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1. INTRODUCTION

We work over C. All logarithmic structures are assumed fine and
saturated, and Log denotes the algebraic stack parameterizing fine and
saturated logarithmic structures as in | ]

1.1. Statement of result. We are given a proper, fine and saturated
logarithmic scheme X = (X, M) with projective underlying scheme X.
In [ , , ] a stack Mp(X) of stable logarithmic maps of
numerical type I' is described. The purpose of this paper is to complete
a proof of the following theorem:

Theorem 1.1.1. The stack Mr(X) is a proper Deligne-Mumford stack.
The map Mr(X) — Mp(X) to the stack of stable maps of X with the
underlying numerical data I’ = (g,n, 3) is representable.
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This result was proven in | , Theorems 0.1 and 0.2] under the
assumption that the sheaf of groups M#P associated to the character-
istic monoid M = M/QO% is globally generated. It was also proven in
[ , Theorem 3.15] under the stronger assumption that M itself is
globally generated. Many cases of interest are covered by the results in
[ , |, but significantly the case of a toroidal embedding with
self intersections is not. In the cited papers it was hoped that the result
would hold in general, which Theorem 1.1.1 provides.

The following key properties, which are part of Theorem 1.1.1, were
shown in | , Theorem 0.1] for Zariski logarithmic structures X and
[ , Theorem 3.15] when the characteristic monoid M is globally
generated; the general case is proved in | .

Theorem 1.1.2 (] ). (1) Mrp(X) is algebraic and locally of
finite type over C;
(2) the map Mr(X) — Mp(X) is representable by algebraic spaces.

To complete a proof of Theorem 1.1.1, it remains to show that for
general X,

(1) the stack M (X) is of finite type, see Proposition 1.5.7;
(2) Mrp(X) is separated and satisfies the weak valuative criterion
for properness, see Proposition 1.4.3.

The two statements above are proven in this paper by reducing to the
case where the characteristic monoid M is globally generated. This
case was shown in [ , Corollary 3.11], by further reducing to the
rank one case treated in | ].

Remark 1.1.3. In | : ] it is shown that the map Mp(X) —
M (X) is finite under the assumptions made in those papers. This
is shown in general in | |. Tt follows from this statement that

the stack Mr(X) is also projective, being finite over Mp(X), which is
known to be projective.

1.2. Method. The main problem is boundedness, namely statement
(1) listed above. The problem eluded standard approaches of étale
descent. Instead we use a form of non-flat logarithmic étale descent.
Our strategy is to use the “virtual birational invariance” of the
moduli spaces, proven in | | when X is logarithmically smooth.
Specifically, we construct a proper and logarithmically étale morphism
Y — X such that the characteristic sheaf My is globally generated
(Proposition 1.3.1). We then show that the map of moduli spaces

M(Y) — M(X) is surjective (Proposition 1.4.2). We further show
that for each numerical datum I' on X there is a finite collection of
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numerical data I'; on Y such that [ Mr,(Y) — Mp(X) is surjective
(Proposition 1.5.7). Since Mr,(Y) is proper it follows that Mp(X) is
bounded, as required.

We now proceed to describe the steps in more detail.

1.3. The Artin fan of X. Olsson | ] associates to the logarithmic
structure X a canonical morphism X — Log to the stack of logarithmic
structures. Under mild assumptions on X there is an initial factoriza-
tion of this map through a strict, representable, étale map X — Log.
Following | | we call X the Artin fan of X.

The construction of X has its origin in unpublished notes on gluing
Gromov—Witten invariants by Q. Chen and by M. Gross. It is closely
related to what is known as the Kato fan F(X) of X | , Sections
9 and 10], and to the associated generalized polyhedral cone complex
Y(X) defined in | ) ]. A more complete picture of the
relationship between these objects, as well as with Berkovich spaces, is
given in | ]. The simplest cases of Artin fans were used previously
in [ : : :

We have not attempted to give a definitive treatment of the theory
of Artin fans here, as the precise outlines of the theory remain murky
to us. One of the most troublesome issues is the failure of naturality
of the morphism from a scheme to its Artin fan (see Example 3.3.1).
Absent the more complete foundations we hope to be able to present
in the future, the reader may consult | | or [ | for further
details about Artin fans.

Artin fans are used in the following statement, which is our key
reduction step.

Proposition 1.3.1. There exists a representable, projective, birational,
and logarithmically étale morphism Y — X such that the sheaf of char-
acteristic monoids My is globally generated. WritingY = X xx Y, we
have a projective and logarithmically étale morphism 'Y — X such that
the characteristic sheaf My is globally generated.

See Corollary 4.6.4.

1.4. Moduli of prestable maps. Following | , Section 3|, we
define a moduli stack 9M(X’) of prestable maps with target X, a stack
M(Y) of prestable maps with target ), and a stack (Y — X) of
prestable maps which are relatively stable for ) — X. All three are
shown in | , Proposition 3.2 and Proposition 1.6.2] to be loga-
rithmically étale over the stack 91 of prestable curves. There is a
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tautological diagram of stacks

M(Y) —— M(X)

l |

(1.4.1) M (Y — X) —— M(X)

.

with strict vertical arrows and cartesian square. The morphism 9 () —
X) — OM(X) is birational | , Proposition 5.2.1]. We prove in
Corollary 4.7.4 that it satisfies the valuative criterion for properness
and is surjective. This gives in particular the following.

Proposition 1.4.2. The morphism M(Y) — M(X) is proper and
surjective.

A direct argument then shows the following, see Section 4.8:

Proposition 1.4.3. M(X) is separated and satisfies the weak valua-
tive criterion for properness.

1.5. Numerical data. If M(Y) were of finite type we would now be
done. As it is anyway a disjoint union of connected components of
finite type, it will be sufficient to show that finitely many of those
components map to each connected component of M(X). To do this,
we identify numerical data on M(X) that admit finitely many lifts to
M(Y) with each lift corresponding to a component of M(Y). These
numerical data include the genus, the number of marked points, the
homology class of the curve, and contact information associated to each
marked point. These are encoded in terms of logarithmic points:

1.5.1. Moduli of logarithmic points. The logarithmic numerical data
of X are, by definition, the connected components of the logarithmic
evaluation stack AyX parameterizing standard logarithmic points in
X. The evaluation stack ApX for an arbitrary sharp monoid P is
constructed and described explicitly in | ]; see also | :
Corollary 1.1.3], | , Section 3.2]. Our use of this stack is limited
to the case AyX, which we denote simply by AX.

The formation of AX is covariantly functorial in X, so the morphism
Y — X induces a morphism AY — AX.

Proposition 1.5.2. The morphism NY — AX is of finite type, and
each connected component of NX 1is of finite type. In particular, the
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preimage of such a connected component has finitely many connected
components.

See Section 5.2.

1.5.3. Contact orders. Given a stable log map f : C — X over S,
restricting to the i-th marking >; C C', we obtain a family of log points
fls, : ¥; = X, hence the evaluation morphism ev; : S — AX. When S
is connected, we label the i-th marking by unique connected component
of AX containing the image ev;(S). We denote this marking ¢; and call
it the logarithmic numerical datum or contact order of the i-th marking.

