




2. Preliminaries

2.1. Notation

R set of real numbers

σi(M) the i-th largest singular value of M

σmin(M) smallest singular value of M

(M)i ith row of M.

M � 0 matrix M is positive semidefinite.

Pn
d (Pn

d,h) set of nth degree multivariate (homo-

geneous) polynomials in d variables.

sn,d
.
=

(

n+d
d

)

number of monomials of degree up to

n in d variables.

νn(x) Veronese map of degree n:

νn
(

x1 . . . xd

) .
=

[

xn
1 xn−1

1 x2 . . . xn
d

]T

(i.e. all possible monomials of order n

in d variables, in lexicographic order.)

Eµ(.) Expected value w.r.t. the probability

density function µ.

2.2. Moment matrices and orthogonal polynomials

Given a probability measure µ supported on R
d, its cor-

responding moments sequence is given by

mα = Eµ(xα) =

∫

Rd

xαdµ (1)

where α =
[

α1 α2 . . . αd

]

is a multi-index , x
.
=

[

x1 x2 . . . xd

]T
and xα .

= xα1

1 xα2

2 · · ·xαd

d .

In this paper, we are interested in using a matrix repre-

sentation of a given sequence m that contains all the mo-

ments up to order 2n. To this effect, we will arrange the

moments according to a graded reverse lexicographic order

(grevlex) of the corresponding monomials and form the ma-

trix Mn ∈ R
sn,d×sn,d with entries given by Mn(α,β) =

mα+β. For example, for d = 2 variables, x1 and x2,

there are sn,d = 6 monomials of degree up to n = 2:

1, x1, x2, x
2
1, x1x2, x

2
2. The elements of the corresponding

moment matrix M2 with all moments of order up to 2n = 4,

are given by: m(i,j) = Eµ(xi
1.x

j
2), with 0 ≤ i, j ≤ 3.

Given a point x ∈ R
d, let

φn(x)
.
=

[

1 x1 x2 . . . (xα1

1 xα2

2 · · ·xαd

d ) . . . xn
d

]T

(2)

where
∑d

i=1 αi ≤ n. It can be easily seen that

Mn =

∫

Rd

φn(x)φ
T
n (x)dµ (3)

Thus, Mn � 0 (in fact Mn � 0, except when x belongs to

the zero set of a polynomial of degree at most n [11]).

The measure µ induces an inner product in Pn
d , the space

of polynomials in d variables of degree at most n, given by:

〈P1(.), P2(.)〉µ .
=

∫

Rd

P1(x)P2(x)dµ (4)

As shown next, this inner product can be computed directly

from Mn. Consider a generic polynomial P (x) ∈ Pn
d ,

P (x) =
∑

α pαx
α, where pα denotes the coefficients of

P (.) in the canonical monomial basis. Collecting all the co-

efficients pα in a vector p allows for compactly representing

P (.) as P (x) = pTφn(x). Then,

〈P1(.), P2(.)〉µ =

∫

Rd

pT
1 φn(x)φ

T
n (x)p2dµ = pT

1 Mnp2

(5)

Assume that Mn � 0 and let ui, σi denote its singular

vectors and the corresponding singular values. From the

derivation above, it follows that the polynomials associated

with the coefficient vectors ci
.
= 1√

σi
ui are an orthonor-

mal basis, with respect to µ, of Pn
d . As shown in [24] these

orthonormal polynomials define a reproducing Kernel:

Kn(x,y)
.
=

sn,d
∑

i=1

(cTi φn(x))(c
T
i φn(y)) (6)

Next, define the polynomial

Qn(x)
.
= Kn(x,x) =

sn,d
∑

i=1

(cTi φn(x))
2 (7)

Note that Qn(x) is a sum-of-squares polynomial, and hence

non-negative (in fact, it can be shown [10] that Qn(x) ≥ 1).

The function Qn(x)
−1 is known as the Christoffel function

and it is related to the probability measure µ that induces

orthorgonality of the set {ci} through the following result

(Theorem 2 in [10], see also section 7 in [24]):

Qn(x)
−1 = min

P∈Pn
d

∫

Rp

P 2(ξ)dµ s. t. P (x) = 1 (8)

a result that will play a key role in identifying outliers.

