

Arabidopsis type III G γ protein AGG3 is a positive regulator of yield and stress responses in the model monocot *Setaria viridis*

Jagdeep Kaur, Swarup Roy Choudhury, Anitha Vijayakumar, Laryssa Hovis, Zach Rhodes, Rob Polzin, Dylan Blumenthal, Sona Pandey

Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA

Running Title: AGG3 positively regulates yield and stress responses

Address correspondence to:

Dr. Sona Pandey

Donald Danforth Plant Science Center

975 North Warson Road, St. Louis MO 63132, USA.

Phone: 314-587-1471; Fax: 314-587-1571

E-mail: spandey@danforthcenter.org

Keywords: *Setaria viridis*, heterotrimeric G-proteins, AGG3, type III G γ , yield, stress response

1 **Abstract**

2 Heterotrimeric G-proteins are key regulators of a multitude of growth and development
3 pathways in eukaryotes. Along with the conserved G-protein components found in all organisms,
4 plants have certain novel variants with unique architecture, which may be involved in the
5 regulation of plant-specific traits. The higher plant-specific type III (or Class C) G γ protein,
6 represented by AGG3 in Arabidopsis, is one such variant of canonical G γ proteins. In addition to
7 the conserved G γ domain, the type III G γ proteins also possess a large C-terminal extension
8 which is extremely rich in the amino acid cysteine. The type III G γ proteins are involved in
9 regulation of many agronomically important traits in plants, including seed yield, organ size
10 regulation, abscisic acid (ABA)-dependent signaling and stress responses, and nitrogen use
11 efficiency. However the extant data, especially in the monocots, present a relatively complex and
12 sometimes contradictory picture of the regulatory role of these proteins. It remains unclear if the
13 positive traits observed in certain naturally occurring populations are due to the presence of
14 specific allelic variants of the proteins or due to the altered expression of the protein itself. To
15 address these possibilities, we have overexpressed the Arabidopsis *AGG3* gene in the model
16 monocot *Setaria viridis* and systematically evaluated its role in conferring agriculturally relevant
17 phenotypes. Our data suggest that a subset of the traits affected by the type III G γ proteins are
18 indeed positively correlated with the protein expression level, while others might have more
19 complex, allele specific regulation.

20

1 **Introduction**

2 Food security has become an imminent challenge especially with the ever increasing human
3 population on the planet and is now thought to be worse than it was 20 years ago (Alexandratos,
4 1999). The population of the planet is projected to increase by almost 50% within the next 35
5 years. With the drastic increase in population, food production also must increase. Without
6 appropriate solutions the need for increased land for crops could irreversibly change terrestrial
7 and aquatic environments (Tilman et al., 2002). Identification of specific genes/targets that
8 confer increased yield potential in non-optimal environment and elucidation of their mode of
9 action is, therefore, central to our future needs. The type III G γ proteins of the heterotrimeric G-
10 protein complex are fast emerging as one such agronomically important target (Botella, 2012).

11 Heterotrimeric GTP-binding proteins (G-proteins hereafter) composed of G α , G β and G γ
12 subunits mediate signaling in response to a variety of stimuli in all eukaryotes and control critical
13 growth and developmental processes (Urano and Jones, 2014; Stateczny et al., 2016). The G-
14 protein core components and their basic biochemical properties are largely conserved across
15 phyla; however, key differences emerge when comparing plants with metazoan systems. The
16 genomes of most plants encode fewer canonical G-protein subunits, *e.g.* 1 G α and 1 G β proteins
17 exist in *Arabidopsis* compared to 23 G α and 5 G β proteins in humans (Hackenberg et al., 2017).
18 Intriguingly, plant genomes also encode certain divergent G-protein components which may be
19 involved in the control of plant-specific functions. One such plant-specific component is
20 exemplified by the novel type III G γ proteins, which are emerging as a major target for plant
21 breeding (Chakravorty et al., 2011; Roy Choudhury et al., 2011).

22 The plant G γ proteins are classified into three different groups on the basis of their C-
23 terminal region. The type I are the canonical G γ proteins found in all organisms. These are 100-
24 120 aa proteins, represented in *Arabidopsis* by AGG1 and AGG2. The type II G γ proteins are
25 very similar to the type I G γ proteins but they lack the signature C-terminal prenylation motif
26 present in canonical G γ (Roy Choudhury et al., 2011; Thung et al., 2012). Both type I and type II
27 G γ proteins have been shown to be involved in plant-microbe interaction and various hormone
28 signaling pathways (Trusov et al., 2006; Trusov et al., 2007; Trusov et al., 2008; Trusov et al.,
29 2009; Delgado-Cerezo et al., 2012; Yadav et al., 2012; Roy Choudhury and Pandey, 2013).

1 The type III G γ proteins, represented by *Arabidopsis AGG3*, rice DEP1, GS3 and GGC2,
2 wheat TaDEP1, barley HvDEP1 and soybean GmG γ 8, GmG γ 9 and GmG γ 10 are at least twice as
3 large as the type I or type II proteins and have a modular architecture (Roy Choudhury et al.,
4 2011; Botella, 2012; Trusov et al., 2012). The N-terminal region of these proteins is similar in
5 size and sequence to the type I and II G γ proteins and is connected with the C-terminal region
6 with a putative transmembrane domain. The C-terminal region is extremely rich in amino acid
7 Cysteine (Cys), which can account for up to 38% of total amino acids in this region (Roy
8 Choudhury et al., 2011). Interestingly, there is an expansion of the C-terminal region in plants
9 that have more than one homolog of type III G γ protein. For example, the three rice proteins
10 possess 100, 200 and 300 amino acids in their C-terminal region, while the N-terminal region is
11 fairly conserved. Similar expansion of the C-terminal region is seen in the soybean type III G γ
12 proteins. This unique Cys-rich region has predicted segments showing some similarity to tumor
13 necrosis/nerve growth factor receptor (TNFR/NGFR) and multiple repeats of the von Willebrand
14 factor type C modules and a Sprouty domain, which are thought to be involved in large protein
15 complex formation (Roy Choudhury et al., 2011; Botella, 2012; Trusov et al., 2012;
16 Wolfenstetter et al., 2014).

17 Type III G γ proteins regulate two of the most critical plant processes; seed yield and stress
18 responses. The *AGG3* gene of *Arabidopsis* was discovered as the missing G γ protein that could
19 explain a subset of G β mutant phenotypes, especially those related to ABA-responses,
20 unaccounted for by the previously identified *AGG1* and *AGG2* genes (Chakravorty et al., 2011;
21 Wolfenstetter et al., 2014). Additionally, an independent study in *Arabidopsis* identified *AGG3*
22 by map-based cloning as an organ size regulator, as loss-of-function of *AGG3* resulted in smaller
23 leaves and flowers (Li et al., 2012b). Surprisingly, a survey of rice literature revealed that the
24 homologs of this gene were already characterized, although not as G γ protein. The rice proteins,
25 named GS3 (grain size 3) and DEP1 (dense and erect panicle 1), were identified as major
26 quantitative trait loci (QTL) for panicle density, seed size and seed number (Fan et al., 2006;
27 Huang et al., 2009; Mao et al., 2010; Li et al., 2012a; Kunihiro et al., 2013).

28 Several studies in the past years have revealed a relatively complex picture of the type III G γ
29 regulated processes in plants. Overall, the situation seems to be clearer in dicots such as
30 *Arabidopsis* and *Camelina*, where *AGG3* protein has been shown to be a positive regulator of
31 stress response and organ size. Overexpression of *AGG3* in both *Arabidopsis* and *Camelina*

1 results in larger plants, bigger seeds and better stress tolerance, while the knockout mutants of
2 *AGG3* in *Arabidopsis* have an opposite phenotype suggesting a direct, positive correlation
3 between the protein level and the observed phenotypes (Chakravorty et al., 2011; Li et al.,
4 2012b; Roy Choudhury et al., 2014; Alvarez et al., 2015). However in monocots, especially in
5 rice where the gene has been studied extensively at the genetic level, extant data present a
6 complex scenario.

