not high and it remains an open problem to

more accurately predict regulatory region activities from genome sequence, our evaluation again demonstrates the general utility

and advantage of Phylo-HMGP.

DATA AND SOFTWARE AVAILABILITY

The accession number for the Repli-seq dataset generated from this study is GEO: GSE111733. The data are also available at https://

www2.replicationdomain.com/. The source code of Phylo-HMGP can be accessed at: https://github.com/ma-compbio/

Phylo-HMGP.
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