3. Robust subspace clustering

Our goal is to develop a computationally efficient algo-

rithm for subspace clustering in the presence of gross out-

liers. Specifically, we address the following problem:

Problem 1. [Robust Subspace Clustering] Given a (suffi-

ciently dense) set of noisy i.i.d samples (with arbitrary, un-

known distribution µ) xi of points x̂i ∈ R
d drawn from an

arrangement of (linear) subspaces A .
= S1 ∪ S2 ∪ . . . Sn,

corrupted with gross outliers, and a bound n on the number

of subspaces: 1) Identify gross outliers in the data; and 2)

Assign inliers to subspaces.

Algebraic methods attempt to solve the problem above

by finding a polynomial P (x) in the vanishing ideal of

A1 while spectral clustering methods work directly with an

1Recall that I(A), the vanishing ideal of a subspace arrangement A ⊆

R
d, is the set of all multivariate polynomials in d variables that vanish on

all points in A, that is I(A)
.
=

{

P ∈ Pd : P (z) = 0 ∀z ∈ A
}

.



affinity matrix obtained from the data. The advantage of the

later methods is that they avoid the non-trivial step of esti-

mating the vanishing ideal in the presence of noise and out-

liers. However, this is accomplished at the price of having to

solve a regularized optimization problem [4, 13] or devising

methods that are only experimentally shown to behave well

in the presence of a moderate number of outliers [9]. In this

paper we propose to use a combination of both approaches:

(i) using a (perhaps crude) approximation to the vanishing

ideal to find “reliable” inliers, (ii) use these reliable inliers

to estimate a polynomial Ps(x) in this ideal, (iii) identify

the true inliers as those points where Ps is “small” (in a

sense to be precisely defined later), and (iv) apply a spectral

clustering based method (such as RSIM) only to these in-

liers. Notably, as discussed in the sequel, steps (i)-(iii) only

involve performing two singular value decompositions on a

matrix whose size is, in typical applications, much smaller

than the data matrix, and thus are computationally far less

costly than solving a regularized optimization problem.

3.1. Stochastic interpretation of algebraic methods

The first step towards developing efficient methods for

outlier rejection is based on a stochastic re-interpretation of

algebraic methods in the presence of noise. For the case of

clean data, GPCA [23] provides an elegant algebraic solu-

tion to the clustering problem. For simplicity, consider the

case where all subspaces have the same (known) dimension

k < d (the case where the subspaces have different dimen-

sions will be considered later). Without loss of generality,

we will assume that k = d − 1 (it that is not the case, one

can project the data into a generic subspace of dimension K

and consider hyperplanes of dimension K − 1 in this sub-

space). The key idea behind this method is the observation

that, regardless of their labels, all points in the arrangement

A satisfy the hybrid decoupling constraint:

Pdc(x) =
n
∏

i=1

(xT ri)
.
= cn

T νn(x) = 0 (9)

where ri denotes the normal to Si, Pdc(x) ∈ Pn
d,h is an nth

order homogeneous polynomial in d variables with coeffi-

cient vector cn, and νn(.) is the Veronese map of degree

n
.
= sn,d−1 . Collecting all data into a matrix form leads to:

Vncn
.
=

[

νT
n (x1) · · · νT

n (xNp
)
]T

cn = 0 (10)

Thus, cn, can be computed by simply finding a vector in

the right null space of the embedded data matrix Vn. In

the case of (moderately) noisy samples, the approach out-

lined above can still be used, by considering the polyno-

mial defined by cmin, the singular vector of Vn associated

with its smallest singular value. However, this approach

breaks down in the presence of outliers, since in this case

the polynomial constructed from the singular vector of the

corrupted embedded data matrix associated with its smallest

singular value is a poor approximation to the actual polyno-

mial Pdc(x) in (9). As we show in the sequel, this difficulty

can be avoided by considering a polynomial constructed by

taking into account all singular vectors of Vn.

