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Abstract—When training a machine learning algorithm for a
supervised-learning task in some clinical applications, uncertainty
in the correct labels of some patients may adversely affect the
performance of the algorithm. For example, even clinical experts
may have less confidence when assigning a medical diagnosis
to some patients because of ambiguity in the patient’s case or
imperfect reliability of the diagnostic criteria. As a result, some
cases used in algorithm training may be mis-labeled, adversely
affecting the algorithm’s performance. However, experts may also
be able to quantify their diagnostic uncertainty in these cases.
We present a robust method implemented with Support Vector
Machines to account for such clinical diagnostic uncertainty
when training an algorithm to detect patients who develop
the acute respiratory distress syndrome (ARDS). ARDS is a
syndrome of the critically ill that is diagnosed using clinical
criteria known to be imperfect. We represent uncertainty in the
diagnosis of ARDS as a graded weight of confidence associated
with each training label. We also performed a novel time-series
sampling method to address the problem of inter-correlation
among the longitudinal clinical data from each patient used in
model training to limit overfitting. Preliminary results show that
we can achieve meaningful improvement in the performance of
algorithm to detect patients with ARDS on a hold-out sample,
when we compare our method that accounts for the uncertainty
of training labels with a conventional SVM algorithm.

Index Terms—Machine learning, support vector machine, label
uncertainty, acute respiratory distress syndrome, sampling from
longitudinal electronic health records (EHR).

I. INTRODUCTION

The Acute Respiratory Distress Syndrome (ARDS) is a
critical illness syndrome affecting 200,000 patients in United
States each year [1]. While the mortality rate of patients
with ARDS is 30%, multiple evidence-based management
strategies can be provided to patients with ARDS to improve
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their outcomes [2]. However, recent evidence suggests that
patients with ARDS are not recognized when they develop
this syndrome, and consequently, do not receive the evidence-
based therapies proven to reduce mortality [3]. The inability
of healthcare providers to process the massive streams of
clinical data generated while caring for these patients has
been specifically cited as a potential reason for poor ARDS
recognition [4]. Algorithms that analyze electronic health
record (EHR) data and alert providers when patients develop
signs of ARDS have been proposed as a potential way to
improve early ARDS detection [5, 6].

At present, simple rule-based electronic algorithms have
been described that analyze EHR data to screen patients for
ARDS [7, 8]. Current systems search the text of radiology
reports for language consistent with ARDS to identify patients.
For these systems to be successful, however, chest imaging
must be obtained at the time when ARDS develops and a
radiologist must accurately interpret the radiology image in
a timely manner using language that could be interpreted as
consistent with ARDS. These dependencies are problematic
for successful implementation in clinical practice. Systems that
rely solely on routinely collected clinical data to identify at risk
patients could alert clinicians to those patients who warrant
further evaluation, specifically triggering chest imaging for
timely ARDS diagnosis.

An additional challenge in the development of an ARDS
detection algorithm is the creation of reference patient cohorts
to train the algorithm. ARDS is a clinical diagnosis that
requires a nuanced interpretation of each patient’s clinical
data by clinical experts. Some patients are difficult to classify
with available clinical data even for highly trained experts
[9]. Previous research has shown how errors in the labeling
of ARDS and non-ARDS patients can substantially degrade
clinical study results [10]. One potential solution is to allow
clinical experts to classify patients as equivocal when a diag-
nosis of ARDS is uncertain. Using this approach, researchers
have previously shown that known ARDS risk factors have
stronger associations with ARDS development when equivocal
patients were excluded [11].