7 The *GS3* gene, as the name suggests, regulates grain size in rice and plants with different
8 allelic variants of this gene produce differently sized grains (Mao et al., 2010). Varieties
9 containing naturally occurring mutations resulting in the potential loss-of-function alleles
10 produce extremely long grains, whereas a variant causing deletion of the C-terminal region but
11 leaving the most of the Gy-like domain intact, results in plants producing extremely short grains.
12 Additional variants which produce normal, short or long grains, depending on the location of the
13 mutation are also reported (Fan et al., 2006; Fan et al., 2009; Mao et al., 2010; Botella, 2012).
14 Overall, it has been concluded that the *GS3* locus is a negative regulator of grain size, which
15 incidentally is opposite of the role of *AGG3* gene in *Arabidopsis* and *Camelina*.

16 Different allelic variants of the *DEP1* locus, which was initially identified as a major QTL
17 for dense and erect panicles, also confer distinct phenotypes (Huang et al., 2009). For examples
18 plants possessing *dep1* or *qPE9-1* alleles, which code for almost identical proteins with only one
19 amino acid difference in their lengths have different phenotypes. *dep1*, which is a gain of
20 function mutation, leads to increased panicle branching and improved grain yield whereas *qPE9-1*,
21 which is a loss-of-function mutation, exhibits no change in branching and causes reduced yield
22 (Huang et al., 2009; Zhou et al., 2009; Yi et al., 2011). RNAi-mediated suppression of *DEP1*
23 locus in *dep1* allelic background resulted in curved panicles and fewer grains, whereas
24 expression of a *DEP1* promoter-driven expression of *dep1* allele resulted in erect panicles and
25 increased yield. Furthermore, a constitutive promoter-driven expression of the *dep1* resulted in
26 dwarf plants with erect panicles, whereas similar expression of *DEP1* allele had no phenotypic
27 effect. Finally, a recent CRISPR/CaS9 based editing of *DEP1* gene resulted in erect panicles,
28 similar to what was reported with the *dep1* allele, but the plants were also dwarfed and the grain
29 size was not affected, which is not what was seen with the naturally occurring *dep1* mutation (Li
30 et al., 2016; Xu et al., 2016; Zhao et al., 2016). In wheat, an RNAi-mediated downregulation of
31 *TaDEP1* led to longer and less compact spikes, whereas a similar loss-of-function mutation in

1 barley *HvDEP1* resulted in dwarf plants, with compact, shorter spikes and improved seed yield
2 (Wendt et al., 2016). Recently *DEP1* has also been identified as a major QTL for nitrogen use
3 efficiency (NEU) in rice (Sun et al., 2014; Wendt et al., 2016; Xu et al., 2016). Finally, a twelve
4 year field study in barley concluded that the effect of *DEP1* locus is highly dependent on the
5 environmental conditions and may result in significantly higher or lower yields, compared to the
6 wild type control plants.

7 Based on these studies, the overall consensus is that the type III *G_y* genes are critical
8 regulators of important agronomic traits, and have been subjected to artificial selection all
9 through domestication. However, there seem to be a huge effect of the genetic background as
10 well as specific environmental conditions that determine the eventual yield and stress responses
11 of the plants possessing specific alleles. To gain a better understanding of the role of type III *G_y*
12 proteins, we have overexpressed a monocot codon optimized *AGG3* gene in *Setaria viridis*
13 (green foxtail). Our data confirm that while some of the traits are indeed positively regulated by
14 constitutive overexpression of *AGG3* gene, others might have a more complex regulation,
15 dependent on the presence of specific alleles, genetic background or environmental conditions.

16 Materials and Methods

17 Construction of plant expression vectors and *S. viridis* plant transformation

18 A 759 bp *AGG3* (*At5g20635*) gene (Figure S1) was chemically synthesized (GeneScript
19 Incorporated, Picasataway, NJ) using the monocot-preferred codons. Employing Gateway®
20 (GW) strategy, the full-length *AGG3* gene was cloned into *pCR8/GW/TOPO* vector (Invitrogen,
21 Waltham, USA) using manufacturer's instructions. The resulting *pCR8/GW/AGG3* entry clone
22 after sequence confirmation was recombined into *pANIC10A* expression vector (Mann et al.,
23 2012) using LR clonase enzyme (Invitrogen) which allowed constitutive expression of *AGG3*
24 driven by *ZmUbi1* (*Zea mays* ubiquitin 1) promoter. The sequence confirmed *pANIC10A::AGG3*
25 and *pANIC10A* (empty vector, EV, hereafter) constructs were transformed into *Agrobacterium*
26 *tumefaciens* strain AGL1 using standard protocol. Transgenic *S. viridis* (A10.1) plants expressing
27 these two constructs were generated by the plant transformation facility at Boyce Thompson
28 Institute, Ithaca, NY (Van Eck and Swartwood, 2015). The transformed *S. viridis* T₀ events were
29 genotyped for the presence of selectable marker gene *hph* using primers listed in Table S1. T₀

1 events positive for *hph* gene were grown to maturity and T₁ seeds were shipped to the Danforth
2 Center for further characterization.

3 **Characterization of transgenic *S. viridis* lines**

4 Seeds were propagated by growing in metro mix 360 potting mix (Hummert International,
5 Earth City, MO), in a growth chamber which was maintained at 31°C day/ 22°C night
6 temperature, with a relative humidity 50-60% at a 12 h day/12 h night photoperiod. Plants were
7 watered once a day and fertilized twice a week.

8 One hundred mg of leaf tissue from the T₁ families of transgenic plants (*AGG3-OE* and *EV*)
9 was used for DNA isolation following a CTAB method. DNA was quantified on a Nanodrop
10 2000c (Thermo Fisher Scientific, Austin, TX) and used for genotyping, Southern blot analysis
11 and TaqMan assays. Transgenic lines carrying the *AGG3* transgene were identified by genomic
12 PCR. To determine the insert integration pattern a DIG (Digoxigenin)-labeled Southern
13 hybridization protocol was used as described in
14 (https://docs.wixstatic.com/ugd/45ed6d_bbc4921f988e4aa7afd873237555a42a.pdf). Briefly, 10
15 µg of DNA was digested with *Mfe*I, run on a 1.0% agarose gel and transferred to a positively
16 charged nitrocellulose membrane. The membrane was UV-crosslinked and prepared for
17 hybridization (pre-hybridization) using the DIG Easy Hyb (Roche, Indianapolis, IN) solution.
18 The hybridization probe complimentary to the *hph* gene was prepared using DIG-labeled dNTPs
19 and *pANIC10A* plasmid DNA as template. The membrane was hybridized overnight followed by
20 washing with low (2X SSC, 0.1% SDS) and high (0.5 X SSC, 0.1% SDS) stringency washes and
21 blocked with 1X blocking buffer (1X maleic acid buffer, Blocking Reagent- Roche). Afterwards
22 the membrane was treated with anti-DIG AP Fab Fragments (Roche) prepared in blocking
23 buffer. The membrane was washed three times with 1X washing buffer (1X maleic acid buffer,
24 Tween 20). Detection was done using the CDP-Star reagent (Thermo Fisher Scientific, St.
25 Peters, MO) for 5 min.

