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Abstract—Complex systems such as smart cities and
smart power grids rely heavily on their interdependent
components. The failure of a component in one network
may lead to the failure of the supported component in
another network. Components which support a large
number of interdependent components may be more
vulnerable to attacks and failures. In this paper, we
study the robustness of two interdependent networks
under node failures. By modeling each network using
a random geometric graph (RGG), we study conditions
for the percolation of two interdependent RGGs after in-
homogeneous node failures. We derive analytical bounds
on the interdependent degree thresholds (k1,k2), such
that the interdependent RGGs percolate after removing
nodes in G; that support more than k; nodes in G
Vi,5 € {1,2},¢ # j). We verify the bounds using
numerical simulation, and show that there is a trade-
off between k; and k> for maintaining percolation after
the failures.

I. INTRODUCTION

Large-scale networks are integral parts of complex
cyber-physical systems and smart cities. Various en-
tities from different networks rely on each other and
boost each other’s performance. For example, smart
power grids depend on the designated communication
network for effective control. At the same time, control
centers and communication networks receive electrical
power from the power grid to compute and transmit
control signals. Failures in one network could have an
impact on the other network, and could eventually lead
to the failure of the whole system.

Cascading failures of interdependent networks under
uniformly random node removals were first studied
in [1]. Each network is modeled as a random graph.
Nodes in one random graph depend on nodes in the
other random graph, and a node is functional if both
itself and its interdependent node are in the giant
components of the their own graphs. After initial node
failures in the first graph, their interdependent nodes in
the second graph fail. Because of these failures, some
nodes may be disconnected from the giant component
of the second graph and then fail, and the failures of
the disconnected nodes propagate back to nodes in the
first graph.

Physical networks are spatially embedded. Nearby
nodes are more likely to be connected, whereas distant

nodes are less likely to be connected. Geographical
proximity also applies to interdependence. In the Italy
blackout in September 2003, where a cascading fail-
ure between power and communication networks took
place, it is reported that every server in the communica-
tion network is connected to the geographically closest
power station [1]. In [2], [3], an interdependent lattices
model was proposed and the effect of removing nodes
randomly or in a geographical region was analyzed.
In [4], an interdependent Random Geometric Graphs
(RGG) model was proposed. This model allows the
two networks to have different sizes and average link
lengths and also captures one-to-multiple dependencies
with spatial constraints. The authors in [4] studied
bounds on the percolation thresholds of interdependent
RGGs. They studied the effect of random failures
where every node fails independently with the same
probability, and geographical failures where nodes are
removed in a geographical region.
In real-world networks, failures may not be equally
likely for every node. In a virus epidemic that infects
smart grids, a power station with a large number of
controllable communication nodes is more prone to
infection and failure. Moreover, a power station that
support a larger number of communication nodes is
more likely to suffer physical attacks. Cyber attack is
recognized as one of the major threats to the power
grid [5], and the attack on a control center that controls
a large number of power plants could have a more
severe impact. In this paper, we study the robustness
of interdependent RGGs under a failure model where
the failure of each node depends on the number of its
interdependent nodes. Our paper extends the analysis
of degree-dependent failures in a single RGG in [6].
To the best of our knowledge, our paper is the first
to address robustness of interdependent RGGs to non-
uniform node failures in an analytical manner.
The main contributions of this paper are as follows.
1) We derive upper bounds on the interdependent
degree thresholds (ki, k2), such that the inter-
dependent RGGs percolate after the removals of
nodes in G; that are interdependent with more
than k; nodes in G (Vi,j € {1,2},1 # j).

2) We obtain a new closed-form upper bound on



the degree threshold k, such that a single RGG
remains percolated after the removals of nodes
with more than k£ neighbors. We then apply the
result to obtain upper bounds on the interdepen-
dent degree thresholds (kq, ko) for interdepen-
dent RGGs.

3) We verify the bounds using numerical simula-
tion, and show that there is a trade-off between
k1 and ko for maintaining percolation after the
failures.