When training an algorithm to detect ARDS, rather than
excluding patients with diagnostic uncertainty, an alternative
approach is to use this additional information about diagnostic
certainty during training, which could lead to more efficiently
learning and better generalize to new patient cases. Learning
with uncertainty is a recent machine learning paradigm that
may be well suited for the task of training an ARDS detection
algorithm [12]. The standard machine-learning classification
task is to learn a function f (x) : X → Y , which maps input
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training data x ∈ X to class y ∈ Y , where X represents a
feature space of each patient’s covariates and Y is the clas-
sification label. The model is trained on well-defined input
data of labeled training examples. However, in certain clinical
applications, there may be uncertainty in the training labels
themselves that could adversely affect model training. In the
example of ARDS, there may be challenging cases where
the physician has difficulty determining a patient’s diagnosis
due to clinical ambiguity. As a result, this uncertainty and
subsequent mislabeling of training data could adversely affect
model training.

Varying methods have been proposed to address the is-
sue of training with label uncertainty. Frenay and Verleysen
considered uncertainty as a stochastic process of noise in
the label and proposed a statistical taxonomy of definitions
for various label noise typically presented in classification
with machine learning [13]. Natarajan et al addressed the
challenges of learning with noisy labels and developed an
algorithm for risk minimization under certain conditions using
an unbiased estimator and logistic regression to account for
labels independently corrupted by random noise [14]. Duan
and Wu proposed the concept of flipping probability used to
model inaccurate labels in real-world applications [15] and
suggested several methods to optimize for noise tolerance.
Vembu and Zilles developed an iterative learning scheme to
address label uncertainty, which they recognize as disagree-
ment among annotators in generation of classification labels
[16].

Although these methods propose novel solutions to address
label uncertainty, many of them are theoretical and were
not tested on real-world data (primarily benchmarked on
artificially generated data and referenced datasets) or simply
consider uncertainty in the label as random noise. Such an
approach may not be well suited for biomedical or clinical
applications where a clinical expert might also be able to
provide a level of confidence in a patient’s label.In the current
study, when clinical experts reviewed each patients’ clinical
data to determine whether they developed ARDS, they also
provide their level of confidence in the diagnosis. This uncer-
tainty rating was represented as the confidence of the label’s
annotation. Using a support vector machines learning model,
the confidence weighting of the label is used as additional
information in the training process. This approach is a form of
instance-weighted SVM, although instead of learning weights
based on characteristics of the data [17], or weights based
on the class label [18], we use a clinical expert’s confidence
in the diagnosis weights during SVM training. This approach
incorporates a more realistic representation of uncertainty in
real-world applications, avoids discarding uncertain data, and
balances the influence of such uncertain inputs in the learning
algorithm.

The current study also addresses the problem of using highly
correlated longitudinal clinical data in machine-learning model
training, which is often ignored in applications of machine
learning in biomedical domains. With the increased use of
electronic health records, clinical data are often available in a
longitudinal format, where specific metrics of health (e.g. vital
signs, or laboratory values) are measured intermittently over

time. Analysis of such data requires additional consideration
of the stochastic dependency and time-series nature of these
data [19], and they should not be considered independent and
identically distributed (i.i.d.) [20], as the data is obviously not.
By ignoring the inter-dependency of the time-series data and
the i.i.d assumption, training may result in a biased model
that overfits to the available data and yield unrealistically
large values of specificity, sensitivity, and AUROC [21, 22].
Methods exist to deal with correlated data in traditional
machine learning, such as using a Markov switching process
model [23], or partially linear regression model [24] for
longitudinal time-series data analysis or a correlation-based
fast filter method [25] for choosing among highly correlated
features in the model selection process. Beyond the scope of
generalized machine learning problems, additional methods to
analyze time series properties exist in many domain-specific
applications, such as stock market prediction with support
vector machine and case-based reasoning [26], or time-delay
neural networks [27] and dynamic time warping [28] for
speech recognition.

Several techniques, such as dynamic sampling within
Markov chain Monte Carlo methods [29] and Bayesian
Changepoint Detection [30], are established for analyzing the
dependency structure of multivariate time series data. How-
ever, methods addressing stochastic dependency are largely
underdeveloped for applications on longitudinal clinical data.
We address the problem by viewing patients’ time-series data
as a mixing process and consider the data structure as a
stationary process with exponentially weakening dependency,
and sample instances in a strategic manner to minimize inter-
correlation. This approach provides a way to measure the
decay in correlation [31] among data on an individual patient
over time, and informs a novel sampling strategy to minimize
the correlation among data sampled from the same patient for
model training.