Given x ∈ R
p, consider the lifting x → φn(x) ∈ R

sn,d

defined by (2). Collect the liftings for all the Np data points

in a matrix Ln with rows (Ln)i = φT
n (xi) and define:

Mn =
1

Np

LT
nLn =

1

Np

Np
∑

i=1

φn(xi)φ
T
n (xi) (11)

Comparing (11) with (3) it can be easily seen that Mn is

an estimate of the moment matrix of the probability den-

sity function of the data points; where mα = Eµ(xα) has

been replaced by 1
Np

∑Np

i=1 x
α
i . Note that the lower right

sn,d−1 × sn,d−1 submatrix of Mn is given by 1
Np

VT
nVn.

Consider now an arbitrary homogeneous nth order d-

variate polynomial defined by a coefficient vector p,

P (x) = pTφn(x), where pT =
[

0 cT
]T

, with c ∈
R
(n+d−1

n ). From (5) it follows that E(P 2(x)), where the ex-

pectation is taken with respect to the empirical probability

density defined by the data points, is given by:

E(P 2(x)) =
[

0 c
T
]

Mn

[

0
c

]

=
[

0 c
T
]

[

∗ ∗

∗
1

Np
V

T

nVn

] [

0
c

]

=
1

Np

cTVT
nVnc ≥

1

Np

σmin(V
T
nVn)‖c‖2

(12)

where equality holds when c = cmin. Thus, GPCA can

be reinterpreted as finding an homogeneous polynomial

Pn,h(x) = cTnφn(x) that solves the problem

Pn,h(x) =

{

argmin
P∈Pn

d,h

E(P 2(x)) : P = cTφn(x), ‖c‖ = 1

}

(13)

where the constraint ‖c‖ = 1 is added to avoid trivial solu-

tions. In the presence of outliers, the empirical probability

distribution obtained from the data is a poor estimate of the

inlier distribution. Thus the solution to (13) is typically a

poor approximation to Pdc in (9), as shown in Fig 3. The

main idea of this paper is to circumvent this difficulty by

minimizing E(P 2(x)) with respect to the empirical distribu-

tion defined by a subset of the data consisting of “reliable”

inliers. As illustrated in Fig 3, the level sets of this polyno-

mial (green) approximate well the support of the true inliers,

leading in this case to perfect inlier/outlier separation.

3.2. Finding reliable inliers

The starting point of the proposed method is to elimi-

nate from the data potential outliers that skew the compu-

tation of Pn,h in (13). To this effect, consider the matrix



Figure 3: A few outliers (red points) can lead to a GPCA polyno-

mial whose level sets (red) are a poor approximation of the inlier

subspaces while the level sets of the proposed polynomial (green)

successfully approximate the support of these subspaces

Mn,h
.
= 1

Np
VT

nVn ∈ R
sn,d−1×sn,d−1 . As in (4), Mn,h in-

duces an inner product in Pn
d,h, the space of homogeneous

polynomials, given by:

〈P1(.), P2(.)〉µ .
=

∫

Rd

P1(x)P2(x)dµ = pT
1 Mn,hp2

(14)

where Pi(x) = pT
i νn(x). Next, let Udiag(σi)U

T =
svd(Mn,h) and consider the homogeneous polynomials

Ci(x) ∈ Pn,h, Ci(x)
.
= cTi νn(x) with coefficient vectors

ci
.
= 1√

σi
ui, where ui denotes the ith column of U. Note

that these polynomials form an orthonormal basis of Pn,h

with respect to the inner product defined by (14) since

〈Ci(.), Cj(.)〉µ =
1

√
σiσj

uT
i Mn,huj =

{

1 if i=j

0 otherwise

Thus,

Kn,h(x,y)
.
=

sn,d−1
∑

i=1

(cTi νn(x))(c
T
i νn(y)) (15)

is a reproducing kernel in this space, with associated

Christoffel polynomial given by

Qn,h(x)
.
= Kn,h(x,x) =

sn,d−1
∑

i=1

(cTi νn(x))
2 (16)

Due to orthonormality, Eµ[Ci(x)] = cTi Mn,hci = 1. Thus,

the expected value of Qn,h is given by

Eµ(Qn,h) =

sn,d−1
∑

i=1

Eµ[ci(x)] = sn,d−1 (17)

Finally, given a threshold t, from Markov’s inequality

(chapter 8 in [21]) it follows that

prob{Qn,h(x) ≥ t · sn,d} ≤
1

t
(18)

Hence, a set of “reliable” inliers can be found by simply se-

lecting those points where Qn,h(x) < t · sn,d. Since accu-

rate estimation of a polynomial in the vanishing ideal I(A)
hinges on using a set without outliers, t in this step should

be taken reasonably low (e.g. t ∼ 1− 3).