II. MODEL

We study two interdependent Poisson boolean mod-
els Glnﬂ)ep = (Gl ()\1, dl), GQ()\Q, dg), ddep)- In each
graph G;()\;,d;), nodes are generated by a Pois-
son point process of density A; in an infinite two-
dimensional plane. Two nodes are connected if they
are within distance d; (Vi € {1, 2}). Every node in G;
is interdependent with all nodes in G; within distance
daep (Vi,j € {1,2},7 # j). Every node must have at
least one interdependent node to be functional.
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Fig. 1: [Illustration of interdependent networks

Guiep = (G1(A1,d1), G2(A2,d2), dgep)-

Recall the definition of a mutual component and an
infinite mutual component in interdependent graphs, as
given in [4].

Definition 1. Let V;° denote nodes in a connected
component in G;(\;,d;), Vi € {1,2}. If each node
in V; C V. has at least one supply node in V; C Vjo
within dgep, Vi,5 € {1,2},7 # j, then nodes V; and
Vo form a mutual component of Grypep.

If, in addition, V; contains an infinite number of
nodes, Vi € {1,2}, then V; and V5 form an infinite
mutual component.

The graph Grpep percolates if there exists an in-
finite mutual component. The conditions for percola-
tion have been studied in [4], where nodes in both
graphs are generated by homogeneous Poisson point
processes. In this paper, we study the percolation of
Gmep after removing nodes that have a large number
of interdependent nodes. The removed nodes poten-
tially have a significant impact on the percolation of
Gmipeps since they support a large number of nodes in
the other graph. A power station that provides electrical

power for a large number of routers, or a control center
responsible for control of smart power stations in a
large region, may both be vital in maintaining the
robustness of the system.

The effect of removing such nodes cannot be viewed
as a “thinning” of the original point process, since the
remaining nodes do not follow Poisson point processes.
This is therefore the main technical challenge in study-
ing the percolation of Giympep, after the removal of all
nodes with a large number of interdependent nodes. To
address this issue, we develop mappings from Poisson
point processes with inhomogeneous node removals
to discrete models, and utilize the discrete models to
derive conditions for the percolation of Giypep-

III. PERCOLATION AFTER INHOMOGENEOUS
NODE FAILURES

In this section, we provide a sufficient condition for
Gmiep to percolate, after removing all the nodes that
are interdependent with a large number of nodes.

We first introduce a structure which is useful in
our analysis. Consider a (2D — 2d) x (D — 2d)
rectangle R(D), where d = max(di,ds,daep). If
the mutual component in Giypep forms a horizontal
crossing! over R(D), and a vertical crossing over the
(D — 2d) x (D — 2d) square within the left half of
R(D), then the rectangle is complete. See Fig. 2 for
an illustration.
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Fig. 2: Complete rectangle R(D).

Consider two complete rectangles that have a suf-
ficiently large overlapping area. The mutual compo-
nent across one rectangle is connected to the mutual
component across the other rectangle. Intuitively, if the
probability that the rectangle is complete, denoted by
pe[R(D)], is sufficiently large, then the mutual com-
ponents across infinitely many overlapping rectangles
could form an infinite mutual component. This method
has been used to study the percolation of G(\,d) and
Gmiep 1n [7], [4].

In this section, we study Giupep Which satisfies the
condition that p.[R(D)] is greater than 0.8639 for

'A mutual component forms a horizontal crossing over a rect-
angle [z1,x2] X [y1,y2], if among the nodes in the mutual
component, there exist a sequence of connected nodes in Gj,
(z},yD),.... (™, y™), such that z2,..., w;"‘_l € [z1,x2],
z} <z, @ > z2, Y)Y € [y1,v2], Vi € {1,2}. A
vertical crossing is defined analogously.



some value D. For a single Poisson boolean model
G(A,d), the probability p.[R(D)] that a rectangle is
complete” approaches 1 as the size of the rectangle
approaches infinity, as long as G(\, d) percolates [8].
Moreover, p.[R(D)] > 0.8639 for some D is a suffi-
cient condition for the percolation of G(\, d) [9]. Thus,
the condition that p.[R(D)] > 0.8639 for some D is
equivalent to the condition that G(\,d) percolates.

The next theorem proves, under the assumption
pe[R(D)] > 0.8639 for some value D, that Grpep
still contains an infinite mutual component after the
removal of nodes that have a large number of interde-
pendent nodes.

Theorem 1. If p.[R(D)] > 0.8639 for some D, then
there exist ki, ko such that Gpupe, contains an infinite
mutual component, after removing all the nodes in G;
with more than k; interdependent nodes in G, ¥i,j €

{1,2},i # .