II. METHODS

A. Data Generation

The patient cohort included consecutive adult patients hos-
pitalized in January of 2016 with moderate hypoxia, defined
as requiring more than 3 L of supplemental oxygen by nasal
cannula for at least 2 hours. The cohort was enriched with
additional patients who developed acute hypoxic respiratory
failure (PaO2/FiO2 ratio of < 300 mm Hg while receiving
invasive mechanical ventilation) in February and March of
2016 who are higher risk for developing ARDS. In total, 401
patients were used to develop the ARDS detection algorithm.

A group of expert clinicians reviewed all patients for the
development of ARDS based on the Berlin definition [32]. As
ARDS is a clinical diagnosis without a simple gold standard,
we were unable to benchmark expert performance. However,
because the inter-rater reliability of ARDS diagnosis is known
to be only moderate in patients with acute hypoxic respiratory
failure [33], these patients were reviewed independently by
3 experts, and their ratings were averaged. In addition to
determining whether the diagnosis was present (yes or no)
and record the time of ARDS onset among positive cases,
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Fig. 1: Accounting for uncertainty in a classification label
using a clinical expert’s confidence in the diagnosis of ARDS.
Critical care trained clinicians were asked to independently
review patients’ EHR data and determine if any individuals
in the cohort had ARDS, while also rating their confidence
of the diagnosis using the following scale: equivocal, slight,
moderate, or high.

the experts were also asked to provide their confidence level
in the diagnosis label (high, moderate, low, equivocal). This
4-point confidence scale was carefully tested on the experts
prior to use in this study, and felt to reasonably capture the
range of uncertain that they might have when reviewing patient
cases. Their diagnosis label and confidence level could then
be converted to a 1-8 scale, as illustrated in Figure 1, where
1 = no ARDS with high confidence, 8 = ARDS with high
confidence.

In patients who developed ARDS, data collected before the
time of onset were labeled as no ARDS, while data collected
after the time of onset were labeled as ARDS. In total, 48 of
the patients in the cohort were diagnosed with ARDS with a
confidence of 5 or higher after expert review.

Time-stamped vital signs and laboratory values were ex-
tracted from each patient’s Electronic Health Record (EHR)
from the first six days of hospitalization and included as
clinical features (covariates) to train the ARDS algorithm.
Only routinely acquired vital signs and laboratory values with
potential for association with ARDS were included, based on
guidance from clinical experts. Further details of the clinical
variables in the model could be made available upon request.
This approach minimized the total number of features in the
model to 24 variables commonly used in clinical practice and
statistical feature selection techniques were not utilized prior
to model training. Patients were observed every 2 hours with
previous data carried forward until a new value was recorded.
If clinical data was missing on a patient because the vital
sign or laboratory tests was not performed, it was imputed as
a normal value. This is standard approach when developing
clinical predictions models and assumes data is not collected
because the treating clinician had a low suspicion that it would
be abnormal [34, 35].

B. Sampling from Longitudinal Data and Inter-Correlation

Longitudinal patient data with repeated measurements over
time have strong inter-dependency between each instance for
a given patient. Ignoring these dependencies during training
may lead to a biased estimator and a flawed learning model.

Inter-dependency among longitudinal data has been previ-
ously conceptualized as a system under mixing conditions
[23]. For a given stochastic process, mixing indicates asymp-
totically independency implying that for a stationary process

X , the dependency between X(t1) and X(t2) becomes negligi-
ble as |t1 − t2| increases towards infinity [36]. This mixing
structure, while assuming that the dependency weakens in
time, often exponentially, allows local dependency among the
data points, and as such matches the reality of the majority
of time-series processed in medicine as well as many other
applications [37].

