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Abstract—Complex systems such as smart cities and
smart power grids rely heavily on their interdependent
components. The failure of a component in one network
may lead to the failure of the supported component in
another network. Components which support a large
number of interdependent components may be more
vulnerable to attacks and failures. In this paper, we
study the robustness of two interdependent networks
under node failures. By modeling each network using
a random geometric graph (RGG), we study conditions
for the percolation of two interdependent RGGs after in-
homogeneous node failures. We derive analytical bounds
on the interdependent degree thresholds (k1, k2), such
that the interdependent RGGs percolate after removing
nodes in Gi that support more than kj nodes in Gj

(∀i, j ∈ {1, 2}, i 6= j). We verify the bounds using
numerical simulation, and show that there is a trade-
off between k1 and k2 for maintaining percolation after
the failures.

I. INTRODUCTION

Large-scale networks are integral parts of complex

cyber-physical systems and smart cities. Various en-

tities from different networks rely on each other and

boost each other’s performance. For example, smart

power grids depend on the designated communication

network for effective control. At the same time, control

centers and communication networks receive electrical

power from the power grid to compute and transmit

control signals. Failures in one network could have an

impact on the other network, and could eventually lead

to the failure of the whole system.

Cascading failures of interdependent networks under

uniformly random node removals were first studied

in [1]. Each network is modeled as a random graph.

Nodes in one random graph depend on nodes in the

other random graph, and a node is functional if both

itself and its interdependent node are in the giant

components of the their own graphs. After initial node

failures in the first graph, their interdependent nodes in

the second graph fail. Because of these failures, some

nodes may be disconnected from the giant component

of the second graph and then fail, and the failures of

the disconnected nodes propagate back to nodes in the

first graph.

Physical networks are spatially embedded. Nearby

nodes are more likely to be connected, whereas distant

nodes are less likely to be connected. Geographical

proximity also applies to interdependence. In the Italy

blackout in September 2003, where a cascading fail-

ure between power and communication networks took

place, it is reported that every server in the communica-

tion network is connected to the geographically closest

power station [1]. In [2], [3], an interdependent lattices

model was proposed and the effect of removing nodes

randomly or in a geographical region was analyzed.

In [4], an interdependent Random Geometric Graphs

(RGG) model was proposed. This model allows the

two networks to have different sizes and average link

lengths and also captures one-to-multiple dependencies

with spatial constraints. The authors in [4] studied

bounds on the percolation thresholds of interdependent

RGGs. They studied the effect of random failures

where every node fails independently with the same

probability, and geographical failures where nodes are

removed in a geographical region.

In real-world networks, failures may not be equally

likely for every node. In a virus epidemic that infects

smart grids, a power station with a large number of

controllable communication nodes is more prone to

infection and failure. Moreover, a power station that

support a larger number of communication nodes is

more likely to suffer physical attacks. Cyber attack is

recognized as one of the major threats to the power

grid [5], and the attack on a control center that controls

a large number of power plants could have a more

severe impact. In this paper, we study the robustness

of interdependent RGGs under a failure model where

the failure of each node depends on the number of its

interdependent nodes. Our paper extends the analysis

of degree-dependent failures in a single RGG in [6].

To the best of our knowledge, our paper is the first

to address robustness of interdependent RGGs to non-

uniform node failures in an analytical manner.

The main contributions of this paper are as follows.

1) We derive upper bounds on the interdependent

degree thresholds (k1, k2), such that the inter-

dependent RGGs percolate after the removals of

nodes in Gi that are interdependent with more

than kj nodes in Gj (∀i, j ∈ {1, 2}, i 6= j).

2) We obtain a new closed-form upper bound on









From [9], p > 0.8639 is a sufficient condition for

the percolation of L. Therefore, if λ, d, kth satisfy

p > 0.8639, then G(λ, d) percolates after removing

all nodes with degree more than kth.

This result can be applied to interdependent net-

works to obtain a closed-form expression for the inter-

dependent degrees k1 and k2 such that GIntDep perco-

lates after removing all nodes which are interdependent

with more than ki nodes in Gi (∀i ∈ {1, 2}). Theorem

3 provides a sufficient condition under which GIntDep

percolates after removing nodes that are interdependent

with a large number of nodes, under the condition

d1 = d2 = ddep.