Proof. We map the percolation of Gypep to the perco-
lation of a square lattice L. See Fig. 3 for an example.
The state of a bond in L is determined by the points in
Gmiep in the rectangle containing the bond. A bond
is open if the following conditions are satisfied.
1) Rectangle R(3'D) is complete.
2) There are no more than k; nodes from G; in a
(2 x 3'D) x (3'D) rectangle, Vi € {1,2}.
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Fig. 3: 1-dependent bond percolation on square lattice
L. Solid line segments of length D represent open
bonds, and dashed line segments represent closed
bonds.

The event that a bond in L is open is dependent
on the event that an adjacent bond is open, since they
both depend on the point processes of Giypep in an
overlapping area. However, the events that two non-
adjacent bonds in L are open are independent, since
their associated rectangles do not overlap and the point
processes in non-overlapping areas are independent.
Thus, L is a I-dependent bond percolation model on
a square lattice. If the probability that a bond in L is

2That is, a connected component in G((\, d) in the rectangle forms
a horizontal and a vertical crossing.

pe[R(3'D)]

open is larger than 0.8639, then L percolates [9]. This
is in contrast with the independent bond percolation
model where the percolation threshold is 0.5 [7].

The percolation of L implies the percolation of
Gmep- Consider two adjacent open bonds in L. The
rectangles associated with the two bonds are both com-
plete and the mutual components in both rectangles
are joined by the nodes in the overlapping area of
the two rectangles. For example, red curves across
rectangles in Fig. 3 represent the mutual components
in the rectangles, and they are joined if the open bonds
are connected. If there is an infinite component in L,
then there is an infinite mutual component in GiyDep-

Moreover, none of the nodes adjacent to the open
bonds are interdependent with more than k; nodes in
G, ¥i € {1,2}. For each open bond in L, the (2 X
3D) x (3!D) rectangle contains at most k; nodes in
G;. Therefore, each node from G; in the (2 x 3D —
2d) x (3'D — 2d) rectangle R, where d > dgep, is
interdependent with no more than k; nodes from G .
To conclude, nodes in G; that have no more than k;
interdependent nodes Vi,j € {1,2},i # j form an
infinite mutual component.

Next, we compute the probability that a bond in L
is open. Recall that p.[R(3'D)] is the probability that
rectangle R(3!D) is complete. A result from [9] (proof
of Theorem 2 therein) indicates that if p.[R(D)] >
0.8639, then p.[R(3D)] > p.[R(D)], where R(3D) is
a (6D—2d) x (3D —2d) rectangle. Thus, p.[R(3'D)] is
an increasing function in ¢, provided that p.[R(D)] >
0.8639.

Since both p.[R(3!D)] and —1/(2 x 3% D2?)\;) are
increasing functions in ¢, their sum is an increasing
function in ¢. Let ¢ be the smallest integer such that

1 1

T Ox 3D, 2 x 32Dy, 08639

Let N} denote the number of nodes from G; in a
(2 x3'D) x (3'D) rectangle. The random variable N}
follows a Poisson distribution with mean E[N}] = 2 x
32D2)\; and variance Var[N}] = 2 x 3%!D?)\;. Let
k; = 4 x 32! D2)\;. The probability that there are no
more than k; nodes from G; in R(3'D) can be bounded
using the Chebyshev’s inequality.

Pr(Nj > ki) < Pr(IN; — E[N;]| > E[N;])
Var|N/| 1

~ (E[N{]))2 2 x32D2);’

The probability that either Ni > k; or N& > ko can
be bounded by the union bound
1 + 1
2x32tDZ)\; 2 x 32tD2)\y"
The probability that both N{ < ky and N& < ko is
at least 1 — Pr(N{ > k3 U N§ > ko).

Pr(N{ > kjUN] > ko) <




For any two events A and B, Pr(ANB) > Pr(A)+
Pr(B) — 1. Therefore, the probability that R(3'D) is
complete and that there are no more than k; nodes from
G, in R(3'D) is at least

P[R(G'D)] + (1
— 1> 0.8639.