In order to address the interdependency of the data, we
assumed that each patient’s time-series data used to develop
the ARDS detection algorithm was a mixing stochastic process
and we sampled data according to the quantitative assessment
of the correlation decay among the data points. This approach
limits the degree of inter-correlation on the data points sampled
within the same patient and allows a more realistic assessment
of model accuracy and reliability.

To implement this sampling strategy, we first calculated
pairwise correlation distance matrices to represent dependency
over the span of each patient’s time-series data. Given an m-
by-n matrix for each patient’s data, where m is the number of
times the patient was observed, and each observation is treated
as 1-by-n row vectors, the correlation distance between vectors
Xa and Xb for a single pair of observations is defined as:

dab = 1− (Xa− X̃a)(Xb− X̃b)
′√

(Xa− X̃a)(Xa− X̃a)′
√
(Xb− X̃b)(Xb− X̃b)′

where:

X̃a =
1
n ∑

j
Xa j and X̃b =

1
n ∑

j
Xb j

Using this correlation distance formula, an m-by-m correla-
tion distance matrix can be derived for all observations on the
patient, taken pairwise.

The sampling procedure begins by examining the correla-
tion distances between Xt and 〈Xt〉 was generated, where Xt
corresponds to an instance at the start of a patient’s time-
series data and 〈Xt〉 is the span of all subsequent time-points.
Then a sampling threshold η is set, which represents the point
in which the inter-dependency between data becomes more
limited. We chose the threshold value of η to be 1√

2
, based

on literature that suggests values of approximately 1√
2

as
an estimate of the width of a correlation-type function [38].
We also explored other values of η to understand their effect
on the model building process. Figure 2 shows the effect of
different sampling thresholds on model performance, including
the difference in model accuracy in the training to testing
set and AUROC of the testing set. This empirical analysis
confirmed that optimal results are achieved when the sampling
threshold is approximately 0.7 and supports the literature
suggested value of 1√

2
.

During the data sampling process for each patient, Xt is
selected as the start of a patient’s time-series data. A pairwise
correlation distance matrix is then calculated between Xt and
〈Xt〉, and a data point Xt1 is sampled as the first instance with
a correlation distance of below η from 〈Xt〉. This selected
point Xt1 and subsequent time points beyond Xt1, 〈Xt1〉, are
used to re-calculate a new pairwise correlation distance matrix.
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Fig. 2: Effects of different sampling thresholds on prediction
generalizability with SVM. With our sampling strategy, SVM
performs very well on the training data at any threshold. We
indicate the loss in training accuracy when the same model
makes a prediction on a hold-out testing set to properly assess
the effects of changing the sampling threshold and empirically
determine the value for optimal results.

A data point Xt2 is then selected in a similar manner as Xt1
from data points in 〈Xt1〉 with a correlation distance below
the threshold of η . The sampling method is repeated until no
further instances of 〈Xtn〉 are below the threshold from Xtn.

For this specific dataset, we did not utilize the sampling
strategy described above for patient instances with the classi-
fication label of ARDS = 1. After inspection of the data, we
observed the correlation decay to behave differently according
to the label, with the data remained highly correlated over
time when ARDS = 1 while correlation decay occurring when
ARDS = -1. Therefore, this sampling approach was only
performed on the data when ARDS = -1 while all instances
were sampled when ARDS = 1. This approach effectively
samples all positive examples while undersampling negative
examples, which was also necessary given the significant class
imbalance of the two labels [39]. The sampling strategy is
shown in pseudocode as Algorithm 1 and the average decay
of correlation from all patients is shown in Figure 5 with error
bars representing standard error of the mean.