Remark 1.5.4. With the notion of the Artin fan X of X in hand,
one could redefine contact orders as connected component of AX in-
stead. This has the advantage of being more combinatorial, while also
being invariant under logarithmic modifications, as the proof of Corol-
lary 5.2.9 demonstrates.

1.5.5. Degrees. To bound py we have

Proposition 1.5.6. Let f : C' — Y be a stable logarithmic map whose
stabilization f': C" — X has discrete data I'. Let L be a relatively am-
ple line bundle for Y /X, and denote by Ly its pullback to Y. Then
dego, f*Ly is constant on Mp(X), and determined combinatorially
by I

See Proposition 5.3.1. By a standard argument, given I' there are
only finitely many possibilities for gy with image class 5 and fixed
By - c1(Ly): see Proposition 5.3.2. Together with Propositions 1.4.2
and 1.5.2 this implies:

Proposition 1.5.7. For each numerical datum T' on X there is a finite
collection of numerical data I'; on'Y such that [[ Mr,(Y) — Mrp(X)
18 surjective.

These propositions together provide our main theorem.

Proof of Theorem 1.1.1. By Proposition 1.3.1 we have My is globally
generated, so each My, (Y) is proper by either | , Proposition 5.8]
or [ , Theorem 0.2]. We rely on the properties enumerated in Sec-
tion 1.1. The stack Mrp(X) is algebraic, locally of finite type over C,
and separated. Since the image of a proper algebraic stack in a sepa-
rated algebraic stack is proper, Proposition 1.5.7 implies that Mp(X)
is proper. The map Mrp(X) — Mp(X) is representable by Theorem
1.1.2. [ )
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2. THE STACK Mp(X)

Let X be a logarithmic scheme that is projective over C and let S
be another logarithmic scheme over C. A prestable logarithmic map
over S with target X consists of a logarithmic curve C' — S in the
sense of | , |, along with a logarithmic morphism C' — X.
It is customary to indicate such a map by C — X, suppressing the
remaining data from the notation. A prestable logarithmic map C' —
X is stable if the map C' — X of underlying schemes is Kontsevich
stable.

There are at least three distinct ways to create a groupoid of stable
or prestable logarithmic maps. First, note that given a prestable loga-
rithmic map C' — X over .5, its pullback along a logarithmic morphism
S’ — S'is a logarithmic map C" — X over S’. This defines a groupoid
over the category of logarithmic schemes, which we denote temporarily
by £(X). Second, one can consider only strict arrows S’ — S, namely
arrows obtained by pullback along S” — S. This forms a groupoid
over the category of schemes, by sending a prestable logarithmic map
C — X over S to the scheme §. We denote this groupoid temporarily
by £57(X). A key result is the following:

Theorem 2.1 (See | , Theorem 2.4], | , Theorem 2.1.10],
[ , Corollary 1.1.2]). The groupoid £ (X) is an algebraic stack,
locally of finite type over C.

The stack £5"(X) has a canonical logarithmic structure, since an
object C'— X over S = (S, Mg) defines a logarithmic structure on S.

The stack £57(X) is rather large, because it includes all possible
choices of logarithmic structures S on S, and fails to be proper. A
better behaved substack of minimal prestable logarithmic maps is de-
fined in | : ] when the characteristic sheaf M x is globally
generated, in | | when X is a Zariski logarithmic scheme, and in
[ | in general. It is denoted M (X). It obtains a canonical loga-
rithmic structure by restriction from £5"(X), and we denote by 9(X)
this stack with its logarithmic structure; in particular 9t(X) can be
viewed as a groupoid over the category of logarithmic schemes. It has
the following key properties:

Theorem 2.2 (] , Corollary 1.1.2]). (1) The stack (X)) is
an open substack of £ (X). In particular it is algebraic and
locally of finite type over C.
(2) We have an isomorphism IM(X) ~ £(X) of groupoids over the
category of logarithmic schemes.
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(8) The morphism IM(X) — IM(X) is representable by algebraic
spaces.

This immediately implies Theorem 1.1.2.

The second statement justifies naming (X)) the logarithmic stack
of prestable logarithmic maps. Concretely it says that every prestable
logarithmic map C' — X over a logarithmic scheme S is canonically
the pullback along a logarithmic morphism S — S™@" of a minimal
prestable logarithmic map C™® — X™ gyer S™ and the underlying
map of schemes S — S™ is the identity. The first statement then tells
us that the groupoid of prestable logarithmic maps with target X is a
logarithmic algebraic stack.

For a prestable map f : C' = X over S, we denote by g the arithmetic
genus of the fibers of C' — S, by (3 the curve class f.[C], and by
¢i, 1 = 1,...,n the logarithmic numerical data (or contact orders) of
C — X at the n marked points, introduced in Section 1.5.3. These data
are locally constant, so 9(X) breaks into open and closed substacks:
M(X) = [ Mp(X), with I = (g.{c:}, 3)

To each prestable logarithmic map C' — X we have an associated
map C' — X of underlying schemes, giving a morphism 9(X) —
M(X). This restricts to morphisms Mr(X) — Mp(X), where [ =
(9,1, ). .

Finally we denote by M(X) the open substack of stable logarithmic
maps, which again decomposes as M(X) = [ [ Mr(X). By definition,
the morphism 9M(X) — M(X) restricts to M(X) — M(X), and this

again decomposes into morphisms Mrp(X) — Mp(X).

3. ARTIN FANS

We extend the construction of | | to logarithmic schemes which
are not logarithmically smooth.

3.1. The category of Artin fans. An Artin cone is a logarithmic
algebraic stack isomorphic to the quotient of an affine toric variety by
its dense torus. An Artin fan is a logarithmic algebraic stack that has
a cover by strict, representable, étale maps from Artin cones. An Artin
fan whose tautological morphism to Log (which is necessarily étale)
is representable will be said to have faithful monodromy. Logarithmic
morphisms between Artin fans are always logarithmically étale (see
[ , Lemma A.7]).

It was shown in | , Section 2.2] that a logarithmically smooth
scheme X admits an initial factorization of the map X — Log through
a representable, étale morphism X — Log. This stack X is called the
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Artin fan of X. In fact, any logarithmic scheme with locally connected
logarithmic strata admits an Artin fan, as Proposition 3.2.1 will show
below.

By construction, the Artin fan of a logarithmic scheme always has
faithful monodromy. However, logarithmic modifications (Definition 4.1)
of Artin fans with faithful monodromy do not necessarily have faith-
ful monodromy. For this reason, we do not impose a requirement of
faithful monodromy in our definition.

If o is a fine, saturated, sharp monoid (i.e., a rational polyhedral
cone) then define A, to be the Artin cone [V/T] where V is the affine
toric variety associated to o and T is its dense torus. By | , Propo-
sition 5.17], A, represents the functor

X + Hom(o",T'(X, Mx))

on logarithmic schemes. We write A for the Artin cone Ay.

Olsson showed that Log has an étale cover by Artin cones | ,
Corollary 5.25, Remark 5.26]." It was shown furthermore in | )
Corollary 2.4.3] that Artin cones have no nontrivial representable étale
covers. This implies that every strict étale map of Artin cones is an
open embedding A, C A, associated to an inclusion of a face 7 C o.
As a fiber product of Artin fans is an Artin fan, we conclude that all
Artin fans can be constructed by gluing Artin cones along inclusions
of faces. More precisely, every Artin fan is a colimit of a diagram in
which all morphisms are inclusions of faces. Note that automorphisms
are considered inclusions of faces here, so that Artin fans can be con-
structed by gluing Artin cones to themselves in nontrivial ways.

