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Abstract. This paper presents a new class of high order linear ImEx (implicit-explicit) mul-
tistep schemes with large regions of unconditional stability. Unconditional stability is a desirable
property of a time stepping scheme, as it allows the choice of time step solely based on accuracy
considerations. Of particular interest are problems for which both the implicit and explicit parts of
the ImEx splitting are stiff. Such splittings can arise, for example, in variable coefficient problems,
or the incompressible Navier–Stokes equations. To characterize the new ImEx schemes, an uncon-
ditional stability region is introduced, which plays a role analogous to that of the stability region
in conventional multistep methods. Moreover, computable quantities (such as a numerical range)
are provided that guarantee an unconditionally stable scheme for a proposed ImEx matrix splitting.
The new approach is illustrated with several examples. Coefficients of the new schemes up to fifth
order are provided.
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1. Introduction. When a stiff differential equation is solved via an explicit
time stepping scheme, stability requires time steps that are much smaller than those
imposed by accuracy. Implicit schemes can overcome this limitation. Unfortunately,
for many practical problems, a fully implicit treatment may be structurally difficult or
computationally costly. Implicit-explicit (ImEx) methods are based on splitting the
problem into two parts: one to be treated implicitly, and the other explicitly. In many
problems, the stiff modes can be conveniently treated implicitly, while the explicitly
treated modes are nonstiff. Moreover, for many ImEx schemes a time step restriction
is incurred from the explicit part, which is generally acceptable if it is nonstiff.

The study presented here is motivated by a different situation, namely, the case
where an ImEx splitting is conducted for which both parts are stiff (see section 1.2 for
examples in which this structure arises naturally). In that case, a time step restriction
based on the explicit part is not acceptable. We therefore aim for more, namely, that
the ImEx time stepping scheme, for the particular splitting, be unconditionally stable;
i.e., arbitrarily large time steps can be chosen without losing stability.

At first glance it may sound impossible to achieve unconditional stability if some
parts of the problem are treated explicitly. The reason why it is possible is that
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the ImEx scheme is applied to problems and splitting choices that possess specific
properties, so that the implicit part can stabilize any growing modes produced by the
explicit part. This concept goes further than one may think: a properly chosen ImEx
scheme can stabilize a large explicit part via a smaller implicit part (see section 5.1).

While the task outlined above is of interest for any time stepping scheme, this
paper focuses on ImEx linear multistep methods (LMMs) [8, 15, 49]. These achieve a
high order of accuracy by using information from previous time steps. Thus, in each
time step, they need a single evaluation of the explicit part, and a single solve with the
implicit part [28, Chapter II.3, p. 171]. Because high order multistep methods tend
to possess less favorable stability properties than Runge–Kutta methods, the task of
achieving unconditional stability is of particular importance.

1.1. Outline of the problem and contributions of this paper. The prob-
lem of interest is a linear system of ordinary differential equations

~ut = L~u+ ~f(t) with ~u(0) = ~u0 ,(1)

where ~u(t), ~u0, ~f(t) ∈ RN and L ∈ RN×N is a matrix. We assume that L is stable;
i.e., the homogeneous equation ~ut = L~u has solutions that remain bounded for all
time (stability is independent of the forcing ~f). The term L~u in problem (1) is now
split into an implicit part (A~u) and an explicit part (B~u), transforming (1) into

~ut = A~u+B~u+ ~f(t) ,(2)

where B~u = L~u−A~u.
Of course, the choice of splitting L = A +B is not unique. One approach is to

choose A as the stiff terms in L (i.e., the terms that would give rise to unnecessarily
small time step restrictions if treated explicitly) and B as the nonstiff terms in L. In
such a case, one can guarantee stability for an ImEx LMM [20] by requiring a time
step restriction roughly dictated by an explicit treatment of B. However, as out-
lined above, here we are concerned with the situation where such a splitting strategy
is not feasible/practical. Hence, we look for ImEx time stepping schemes that are
unconditionally stable when applied to (2), where B can involve stiff terms.

Whether a time stepping scheme (of whatever kind) for (1) or (2) is stable depends
on both the scheme and the problem’s right-hand side L. A classical approach (for
non-ImEx schemes) in stability analysis [38, Chapter 7] is to separate stability into
a property of the scheme and another property of the problem’s right-hand side, as
follows. For a linear scheme, the region of absolute stability S ⊂ C is the set of all
z = kλ, where k is the time step, for which the numerical solution remains bounded
when applied to the test equation ut = λu. Similarly, one can define a region of
unconditional stability Su = {z ∈ C : µz ∈ S ∀µ ≥ 0} as the largest cone contained
within S. If the eigenvalues of L lie in Su, then the scheme is unconditionally stable.
This concept decouples the scheme stability analysis from the detailed properties of L,
relying on its spectrum σ(L) only. Moreover, it allows one to make stability statements
about whole classes of problems. For instance, if Su is the cone |θ − π| < α, where
0 < α < π/2 and θ is the polar angle (i.e., the scheme is A(α) stable), then the scheme
is unconditionally stable for all problems where L is negative definite. Conversely, we
know that the same scheme is not unconditionally stable if L is skew-symmetric.