C. Formulation of SVM with Label Uncertainty

We implement the following formulation of Support Vector
Machine [40] to account for label uncertainty in the classifi-
cation model in the following manner:

min
w,ξ

1
2
‖ w ‖2 + C

N

∑
i=1

ziξi

subject to:{
yi(wT xi +b)≥ 1−ξi, i = 1, ...,N

ξi ≥ 0
(1)

Algorithm 1: Pseudocode for our algorithm to sample
time-series data and reduce inter-dependency.

Input : All available time-series data 〈Xt〉 from each patient.
1 for each patient do
2 partition data into separate bins according to the

classification label;
3 if size of either bins is ≤ 4 then
4 sample all available data;
5 else
6 1) select Xt at the start of the time-series data and

sample this instance;
7 2) calculate the pairwise correlation distance from Xt

to 〈Xt〉;
8 3) sample the first row in 〈Xt〉 with a correlation

distance < η and set as the new Xt ;
9 repeat

10 1) set 〈Xt〉 as all points subsequent to Xt ;
11 2) calculate the pairwise correlation distance

matrix from Xt to 〈Xt〉;
12 3) sample the first row where the correlation

distance is < η and set as the new Xt ;
13 until pairwise distance of Xt to 〈Xt〉 > η ;
14 end
15 end

Output: Partial data {Xt ,Xt1,Xt2, ...,Xtn} with reduced
inter-correlation from each patient.

where:

zi = (|li−α|−β )∗ γ +δ

This formulation incorporates the slack variable ξi to permit
some misclassification and also includes the penalty parameter
C to establish soft-margin decision boundaries because ARDS
and non-ARDS examples are not linearly separable. In this
implementation, support vectors that are based on patients’
data with high label confidence are given more weight and
influence in the SVM decision boundary. Uncertainty in the
label (li), as shown in Figure 1, is incorporated within (zi)
to directly influence the box constraint (C). The formula for
zi combines two linear transformations for uncertainty in the
label annotation (li) and generate a scalable weight to that
specific observation. In this application, we set α = 4.5, β =
3.0, γ = 20, and δ = 90, which scales li, with a range of
1-8, into the weighting zi, with a range between 40-100 in
increments of 20. As a result, labels with high confidence (eg.
li = 1 or 8) receive the weight zi = 100, while equivocal labels
(eg. li = 4 or 5) receive the weight zi = 40. zi is then normalized
to 1. This formula for zi adjusts sample weighting based on
li and rescales the C parameter as Ci for each observation
in a patient’s data structure so that the classifier puts more
emphasis on points with high confidence.

To ensure that our proposed sampling strategy and threshold
still maintains for SVM with label uncertainty, we repeat the
previous analysis to show the effect of different sampling
thresholds on prediction generalizability. Figure 3 confirms
that optimal results are achieved when the sampling threshold
is approximately 0.7, which supports the previous analysis and
the literature suggested value of 1√

2
.
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Fig. 3: Effects of different sampling thresholds on prediction
generalizability with SVM and label uncertainty. We confirm
that the sampling strategy and threshold effects observed in
Figure 2 is maintained when the SVM model is formulated to
account for label uncertainty.

D. Model Building, Cross-Validation and Model Testing

In this study, the primary learning algorithms we compare
are linear SVM with and without label uncertainty. Prior
to building these models, the data was first normalized to
prevent features with large dynamic ranges from dominating
the separating hyperplane. Then the training data was sampled
using the proposed sampling method described previously to
minimize correlation between data points on the same patient.
Prior to sampling, the training set contained 13,722 total
instances, 736 of which were positive. After sampling, there
were 1,893 total instances, 736 of which were positive.

5-fold cross validation was performed on the training data
to find the optimal value of the hyper-parameter C using grid
search [41] over C ∈ {0.001,0.01,0.1,1,10,100,1000}. We
then re-trained the model on the entire training set using this
optimal C parameter. This updated model was then used to
classify patients in the hold-out dataset using all their data (i.e.
no sampling was performed on the holdout data). The model
predictions for each patient in the holdout sample, i.e. ARDS
= 1 or -1, are then compared against the label assigned by the
majority of experts reviewing the patient. We also compare
the performance of our proposed SVM method with Logistic
Regression and Random Forest (using the same subsampled
training/testing bins and 5-fold cross validation partitions) to
determine if the achieved results are equivalent or superior to
other state-of-the-art methods.