26 To identify the homozygous families from single insert transgenic *S. viridis* *AGG3-OE* and
27 *EV* lines, a TaqMan assay was performed using
28 (https://docs.wixstatic.com/ugd/45ed6d_4ce1ccdacf3243c794ad1f9f9f19b8b3.pdf). Briefly, the
29 multiplex reaction (10 µL total) contained 5 µL of genotype master mix (Thermo Fisher
30 Scientific, St. Peters, MO), 0.3 µL of nuclease-free water, 0.9 µL of each of *hph* (marker gene)
31 and *SvPCKR* (*S. viridis* phosphoenolpyruvate carboxykinase gene, internal control) forward and

1 reverse primers, 0.025 *hph* (5' FAM 3' QSY) and *SvPCKR* (5' VIC 3' TAMRA) dually labeled
2 probes (see sequence information of primer and probes in Table S1) and 1 μ L of genomic DNA
3 (1 μ g equivalent). Each sample including wild type A10.1 and non-template controls (NTC) was
4 run in triplicate. The data were imported into CopyCaller Software (Thermo Fisher Scientific,
5 Carlsbad, CA) and analyzed for CNV, without the use of a calibrator. The software generated a
6 graphical output of the copies of the gene of interest that were present in the genome of each
7 individual.

8 **RNA isolation, DNase treatment, cDNA synthesis and qRT-PCR analysis**

9 Total RNA from *EV* and *AGG3-OE* transgenic plants was extracted from 2 weeks old
10 seedlings using TRIzol reagent and was digested with RNase-free DNaseI (Ambion[®], Thermo
11 Fisher Scientific). The quantity and the quality of the RNA were assessed with nanodrop
12 spectrophotometer. Total RNA (500 ng) was reverse transcribed into cDNA using first-strand
13 cDNA synthesis kit (Invitrogen, Carlsbad, CA) and used for quantitative real-time PCR (qPCR)
14 using SYBR mix (Invitrogen). qPCR was conducted in 10 μ L reaction mix in three biological
15 replicates. Similar setup was used to check the expression levels of a subset of nitrate transporter
16 and signaling genes. Differences in transcript level were calculated using the $^{\Delta\Delta}CT$ method
17 (Bustin et al., 2009). Data represent the means and standard errors (SE) of three biological
18 replicates. The gene specific primers and the reference gene used in the qPCR reactions are listed
19 in Table S1.

20 **Germination and early seedling growth assays**

21 Sterilized *Setaria* seeds were plated on 0.5 X MS media (Caisson labs, UT, USA) with 0.4%
22 phytagel. Seeds were stratified at 4 °C in the darkness for 2 days followed by transfer to the
23 growth chamber maintained at a 12 h (31 °C)/ 12 h (22 °C) light/dark cycle. Germination was
24 defined as protrusion of the radicle from seeds and quantified as the percentage of total seeds at 5
25 days after plating. To quantify the seed germination in the presence of ABA or glucose, sterilized
26 seeds were plated directly on 0.5 X MS media containing 0.5 μ M ABA or 3% glucose. Three
27 biological replicates of each experiment were performed and data were analyzed using the
28 Student's *t* test.

29 To examine early seedling growth, *Setaria* seeds sown on 0.5 X MS media plates were
30 stratified at 4 °C in the dark for 2 days followed by transfer to the growth chamber with 12 h (31

1 °C)/ 12 h (22 °C) light/dark cycle for another 2 days. To evaluate the effect of ABA, glucose or
2 salt (NaCl) on post-germination growth, germinated seeds were transferred on plates containing
3 2 µM ABA, 3% glucose or 100 mM NaCl. Seedlings were grown vertically in the 12 h dark/12 h
4 light cycle and coleoptile and root lengths were measured after 3 days of growth. Germinated
5 seeds transferred to control plates and grown under identical conditions were used as control. To
6 determine the effect of nitrogen or phosphorus limiting conditions, seeds were plated on nitrogen
7 or phosphate deficient 0.5 X MS media (Caisson Labs), and coleoptile and root lengths were
8 measured after 7 days of growth. All experiments were repeated three times and data were
9 averaged.

10 **Adult plant growth and development assays and stress treatment**

11 Plants were grown by sowing the seeds directly into 10 cm pots containing metro mix 360
12 potting mix in the environmentally controlled greenhouse maintained at 50-60% relative
13 humidity, 31°C /22° C day/night temperature and 12 h of day length ($250 \mu\text{mol m}^{-2} \text{s}^{-1}$) to
14 maturity. The phenotypic parameters such as plant height, leaf number, days to heading, size and
15 the number of the panicles were measured weekly. Plants were also grown under low water
16 (50% of the water compared to the well-watered control), Nitrogen limiting (no exogenous N_2
17 added during fertilization versus 15 mM added in control set), and a combination of low water,
18 N_2 limiting conditions. After eight weeks of growth, plants were allowed to dry and bagged to
19 avoid seed loss. Seeds were collected from completely dried plants. Each experiment contained
20 12 plants per genotype and the experiment was repeated three times, independently. Data were
21 averaged and are presented as the mean of three biological replicates. Significant difference
22 between EV and transgenic plants' phenotypes was evaluated using Student's *t* test.

23 **Results**

24 **Generation of monocot codon optimized *AGG3* overexpressing (*AGG3-OE*) *S. viridis* plants**

25 The homologs of type III *G γ* genes are present in all higher plants. Using *Arabidopsis AGG3*
26 and rice *DEP1* and *GS3* as query sequences we identified three type III *G γ* genes
27 *Sevir.6G177400.1*, *Sevir.2G229300.1* and *Sevir.9G375000.1* referred as *SvGG3a*, *SvGG3b* and
28 *SvGG3c*, respectively, in the *Setaria viridis* genome (Table S1). These genes share ~25%, 31%
29 and 29% identity, respectively, with *Arabidopsis AGG3*; ~24%, 57% and 22% identity,

1 respectively, with the rice *DEP1* and ~21%, 20% and 46% identity, respectively, with the rice
2 *GS3* at the amino acid level. The homology mostly exists within the Gy-like domain of the
3 protein sequences (Table S2) and is typical of sequence homologies found within the Gy
4 proteins. Each one of these *Setaria* Gy might be involved in the regulation of one or more
5 developmental, yield-related or stress-response pathways. Because our goal was to evaluate the
6 extent to which the response regulation is dependent on the prototypical type III Gy protein's
7 expression level, and not on the presence of a specific variant or allele in the genome, we
8 decided to overexpress a monocot codon-optimized version of the *Arabidopsis AGG3* gene and
9 assess its effect on plant growth, development, yield, and stress response in *Setaria*.

10 For strong constitutive expression, the monocot codon-optimized *AGG3* was driven by
11 *ZmUbi1* promoter and intron, flanked by octapine synthase polyadenylation signal in
12 *pANIC10A::AGG3* (Fig. 1A). We obtained eight and two independent T_0 events belonging to
13 *pANIC10A::AGG3* and *EV* constructs, respectively. Between 13-16 T_1 families/event were tested
14 for the presence/absence of the plant selectable marker *hph* gene and the data were subjected to
15 goodness of fit for single locus Mendelian segregation of 3:1 using chi-squared analysis. As
16 reported in Table 1, 6/8 events (AGG3-1A, AGG3-2A, AGG3-3A, AGG3-4A, AGG3-5A and
17 AGG3-6B) for *pANIC10A::AGG3* and 2/2 events (EV-2A and EV-3A) for *EV* construct showed
18 single locus inheritance. T_1 events AGG3-1B and AGG3-6A did not conform to 3:1 segregation
19 (Table 1).

20 All T_1 events showing 3:1 segregation were tested for stable integration of the expression
21 cassette using Southern hybridization using a DIG-labeled *hph* probe. Events AGG3-1A and
22 AGG3-2A showed the presence of two copies, AGG3-3A and AGG3-4A carried a single copy
23 while AGG3-5A and AGG3-6A showed three copies of the insert. Both the *EV* events EV-2A
24 and EV-3A showed the presence of single insert. From the distinct banding pattern, all of these
25 lines seemed to be independent events (Figure S2). We also used a TaqMan assay to identify
26 homozygous families from single copy events. Thus, 4, 3, 3 and 6 homozygous lines each from
27 AGG3-3A, AGG3-4A, EV-2A and EV-3A, respectively, were identified (Table 1). As expected,
28 these single copy events conformed to 1:2:1 segregation pattern (Table 1). Figure 1B shows
29 representative data for AGG3-4A event, where families numbered AGG3-4A-1, -7, and -10 were
30 homozygous with 2 copies, while families -2, -5, -8, -9, -12, -14, -15 and -16 were heterozygous.