1 1
C2x3UD2)\; 2x 32‘D2)\2>

Since the probability that a bond is open is at least
0.8639, L percolates. To conclude, Gmpep contains
an infinite mutual component, in which every node in
G; has no more than k; interdependent nodes in G,
Vi, j € {1,2},i # j. O

IV. A NEW APPROACH FOR COMPUTING THE
DEGREE THRESHOLD

For the approach discussed in Section III, it is
difficult to obtain an analytical expression for the
probability p.[R(3'D)] that a rectangle is complete. In
this section, we develop a new approach that computes
a closed-form solution to obtain degree thresholds. We
first present the result for a single graph G(\,d) in
Theorem 2, and then extend the result to Gypep in
Theorem 3.

Theorem 2. If there exist A\, d, kyy, satisfying

k
k 98d%\
i ( 9 798%2)\
——F e
k!

k=8
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then there exists an infinite component in G(\, d), after
removing all the nodes with degree more than kyp,.

Proof. We map the percolation of G(A,d) to a 1-
dependent bond percolation model on a square lattice
L. The state of a bond in L is determined by the point
process in a 2D x D rectangle R(D), where D = 7d/3.
See Fig. 4 for an illustration. A bond is open if the
following conditions are satisfied.

1) There are no more than k;;, nodes in R(D)

2) Each of the eight small squares contains at least

one node.

D=7d/3| d/3

I e e e e

Fig. 4: A single bond of length D and its associated
2D x D rectangle.

Notice that the rectangles R(D) associated with two
non-adjacent bonds do not overlap, while R(D) asso-
ciated with two adjacent bonds overlap. Therefore, the

k
max [1 -8 <%> ,0] > 0.8639,

event that a bond is open is independent of the event
that a non-adjacent bond is open, but is dependent on
the event that an adjacent bond is open. Therefore, we
study 1-dependent bond percolation in L.

We prove that the percolation of L implies the
percolation of G(\,d) after removing all nodes with
degree larger than k. If a bond is open in L, each
small d/3 x d/3 square contains at least one node in
G(A,d). Nodes in two adjacent small squares are con-
nected, because they are within distance \/gd/ 3 < d.
Moreover, all the nodes in the small squares have
degrees no more than k;j, because the total number of
nodes in ﬁ(D) is no more than k;;, and the distance
between a node in the small squares and a node outside
the rectangle R(D) is more than d. Next, consider
two adjacent open bonds in L. The small squares that
contain the intersection of the two bonds overlap. Thus,
the nodes in the small squares adjacent to the two open
bonds are connected. If the open bonds form an infinite
component in L, then there is an infinite component in
G (A, d) that contains only nodes with degrees no more
than kyp,.

Next, we compute the probability that a bond is
open. Let S = 2D? = 98d*/9. The number of nodes
in R(D) follows a Poisson distribution, i.e.,

(AS)
E!
Given that a realization of the Poisson point process
generates k nodes in R(D), the k nodes are located
uniformly in R(D). The probability that there is no
node in a small square of size S’ = d/3 x d/3 within

R(D) is

—AS

Pr(N(S) = k) =

S —5\"
Pr(N(S') = 0|N(S) = k) = ( - ) _
The probability that there exists at least one small
square which contains no node, among a total of h
small squares, is upper bounded by the union bound

S—5\"
hPr(N(S")=0|N(S)=k)=h < 5 > .
The probability that each of the A small squares
contains at legst one node, given that the total number
of nodes in R(D) is k, is at least

Ik
Pr(E|N(S) = k) > max llh (S;S ) ,O] .

The probability that a bond is open is therefore

ktn
p=Y_ Pr(N(S) = k)Pr(E|N(S) = k)
k=0

ktn ) k k
Z (98dA/9) —98d2\/9 97



From [9], p > 0.8639 is a sufficient condition for
the percolation of L. Therefore, if A, d,k;, satisfy
p > 0.8639, then G(\,d) percolates after removing
all nodes with degree more than k. O

This result can be applied to interdependent net-
works to obtain a closed-form expression for the inter-
dependent degrees k; and k3 such that Grypep perco-
lates after removing all nodes which are interdependent
with more than k; nodes in G; (Vi € {1,2}). Theorem
3 provides a sufficient condition under which Giypep
percolates after removing nodes that are interdependent
with a large number of nodes, under the condition
dy = dy = dgep.