Theorem 3. If there exist λi, d, ki satisfying
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> 0.8639,

then there exists an infinite mutual component in

GIntDep = (G1(λ1, d), G2(λ2, d), ddep = d), after

removing all the nodes in Gi that have more than kj
interdependent nodes in Gj (∀i, j ∈ {1, 2}, i 6= j).

Proof. The proof is similar to that for Theorem 2. In

the construction of the 1-dependent bond percolation

model L, a bond is open if

1) There are no more than ki nodes from Gi in

R̂(D) (∀i ∈ {1, 2}).

2) Each of the eight small squares contains at least

one node from Gi (∀i ∈ {1, 2}).

Given that the point processes in G1 and G2 are
independent, the probability that a bond is open is the
product of the probabilities that both conditions are
satisfied for nodes in G1 and G2. From Theorem 2,
the probability that nodes in Gi satisfy both conditions
is at least

pi =
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If p1p2 > 0.8639, open bonds in L form an infinite

component.

Finally, we prove that the percolation of L im-

plies the percolation of GIntDep after removing nodes

with a large number of interdependent nodes. By the

same analysis as the proof of Theorem 2, and noting

that nodes of G1 and G2 in the same small square

are within distance
√
2d/3 < ddep, nodes in GIntDep

adjacent to the open bonds of L form an infinite

mutual component, and none of them has more than

ki interdependent nodes from Gi (∀i ∈ {1, 2}).

V. SIMULATION RESULTS

In this section, we first provide numerical results

based on two finite-size interdependent RGGs in a

[0, 20] × [0, 20] area. Nodes of the two RGGs are

generated by Poisson point processes with densities

Fig. 5: Initial network with λ1 = λ2 = 2.5 and

d1 = d2 = ddep before any failures. Red links

and blue links belong to G1 and G2, respectively.

Interdependent links are shown in green.

λ1 = λ2 = 2.5. The connection distances and the inter-

dependent distance are identical: d1 = d2 = ddep = 1.

Before failures, the initial interdependent RGGs are

percolated, as shown in Fig. 5.

After the removal of all nodes in G1 with more than

k2 = 8 interdependent nodes in G2 and all nodes in

G2 with more than k1 = 8 interdependent nodes in

G1, the remaining graph is illustrated in Fig. 6a, where

only 94 nodes remain out of the initial 2000 nodes

and most of the network has lost its functionality. We

repeat the same experiment with k1 = k2 = 10 and as

shown in Fig. 6b, 1475 nodes out of 2000 nodes have

stayed functional. Based on the results of Theorems

1 and 3, one can conclude the existence of a critical

“threshold” for k1 and k2 for which removing nodes

with more interdependent neighbors does not affect the

robustness of network. To observe the transition, we

set k1 = k2 = k and plot the ratio of the size of the

largest mutual component after failures to the size of

the initial network as k changes. The result is shown

in Fig. 7.

Small values of k1 and k2 lead to more severe fail-

ures in the network, since a larger number of nodes are

removed. There is a trade-off between the parameters

k1 and k2 in the sense that if we increase one of

them, small values of the other may not have the same

devastating effect. To observe this trade-off, consider

two finite interdependent RGG in a [0, 20] × [0, 20]
area where nodes are generated according to Poison

point processes with densities λ1 = λ2 = 5 and

d1 = d2 = ddep = 1. We have simulated the failures

for a wide range of values for k1 and k2 and obtained

the ratios of the size of the largest mutual component



(a) k = 8 (b) k = 10

Fig. 6: Resulting networks after removing nodes with interdependent degree more than k. Red links and blue

links belong to G1 and G2, respectively. Interdependent links are shown in green.

Fig. 7: Transition to critical region: λ1 = λ2 = 2.5,

d1 = d2 = ddep = 1.

to the size of the network. The result is depicted in

Fig. 8.

VI. CONCLUSION

In this paper we analyzed the percolation of in-

terdependent random geometric networks in an in-

homogeneous failure scenario. We proved that even

after removing all the nodes with more interdepen-

dent neighbors than a certain threshold, the network

stays percolated. Using simulations, we demonstrated a

trade-off between the interdependent degree thresholds:

by increasing one, the network stays functional for

smaller values of the other. The analysis of such fail-

ures can be used to consider more realistic cascading

failure models where a node fails if a certain ratio of

its interdependent neighbors fail.
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