Thus Artin fans are essentially combinatorial objects. In the next
section, we give an intuitive guide to the relationship between geometry
and combinatorics. A precise formulation of the combinatorial nature
of Artin fans is given in | , Theorem 6.12].

3.1.1. Intuitive picture: the generalized cone complex of an Artin fan.
Since Artin fans are 0-dimensional Artin stacks, they are hard to pic-
ture. Their relationship with fans (of toric geometry) and cone com-

plexes (of toroidal geometry) | | may be helpful. Here we try
only to give enough of an idea to motivate the arguments that follow.
For a more detailed discussion, see | | or | | (which are
inspired by | , Appendix B] and | ).

Given a fine, saturated sharp monoid o, it is natural to depict it as
a lattice inside the real cone

or 1= conv(o) C 0% @z R.

Note that op. cit. uses different notation: Sp = A, where o = PV.
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For instance N is depicted as the lattice of non-negative integers inside
Rzo.

To o we associated an Artin cone A,. We can recover o by the for-
mula ¢ = Hom(N, o) = Hom(A, A,). Since an Artin fan X’ is obtained
by gluing Artin cones A, through open embeddings corresponding to
face maps A, — A,, it is natural to use the piecewise linear topological
space Xy, obtained by gluing the cones og, as a concrete avatar of X.
Note that ¥y includes not only the cones o, but also their lattices o,
as part of its structure. When & = [X/T], the quotient of the toric
variety X of a fan X by its torus 7', then Yy is simply the fan >.

When self-gluing maps are allowed, one does not quite get a complex,
but rather a generalized cone complex | ], or a cone stack |
The generalized cone complex does not faithfully depict all the sub-
tleties of an Artin fan: see Examples 3.2.7 and 3.3.1. Nevertheless, the
cone complex continues to provide valuable intuition when working
with Artin fans.

3.2. The Artin fan of a logarithmic scheme.

Proposition 3.2.1. Let X be a logarithmic algebraic stack’ whose log-
arithmic strata are locally connected in the smooth topology. Then there
1s an nitial factorization of the map X — Log through an étale mor-
phism X — Log that is representable by algebraic spaces.

Proof. Consider the category ' consisting of all representable, smooth,
and strict morphisms of logarithmic algebraic stacks U — X with
morphisms given by representable, smooth, and strict morphisms of
logarithmic algebraic spaces over X. Let { C i’ be the subcategory
consisting of objects U — X such that the initial factorization U —
U — Log of the tautological morphism U — Log through an étale
morphism U — Log that is representable by algebraic spaces exists.
We aim to show U = I

We observe first that 4 is closed under colimits taken in . Con-
sider a collection of arrows {¢;; : U; = U;}ijea in U with A a partially
ordered set. Assume the colimit ¢ : U = lim U; — X exists in U'. We
claim that the colimit ¢ : U — X in facﬁies in 4. To see this, let
U; — Log be the initial factorization of U; — Log. The morphisms ¢;;

°In this paper we will only have use for the case where X is a scheme, but we
anticipate it will sometimes be useful to speak of the ‘Artin fan of an Artin fan™—
that is, the universal factorization of the structural morphism X — Log through
a representable étale morphism. The need for such constructions seems to arise
because of the failure of naturality of the construction in this proposition (see
Example 3.3.1).
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induce morphisms v;; : U; — U;. Let U be the colimit of {¢;;} in the
category of étale sheaves over Log. We use the symbol U also to refer to
the espace étalé of this sheaf, which is an algebraic stack with an étale
projection to Log that is representable by algebraic spaces (see | ,
Theorem V.1.5] for a construction of the espace étalé.) Furthermore,
the morphism U — Log serves as the initial representable, étale factor-
ization of U — Log by the universal property of the colimit.

It is therefore sufficient to show that any geometric point x of X has
a neighborhood in the smooth topology for which the desired factoriza-
tion exists. Passing to a smooth-topology neighborhood of x we may
assume that = is a member of the closed stratum of X, that the closed
stratum of X is connected, that the closed stratum is contained in the
closure of every connected component of every stratum, and that

(3.2.2) I'(X,Mx)— I(z, Mx)

is bijective. We write 0 = I'(X, Mx)Y. We will show that in this
situation A,, with the map f : X — A, associated to the bijection
oV — I'(X, M x), satisfies the required universal property.

Consider a map g : X — X where X — Log is étale and rep-
resentable by algebraic spaces. We wish to construct a unique map
s A, = X making the diagram

X7 . x

(3.2.3) fl o g l

A, — Log
commute. Set X’ = X Xpo5 A,. We observe first that diagram (3.2.3)
has a unique lift when X is replaced by x: by | , Corollary 2.2.8],
the map

['(A,, X) = T'(z, X)

is a bijection. This provides the map s and proves that it is unique; all
that is left is to verify that diagram (3.2.3) commutes, i.e., that sf = g.

Consider both sf and g as sections of Z = X X4, X. By construc-
tion, sf and g agree at x. Because Z is pulled back from the étale map
X — Log, it is locally constant on logarithmic strata. It follows that
the locus where sf and g agree is a union of connected components of
strata. By assumption, the closed stratum of X is connected, so sf
and g agree on the closed stratum of X. But Z is also étale over X,
and in particular unramified, so the locus in X where sf and g agree
is open. Thus sf and g agree on an open union of strata that contains
r—that is, they agree on all of X. [ )
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We recall the following proposition from | , Proposition 2.3.11]:

Proposition 3.2.4. Let X be an Artin fan and let f : A, — X be a
morphism of Artin fans. Then there is a factorization of f through a
strict morphism A, — X, which is minimal with respect to open em-
beddings. The morphism A, — X is unique, up to an X-isomorphism
which is not necessarily unique. That is, if there is another such fac-
torization through A, then there is a isomorphism between A, and A,
over X, as shown in the commutative diagram:

A

(3.2.5) / J

A —— X

Proof. Tt is shown in | , Proposition 2.3.11] that the triple (A,, p, s),
where A, > A, & X is a factorization of A, — X through a strict
morphism p, is unique up to unique isomorphism. It follows, therefore,
that the pair (A,,p) is unique up to isomorphism (and the isomor-
phisms are in bijection with the choices of s : A, — A, lifting A, — X

along p). 'y
Remark 3.2.6. In the theory of Kato fans | , Sections 9 and 10],
namely when self gluing is not allowed, the lift in diagram (3.2.5) is
unique. In view of | , Proposition 2.3.11], this is because when X

is a Kato fan, once A, — X has been specified, there is a unique lift

of A, — X to A..

Example 3.2.7. We give an example involving a cone glued to itself
in which the map A, — X in the Proposition is not unique. Let AP
be the image in Log of the étale map A? — Log. If we regard A2 as the
moduli space of logarithmic structures with a global chart by N? then
we may interpret A2 as the moduli space of logarithmic structures
that admit a chart by N? étale-locally. This arises as the Artin fan of
the punctured Whitney umbrella (see Example 3.3.1).