3.3. Estimating a polynomial that vanishes on all
inlier subspaces

Since Kn,h defined in (15) is a reproducing kernel in

Pn,h, from [24] it follows that, for each point x ∈ R
d

Qn,h(x)
−1 = min

P∈Pn
d,h

∫

Rp

P 2(ξ)dµ s. t. P (x) = 1 (19)

For a given x∗, denote by P ∗ the minimizer above.

Markov’s inequality [10] implies that, for any given thresh-

old t, the mass of the set S =
{

x : (P ∗(x))2 ≤ t
}

satisfies

µ(S) =
∫

P∗(x)2≤t

dµ ≥ 1− Eµ[(P
∗)2)]

t
= 1− 1

tQn,h(x∗)
(20)

Consider first a scenario with noiseless data xi ∈ I ⊂
A, corrupted with outliers x̂i ∈ O and let µtrue denote

the probability density function of the inliers. Choose

an arbitrary outlier xo ∈ O and define the polynomial

P̃ (x)
.
= Pdc(x)

Pdc(xo)
, where Pdc is the decoupling constraint

polynomial defined in (9). Since by construction Pdc(x) =
0 ⇐⇒ x ∈ A, P̃ above is well defined and satisfies
∫

Rp P̃ (ξ)2dµtrue = 0 (the only homogeneous polynomial

of degree n, up to a scaling factor, to do so). Thus, P̃ is the

minimizer in (19). Since 1
Q(xo)

= 0, it follows from (20),

that, for any t > 0,

I ⊆ H .
= {x : P̃ 2(x) ≤ t} (21)

In other words, the sub-level sets of P̃ 2 provide a polyno-

mial approximation to the support set of the measure µtrue.

Consider now the case of noisy data and let σmin and

umin denote the smallest singular value and associated sin-

gular vector of the moments sub matrix Mtrue
n,h , correspond-

ing to the true inlier probability distribution. In this case, the

GPCA polynomial associated with the data matrix is (up to

a scale factor)

Pgpca(x)
.
=

uT
minν(x)

uT
minν(xo)

and yields a value

1

Qgpca(xo)
=

uT
minM

true
n,h umin

[uT
minν(xo)]2

=
σmin

[uT
minν(xo)]2

Since by construction Pgpca satisfies the constraint in (19),

it follows that the minimizer P ∗ of (19) satisfies 1
Q∗
≤



Figure 4: Left: 2D projections of two Coil-100 clusters (red and blue) corrupted with eight outliers (magenta). Center: The Qi values (red).

The horizontal line (blue) shows the threshold used to select “reliable” inliers to estimate the empirical distribution. Right: The P 2(x)
values. The horizontal line (red) shows the threshold used to classify the outliers. In this example, all eight outliers are correctly identified.

1
Qgpca

. Hence the set H∗ .
= {x : P ∗(x)2 ≤ t} has a

mass µ(H∗) ≥ 1 − σmin

t[uT
min

ν(xo)]2
. It follows that, when

[uT
minν(xo)]

2 � σmin (roughly speaking the outlier is well

outside the noise level) then the set H∗ contains most of the

inliers. This observation is the basis of our algorithm.

3.4. Estimating the set of inliers

From the previous discussion, estimating the set of in-

liers requires finding the polynomial that solves (19) and the

associated Qn,h(x). As we show next, both can be written

in terms of the singular value decomposition of Mn,h.