1 PCR null families -3, -4 and -6 were nulls. No amplification was observed in wild type A10.1
2 and NTC control as expected (Fig. 1B).

3 The T₁ seeds from *pANIC10A::AGG3* and *EV* events were self-fertilized to obtain T₂ seeds.
4 Seeds from each of the T₂ family were collected individually. Sixteen T₂ families from each
5 event were progeny tested for *hph* gene (Table 2). Based on these data, AGG3-1A-10, AGG3-
6 1B-15, AGG3-1B-16, AGG3-2A-2, AGG3-2A-7, AGG3-3A-9, AGG3-4A-7, AGG3-5A-2,
7 AGG3-6A-4, AGG3-6A-6, AGG3-6B-12, EV-2A-5 and EV-3C-2 families were all PCR
8 positives and considered homozygous, while AGG3-5A-1 and AGG3-6B-13 were segregating
9 (Table 2). All the events were advanced to T₃ generation by self-fertilization. Two independent,
10 homozygous lines, designated as A1 (AGG3-1B-15-1) and A4 (AGG3-4A-7-4), and the EV
11 containing line EV-2A-5-1 (EV) were selected for further molecular and phenotypic
12 characterization (Table 2).

13 **Expression analysis of *AGG3* and native G-protein genes in transgenic *S. viridis* lines**

14 To confirm the higher expression level of the introduced transgene, the transcript level of
15 *AGG3* in Setaria was quantified using qPCR. The analysis showed more than 100 fold increase
16 in the level of *AGG3* transcript in A1 and A4 lines compared to the ubiquitin gene which was
17 used as control. No *AGG3* transcript was detected in the EV containing plants. Moreover,
18 because G-proteins typically work as a protein complex, we also determined the expression
19 levels of other native G-protein genes of Setaria (gene names and accession numbers listed in
20 Table S1) upon *AGG3* overexpression (Fig. 1C). The transcript levels of the Setaria G-protein
21 complex genes were not significantly different in EV control versus A1 and A4 plants. These
22 data confirm that a higher expression of *AGG3* does not affect the expression level of other
23 members of the G-protein complex. This also ascertains that any differences observed in the
24 overall traits of the transgenic plants is indeed due to the overexpression of *AGG3* and not due to
25 alteration in the level of other proteins of the complex.

26 **Effect of *AGG3* overexpression on early plant development**

27 Constitutive overexpression of the *AGG3* has an overall positive effect on the growth and
28 stress responses in Arabidopsis and Camelina, the two species where it has been evaluated. The
29 effects of *AGG3* overexpression in Camelina are obvious from the early seedling stage as the
30 transgenic plants are bigger and more robust (Roy Choudhury et al., 2014). However in Setaria,

1 the germination and early seedling growth of EV containing plants was indistinguishable from
2 the A1 and A4 plants when grown on synthetic media plates, under control conditions. We then
3 evaluated the effect of different stresses on early development as it has been shown that higher
4 expression of *AGG3* results in hyposensitivity to exogenous ABA during seed germination and
5 early seedling growth in *Arabidopsis*, and the knockout mutants of *AGG3* gene are
6 hypersensitive to ABA (Chakravorty et al., 2011). Similarly, transgenic *Camelina* plants
7 overexpressing *AGG3* exhibit reduced sensitivity to ABA as well as other abiotic stresses such as
8 exogenous sucrose and NaCl during germination and early seedling growth (Roy Choudhury et
9 al., 2014; Alvarez et al., 2015). Incidentally, in monocot plants, the functional role of type III *Gy*
10 genes related to stress response has been not investigated in sufficient detail. There is one study
11 in rice where *qPE9-1* (a mutation in *DEP1* locus) has been shown to negatively regulate ABA
12 responses during seed germination and post-germination root growth (Zhang et al., 2015)
13 suggesting that the stress-related regulatory role of *AGG3* and its homologs might be conserved
14 among dicots and monocots.

15 Seeds of both A1 and A4 transgenic plants germinated similar to the EV seeds in the ABA-
16 free medium, indicating that there is no change in their sensitivity to endogenous ABA (Fig. 2A).
17 However, in the presence of 0.5 μ M exogenous ABA, the germination of A1 and A4 seeds was
18 considerably improved compared to the EV seeds, and a clear ABA hyposensitivity was
19 observed. Five days after plating, approximately 55% to 65% of A1 and A4 seeds had
20 germinated, respectively, compared with 40% germination observed in EV seeds on ABA (0.5
21 μ M) containing media (Fig. 2B).

22 Because *AGG3* gene is also known to regulate sugar sensitivity and both ABA and glucose
23 signaling pathways are intricately linked (Rook et al., 2006; Seki et al., 2007; Hey et al., 2010;
24 Vishwakarma et al., 2017), we investigated whether the overexpression of *AGG3* resulted in
25 altered responsiveness to glucose. Similar to what was observed for ABA, in the presence of
26 glucose the A1 and A4 seeds showed better germination compared with the EV seeds. After 5
27 days of growth on 3% glucose containing media, ~70% germination was seen in the A1 and A4
28 seeds, compared with ~55% germination in EV seeds (Fig. 2C).

29 Inhibition of primary root length in the early seedling stage is one of the important
30 phenotypic effects of ABA or glucose-mediated responses (Fedoroff, 2002; Rook et al., 2006;
31 Hey et al., 2010). We compared the effect of exogenous ABA and glucose on primary root

length of the EV, A1 and A4 seedlings. Under control conditions, the primary root lengths of all plants were comparable. However, similar to the ABA-mediated inhibition of seed germination, the A1 and A4 seedlings showed less sensitivity to ABA for primary root length inhibition. In the presence of 2 μ M exogenous ABA, the primary root length of EV containing seeds was inhibited by \sim 57%, compared to \sim 43% and \sim 36% inhibition observed in A1 and A4 seedlings, respectively (Fig. 2D). Similar results were obtained in the presence of 3% glucose where the primary roots of the A1 and A4 seedlings was significantly bigger compared to the EV seedlings. Almost 60% reduction in root length was seen for the EV seeds compared to \sim 35% and 40% reduction seen in A1 and A4 seedlings, respectively (Fig. 2E) in the presence of glucose.

We have previously shown that overexpression of *AGG3* gene also enhances salt tolerance in transgenic Camelina (Roy Choudhury et al., 2014). To evaluate the salt tolerance of *AGG3*-overexpressing Setaria plants, seeds were first germinated on 0.5 X MS media and after 2 days of growth, transferred to 0.5 X MS media supplemented with 100 mM NaCl. In the presence of NaCl, A1 and A4 seedlings grew larger than those of the EV seedlings, exhibiting significantly increased primary root length (1.7 times bigger than EV roots) and coleoptile length (2.5 times bigger than EV coleoptiles), exhibiting a hyposensitive response to salt stress (Fig. 2F). Taken together, these data suggest a general improvement of stress tolerance in the *AGG3*-overexpressing transgenic Setaria plants during germination and at the early seedling stage.