The diagonal gives a non-strict map A — A2, which is the minimal
factorization of the composition A — A2 — AP, We note that there
are two ways to complete the following diagram:

A2

A
7
7
7

A2 —— Al
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One may take the diagonal arrow to be either of the two automor-
phisms of A%, Note that the generalized cone complex of A®? is simply
the quotient cone (Rx)?/(Z/27Z), and the diagram corresponds to the
involution of the cone (Rsg)?%.

However, these automorphisms induce distinct commutative squares

A2,

e

A2 —— AP

because to specify such a square involves the choice of an automorphism
of the composition A S A2 5 Al

3.3. A substitute for functoriality of Artin fans. While Artin
fans are functorial with respect to strict morphism of logarithmic schemes,
they are not functorial with respect to general logarithmic morphisms.
In this section we adapt the construction of Section 3.2 to achieve a
weak form of functoriality that will be suitable for our application in
Proposition 4.7.2.

Example 3.3.1. We show that our construction of the morphism from
a logarithmic scheme to its Artin fan cannot be natural. This example
is recounted in greater detail in | .

We work over an algebraically closed field of characteristic other than
2. The punctured Whitney umbrella X is the quotient of Y = G,, x A2
by the involution exchanging (¢, z,y) and (—t,y,x). We equip Y with
the logarithmic structure pulled back from A2, which descends to a
logarithmic structure on X. The Artin fan of Y is ) = A2 and the
Artin fan of X is X = AP (see Example 3.2.7 for the notation).

Let Y be the blowup of Y along G,, x {0} and let X be the corre-
sponding blowup of X. The Artin fan of Y is the blowup Y of A? at its
origin, or, more explicitly, the quotient of the blowup of A? by its dense
torus. The Artin fan of X is the quotient X of Y by the involution ex-
changing the coordinates as a representable, étale algebraic stack over
Log. Even though the involution stabilizes the exceptional divisor of
Y, the corresponding divisor of the quotient has no additional stabi-
lizer because the map from the Artin fan to Log must be representable.
This is the reason functoriality fails.
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One can now show that there is no dashed arrow completing the
diagram below and making it commute:

X ——X
|
l l
3
X — X

Indeed, there is a loop in the exceptional divisor of X that projects to
a loop in X around which the characteristic monoid of the logarithmic
structure of X has monodromy. Its image in X is therefore gives a
nontrivial element of the stabilizer of the closed point of X'. However,
the logarithmic structure of X does not have monodromy around this
loop since it has rank 1 and the characteristic monoid of a rank 1
logarithmic structure cannot have monodromy. Therefore this loop
projects to the trivial automorphism in the stabilizer group of X.

Let X be a scheme equipped with a morphism of logarithmic struc-
tures M% — My. Let Loga: be the universal example of an algebraic
stack with these data | , Theorem 2.4], so that there is a tauto-
logical map X — Loga:. We show that there is an initial factorization
of this map through a representable étale map & — Loga::

Proposition 3.3.2. Let X be an algebraic stack equipped with a mor-
phism of logarithmic structures such that the logarithmic strata® are
locally connected in the smooth topology. The corresponding map X —
Loga: admits an initial factorization through a representable étale map
X — LOgAl .

Proof. The structure of the proof is essentially the same as that of
Proposition 3.2.1, so we omit some details.

We begin by noting that the collection of all smooth ¥ — X such
that ¥ — Log,: has an initial factorization through a representable,
étale map Y — Loga: is closed under colimits. As the universal prop-
erty characterizing this factorization respects colimits, it will be suf-
ficient to work smooth-locally in X. We may therefore assume that
there is a closed geometric point x of X for which the maps

P(X, Mx) — F(I,MX>
D(X, M) — T(z, M)

are bijections. Set 0 = I'(X,Mx)" and 7 = I'(X, M%)Y. The map
o — 7 induces a map ¢ : A, — A, and moreover gives a map A, —

3By the logarithmic strata we mean the strata in the coarsest stratification over
which the characteristic monoids of both logarithmic structures are locally constant.
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Loga:. In order to emphasize the map to Loga:, we write A,_,, ~ A,
here.

Lemma 3.3.3. The map A,_, — Loga: is étale and representable,
and the collection of all such maps is an étale cover of Logn:.

Proof. To see that A,_,, — Loga: representable, we interpret a map
S — Loga: as a morphism of logarithmic structures M{§ — Mg on
S. The lifts to a map S — A,_,,; correspond to commutative dia-
grams (3.3.4)

TV—>]\7[’S

(3.3.4) l l

0V —— Mg

that lift locally to charts. These are clearly indexed by a set (with no
nontrivial automorphisms).

The morphism is étale if and only if it is locally of finite presentation
and formally étale. It is locally of finite presentation because both
source and target are locally of finite presentation over C. To verify
the infinitesimal lifting property, consider a diagram

S — AU—)T

(3.3.5) l l

S’ —— Loga:

in which S’ is an infinitesimal extension of S. The map 5" — Loga:
gives a morphism of logarithmic structures Mg, — Mg on S’. The com-
mutativity of the square induces a commutative square (3.3.4) where
the vertical arrow on the right is the restriction of the map of charac-
teristic monoids M o — Mg to S and the horizontal arrows are charts.
But S and S’ have identitical étale sites and under this identification
Mg = Mg and My = M’,. With these substitutions, (3.3.4) can
be lifted, étale-locally, to a chart because the maps Mg — Mg and
M/ — M’y are surjections of étale sheaves. This gives the diagonal
arrow lifting (3.3.5) and shows it is unique.

The assertion that the A,_,, cover Loga: translates into the following
familiar facts

1) the characteristic monoid of a fine, saturated logarithmic struc-
ture possesses a chart locally, and

2) a morphism of fine, saturated logarithmic structures with charts
by ¢ and 7V may be induced locally from a morphism o — 7.
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[ )

Returning to the proof of Proposition 3.3.2, our reduction guarantees
we have a morphism X — A,_,; over Loga:. To see that A,_,, is the
initial factorization of X — Logx: through a strict, étale, representable
morphism we repeat the argument of Proposition 3.2.1. We consider a
commutative diagram

X—X

||

Ao%‘r — LOgAl

in which X is strict, étale, and representable over Loga:. Replacing X
with X X Log .1 A,_,,, we immediately reduce to the case where there is
a map X — A,_., that is compatible with the rest of the diagram, and
the problem is to show there is exactly one section of this map making
the rest of the diagram commute. By assumption, a unique section

exists at the geometric point = of A,_,,. By | , Corollary 2.2.8|
such a section extends uniquely to a section over A,_,, ~ A,. This
completes the proof of Proposition 3.3.2. a

Corollary 3.3.6. Let Y — X be a morphism of logarithmic schemes.
Suppose that X 1is the Artin fan of X and ) is the Artin fan of Y
relative to Logai. Then there is a canonical morphism Y — X making
the diagram below commute:

Y Yy

X — X

—

4. SUBDIVISIONS

The goal of this section is to show that essentially any logarithmic
scheme has a projective logarithmic modification with globally gener-
ated characteristic monoid, see Theorem 4.6.2. We begin by defining
our terms.

Definition 4.1. (1) A logarithmic alteration of logarithmic Artin
stacks is a proper, surjective, logarithmically étale morphism.