In this paper, an analogous concept is developed for the ImEx framework. This
extension is not straightforward, because one now has two right-hand side operators
A and B that, in general, do not commute and thus do not share a set of common
eigenvectors (see section 1.3 for references to the commutative case).
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While the fundamental idea of stability criteria for ImEx schemes has been pre-
sented before (see section 1.3), here we present sufficient criteria for unconditional
stability that are less restrictive than prior work. The stability set D that we intro-
duce depends only on the coefficients of the ImEx schemes, and not on the matrices
A and B in the splitting (2). Moreover, we devise new high order ImEx schemes
with very large stability regions that can stabilize splittings of the form (2) which are
unstable with current schemes (see section 5).

1.2. Motivating applications. While the ideas developed here apply to an
abstract ODE system (2), particular interest lies in systems that arise from a method
of lines [38, Chapter 9.2] discretization (e.g., via finite differences, finite elements, or
spectral) of linear PDE problems. Two important applications are as follows (letting
∇h denote the spatial discretization of ∇ in an appropriate basis with smallest length
scale h):

(i) Variable coefficient diffusion with

L~u = ∇h ·
(
d(x) ∇hu

)
, where d(x) > 0 .

Here L can be split into a constant coefficient diffusion A and a variable coef-
ficient diffusion B. Then fast solvers [24, 46] can treat A efficiently. However,
B remains stiff, because it scales the same as A (i.e., like 1/h2). See section 5.2
for more details.

(ii) Nonlocal operators, such as the Stokes operator in the linearized Navier–Stokes
equations, whose discretization either yields a dense matrix or requires the ad-
dition of extra variables through the introduction of Lagrange multipliers,

L~u = ν∇2
hu−∇hp and constraint ∇h · u = 0 .

A splitting where ν∇2
hu is implicit can create a stiff explicit ∇hp [32, 39, 44].

The theory in this paper does not directly apply to cases where ~L(~u, t) is nonlinear
or time dependent, as arises, for instance, with discretizations of the Cahn–Hilliard
equation [11]. However, the ideas presented below for linear splitting may nevertheless
be useful in stabilizing more general splittings as well.

1.3. Existing results and the new contributions in context. The sim-
plest ImEx scheme that can achieve unconditional stability is a first order in time
combination of forward and backward Euler steps. The application to (2) yields

1
k

(
~un+1 − ~un

)
= A~un+1 +B~un + ~f(nk) .(3)

Here k > 0 is the time step, and ~un is the numerical solution at time t = nk.
First order in time schemes that achieve unconditional stability originated with

Douglas and Dupont [16]. Other first order approaches are (i) iterative schemes for
steady state elliptic problems [14]; (ii) variable coefficient diffusion with spectral meth-
ods [23, Chapter 9]; (iii) nonlinear convex–concave splittings for the Cahn–Hilliard
equation [19]; (iv) nonlocal explicit terms [7]; (v) Hele–Shaw flows [21]; (vi) phase-
field models [10, 18, 43, 45]; and (vii) viscosity-pressure splittings in incompressible
Navier–Stokes [32, 39].

A disadvantage of first order approaches is that, in addition to the low order, large
error constants have been reported for stable splitting choices in dissipative equations
[13], as well as dispersive equations [12].

Better accuracy requires higher order ImEx time stepping methods. The following
are two of the most commonly used approaches, which can be applied to (2):
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• CN-AB: Implicit Crank–Nicolson for A~u, and explicit Adams–Bashforth
extrapolation for B~u.

• SBDF (semi-implicit backward differentiation formula): Implicit BDF
for A~u, and explicit Adams–Bashforth extrapolation for B~u.

For second order schemes, unconditional stability, or at least the absence of a stiff
time step restriction, has been reported in practice for the semi-implicit treatment of
the incompressible Navier–Stokes equations [34, 35] and the Cahn–Hilliard equation
[9]. Rigorous proofs that guarantee unconditional stability for second order ImEx
schemes such as SBDF or CN-AB have been given for convex–concave splittings of
gradient flow systems [22, 25], a coupled Stokes–Darcy system [37], and a system with
an explicit treatment of nonlocal terms [48]. See also [18, 50] for an interpretation of
some convex–concave splittings as fully implicit schemes with a rescaled time step.