Theorem 1. Let ui, σi denote the singular vectors of

Mn,h and the corresponding singular values. Define the

vectors ci = ui√
σi

. Given a point xo, the polynomial

P ∗(x) that minimizes (19) and the corresponding value

of Qn,h are given by P (x) = ν(x)p∗ and Qn,h(xo) =
∑sn,d

i=1 (c
T
i ν(xo))

2 with:

p∗ =
1

∑sn,d

i=1 (c
T
i ν(xo))2

sn,d
∑

i=1

cTi ν(xo)ci (22)

Proof. Since the polynomials Ci(x)
.
= cTi ν(x) form an or-

thonormal basis of Pn
d,h, any solution to (19) can be written

as P (x) =
∑sn,d

i=1 αiCi(x), Thus the objective in (19) can

be rewritten as

∫

Rp

P 2(ξ)dµ =

∫

Rp

∑

(αiCi(x))
2dµ =

sn,d
∑

i=1

α2
i (23)

where the last equality follows from orthonormality of the

Ci(.). Hence (19) is equivalent to:

min
αi

sn,d
∑

i=1

α2
i s. t.

sn,d
∑

i=1

αic
T
i ν(xo) = 1 (24)

It can be easily seen that the solution to the (convex) op-

timization above is given by αi =
c
T
i ν(xo)

∑sn,d

i=1
(cT

i
ν(xo))2

which

proves (22). The proof is completed by noting that:

Qn,h(xo) =
1

∫

Rp(P ∗(ξ))2dµ
=

1
∑

α2
i

=

sn,d
∑

i=1

(cTi ν(xo))
2

(25)

Once P ∗ has been found, the set of inliers is estimated

as the intersection of the original data with the sub level set

of P ∗(.)2 corresponding to a given threshold t, that is

H = {xi : [ν
T (xi)p

∗]2 ≤ t} (26)

In principle the ideas outlined above can be directly ap-

plied to find outliers. However, as it was discussed in the

introduction and illustrated in Fig. 2(b) the procedure may

identify isolated inlier points as outliers. To avoid this dif-

ficulty, inspired by [9] we propose to project all the data

points onto the unit sphere, that is xi ← xi

‖xi‖2
. This pro-

jection will “concentrate” all points belonging to the same

subspace in the region defined by the intersection of the

subspace and the sphere, achieving higher density. Note in

passing that this normalization still preserves the subspace

structure and thus the proposed algorithm is still applica-

ble. On the other hand, since this normalization puts all

points (including the outliers) on the surface of the hyper-

phere, and hence as roots of the quadratic, non-homogenous

polynomial P (x) = xTx− 1, the approach in [10] will fail

to detect outliers. The effectiveness of this approach is il-

lustrated in Fig. 2(d). As shown in the figure, normalizing

the data prior to applying the proposed algorithm allows for

correctly detecting all the outliers.

3.5. Robust Subspace Clustering Algorithm

Collecting the ideas from sections 3.2-3.4 leads to the

following robust inlier selection algorithm:

In the algorithm above, steps 4-11 implement the ideas

described in Section 3.2, by first finding the polynomial

Qn,h (steps 4-7), selecting as reliable inliers those points



where Qn,h(ν(xi)) ≤ sn,dt (step 8) and computing the cor-

responding moment matrix and its associated orthonormal

basis (steps 9-11). Steps 12-16 select the set of inliers from

the original data proceeding as outlined in sections 3.3 and

3.4: step 12 selects as outlier the point corresponding to the

highest value of Qn,h; steps 13 and 14 use this point to com-

pute p∗ the coefficients of the polynomial that solves (19)

and steps 15 and 16 select as inlier set all the points where

P ∗(x)2 ≤ t2. Finally, once the set of inliers is available,

robust subspace segmentation proceeds by using an exist-

ing clustering method such as RSIM using these inliers.

These ideas are illustrated in Fig. 4, where the center plot

shows the values of Qn,h computed using the moment ma-

trix associated with the entire data-set (including outliers),

and the “reliable” inliers left after thresholding. The right-

most plot shows the value of P 2(x) calculated using these

reliable inliers. Note that, while the plot of Qn,h is “noisy”

(e.g. many inliers are above the threshold), P 2(x) provides

perfect inlier/outlier separation.