(2) A logarithmic modifiction of a logarithmically smooth Artin
stack is a proper, birational, logarithmically étale morphism.

(3) More generally, a logarithmic alteration Y — X of logarithmic

Artin stacks is said to be a logarithmic modifiction if there is

a logarithmic modification ) — X of logarithmically smooth
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Artin stacks and a morphism X — X such that Y =Y xy X,
the product taken in the category of fs logarithmic stacks.

As the pullback of a logarithmic modification in the sense of 4.1 (2)
to a logarithmically smooth base is a logarithmic modification in the
sense of 4.1 (2), Definitions 4.1 (2) and 4.1 (3) are consistent.

Remark 4.2. F. Kato has given a different definition of logarithmic
modifications | , Definition 3.14]. It is immediate that repre-
sentable logarithmic modifications in our sense are logarithmic modifi-
cations in Kato’s sense, but we do not know if the converse holds. It
follows from | , Corollary 2.6.6] and Proposition 4.3.2, below, that
the definitions coincide for representable logarithmic modifications of
logarithmically smooth schemes.

Examples of logarithmic modifications appear in Sections 4.4 and 4.5
below.

The pullback of a logarithmic alteration is a logarithmic alteration,
and the pullback of a logarithmic modification is a logarithmic mod-
ification. A representable logarithmic modification of logarithmically
smooth Artin stacks is a modification in the usual sense, but in gen-
eral logarithmic modifications need not be representable: they include
certain root stack constructions.

4.3. Subdivisions of Artin fans. In | | Kato described certain
logarithmic modifications in terms of subdivisions of Kato fans, in anal-
ogy to subdivisions of fans of toric varieties, and we borrow the same
analogy and define subdivisions of Artin fans.

By definition an Artin fan X" is covered by strict étale maps A, — X.
An inclusion of faces o C 7 induces a strict open embedding A, C A,
and the assignment o — A, respects intersections of faces. There-
fore, given a fan in the sense of | , Section 1.4] or | , Defini-
tion 3.1.2], we may define an Artin fan Ay by gluing together the A,
for o € ¥ according to the way they intersect inside of ¥. This permits
us to give

Definition 4.3.1. A subdivision of an Artin fan X is a morphism
of Artin fans JJ — X whose base change via any map A, — X is
isomorphic to Ay, for some subdivision ¥ of o.

Since the morphisms ¢ : A, — X cover X, we may construct a map
Y — X by constructing compatible maps )V, — A,. The meaning of
compatibility here is that the ), should be stable under pullback via
face maps A, — A,. We use this idea to construct several refinements
of X.
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A subdivision of Artin fans corresponds to a subdivision of gener-
alized cone complexes, so while Artin fans (or Kato fans) and their
subdivisions can be hard to visualize, when one passes to generalized
cone complexes one can actually draw a picture.

Proposition 4.3.2. A representable, birational morphism of Artin
fans is proper if and only if it is a subdivision.

Proof. Let Y — X be a proper, birational and representable morphism
of connected Artin fans. Since the statement is local on X, replacing
X by an étale local chart, we may assume that X = A,. We then have
a strict global quotient morphism A, — A,, where A, is the affine
toric variety associated to o with the maximal torus 7. We obtain a
T-equivariant morphism

h:Y, =Y xyA, — A,.

Since Y — X is birational, it is an isomorphism over the generic point,
which pulls back to the dense torus in A,. This implies that Y is toric
as well. By the T-equivariance and properness of h, we deduce that Y,
is the toric variety obtained from a subdivision of o. This finishes the
proof. [

4.4. Star subdivision. Let o be a fine, saturated, sharp monoid and
x € o an element. For each face 7 of o not containing x, let 7" be the
saturated submonoid of o generated by 7 and x. The 7" and all of their
faces constitute a fan, called the star subdivision of o, and denoted
x-o.

This construction is functorial with respect to inclusion of faces con-
taining z. That is, if 0 C 7 is the inclusion of a face containing z, then
x - 0 is canonically a subfan of z - 7.

We will generalize star subdivision to Artin fans by attempting to
glue together star subdivisions of Artin cones. If A, — X is an étale
chart and x € ¢ is an element at which we would like to subdivide, we
must require that the resulting subdivision be compatible with different
choices of chart A, — X. This translates into the condition that x be
stable under monodromy. In order to state things in a way that is
intrinsic to Artin fans, we replace vectors x € ¢ with an equivalent
notion in the language of Artin fans.

As in Section 3.2 we write A = Ay. The following definition is
adapted from | , Section 5.3].

Definition 4.4.1. Let X be an Artin fan. We will call a morphism of
Artin fans z : A — X a vector of X. We call a vector x of X stable if,
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whenever A, — X is strict, there is at most one vector of A, whose
image is isomorphic to x.

Thus a vector of X is simply a lattice point of the generalized cone
complex Y x. The following are two examples of vectors which are not
stable arise.

Example 4.4.2. Consider the Artin fan X associated to a surface
with logarithmic structure given by an irreducible nodal curve with
one node. The generalized cone complex is obtained by taking (Rsg)?
and gluing together its two rays. The images of the vectors (1,0) and
(0,1) are the same, so the factorization N — N? — ¥y is not unique.
In fact a vector is stable if and only if it is not an image of (a,0) (or
(0, a) for positive a.

Example 4.4.3. Consider the Artin fan A of the punctured whit-
ney umbrella, see Example 3.3.1. The generalized cone complex is
(R>0)?/(Z/27), so a vector is stable if and only if it is the image of a
diagonal vector (a,a) € N2

Assuming x is stable, we construct the star subdivision X as follows:
For any map ¢ : A, — X, let

Y A,  x does not lift to A,
2 ) Ay lifts to A,

where A,., denotes the star subdivision of A, with respect to the
unique lift of x to A,. Since x is stable, this construction is compat-
ible with strict X-morphisms A, — A,, hence glues to give a global
construction.

Proposition 4.4.4. Star subdivision is projective.

Proof. Let ¢, : X' — X be a star subdivision given by a stable vector
r: A— X. Note that ¢, is representable and birational. It suffices to
produce a ¢, -ample line bundle over X’. Let E C X’ be the exceptional
divisor. Since x is stable, such E is a well-defined prime divisor over
X’. We first notice that F is Q-cartier. This could be checked locally
via the toric geometry over each chart, see | , 11.1.6(b)]. Let L
be the line bundle associated to —k - E for some sufficiently divisible
positive integer k. By | , 4.6.4] to see that L is ¢,-ample, it suf-
fices to check the statement locally over X. By taking base change to
a covering of X', we may assume that X = A,. Note that A, is given
by the global quotient of the affine toric varieties A, by its maximal
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torus. The ampleness follows from the fact that star subdivisions in-
duce equivariant projective modifications of toric varieties in which the
Cartier divisor —kFE is ample. '

4.5. Barycentric subdivision. For a fine, saturated, sharp monoid
o, let B(o) be the barycentric subdivision of o (see, e.g., [ :
Example I11.2.1], | , Exercise 11.1.10]). The fan B(o) is automat-
ically simplicial. We obtain a map Ap) — A, that is stable under
base change via face maps, by definition. By descent we obtain a map
B(X) — X that we call the barycentric subdivision of X.