A simplified protocol of this analysis, including data pre-
processing, sampling from the training data to limit inter-
correlation, hyper-parameter optimization with 5-fold cross-
validation, and hold-out testing is shown in the flowchart of
Figure 4.

Fig. 4: Flowchart of this study’s protocol with 5-fold cross-
validation and hyper-parameter optimization using grid search.
All samples from the same patient are kept exclusively in
either the training or testing set. Hyper-parameter optimization
was implemented for separately each model (with and without
label uncertainty weight) to give an accurate assessment of
performance.

III. RESULTS

A total of 401 patient cases were available from the study
cohort. Within this dataset, 48 were positive for ARDS and the
remaining 353 were negative. Two-thirds of the patients were
used in the model training process while the remaining one-
third were kept as a hold-out set for testing. All samples from
the same patients are kept exclusively in either the training or
testing set (not both) to avoid bias in the data.

The average correlation decay for each patient’s data is
shown in Figure 5. On average, the correlation between Xt
and 〈Xt〉 drops below η at a distance in time of around
22 hours. Figure 6 shows the decay of correlation to be
different when the data was analyzed separately according to
the classification label: decay of correlation is observed when
ARDS = -1 but not observed when ARDS = 1. Therefore, the
sampling under η approach was performed on the data when
ARDS = -1, which reduce the number of negative examples
for model training. Due to the lower number examples, and
lack of correlation decay when ARDS = 1, sampling was
not performed as it would have further exacerbated the class
imbalance.

When the SVM was trained to account for uncertainty in the
label, we observed over 10% improvement of AUROC (0.8548
versus 0.7542) compared to the conventional SVM learning
algorithm (Figure 7) when judged in the holdout sample.
When the algorithms were benchmarked at a sensitivity of 95%
and 90% (to ensure few ARDS cases are missed), the SVM
model that accounted for label uncertainty also had improved
specificity and outperforms the standard model (Table 1).
These sensitivity levels were set to high levels because it is
important clinically for a model to have a high sensitivity and
not miss cases of ARDS.
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Fig. 5: Average decay of correlation from all patients. Error
bars represent standard error of the mean and each point
represents correlation in relation to time (hours) from the
initial observation sampled on each patient.

We benchmarked our proposed SVM method utilizing un-
certainty in the label to SVM with a misclassification cost
function proportional to the weight of imbalance in the datasets
and other standard classification models, such as Random
Forest and Logistic Regression, in Table 1. We also compared
our sampling strategy to an alternative method that utilizes
random sampling on negative examples to yield a 2:1 negative
to positive ratio from each patient to provide a more balanced
dataset. In addition, we also examined performance without
sampling (using all available data).

IV. DISCUSSION

We present a robust machine learning algorithm to detect
Acute Respiratory Distress Syndrome among hospitalized pa-
tients using routinely collected electronic health record data.
We report an increase of 10% in AUROC in a hold-out data set
when label uncertainty is incorporated in the learning process
as a weight on classification penalty, when compared to a
conventional SVM learning model.

Our proposed SVM model was trained by incorporating
a clinical expert’s uncertainty in each patient’s classification
label as a constraining weight of confidence on the SVM’s
box constraint. Rather than treating label uncertainty as simple
stochastic noise, this approach leverages information about the
degree of uncertainty of each label, as provided by clinical
experts, to improve the efficiency of model training. Our
implementation of label weighting (zi) directly influences the C
parameter and rescales the cost of misclassification according
to uncertainty associated with each label (li). Support vectors
that are based on the data from patients with high label
confidence are given more influence in the SVM decision
boundary while instances with more uncertainty are assigned
less weight when determining the SVM hyperplane. In future
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Fig. 6: Average decay of correlation from all patients during
(A) negative diagnosis of ARDS and (B) positive diagnosis of
ARDS. Error bars represent standard error of the mean and
each point represents correlation in relation to time (hours)
from the initial observation sampled on each patient.

works, alternative mappings between the label uncertainty (li)
provided by clinical experts and label weighting (zi) used to
find the SVM decision boundary should also be explored.