Besides stress tolerance, improved nitrogen and phosphate use efficiency of crops is one of the important needs for sustainable agricultural production. Functional study on one of the type III *Gy* in rice (DEP1 allele) has shown the regulation of nitrogen use efficiency (NUE) by this protein (Sun et al., 2014). To assess whether *AGG3*-overexpressing transgenic Setaria exhibited improved growth in nitrogen limiting conditions, we compared the primary root and coleoptile length of transgenic lines with EV lines by growing them under nitrogen limiting condition. We observed \sim 26% and 44% longer roots in A1 and A4 seedlings, respectively, compared with the EV line; whereas coleoptile lengths were unaffected by the reduction in nitrogen availability (Fig. 3A). It suggests that the overexpression of *AGG3* in Setaria can improve the root growth at the early seedling stage for maintaining better plant survival in the nitrogen limiting condition. To verify whether the effect of *AGG3*-overexpression was specific to nitrogen we also investigated their early seedling growth under phosphate limiting condition. No differences were seen in root and coleoptile growth between A1, A4 and EV lines (Fig. 3A)

under these conditions, suggesting the role of type III Gy genes is specific to nitrogen. The transgenic plants continued to exhibit better growth in the nitrogen limiting conditions (Fig. 3B). When grown in controlled environment growth chambers for 5 weeks under these conditions, the flag leaves of EV containing plants showed clear nitrogen-responsive chlorosis, accumulated anthocyanin and senesced; whereas the flag leaves of A1 and A4 transgenic plants remained green and exhibited no stress-related phenotype (Fig. 3C). We compared the transcript levels of key transporters and signaling proteins related to nitrogen uptake, sensing and metabolism in EV control versus A1 and A4 transgenic plants (Fig. 3D). Several of these genes showed modest (2-5 fold) increase in A1 and A4 compared to the EV plants, suggesting that a general improvement in the NUE of these plants is likely correlated with better uptake and/or sensing.

Overall these data suggest that for seed germination and early plant development, the type III Gy proteins are a direct, positive regulator of stress responses and their role seem to be conserved between dicot and monocot plants, possibly independent of specific variant of the gene present in the genome.

Effect of AGG3 overexpression on overall plant growth, development and yield

The type III Gy proteins are also a major determinant of organ size, especially reproductive organs and seeds. In *Arabidopsis*, overexpression of *AGG3* results in significantly larger floral organs and bigger seeds whereas opposite was seen with the loss-of-function *agg3* mutant plants (Chakravorty et al., 2011; Li et al., 2012b). Likewise, overexpression of *AGG3* in *Camelina* increased the seed size and number, in addition to improved biomass production (Roy Choudhury et al., 2014). To determine the effect of *AGG3* overexpression on yield traits reported to be regulated by *DEP1* or *GS3* in rice (Fan et al., 2006; Huang et al., 2009; Mao et al., 2010; Li et al., 2012a), we grew the EV containing and *AGG3* overexpressing plants in greenhouses for their entire life cycle and recorded multiple growth and development traits starting one week post-germination for eight weeks, till the plants were left for drying. Final seed yield was quantified from completely dried plants.

After the first two weeks when all plants were indistinguishable from each other, the A1 and A4 plants displayed more robust growth. By four weeks, the transgenic plants produced a higher number of leaves per plant compared to the EV containing plants (Fig. 4A). No difference in the flowering time was observed and the first panicle emerged at a similar time for both EV containing and *AGG3* overexpressing plants. At seven weeks, when the plants had fully matured,

1 the A1 and A4 plants maintained the higher leaf numbers (Fig. 4B, Table S3) and were taller
2 than the EV containing plants (Fig. 4C, Table S3), resulting in an overall increased biomass of
3 the transgenic plants.

4 The overexpression of *AGG3* resulted in more panicles per plant as recorded at seven weeks
5 (Fig. 4D, Table S3); however no difference in the panicle length, density or erectness was
6 observed. The panicles from EV plants were phenotypically indistinguishable from the A1 and
7 A4 plants (Fig. 4E). Finally, we measured the seed size and seed weight from the A1 and A4
8 lines and compared it to EV plants. No differences in seed size (Fig. 4E) or seed weight (100
9 seed weight per genotype) were observed. However, due to the presence of more panicles per
10 plant, the overall seed produced from A1 and A4 plants was significantly higher than the EV
11 plants (Fig. 4F, Table S3), translating into improved yield per plant.

12 We also tested the effect of low water stress and nitrogen limiting growth conditions,
13 individually and in combination, on various growth parameters and yield of EV, A1 and A4
14 plants. Although the transgenic plants exhibited improved stress tolerance at the seed
15 germination and seedling stage and in growth chambers, in the greenhouse conditions various
16 growth parameters and the yield of A1 and A4 plants was affected by the stress treatment to the
17 similar extent as the EV plants and no significant improvement was seen under any of the
18 conditions tested (Table S3).

19 These data indicate that while some of the phenotypes ascribed to the regulation by type III
20 $\text{G}\gamma$ proteins might have a simple causal relationship with the protein expression level; others are
21 more complex and may depend on the presence of specific protein variant or specific
22 environmental conditions.

23 Discussion

24 Naturally occurring or engineered changes in the expression of type III $\text{G}\gamma$ -proteins result in
25 profound changes in plant architecture, abiotic stress responses and yield potential (Huang et al.,
26 2009; Mao et al., 2010; Botella, 2012; Li et al., 2012a; Li et al., 2012b; Roy Choudhury et al.,
27 2014; Wendt et al., 2016; Zhao et al., 2016). The distinctive architecture of these proteins, the
28 presence of an extremely Cys-rich region (likely one of the highest Cys containing proteins in
29 nature), and the presence of certain unusual domains (e.g TNFR or Sprouty) makes them a novel
30 component of the conventional G-protein complex and suggests their possibly unique

1 mechanism of action, which remains largely unknown. The proteins are clearly a part of the G-
2 protein heterotrimer, as has been confirmed by multiple protein-protein interaction studies as
3 well as genetic analysis (Sun et al., 2014; Wolfenstetter et al., 2014). Homology searches show
4 relatively high sequence conservation in the Gy domain within the type III family (Table S2) as
5 well as when compared with type I or type II family proteins. The C terminal region of the
6 proteins is highly variable, both in its length which could range from 100 to 400 amino acids, as
7 well as in its sequence. However, this region is critical for the proteins' function, as shown by
8 analysis of rice *GS3* and *DEP1* alleles and by complementation studies in Arabidopsis and rice
9 (Li et al., 2012b; Sun et al., 2014; Wolfenstetter et al., 2014). Most of the naturally occurring
10 mutations that define panicle branching or grain size in rice map to the C-terminal region of
11 *DEP1* and *GS3*, respectively (Mao et al., 2010; Botella, 2012; Wendt et al., 2016). Moreover, the
12 phenotypes of the Arabidopsis *agg3* mutants cannot be complemented with the N-terminal Gy-
13 like domain and the C-terminal region is required to restore the wild-type phenotypes.
14 Surprisingly, no effect of the deletion of specific domains within the C-terminal region was
15 observed. Mutant *agg3* plants transformed with variants of *AGG3*, which were missing the
16 TNFR, TM or VWFC regions, exhibited WT phenotypes.

17 In order to determine the role of higher expression levels of a prototypical type III Gy
18 protein, we chose to overexpress a monocot codon optimized *AGG3* gene in *Setaria*. Because the
19 overexpression of this gene results in multiple growth and development phenotypes in
20 Arabidopsis and in Camelina (Chakravorty et al., 2011; Li et al., 2012b; Roy Choudhury et al.,
21 2014), it allowed for a direct comparison between phenotypes which are directly correlated with
22 the expression level versus those which are dependent of the presence of specific allelic variants
23 of the gene in the genome.

24 Our data show both similarities and dissimilarities with the effect of over expression of
25 *AGG3* in Camelina versus *Setaria*. Camelina seedlings overexpressing *AGG3* are robust and
26 show a clearly improved growth early on, which is distinguishable from the wild type or EV
27 plants. This was not seen in *Setaria AGG3* overexpressors. One possibility is that the Camelina
28 seeds overexpressing *AGG3* are significantly bigger than the EV seeds resulting in better nutrient
29 availability to the germinating seeds, which is not the case with *Setaria AGG3* overexpressing
30 seeds (Fig. 4E). However, after two weeks an improvement in growth of *Setaria AGG3OE* lines
31 was observed, as seen by more leaves per plant and relatively taller plants compared to the EV

1 plants. An improved growth of plants and more branching was also seen in *Camelina AGG3OE*
2 plants.