Proposition 4.5.1. The barycentric subdivision of a quasi-compact
Artin fan is a projective morphism.

Proof. We describe the barycentric subdivision as a sequence of star
subdivisions as follows. The barycenter b, of a cone o is the sum of
generators of its 1-dimensional faces. To obtain the barycentric subdi-
vision one first star subdivides, in arbitrary order, at the barycenters of
cones of maximal dimension n, then at the barycenters of the original
cones of dimension n — 1, etc.

We claim that these barycenters are stable. First, if b is the image
of the barycenter b, of an n-dimensional cone 7 in X’ then b is stable:
indeed, if A, — X were another strict étale map to which b lifts then o
is be isomorphic to 7 and the barycenter is stable under isomorphism,
by construction. The barycenter of an n — 1 dimensional cone 7 is
stable in the resulting subdivision, since a factorization A — A, — X
either has ¢ = 7, in which case the factorization is unique as above,
or 0 = (7,bz), the cone generated by 7 and the barycenter of an n-
dimensional cone &, which is stable. So two such factorizations can
differ only by an automorphism of (7, bs), but such an automorphism
must fix b because it is stable. Therefore two factorizations differ by
an automorphism of 7, and once again they coincide since b, is invariant
under automorphisms of 7. Inductively, after star subdividing at all
barycenters of m-cones for m > k, any factorization A — A, — X of
b, has 0 = (1,by,...,b) with by,...,b stable. Once again two such
factorization can differ only by an automorphism of 7 and again they
coincide since b, is invariant, hence b, is stable.

Since the barycentric subdivision may be achieved as the composite
of star subdivisions, it is projective. [ )

4.6. Resolution. The following lemma is essentially a restatement of
[ , Lemma 2.4.6 (1)]:

Lemma 4.6.1. Let X be an Artin fan and BX its barycentric subdi-
vision. Fvery vector v : A — BX is stable.
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Ficure 1. Two barycentric

subdivisions of the Artin fan of = FIGURE 2. Barycentric subdi-
a logarithmic curve with a single  vision of AP, the Artin fan
node, illustrated using general-  of the Whitney umbrella, illus-
ized cone complexes (Example trated using generalized cone
4.4.2). complexes (Example 4.4.3).

Proof. Suppose we have a strict map A, — BX and two maps z,y :
A — A, that have isomorphic images in BX. Let 7 be the minimal
face of o containing x. Then symmetrically we also have a minimal face
7’ of o containing y with 7 = 7. We thus have a pair of maps A, = A,
that compose to the same map A — BAX according to the two faces
7 and 7" of 0. But recall that o is simplicial, say of dimension d, and
corresponds to a flag of d faces of a monoid w, for some strict A, — X.
A face 7 C o is characterized uniquely by the dimensions of the faces
in the corresponding subflag of w. A fortiori, the two inclusions 7 C o
must coincide. 'y

The following theorem follows the argument of | , Proposition
2.4.1]. Step 3 is based on | , Lemma 8.7].
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Theorem 4.6.2. Any quasi-compact Artin fan X has a projective sub-
division Y — X admitting a strict map Y — A", for some integer
n.

Proof. STEP 1. Let X be an Artin fan. Consider the barycentric
subdivision, BXA — X', a projective morphism by Proposition 4.5.1.
By Lemma 4.6.1, every vector of BX is stable.

STEP 2. Since every vector in B&X is stable we can resolve sin-
gularities by the same procedure used to resolve singularities in toric
and toroidal geometry, see e.g. | , Theorem 11*  page 94].
Indeed, if A, — X is any strict map, then any element of o corre-
sponds to a stable vector of X', hence can be used as the center of a
star subdivision. We can apply the familiar procedure to resolve toric
singularities individually to each map A, — X. With further star sub-
division we maintain the property that every vector is stable. After a
finite number of subdivisions, we obtain a subdivision ) — X where
Y is smooth (and in particular simplicial) with the property that every
vector y : A — ) is stable. Since the procedure involves only star
subdivisions, it is projective.

STEP 3. For each ray = : A — ), we construct a map J — A.
If A, — Y (where o is necessarily isomorphic to N", so A4, ~ A")
is a strict, étale map through which x factors, then x factors as the
inclusion of a ray of ¢. This factorization A — A, — ) is unique since
all vectors of ) are stable (as a consequence of Steps 1 and 2). We
have a canonical projection o = N” — N onto this ray inducing a map
A, — A. This projection is compatible with restriction to an open
subset of A" through which x also factors. It restricts to the projection
to the generic point of A on any open set of A" not containing .

If A, — Y is a chart through which = does not factor, then we take
A, — A to be the projection to the generic point. As the choice of lift
of x is unique when it exists, these definitions are unambiguous and
hence glue to give a map Y — A.

Repeating this construction for every ray of ) we get a map Y — A"
where n is the number of rays of ). We verify that it is strict: On a
chart A" — ), the map A" C A" is, by construction, the identity on
the r factors in the domain, and the projection to the generic point
at the remaining factors. In particular, it is an open embedding and
therefore strict.

[ )
Remark 4.6.3. When the Artin fan A has a cover by open Artin
subcones, the argument of | , Lemma 8.7] can be used to show

that the resulting strict morphism ) — A" is an open embedding.
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If X has faithful monodromy, then the proof of Theorem 4.6.2 shows
that the barycentric subdivision of X has an open cover by subcones.
Combining this with the previous observation, we observe that if X" is
an Artin fan without monodromy then applying Theorem 4.6.2 after
barycentric subdivision yields an open substack of A™. This is illus-
trated in Figures 1 and 2. One barycentric subdivision suffices for our
theorem, but in Figure 1 a second barycentric subdivision is needed to
embed the complex as a fan.

With notation as in the statement and proof of the theorem, consider
the set S” C S consisting of strict maps A — ) such that the composite
A — X is not strict. These correspond to the exceptional divisors of
Y — AX: each of the generators of A pulls back to a line bundle
and section (£;,0;) on ) vanishing along an exceptional divisor of the
projective morphism Y — X.

Corollary 4.6.4. Let X be a noetherian logarithmic stack whose loga-
rithmic strata are locally connected in the smooth topology. Then there
1s a logarithmic modification ¥ @'Y — X with relatively ample line
bundle L, as well as line bundles and sections (L;, s;) on'Y wvanishing
along substacks E; C'Y, having the following properties:
(i) The morphism U is projective, logarithmically étale, and sur-
jective.
(i1) ¥ is an isomorphism away from the locus U;E;.
(i) We have L = @ L™ with m; negative.
(iv) Y has Deligne-Faltings logarithmic structure.
(v) If X is logarithmically smooth, then the underlying structure Y
1s smooth in the usual sense.