Algorithm 1 Robust Inlier Selection

1: Data: the data matrix X ∈ R
d×Np ; n: upper bound on

the number of subspaces; t1, t2: thresholds

2: sn,d ←
(

n+d−1
n

)

3: xi ← xi

‖xi‖2
. normalize the data.

4: Create matrix Vn ∈ R
Np×sn,d with rows νT (xi)

5: Mn ← 1
N p

VT
nVn

6: U,Σ← svd(Mn)

7: c← U(Σ)−
1
2 , Qi ← ‖(Vnc)i‖2

8: irel ← {i : Qi ≤ sn.dt1} . select reliable inliers

9: Xrel ← X(:, irel), Vn,rel ← Vn(irel, :)
10: Mn,rel ← 1

size(rrel)
VT

n,relVn,rel

11: Urel,Σrel ← svd(Mn,rel)
12: imax ← argmaxi(Qi) . : select the “worst” outlier

13: xo ← X(:, imax);

14: c← Urel(Σrel)
− 1

2 , p∗ ← c(cT ν(xo))
‖cT ν(xo))‖2

2

. P ∗(.)

15: hi ← [νT (xi)p
∗]2} . score for point xi

16: H ← {xi : hi ≤ t2} . sublevel set of P ∗

3.6. Subspaces of different dimensions

When the subspaces have different dimensions, the ideal

I(A) is spanned by the polynomials associated with the

vectors in M⊥, the null space of M, which generically has

dimension m > 1. By continuity, if the inliers are corrupted

by (small enough) noise, the ideal is approximately spanned

by the m singular vectors associated with the m smallest sin-

gular values of the noisy M. Consider now a generic point

x and note that, from (16), Qn,h ≥
∑m

i=1
(uT

i ν(x))2

σi
. It fol-

lows that for points far from the inlier spaces Qn,h is large,

since (uT
i ν(x))

2 � σi for at least one i. Thus, the tech-

nique proposed in Section 3.4 to detect outliers and estimate

reliable inliers still holds.

4. Experimental Evaluation

Datasets. We used data from the MNIST digits [12], Ex-

tended Yale B [6] Coil-100 [17], Caltech-256 [7], and Hop-

kins155 datasets [22] (see Fig. 1). The MNIST dataset has

70,000 images of handwritten digits 0 to 9. Random pairs of

Digits between 1 and 9 were used as inliers. Outliers were

images randomly selected from Digit 0. The Extended Yale

B dataset has 64 images for each of its 38 subjects. All the

images of a subset of random individuals were selected as

inliers while outliers were images randomly selected from

all the remaining subjects. The Coil-100 dataset has 72 im-

ages for each of its 100 objects. Random pairs of objects

were used as inliers, and outliers were images randomly

selected from the remaining 98 objects. The Caltech-256

database contains VGG features for images from 256 cate-

gories, with an average of 80 images each, and a clutter cat-

egory with 827 images, which was used to randomly select

outliers. Because Yale, Coil-100 and Caltech 256 have rel-

atively few images per class, they were augmented using 2

(Yale and Caltech 256) and 3 (Coil-100) duplicates for each

sample. The Hopkins155 is a challenging dataset with 155

video sequences and automatically detected (noisy) point

trajectories of multiple number and types of motions. We

used as inliers the trajectories without any pre-processing,

and outliers were generated using a random walk.

Evaluation and Comparison to state of the art2: We

compared the performance of algorithm 1 for inlier selec-

tion against the state of the art, R-graph [25]. Following

their experimental protocol, we measure performance using

the average of the Area Under the Curve (AUC) of the re-

ceiving operating curves (roc) as t2 is varied, the average

of the maximum F1 score (i.e. geometric mean of Preci-

sion and Recall) and the average execution time in seconds.

The AUC is always between 0 and 1, with a perfect model

having AUC = 1 and a model that guesses randomly hav-

ing AUC ≈ 0.5. The maximum F1 score is the best F1 as

threshold t2 is varied along the roc. Thus, a maximum F1

score of 1, signifies that there exists a threshold t2 for which

both precision and recall are 1.