3 The seedling stress responses of *Setaria AGG3OE* lines were similar to what has been
4 reported for *Arabidopsis* and *Camelina AGG3OE* lines. The plants showed less sensitivity to
5 ABA, glucose and NaCl and exhibited improved seedling growth compared to the EV containing
6 seedlings on media containing these additives (Fig. 2). These responses are predicted to be
7 mediated by the classic G-protein signaling pathways, and therefore, are potentially conserved
8 between different plant species. However, unexpectedly we did not see an effect of improved
9 stress tolerance in mature plants grown under greenhouse conditions. Both *EV* containing and
10 *AGG3-OE* lines of *Setaria* responded similarly to low water stress. Similar trend was seen in
11 response to nitrogen limiting conditions, where the plants exhibited clearly improved growth at
12 the seedling stage and at the young plant stage (Fig. 3), but the overall growth, development and
13 yield of mature plants was affected similarly in *EV* versus *AGG3-OE* lines. Incidentally, rice
14 plants possessing specific *DEP1* alleles have been shown to exhibit significantly improved NUE.
15 The lack of improved stress response of adult plants could be due to the specific growth
16 conditions used in our experiments or due to the fact that *Setaria viridis* is an undomesticated
17 plant and therefore has mechanisms to overcome stresses during the growth over its life cycle.
18 Additionally, a developmental stage dependent effect of AGG3 on plants' stress tolerance cannot
19 be ruled out.

20 One of the most crucial phenotypes ascribed to the type III Gy proteins is the regulation of
21 grain size and panicle density and erectness. These were the traits that led to the discovery and
22 cloning of the rice homologs of these proteins, GS3 and DEP1 (Fan et al., 2006; Huang et al.,
23 2009; Mao et al., 2010; Xu et al., 2016). Even though we observed a clear difference in panicle
24 number per plants in the transgenic lines, which resulted in improved yield (Fig. 4), the panicle
25 morphology, seed morphology and the seed size of the *AGG3OE* plants were indistinguishable
26 from the *EV* control plants. This is surprising as the overexpression of the same gene in
27 *Arabidopsis* and in *Camelina* resulted in significantly larger floral organs and seeds. It may be
28 that AGG3 type proteins interact differently with the developmental programs that control seed
29 size in dicots versus monocots. While in dicots, there seem to be a direct positive correlation
30 between the organ size and protein expression level, the regulation seems to be much more

1 complex in monocots and might involve specific regions of the protein or interaction with
2 specific protein complexes.

3 Overall, our data confirm that at least a subset of the type III Gy protein regulated processes
4 are directly linked to the protein's expression level. These include major agronomical traits such
5 as an improved biomass and seed yield. However, our data also emphasize that the regulatory
6 roles of these proteins are complex and there are possible allele specific regulatory circuits. The
7 proteins are clearly an important target for breeding or engineering of important traits in plants,
8 and a thorough investigation of different domains, specific regions or specific variants, under
9 different environmental conditions is required, especially in the context of their role as a part of
10 the G-protein heterotrimer, to fully harness their agronomic potential (Botella, 2012).

11 **Acknowledgements**

12 Research in the Pandey lab is supported by NIFA/AFRI (2015-67013-22964) and NSF (IOS-
13 1157942 and MCB-1714693) grants to SP. JK was supported by a grant from the James S.
14 McDonnell Foundation to the Institute for International Crop Improvement at DDPSC. We are
15 thankful to Drs. Paul Anderson, Nigel Taylor and Tom Brutnell at the DDPSC for their help and
16 support. Our special thanks to Hui Jiang and Kimberly Maxson-Stein at DDPSC for sharing their
17 *Setaria* expertise with us.

18 **Figure Legends**

19 **Figure 1. Generation of *Setaria AGG3* overexpression lines. (A)** Map of the expression vector
20 used for cloning a monocot codon optimized *Arabidopsis AGG3* gene. **(B)** Identification of the
21 homozygous families from single insert *AGG3-4A* transgenic plants in T1 generation using
22 Taqman assay **(C)** Expression analysis of *AGG3* transgene and endogenous *Setaria* G-protein
23 genes by real-time qPCR analysis. Transcript levels of indicated genes were determined in *EV*
24 and *AGG3-OE* (A1 and A4) lines using cDNA isolated from 10-day-old *S. viridis* seedlings. The
25 expression values of EV, A1 and A4 were normalized with *Setaria* ubiquitin gene. Dotted line
26 represents the expression level of *SvGy3a*, *SvGy3b*, *SvGy3c*, *SviGα1*, *SvGβ1*, *SvGγ1*, *SvGγ1a*,
27 *SvGγ2*, *SvRGS* in the EV (assigned as 1). The values are presented as the mean \pm SE of three
28 biological replicates and represented as fold changes. EV, *Setaria* plants overexpressing the

1 empty vector; A1, A4 are the two independent transgenic lines for *AGG3* overexpression
2 (*AGG3-OE*).

3 **Figure 2. Effect of different abiotic stresses on early development of Setaria *AGG3OE* plants.** (A) Percentage of seed germination in EV and A1 and A4 transgenic seeds under control
4 conditions. (B) Percentage of seed germination in EV and A1 and A4 transgenic seeds in the
5 presence of 0.5 X MS media containing 0.5 μ M ABA or (C) 3% glucose. For these experiments
6 seeds were sterilized and stratified at 4° for two days. Seed germination was calculated as the
7 percentage of total seeds that germinated after five days post-stratification. Error bars represent
8 the means (\pm SE) based on the seeds from three biological replicates. (D) Post-germination
9 seedling growth of EV and A1 and A4 transgenic plants in the presence of 2 μ M ABA, (E) 3%
10 glucose or (F) 100 mM NaCl. Seeds were germinated on 0.5 X MS agar for two days followed
11 by their transfer to the media containing different additives and grown for another three days.
12 Root and coleoptile lengths were measured. The graphs represent the mean values (\pm SE) from
13 sixty seedlings. The corresponding representative pictures are also shown.

15 **Figure 3. Effect of nitrogen limiting conditions on growth of *AGG3OE* Setaria plants.** (A)
16 Root and coleoptile lengths of one week old seedling grown on 0.5 X MS media lacking nitrogen
17 or phosphate sources. (B) Representative picture of two weeks old seedling of *EV* control and
18 *AGG3OE* lines grown on nitrogen free media. (C) Representative picture of the flag leaf of 5
19 weeks old EV, A1 and A4 plants under nitrogen-limiting condition. (D) Expression levels of
20 nitrate transporter and metabolism genes in two-week old *S. viridis* EV, A1 and A4 plants. Error
21 bars represent mean (\pm SE) of three biological replicates.

22 **Figure 4. Effect of *AGG3OE* on adult *S. viridis* plants.** Adult plant phenotypes of EV, A1 and
23 A4 plants grown under control conditions. The parameters measured were (A) The number of
24 leaves at 4-weeks, (B) leaf number at 7- weeks, (C) plant height at 7- weeks, (D) number of
25 panicles per plant at 7-weeks. (E) Representative pictures of the panicles and seeds of EV versus
26 A1 and A4 transgenic plants. (F) The total seed yield per plant. Error bars represent the mean (\pm
27 SE) of three biological replicates, with twelve plants per genotype each.

1 **Author Contribution**

2 The present study was conceived and directed by SP. JK, SRC, AV conducted the majority of the
3 experimental work with technical help and contribution from LH, ZR, RP and DB. SP, JK, SRC
4 and AV contributed towards designing of experiments, interpretation of results and writing of the
5 manuscript.

6 **References**

7 **Alexandratos, N.** (1999). World food and agriculture: outlook for the medium and longer term.
8 *Proc Natl Acad Sci U S A* **96**, 5908-5914.