Proof. Let X be the Artin fan of X, let ) be given by Theorem 4.6.2
and take Y = ) xy X. By the theorem, this gives (i), (iv), and (v)
immediately. For the L;, s;, and E; we simply pull back £;, o;, and
& from ). This gives (ii). Recall that the exceptional divisor of any
star subdivision is anti-ample. Since the composition of projective
morphisms is projective, there is a linear combination, with positive
coefficients, of the pullbacks of these divisors which is anti-ample for
Y — X. Since every divisor (s;) corresponding to an element of S’
appears in such an exceptional divisor, there exist negative integers m;
such that £ = @ L™ is relatively ample for ) — X. Then (iii) is
obtained by taking L to be the pull-back of L. [ )

4.7. Stable maps into subdivisions. Let X be an Artin fan. Re-
call from Section 1.4 that 9(X) is the moduli stack parameteriz-
ing prestable logarithmic maps to X and 9() — X') parameterizes
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prestable maps which are relatively stable for JJ — X. An object of
M(Y — X)(S) is a diagram

cC—Y
(4.7.1) l

|

C —X

of prestable logarithmic maps over S where C' — C is a logarithmic
modification and the automorphism group of this diagram relative to
the bottom arrow C — X is finite. In other words, the map C' —
Y xx C is stable and C' — C is a contraction of rational components.
The morphism MM'(Y — X) — M(AX) under consideration sends a
diagram (4.7.1) to C — X. See | , Sections 3 and 4], where this
morphism is shown to be birational, for a more thorough discussion.

Proposition 4.7.2. Let Y — X be a modification of Artin fans. Any
diagram

L MY = X)
S’—§->S—>EDT(X)

admits a unique lift after passing to a (not necessarily representable)
logarithmic modification S" — S.

Proof. The map S — M (X') corresponds to a logarithmic curve C over
S and a map C' — X. Applying Corollary 3.3.6 to the map C' — S x X
we obtain a diagram of Artin fans (4.7.3),

Yy
(4.7.3) X

_

nh+—N

where S is the Artin fan of S and C' is the relative Artin fan of C over
SxX. Take C = C xx Y, with the fiber product formed in the category
of fine, saturated, logarithmic algebraic stacks; this is the pullback of
a subdivision of X, hence is a subdivision of C, and in particular has
connected fibers over C. After a logarithmic modification of S, we can
assume that S is smooth (Theorem 4.6.2), C — S is equidimensional
[ , Lemmas 4.1 and 4.3], and therefore that C is flat over S | :
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Remark 4.6]. By | , Proposition 5.1] we can ensure as well that
the fibers of C — S are reduced by replacing the integral lattice of &
with a finite index sublattice.®
Now let C = CxzC. We show that C is a logarithmic curve
[ , Definition 4.5] over S. We must verify the following proper-
ties:
(1) C is logarithmically smooth over S: It is the composition of
a logarithmically étale map C' — C (the base change of the
logarithmically étale map ) — X') and a logarithmically smooth
map C' — S.
(2) C — S has connected fibers: Since C' has connected fibers over
S, it is sufficient to show that C — C has connected fibers.
This follows by strict base change from the connectedness of
the fibers of C — C.
(3) C — S is integral in the logarithmic sense: Since C' — C and
S — § are strict, this is immediate from the flatness of the map
C—S.
(4) C — S has reduced, l-dimensional fibers: The map C' —
C x5S is smooth of relative dimension 1 and C — & has re-
duced 0-dimensional fibers.
(5) C is proper over S: The map C — C is proper (it is a subdivi-
sion), so C' — C'is proper, and C — S is proper by hypothesis.

Therefore C lifts C' — X to a diagram (4.7.1). It is the base change of a
subdivision, so it is a logarithmic modification. Furthermore, any com-
ponent of C' contracted in C is stabilized by the map to ). Therefore
this diagram lifts C — X to a point of M'(Y — X).

We verify that this lift is unique. Suppose that C” is another lift.
By the universal property of fiber product, we obtain a map f : C' —
C = C xxY. By the definition of 9 (Y — X), this map is stable.
On the other hand, the map C’ — C is a logarithmic modification of
logarithmic curves, hence is a contraction of semistable components.
Thus, ¢! — C' is stable and a contraction of semistable components,
hence is an isomorphism. 'y

Corollary 4.7.4. Assume that Y is a subdivision of an Artin fan X.
Then the morphism

MY — X)— MX)
is birational and satisfies the valuative criterion for properness.

4Note that this corresponds to a root stack construction, so that S’ — S is not
necessarily representable.
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Proof. Birationality was proved in | , Proposition 5.2.1]. The val-
uative criterion is immediate from Proposition 4.7.2. [ )

4.8. The valuative criterion.

Proof of Proposition 1./.3. Let R be a discrete valuation ring and K be
the fraction field of R. Consider an object f : Spec K — M(X), which
we would like to extend, possibly after base change, to a unique object
Spec R — JM The object f corresponds to a logarithmic structure
Mg on S = Spec K, and a logarithmic morphism f : S — M(X),
where S := (Spec K, Mg).

Choose a projective subdivision )V — X as in Theorem 4.6.2, and
let Y = X xx ). Consider the the composition f : S — M(X) of f
with M(X) — 9U(X), and the cartesian diagram 1.4.1. By Proposition
4.7.2 there is a logarithmic modification S — S and a unique lift of §
tof : S — M (Y — X), giving rise to a unique lift f': " — M(Y).
As S’ is of finite type, it has a K-point, at least after replacing K
by a finite extension. We let S” be this point, with the logarithmic
structure restricted from S’. By the valuative criterion of M(Y) | :
Corollary 3.11] after replacing R and K with a finite extension we have
a logarithmic scheme 7" = (Spec R, M) extending S”, and a unique
extension f' : T" — M(Y) of f' : &' — M(Y). Composing with

M(Y) — M(X) we obtain an arrow f: T" — M(X):

(4.8.1) s M)

| <
//f//

It still remains to show that two extensions fl, f~2 : T = SpecR —
M(X) extending f must agree. It is sufficient to verify this after a finite
base change. We give T' the logarithmic structure My pulled back from
the map (f1, fo) : T — M(X)xM(X). According to Proposition 4.7.2,
there is a logarithmic modification 7" — T after which there is a unique
lift of 77 — M(Y) of the composition 7" — T — M(X). Now,
1" — T'is surjective and proper, so after a finite base change, it admits a

section. Therefore f; and f, both lift to M(Y'), hence coincide because

M(Y) is proper.
[
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5. BOUNDEDNESS OF NUMERICAL DATA

In this section we will identify locally constant numerical data I"
on M(X) such that each Mr(X) is of finite type. In addition to the
genus g of the source curve, the number n of marked points, and the
homology class 8 of the curve’s image in X, we also have evaluation
maps

M(X) = AX = AX

associated to each marking, see Section 1.5.3. The choice of a connected
component of AX for each marked point gives one more locally constant
datum. Let T' = (g,n, 3, p) where ¢ € m(AX)". We write Mp(X) for
the open and closed substack of M(X) with these numerical data.

Select a logarithmic modification Y — X, obtained by base change
from a subdivision of Artin fans ) — X, as in Corollary 4.6.4. The
irreducible components &; of the exceptional locus of Y — X are non-
singular divisors which are unions of logarithmic strata. We denote
their pre-images on Y by FE; and the corresponding line bundles by L;.

Write Mr(Y') for the open and closed substack of M(Y’) lying above
Mr(X). The following proposition, whose proof occupies the rest of
this section, will complete the proof of our main theorem:

Proposition 5.1. The algebraic stack Mrp(Y) is of finite type.