In addition, we performed a novel time-series sampling
method, guided by the theory of mixing in stochastic pro-
cesses, to limit the amount of correlation among data points
on the same patient over time. Due to the time-series structure
of a patient’s longitudinal health data, each instance is not
independent from another. We explored whether the data could
be represented under mixing conditions and implemented
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TABLE I: Performance of Logistic Regression, Random Forrest, SVM, SVM with a class-weighted cost function, and SVM
with label uncertainty.

Sampling Based on the Proposed Correlation Decay Method Random Sampling for Balanced (2:1) Training Data No Sampling

Accuracy AUROC Specificity at 95%
Sensitivity

Specificity at 90%
Sensitivity Accuracy AUROC Accuracy AUROC

Logistic Regression 0.7263 0.7265 0.3007 0.4267 0.6982 0.6979 0.6621 0.6454
Random Forest 0.7434 0.7488 0.3392 0.4751 0.7111 0.7254 0.6873 0.6903

SVM 0.7492 0.7542 0.3797 0.5114 0.7253 0.7361 0.6920 0.7152
SVM w/ Class-Weighted Cost Function 0.7804 0.8113 0.4571 0.5918 0.7478 0.7703 0.7094 0.7122

SVM w/ Uncertain Labels 0.8157 0.8548 0.5285 0.6450 0.7698 0.7989 0.7188 0.7431
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Fig. 7: ROC curve comparing SVM with and without label
uncertainty. Performance metrics are reported in Table 1.

a novel sampling strategy for minimizing inter-correlation
among data points in the training data. For the data to be
represented under mixing conditions, the correlation between
data on the same patient should decay over time such that
CF,G(n)→ 0 as n→ ∞. A plot of the correlation function of
the data in Figure 6 supported this assumption overall, but not
for the data with a classification label of ARDS = 1.

It may not be appropriate to assume all data types can be
represented under mixing conditions, therefore, plotting the
correlation function of the data is essential prior to utiliz-
ing the sampling algorithm. When patients were diagnosed
with ARDS, we found their data to have very high inter-
correlation with little observable decay indicating a strong
mixing process. Therefore, the proposed sampling method
would have been unsuccessful in reducing inter-correlation
and would yield very little data instances available for training.
This finding made sense when interpreted from a clinical point
of view. When a patient is admitted to the emergency room
for pulmonary injury (eg. sepsis) and has not yet reached the
critical stage of ARDS, their condition rapidly changes as a
result of clinical intervention or decline of health, resulting in
less stability and inter-correlation in the recorded data. If the
patient develops ARDS, less rapid change in the data would
be observed since ARDS is recognized as the final pathway
of pulmonary damage [42].

Since there were significantly more negative than positive
examples, we decided against using the sampling strategy
when ARDS = 1, which ensured a more balanced number
of positive and negative examples in the training data. As
minimal correlation decay was observed among the data when
ARDS = 1, implementing the sampling strategy for those data
instances would have led to further imbalance among positive
and negative examples, and limited the model’s ability to learn
a good decision boundary. Our sampling approach utilized a
pairwise correlation distance matrix to quantify dependency
within the data structure. There are many ways to quantify the
measurement of dependency between Xt to 〈Xt〉. Bradley et al
provides a comprehensive list of mathematical definitions for
dependency coefficients to define these mixing conditions [43]
and measure decay of correlations [31]. In the future work,
we will perform a more comprehensive examination of the
data structure using formalized definitions of mixing, such as
quantifying dependency with the α-mixing coefficient.