Higher order semi-implicit schemes that guarantee unconditional stability are not
as well studied as their first and second order counterparts. Some third order schemes
for the Navier–Stokes equations have been found that do not require a diffusion-
restricted time step [34, 40]. General sufficient conditions on A and B guaranteeing
unconditional stability for any order of SBDF have been outlined in [5] and related
works [3, 4]. Specifically [3, 4, 5] assume that A is negative definite and also allow
for B to be nonlinear. The results in [5], applied to the case where B is a matrix,
guarantee unconditional stability for an SBDF scheme of order 1 ≤ r ≤ 6 1 if

‖(−A)−1/2B(−A)−1/2‖2 < (2r − 1)−1.(4)

In related work, a set of new second order ImEx coefficients was introduced in [6],
allowing for a weaker upper bound in (4)—it can be made arbitrarily close to 1. The
unconditional stability criteria devised here are more general than previous bounds
such as (4). Instead of prescribing norm bounds, we introduce the concept of uncondi-
tional stability diagrams for ImEx schemes. The new diagrams generalize the previous
work on ImEx stability regions [20] (see also [36]) to (i) the case of unconditional sta-
bility, and (ii) the case where A and B do not commute. We then prescribe a set
of new ImEx coefficients and show that they can achieve unconditional stability for
some problems which violate (4) by orders of magnitude. See also Chapter IV of [28]
for an overview of different splitting methods for ODE integration. Other techniques
for specific problems are (i) explicit Runge–Kutta schemes with very large stability
regions for parabolic problems [1], (ii) semi-implicit deferred correction methods [42],
and (iii) semi-implicit schemes when an integration factor (matrix exponential) is
easily evaluated [33, 41].

This paper is organized as follows. In sections 2–3 we introduce ImEx LMMs, the
new criteria for unconditional stability, and the definition of the unconditional stability
region. In section 4 we define new ImEx coefficients, characterize their unconditional
stability region, and examine their effect on the approximation error. Finally, sec-
tion 5 demonstrates how a small implicit term may stabilize a large explicit term. It
also provides an example showing how the new coefficients may be used to stabilize
splittings (2) that arise from a variable coefficient diffusion problem. We conclude
with tables of the new ImEx coefficients in section 7 so that they may be used by
practitioners.

2. Mathematical foundations. The purpose of this paper is to examine ImEx
LMMs (linear multistep methods) for splittings of the form (2), where A~u is treated

1See [5, equations (1.4)–(1.5), Theorem 2.1, and Remark 2.3].
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implicitly, and B~u explicitly. Moreover, we are particularly interested in the case
where both A and B are stiff, i.e., each term alone would result in severely limited
time steps (due to stability) when treated explicitly. The goal is to first devise simple
sufficient conditions that guarantee unconditionally stability of a time stepping scheme
when applied to (2). We will then devise new ImEx schemes that allow one to satisfy
the simple unconditional stability conditions, thereby guaranteeing an unconditionally
stable scheme.

Here we restrict A to be real, self-adjoint, and negative definite. Thus, AT = A,
and 〈~x,A~x〉 < 0 for all ~x 6= ~0. We use the notation

〈~x, ~y〉 = ~x
T
~y and ‖~x‖2 = 〈~x, ~x〉 for ~x, ~y ∈ CN .

Note that the restriction above, which is needed for the theoretical presentation in
this paper, is not as limiting as it might seem. A self-adjoint, negative definite,
matrix A yields desirable properties for the efficient solution of linear systems [47,
Chapter IV, lecture 38] with coefficient matrices of the form (I − γA), with γ > 0.
The need to solve such linear systems arises in the time stepping of LMMs, as well
as for implicit Runge–Kutta schemes. Hence, even if the matrix L is not symmetric
(e.g., the discretization of a dispersive wave problem), it may still be advantageous to
take A to be symmetric and negative definite, with B := L−A.

Let ~un be the numerical solution of (2) at time t = nk, where k is the time step,
and let ~fn = ~f(nk). Then an LMM with s ≥ 1 steps takes the form

1
k

s∑
j=0

aj ~un+j =
s∑
j=0

(
cj A~un+j + bj B~un+j + bj ~fn+j

)
,(5)

where (aj , bj , cj), with 0 ≤ j ≤ s, are the time stepping coefficients. Here we will
assume that bs = 0 and as, cs 6= 0, so that the method is implicit in A and explicit in
B—i.e., it is an ImEx time stepping scheme. To accompany (5), one must also supply
s initial vectors ~u0, ~u1, . . . , ~us−1.

We wish to avoid any unnecessarily small time step restriction, and therefore
demand that the scheme (5) be unconditionally stable. That is, the solutions to (5),
with ~f = 0, remain bounded for arbitrarily large time steps k > 0. This leads to the
following.