9 **Alvarez, S., Roy Choudhury, S., Sivagnanam, K., Hicks, L.M., and Pandey, S.** (2015).
10 Quantitative Proteomics Analysis of *Camelina sativa* Seeds Overexpressing the AGG3
11 Gene to Identify the Proteomic Basis of Increased Yield and Stress Tolerance. *J Proteome*
12 *Res* **14**, 2606-2616.

13 **Botella, J.R.** (2012). Can heterotrimeric G proteins help to feed the world? *Trends Plant Sci* **17**,
14 563-568.

15 **Bustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R.,**
16 **Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J., and Wittwer, C.T.** (2009).
17 The MIQE guidelines: minimum information for publication of quantitative real-time
18 PCR experiments. *Clin Chem* **55**, 611-622.

19 **Chakravorty, D., Trusov, Y., Zhang, W., Acharya, B.R., Sheahan, M.B., McCurdy, D.W.,**
20 **Assmann, S.M., and Botella, J.R.** (2011). An atypical heterotrimeric G-protein g-
21 subunit is involved in guard cell K⁺-channel regulation and morphological development
22 in *Arabidopsis thaliana*. *Plant J* **67**, 840-851.

23 **Delgado-Cerezo, M., Sanchez-Rodriguez, C., Escudero, V., Miedes, E., Fernandez, P.V.,**
24 **Jorda, L., Hernandez-Blanco, C., Sanchez-Vallet, A., Bednarek, P., Schulze-Lefert,**
25 **P., Somerville, S., Estevez, J.M., Persson, S., and Molina, A.** (2012). *Arabidopsis*
26 heterotrimeric G-protein regulates cell wall defense and resistance to necrotrophic fungi.
27 *Mol Plant* **5**, 98-114.

1 **Fan, C., Yu, S., Wang, C., and Xing, Y.** (2009). A causal C-A mutation in the second exon of
2 GS3 highly associated with rice grain length and validated as a functional marker. Theor
3 Appl Genet **118**, 465-472.

4 **Fan, C., Xing, Y., Mao, H., Lu, T., Han, B., Xu, C., Li, X., and Zhang, Q.** (2006). GS3, a
5 major QTL for grain length and weight and minor QTL for grain width and thickness in
6 rice, encodes a putative transmembrane protein. Theor Appl Genet **112**, 1164-1171.

7 **Fedoroff, N.V.** (2002). Cross-talk in abscisic acid signaling. Sci STKE **2002**, re10.

8 **Hackenberg, D., McKain, M.R., Lee, S.G., Roy Choudhury, S., McCann, T., Schreier, S.,**
9 **Harkess, A., Pires, J.C., Wong, G.K., Jez, J.M., Kellogg, E.A., and Pandey, S.** (2017).
10 Galpha and regulator of G-protein signaling (RGS) protein pairs maintain functional
11 compatibility and conserved interaction interfaces throughout evolution despite frequent
12 loss of RGS proteins in plants. New Phytol **216**, 562-575.

13 **Hey, S.J., Byrne, E., and Halford, N.G.** (2010). The interface between metabolic and stress
14 signalling. Ann Bot **105**, 197-203.

15 **Huang, X., Qian, Q., Liu, Z., Sun, H., He, S., Luo, D., Xia, G., Chu, C., Li, J., and Fu, X.**
16 (2009). Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet **41**,
17 494-497.

18 **Kunihiro, S., Saito, T., Matsuda, T., Inoue, M., Kuramata, M., Taguchi-Shiobara, F.,**
19 **Youssefian, S., Berberich, T., and Kusano, T.** (2013). Rice DEP1, encoding a highly
20 cysteine-rich G protein gamma subunit, confers cadmium tolerance on yeast cells and
21 plants. J Exp Bot **64**, 4517-4527.

22 **Li, M., Li, X., Zhou, Z., Wu, P., Fang, M., Pan, X., Lin, Q., Luo, W., Wu, G., and Li, H.**
23 (2016). Reassessment of the Four Yield-related Genes Gn1a, DEP1, GS3, and IPA1 in
24 Rice Using a CRISPR/Cas9 System. Front Plant Sci **7**, 377.

25 **Li, S., Liu, W., Zhang, X., Liu, Y., Li, N., and Li, Y.** (2012a). Roles of the Arabidopsis G
26 protein g subunit AGG3 and its rice homologs GS3 and DEP1 in seed and organ size
27 control. Plant Signal Behav **7**, 1357-1359.

28 **Li, S., Liu, Y., Zheng, L., Chen, L., Li, N., Corke, F., Lu, Y., Fu, X., Zhu, Z., Bevan, M.W.,**
29 **and Li, Y.** (2012b). The plant-specific G protein g subunit AGG3 influences organ size
30 and shape in *Arabidopsis thaliana*. New Phytol **194**, 690-703.

1 **Mann, D.G., Lafayette, P.R., Abercrombie, L.L., King, Z.R., Mazarei, M., Halter, M.C.,**
2 **Poovaiah, C.R., Baxter, H., Shen, H., Dixon, R.A., Parrott, W.A., and Neal Stewart,**
3 **C., Jr.** (2012). Gateway-compatible vectors for high-throughput gene functional analysis
4 in switchgrass (*Panicum virgatum* L.) and other monocot species. *Plant Biotechnol J* **10**,
5 226-236.

6 **Mao, H., Sun, S., Yao, J., Wang, C., Yu, S., Xu, C., Li, X., and Zhang, Q.** (2010). Linking
7 differential domain functions of the GS3 protein to natural variation of grain size in rice.
8 *Proc Natl Acad Sci U S A* **107**, 19579-19584.

9 **Rook, F., Hadingham, S.A., Li, Y., and Bevan, M.W.** (2006). Sugar and ABA response
10 pathways and the control of gene expression. *Plant Cell Environ* **29**, 426-434.

11 **Roy Choudhury, S., and Pandey, S.** (2013). Specific subunits of heterotrimeric G proteins play
12 important roles during nodulation in soybean. *Plant Physiol* **162**, 522-533.

13 **Roy Choudhury, S., Riesselman, A.J., and Pandey, S.** (2014). Constitutive or seed-specific
14 overexpression of *Arabidopsis G-protein g subunit 3 (AGG3)* results in increased seed
15 and oil production and improved stress tolerance in *Camelina sativa*. *Plant Biotechnology*
16 *Journal* **12**, 49-59.

17 **Roy Choudhury, S., Bisht, N.C., Thompson, R., Todorov, O., and Pandey, S.** (2011).
18 Conventional and novel Gg protein families constitute the heterotrimeric G-protein
19 signaling network in soybean. *PLoS One* **6**, e23361.

20 **Seki, M., Umezawa, T., Urano, K., and Shinozaki, K.** (2007). Regulatory metabolic networks
21 in drought stress responses. *Curr Opin Plant Biol* **10**, 296-302.

22 **Stateczny, D., Oppenheimer, J., and Bommert, P.** (2016). G protein signaling in plants: minus
23 times minus equals plus. *Curr Opin Plant Biol* **34**, 127-135.

24 **Sun, H., Qian, Q., Wu, K., Luo, J., Wang, S., Zhang, C., Ma, Y., Liu, Q., Huang, X., Yuan,**
25 **Q., Han, R., Zhao, M., Dong, G., Guo, L., Zhu, X., Gou, Z., Wang, W., Wu, Y., Lin,**
26 **H., and Fu, X.** (2014). Heterotrimeric G proteins regulate nitrogen-use efficiency in rice.
27 *Nat Genet* **46**, 652-656.

28 **Thung, L., Trusov, Y., Chakravorty, D., and Botella, J.R.** (2012).
29 Ggamma1+Ggamma2+Ggamma3=Gbeta: the search for heterotrimeric G-protein gamma
30 subunits in *Arabidopsis* is over. *J Plant Physiol* **169**, 542-545.

1 **Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., and Polasky, S.** (2002). Agricultural
2 sustainability and intensive production practices. *Nature* **418**, 671-677.