Theorem 3. If there exist \;,d, k; satisfying

K C

i=1k=8 98

then there exists an infinite mutual component in
GIntDep = (Gl()\lad);GQ(A%d);ddep = d), after
removing all the nodes in G; that have more than k;
interdependent nodes in G (Vi,j € {1,2},i # j).

Proof. The proof is similar to that for Theorem 2. In
the construction of the 1-dependent bond percolation
model L, a bond is open if

1) 'l:here are no more than k; nodes from G; in
R(D) (Vi € {1,2}).

2) Each of the eight small squares contains at least
one node from G; (Vi € {1,2}).

Given that the point processes in G; and G2 are
independent, the probability that a bond is open is the
product of the probabilities that both conditions are
satisfied for nodes in G; and (G3. From Theorem 2,
the probability that nodes in G; satisfy both conditions
is at least

98

ki 2y . k k
pi = Zwe—%d%/g ax {1 s (%) 70] .

k=8

If p1p2 > 0.8639, open bonds in L form an infinite
component.

Finally, we prove that the percolation of L im-
plies the percolation of Giypep after removing nodes
with a large number of interdependent nodes. By the
same analysis as the proof of Theorem 2, and noting
that nodes of GG; and G2 in the same small square
are within distance /2d/3 < dgep, nodes in Grpep
adjacent to the open bonds of L form an infinite
mutual component, and none of them has more than
k; interdependent nodes from G; (Vi € {1,2}). O

V. SIMULATION RESULTS

In this section, we first provide numerical results
based on two finite-size interdependent RGGs in a
[0,20] x [0,20] area. Nodes of the two RGGs are
generated by Poisson point processes with densities

2 ki (98d%M;\k 984, 97\ *
I (Z57)" osd max{1—8<> ,O]>0.8639

Fig. 5: Initial network with Ay = Ay = 2.5 and
dy = dy = dgep before any failures. Red links
and blue links belong to G and Ga, respectively.
Interdependent links are shown in green.

A1 = Ao = 2.5. The connection distances and the inter-
dependent distance are identical: d; = dy = dgep = 1.
Before failures, the initial interdependent RGGs are
percolated, as shown in Fig. 5.

After the removal of all nodes in G; with more than
ko = 8 interdependent nodes in G5 and all nodes in
G- with more than k; = 8 interdependent nodes in
(31, the remaining graph is illustrated in Fig. 6a, where
only 94 nodes remain out of the initial 2000 nodes
and most of the network has lost its functionality. We
repeat the same experiment with k; = ko = 10 and as
shown in Fig. 6b, 1475 nodes out of 2000 nodes have
stayed functional. Based on the results of Theorems
1 and 3, one can conclude the existence of a critical
“threshold” for k; and ks for which removing nodes
with more interdependent neighbors does not affect the
robustness of network. To observe the transition, we
set k1 = ko = k and plot the ratio of the size of the
largest mutual component after failures to the size of
the initial network as k changes. The result is shown
in Fig. 7.

Small values of k; and ko lead to more severe fail-
ures in the network, since a larger number of nodes are
removed. There is a trade-off between the parameters
k1 and ko in the sense that if we increase one of
them, small values of the other may not have the same
devastating effect. To observe this trade-off, consider
two finite interdependent RGG in a [0,20] x [0, 20]
area where nodes are generated according to Poison
point processes with densities A\; = X2 = 5 and
dy = dy = dgep = 1. We have simulated the failures
for a wide range of values for k; and ko and obtained
the ratios of the size of the largest mutual component



(@ak=28

(b) k=10

Fig. 6: Resulting networks after removing nodes with interdependent degree more than k. Red links and blue
links belong to G; and G, respectively. Interdependent links are shown in green.

Ratio

Fig. 7: Transition to critical region: A\; = Ay = 2.5,
di =dy = dgep = 1.

to the size of the network. The result is depicted in
Fig. 8.

VI. CONCLUSION

In this paper we analyzed the percolation of in-
terdependent random geometric networks in an in-
homogeneous failure scenario. We proved that even
after removing all the nodes with more interdepen-
dent neighbors than a certain threshold, the network
stays percolated. Using simulations, we demonstrated a
trade-off between the interdependent degree thresholds:
by increasing one, the network stays functional for
smaller values of the other. The analysis of such fail-
ures can be used to consider more realistic cascading
failure models where a node fails if a certain ratio of
its interdependent neighbors fail.
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