Our sampling method outperforms using all available data
(no sampling) from the EHR by producing a much balanced
dataset for training and minimizing dependencies in each
patient’s time series data, making it closer to the state of being
i.i.d. We also compared our sampling algorithm to randomly
sampling on negative examples to yield a 2:1 negative to
positive ratio from each patient. This random sampling method
also provides a balanced dataset for training, and as a result,
we observed an increase in accuracy and AUROC from
all algorithms when compared to training without sampling.
However, compared to our proposed sampling strategy, random
sampling doesn’t achieve as high performance metrics because
it does not account for correlation and may be sampling re-
peated measurements with strong dependencies, and therefore
is not as robust as our method.

This study used a linear SVM for the ARDS model. In
preliminary work not shown, we found that an SVM with a
non-linear kernel (RBF) had less consistent results. Although
the SVM with RBF kernel generally outperformed linear SVM
on training dataset, it had inferior performance (accuracy
and AUROC) on the hold-out set. Even with 5-fold cross-
validation and grid-search hyper-parameter optimization (of
C and gamma), we found the performance of the SVM
with RBF kernel to be lower on the test set, and standard
deviation of the results (after multiple random train-test splits)
to be 2-3 fold larger than the linear SVM. We speculate that
overfitting possibly occurred because of lower sample size and
the number of variables used as features for machine learning.
Because linear SVM was more robust, we chose to focus on
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using label uncertainty in the modeling process using only
linear SVM.

With more clinical data, it would be worthwhile to in-
vestigate whether incorporating both label uncertainty and
a non-linear SVM model would lead to improved model
performance. The electronic health record may contain ad-
ditional data that could be added to our model. Evaluating
the performance of the training approach that considers label
uncertainty in a higher dimensional space would be of value;
however, to limit the possibility of overfitting with our current
small dataset size, we have focused on using features that are
routinely used for clinical evaluation of ARDS in the current
study.

In additional future work, we plan to re-formulate the SVM
model to account for both label uncertainty and privileged
information to improve algorithm training [44]. Learning
with privileged information (LUPI) also utilizes information
available only in the training stage to help establish decision
boundaries. Privileged information, which is information avail-
able during training but not when the model is deployed in
real-time, may also be frequently available when developing
machine-learning algorithms for healthcare applications and
could also be relevant for ARDS detection.

We believe our paper makes a significant contribution to-
wards solving traditional classification problems in the context
of biomedical and clinical applications. In medicine, there is
almost always a degree of uncertainty when assigning a patient
to a medical diagnosis. Yet, that diagnosis label may then be
used as the classification label or predictive outcome during a
machine learning task. Typically, the diagnostic uncertainty
associated with the label is not considered during model
building. We show how an expert clinicians’ confidence in a
diagnosis label can be used as vital information in the model
training process. Exploiting the known diagnostic uncertainty
within a medical domain is a generalizable approach that
could be used in many medical applications. For example,
sepsis is a clinical condition where early recognition is import
for optimal patient care. However, diagnostic uncertainty is
common [45], limiting ability to develop robust algorithms for
sepsis detection. Incorporating label uncertainty when training
an algorithm for sepsis detection may improve algorithm
performance in a manner similar to ARDS.

It would also likely be of value to further develop ap-
proaches to incorporate label uncertainty into other machine
learning frameworks besides SVM, such as random forest
and neural networks. Since uncertainty in medical diagnosis
occurs so commonly in clinical practice, accounting for label
uncertainty with these learning algorithms may be highly
applicable in other healthcare applications.

V. CONCLUSION

This paper introduces and tests a method of implementing
uncertainty in the classification label in machine learning for
detection of ARDS. It also describes a novel sampling strategy
to reduce inter-correlation among longitudinal clinical data to
prevent the creation of a biased model. Using these novel
approaches, we successfully trained an ARDS classification

algorithm with significantly increased performance compared
to a standard approach.
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