Additionally, we evaluated the effect of cleaning outliers

on the performance of linear subspace segmentation. To

this effect, we compared the performance of two state of art

clustering algorithms, SSC [4] and RSIM [9], when using

the Hopkins155 corrupted data vs when using the cleaned

data. Both algorithms rely on an affinity matrix and spec-

tral clustering. However, while SSC uses an ADMM based

implementation exploiting sparsity and self-representation

2We are grateful to the authors that shared their code for their algo-

rithms R-graph, RSIM, and SSC



Table 1: Outlier Detection Performance

Ours R-graph

Set Clusters Outlliers AUC F1 Time AUC F1 Time

(%) (mean %) (mean %) (sec) (mean %) (mean %) (sec)

MNIST 2 5 78.89 35.48 12.19 81.76 32.33 150.60

Ext. Yale B 5 15 99.67 99.31 1.28 95.25 94.37 17.68

Ext. Yale B 10 15 99.15 98.70 7.00 91.86 91..12 98.48

Coil-100 2 25 98.52 98.29 0.38 96.20 97.13 6.56

Caltech 256 2 25 93.79 84.89 2.67 78.40 86.77 100.37

Hopkins 155 2 40 99.81 99.60 0.014 64.81 45.61 0.64

Hopkins 155 3 40 100.00 100.00 0.023 72.10 43.62 0.96

Hopkins 155 5 40 100.00 100.00 0.029 26.50 9.64 0.58

(a) (b) (c) (d)
Figure 5: Median misclassification rates RSIM, SSC1 and SSC2 for the Hopkins 155 dataset sequences with (a) 2 motions and (b) 3

motions before and after removing outliers and the corresponding average execution times for clustering and outlier detection (c) and (d).

to overcome outliers, RSIM does not do anything to explic-

itly address their presence.

Implementation details. The algorithm has only three

parameters: an upper bound on the number of subspaces,

a flag to indicate whether to use affine subspaces or not,

and a threshold t1. We report results using as upper bound

on the number of subspaces, the number of inlier clusters.

However, increasing this number did not have any signifi-

cant effect. Threshold t1 was fixed at 1. For R-graph, the

algorithm has two parameters λ and α. We used the same

values as provided by the authors in their code.

Results: The results of the experiments are summarized

in Table 1 and Fig. 5. The outlier detection performance ex-

periments provided in the table, show that the proposed al-

gorithm not only has close to perfect performance in many

cases, but also that it is 10 to 50 times faster than R-graph.

As expected, the gap in execution time grows quickly with

the dimension of the data, since the computational complex-

ity of the proposed algorithm grows at most linearly with

the number of data points (which only affect the number

of sums performed to compute Mn). The plots in Fig. 5

clearly show the degradation in classification (missrate) per-

formance for both algorithms as the number of outliers in-

creases. SSC does a better job than RSIM in the presence

of outliers, but clearly does not remove all of them as its

performance is far worse than when our algorithm is used

to pre-process the data. Interestingly, RSIM performs sig-

nificantly better than SSC1 and SSC2 after the outliers are

removed. It also should be noted that the computational

cost of performing the cleaning step is negligible compared

to the time required for the segmentation.

5. Conclusions

In this paper we proposed a new approach to the prob-

lem of detecting outliers in a set of noisy points drawn from

an arrangement of subspaces. The main idea is to first de-

termine a set of reliable inliers and then use this set to find

a robust estimate of a polynomial in the vanishing ideal of

the arrangement. This is accomplished by using a stochas-

tic reinterpretation of algebraic clustering methods to show

that this estimate can be explicitly written in terms of the

singular value decomposition of a moments matrix directly

obtained from the data. As shown in the paper, the sub-

level sets of this polynomial contain (with a probability that

can be determined a-priori) the true inliers in the original

data. Notably, the proposed method is virtually parameter

free and only requires performing two singular value de-

compositions, avoiding the need to solve potentially costly

regularized optimization problems. Finally, combining the

proposed approach with existing clustering algorithms leads

to substantial performance improvements.
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