Recall that if the genus g, number of markings n, degree with re-
spect to some ample line bundle on Y, and a component of AY for
each marked point are fixed in =, then Mz=(Y) is of finite type | ,
Theorem 3.12] or | , Corollary 3.13]. We will show that Mp(Y)
is a union of only finitely many Mz(Y"). Obviously, once I is fixed, g
and n are fixed. The first step of our argument will be to show that
the components of A) map bijectively to the components of AX, so
that once a component of AX is fixed in [ there is a unique component
of AY lying above it. Finally, we will show that the degree in Y is
bounded by the choice of T'.

5.2. Boundedness of contact orders. Recall that a family of loga-
rithmic points parameterized by a logarithmic scheme (X, M) is sim-
ply a line bundle L on X. Equivalently, a family of logarithmic points
parameterized by X may be viewed as an augmentation My — MY
of the logarithmic structure of X with M’y = My x N. A logarithmic
point of (Y, My) parameterized by (X, Mx) is a logarithmic morphism
(X, M) — (Y, My), where (X, M%) is a family of logarithmic points
parameterized by (X, Mx).
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Proposition 5.2.1. (1) Suppose that the following diagram of log-
arithmic algebraic stacks is cartesian:

Y —Y

I

X — X
Then the diagram below is cartesian as well:

ANY' ——= AY

L]

ANX—— NX
(2) Suppose X' — X is strict. Then the diagram

AX —— AX

|

X —X
18 cartesian as well.

Proof. The first statement is immediate from the modular description
of the stack of logarithmic points. The second follows from the first. &

We evaluate AA, for a fine, saturated, sharp monoid ¢. Our cal-
culation is analogous to | , Section 3.2|, which treats affine toric
varieties. Consider a map f : (X, M%) — A,. This corresponds to a
homomorphism of monoids,

(5.2.2) o = I'(X,Myx) x Hom(X,N).

The map 0¥ — Hom (X, N) may be viewed as a locally constant func-
tion ¢ : X — o. For each ¢ € o we therefore obtain an open and
closed substack A,A,. The element ¢ is called the contact order.

Consider the closed substack BG,, C A. The stack BG,, is the stack
of log points over log schemes with the universal family BG,, — BG,,
[ , Section 2.3]. By the definition of 4,, the morphism id x ¢ :
0V — 0" x N defines a morphism of logarithmic stacks h : A, x BG,,, —
A,, which is a logarithmic point in A, over A, x BG,,. This defines a
tautological morphism

(5.2.3) A, x BG,, — Ny A,

Conversely, consider any logarithmic point f : (X, M%) — A, with
contact order ¢ : X — 0. We obtain a morphism X — BG,, induced
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by the family of logarithmic points over X. On the other hand, f
induces the composition 0¥ — M’y ~ N x Mx — M, hence a mor-
phism X — A,. This gives a morphism & : X — A X BG,, such that
the logarithmic point f is the pull-back of h via h. In particular, the
tautological morphism A, x BG,, — A,A, is surjective. This defines
another morphism

(5.2.4) Ao Ay = Ay X BGp.

One checks that (5.2.3) and (5.2.4) are inverse of each other. We have
just proved the following proposition:

Proposition 5.2.5. For any ¢ € o, the stack N, A, is isomorphic to
A, x BG,,. In particular, it is irreducible and of finite type.

Corollary 5.2.6. The connected components of ANA, are in bijection
with the elements of o.

Corollary 5.2.7. If X is an Artin fan then the connected components
of NX are in bijection with the isomorphism classes of maps A — X.

Proof. We may present X as a colimit of a diagram of strict maps
among the A,. Since my(—), A(—), and Hom(A, —) all respect strict
colimits of Artin fans, the problem reduces to the case X = A,. In
that case we only need to recall that Hom(A, A,) = o, functorially in

0. [

Corollary 5.2.8. If 0 — 7 is a morphism of fine, saturated, sharp
monoids and ¢ € o has image ¥ € T then the induced map N, A, —
NpAr is of finite type.

Proof. The statement follows from the identifications A, A, ~ A, X
BG,, and Ay A ~ A; x BG,, and the fact that A, — A, is of finite
type. )

Corollary 5.2.9. Let Y — X be a subdivision. Then the induced map
ANY — ANX s of finite type.

Proof. A subdivision induces a bijection
Hom(A,Y) — Hom(A, X)

on the sets of connected components of AY and AX. To show the
map is of finite type, it is sufficient to work étale-locally in X. We
may therefore assume X = A,. The subdivision ) of A, has an open
cover by finitely many A,. This reduces us to showing that the maps
NpAs — N A; are of finite type, as we did in the previous corollary. &
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Corollary 5.2.10. Suppose that X is a quasicompact Artin fan. Then
each connected component of AX is of finite type.

Proof. Suppose that ¢ € Hom(.A, X) corresponds to a connected com-
ponent A,X of AX. Then A,X is covered by the maps Ay A, — Ay X

as 1) ranges over lifts A AN A, of © along strict, étale maps A, — X.
But X has a cover by finitely many strict, étale maps A, — &', so A, X
has a cover by finitely many strict, étale maps Ay.A,, hence is of finite
type. )

Proof of Proposition 1.5.2. As X — X is of finite type and, by Corol-
lary 5.2.10, each connected component of AX is of finite type, it follows
from Proposition 5.2.1 that each connected component of AX is of fi-
nite type. Likewise, AY — AX is of finite type by Corollary 5.2.9, so
AY — AX is of finite type, again by Proposition 5.2.1. [

5.3. Boundedness of the curve classes. Let f : C' — Y be an ob-
ject of Mp(Y). Denote by c¢;(E;) the contact order of the j-th marking
with the exceptional divisor E; as in Corollary 4.6.4. These numbers
are uniquely determined by the induced maps to A)Y, hence by T

The following is a restatement of Proposition 1.5.6. Recall that L is
a relatively ample line bundle for Y over X and that L ~ @ LY for
negative integers m;.

Proposition 5.3.1. Let f : C — Y be a point of M(Y). The values
¢;(E;) determine degq(L).

Proof. We have
degn (L) = Zmi degn(E;) = Z m; degq(&;).

This quantity is locally constant on 9t()), which is logarithmically
smooth | , Proposition 1.6.1]. We can therefore replace C' with a
deformation that is smooth and intersects the &; properly. In this case
deg (&) = X2 ¢i(Ei), so dega(L) = 37, ;mic;(E;) is determined by
the ¢;(E;), as required. [
Proposition 5.3.2. Fiz an ample line bundle M on X and f : C' =Y

a point of M(Y). Denote the projection from Y to X by n. Then
L ®m*M is ample on'Y and

deg(f*(L @7 M)) = deg(f*m" M) + Y mic;(E;).
i3
In particular, the degree of f with respect ot L @ w*M 1is determined
combinatorially by the image of (C, f) in M(X).
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Proof. We have
deg(f"L® f*n*M) = deg(f*n*M) + deg(f*L)

and deg(f*L) was computed in the last proposition. [

We conclude that I'" bounds the degree of f : C' — Y as well as its
contact orders along the logarithmic divisors. Therefore Mp(Y) is of
finite type. This completes the proof of Proposition 5.1.

As the map o o

Mrp(Y) — Mp(X)

is proper, we deduce that Mr(X) is of finite type as well.
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