3 **Trusov, Y., Chakravorty, D., and Botella, J.R.** (2012). Diversity of heterotrimeric G-protein
4 gamma subunits in plants. *BMC Res Notes* **5**, 608.

5 **Trusov, Y., Zhang, W., Assmann, S.M., and Botella, J.R.** (2008). Ggamma1 + Ggamma2 not
6 equal to Gbeta: heterotrimeric G protein Ggamma-deficient mutants do not recapitulate
7 all phenotypes of Gbeta-deficient mutants. *Plant Physiol* **147**, 636-649.

8 **Trusov, Y., Rookes, J.E., Chakravorty, D., Armour, D., Schenk, P.M., and Botella, J.R.**
9 (2006). Heterotrimeric G proteins facilitate *Arabidopsis* resistance to necrotrophic
10 pathogens and are involved in jasmonate signaling. *Plant Physiol* **140**, 210-220.

11 **Trusov, Y., Sewelam, N., Rookes, J.E., Kunkel, M., Nowak, E., Schenk, P.M., and Botella, J.R.**
12 (2009). Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens
13 includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic
14 acid-mediated defense signaling. *Plant J* **58**, 69-81.

15 **Trusov, Y., Rookes, J.E., Tilbrook, K., Chakravorty, D., Mason, M.G., Anderson, D., Chen,
16 J.G., Jones, A.M., and Botella, J.R.** (2007). Heterotrimeric G protein g subunits provide
17 functional selectivity in Gbg dimer signaling in *Arabidopsis*. *Plant Cell* **19**, 1235-1250.

18 **Urano, D., and Jones, A.M.** (2014). Heterotrimeric G protein-coupled signaling in plants. *Annu
19 Rev Plant Biol* **65**, 365-384.

20 **Van Eck, J., and Swartwood, K.** (2015). *Setaria viridis*. *Methods Mol Biol* **1223**, 57-67.

21 **Vishwakarma, K., Upadhyay, N., Kumar, N., Yadav, G., Singh, J., Mishra, R.K., Kumar,
22 V., Verma, R., Upadhyay, R.G., Pandey, M., and Sharma, S.** (2017). Abscisic Acid
23 Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and
24 Future Prospects. *Front Plant Sci* **8**, 161.

25 **Wendt, T., Holme, I., Dockter, C., Preuss, A., Thomas, W., Druka, A., Waugh, R., Hansson,
26 M., and Braumann, I.** (2016). HvDep1 Is a Positive Regulator of Culm Elongation and
27 Grain Size in Barley and Impacts Yield in an Environment-Dependent Manner. *PLoS
28 One* **11**, e0168924.

29 **Wolfenstetter, S., Chakravorty, D., Kula, R., Urano, D., Trusov, Y., Sheahan, M.B.,
30 McCurdy, D.W., Assmann, S.M., Jones, A.M., and Botella, J.R.** (2014). Evidence for

1 an unusual transmembrane configuration of AGG3, a class C Ggamma subunit of
2 Arabidopsis. *Plant J.*

3 **Xu, H., Zhao, M., Zhang, Q., Xu, Z., and Xu, Q.** (2016). The DENSE AND ERECT
4 PANICLE 1 (DEP1) gene offering the potential in the breeding of high-yielding rice.
5 *Breed Sci* **66**, 659-667.

6 **Yadav, D.K., Islam, S.M., and Tuteja, N.** (2012). Rice heterotrimeric G-protein gamma
7 subunits (RGG1 and RGG2) are differentially regulated under abiotic stress. *Plant Signal
8 Behav* **7**, 733-740.

9 **Yi, X., Zhang, Z., Zeng, S., Tian, C., Peng, J., Li, M., Lu, Y., Meng, Q., Gu, M., and Yan, C.**
10 (2011). Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the
11 decrease of grain yield per plant in japonica rice (*Oryza sativa* L.). *J Genet Genomics* **38**,
12 217-223.

13 **Zhang, D.P., Zhou, Y., Yin, J.F., Yan, X.J., Lin, S., Xu, W.F., Baluska, F., Wang, Y.P., Xia,
14 Y.J., Liang, G.H., and Liang, J.S.** (2015). Rice G-protein subunits qPE9-1 and RGB1
15 play distinct roles in abscisic acid responses and drought adaptation. *J Exp Bot* **66**, 6371-
16 6384.

17 **Zhao, M., Sun, J., Xiao, Z., Cheng, F., Xu, H., Tang, L., Chen, W., Xu, Z., and Xu, Q.**
18 (2016). Variations in DENSE AND ERECT PANICLE 1 (DEP1) contribute to the
19 diversity of the panicle trait in high-yielding japonica rice varieties in northern China.
20 *Breed Sci* **66**, 599-605.

21 **Zhou, Y., Zhu, J., Li, Z., Yi, C., Liu, J., Zhang, H., Tang, S., Gu, M., and Liang, G.** (2009).
22 Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves
23 plant architecture during rice domestication. *Genetics* **183**, 315-324.

24

TABLE 1 Genetic and molecular characterization of transgenic T₁ *S. viridis* lines.

Line	PCR segregation		Chi-square (χ^2)	Insert number ^b	Zygosity ^c		Chi-square (χ^2)		
	<i>hph</i> +	<i>hph</i> -			Value (3:1) ^a	Homo	Hetero	Null	V value (1:2:1) ^a
<i>pANIC10A::AGG3</i>									
AGG3-1A	14	1	2.69	2					Not Tested
AGG3-1B	16	0	5.33*	2					Not Tested
AGG3-2A	14	2	1.33	2					Not Tested
AGG3-3A	9	5	0.86	1					0.50
AGG3-4A	11	3	0.94	1					0.28
AGG3-5A	14	2	1.33	3					Not Tested
AGG3-6A	16	0	5.33*	3					Not Tested
AGG3-6B	15	1	3.00	3					Not Tested
<i>pANIC10A (empty vector, EV)</i>									
EV-2A	12	2	0.86	1					0.60
EV-3C	12	4	0.00	1					2.42

^aAt 1 and 2 degree of freedom and P = 0.05, χ^2 critical values are 3.84 and 5.99, respectively.

^bBased on Southern hybridization data on pooled T₁ families.

^cBased on TaqMan assay, Homo (homozygous), Hetero (Heterozygous) and Null transgenic lines were identified.

* Significant at P = 0.05.

TABLE 2 Genetic and molecular characterization of transgenic T₂ and T₃ *S. viridis* lines.

Line	T ₂ generation ^a		Zygosity status	T ₃ generation ^a Family selected for further characterization and their designation ^b
	PCR segregation	hph +		
<i>pANIC10A::AGG3</i>				
AGG3-1A-10	16	0	Homo	/
AGG3-1B-15	16	0	Homo	AGG3-1B-15-1 (A1)
AGG3-1B-16	16	0	Homo	/
AGG3-2A-2	16	0	Homo	AGG3-2A-2-3 (A2)
AGG3-2A-7	16	0	Homo	/
AGG3-3A-9	16	0	Homo	AGG3-3A-9-2 (A3)
AGG3-4A-7	16	0	Homo	AGG3-4A-7-4 (A4)
AGG3-5A-1	5	11	Segregating	/
AGG3-5A-2	16	0	Homo	AGG3-5A-2-2 (A5)
AGG3-6A-4	16	0	Homo	/
AGG3-6A-6	16	0	Homo	AGG3-6A-6-1 (A6)
AGG3-6B-12	16	0	Homo	AGG3-6B-12-4 (A7)
AGG3-6B-13	13	3	Segregating	
<i>pANIC10A (empty vector, EV)</i>				
EV-2A-5	16	0	Homo	EV-2A-5-1 (EV)
EV-3C-2	16	0	Homo	EV-3C-2-1 (EV-2)

^aAbsence of hph negative plants indicate homozygosity (Homo) status of parent line.^bFamilies were phenotyped.