Definition 1 (unconditional stability). A scheme (5) is unconditionally stable
if, when ~f = 0, there exists a constant C such that

‖~un‖ ≤ C max
0≤j≤s−1

‖~uj‖ for all n ≥ s, k > 0 and ~uj ∈ RN , where 0 ≤ j ≤ s− 1.

Note that C may depend on the matrices A, B, and the coefficients (aj , bj , cj), but is
independent of the time step k, the time index n, and the initial vectors ~uj, 0 ≤ j ≤
s− 1.

Unconditional stability is a strong requirement for ImEx LMMs that comes with
the following caveat: unconditional stability is a coupled property of both the set of
ImEx coefficients (aj , bj , cj) and the matrices (A, B). Hence, the following hold:

• A given set of coefficients, (aj , bj , cj), may yield unconditional stability for
some splittings (A, B), and not others.
• If the splitting (A, B) arises from the spatial discretization of a PDE, then a

given set of coefficients (aj , bj , cj) may not yield unconditional stability for
all model parameters.
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If the matrices A and B commute and are diagonalizable, then the stability of (5)
can be examined by using the spectra, σ(A) and σ(B). In this paper we do not
assume that A and B commute. Hence we cannot rely on the existence of common
eigenvectors and must develop a different approach to study the stability of (5), as
follows:

• We introduce an unconditional stability region/diagram D, which is com-
putable in terms of the scheme coefficients (aj , bj , cj) only.

• We introduce a region in the complex plane that generalizes the notion of
spectrum and depends on the matrix splitting (A, B) only.

This approach opens a pathway to the design of splittings that are guaranteed to be
stable for a fixed set of ImEx coefficients, or to the choosing of ImEx coefficients for
which a given splitting (A, B) yields a stable scheme. In fact, in this paper we intro-
duce a new class of ImEx coefficients that may be chosen to stabilize a given splitting.
For these new schemes the coefficients yield diagrams that permit (arbitrarily) large
regions of unconditional stability.

3. Stability for linear multistep methods. In this section we review the
stability criteria for ImEx LMMs defined by (5). Following a standard procedure [26,
Chapter III.4], one may recast the linear recursion relation (5) with matrix coefficients
as a single vector recursion on an s×N vector:

~V n = W ~V n−1, where ~V n :=
(
~un+s, ~un+s−1, . . . , ~un+1

)T ∈ RsN .(6)

Here W is a matrix with block structure:

W =


as − kcsA 0 0 . . . 0

0 I 0 . . . 0
0 0 I . . . 0
...

. . . 0
0 0 0 . . . I


−1

Cs−1 Cs−2 . . . C1 C0
I 0 . . . 0 0
0 I . . . 0 0
...

. . . 0 0
0 0 . . . I 0

 ,(7)

where I is the N ×N identity matrix, and

Cj = kcjA+ kbjB − ajI, 0 ≤ j ≤ s− 1.

Recall [26, Chapter III.4], [27, Chapter V.1] that (6), and hence the scheme (5), is
stable for a given k if every semisimple2 eigenvalue of W satisfies |ζ| ≤ 1, and every
nonsemisimple eigenvalue satisfies |ζ| < 1. In the case whenA andB do not commute,
the eigenvalues ofW depend on both (i) the matricesA andB, and (ii) the ImEx time
stepping coefficients (aj , bj , cj). Hence the eigenvalues of W do not provide a way to
characterize unconditional stability in a way analogous to that for non-ImEx schemes:
Some set depending on L only (e.g., its spectrum) must be included within some set
that is defined by the scheme coefficients only (the unconditional stability set). In
what follows we devise a strategy to get around this problem, so that conditions that
guarantee unconditional stability of ImEx schemes can be formulated in a language
similar to the one for non-ImEx schemes, or for ImEx schemes with commutative
splits (though the set depending on L = A+B is no longer a spectrum).

Let ~V ∗ 6= ~0 be an eigenvector of W with eigenvalue ζ. Then, due to the structure
of the bottom (s− 1) matrix blocks in W , ~V ∗ ∈ CsN has the form

~V ∗ =
(
ζs−1~v, ζs−2~v, . . . , ζ~v, ~v

)T
, where ~v 6= ~0, ~v ∈ CN .(8)

2An eigenvalue ζ is semisimple if its algebraic multiplicity equals its geometric multiplicity.
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The characteristic equation for W can be rewritten in the form

det(W − ζI) = 0 ⇐⇒ det
(1
k
a(ζ) I − c(ζ) A− b(ζ) B

)
= 0,

where

a(z) =
s∑
j=0

ajz
j , b(z) =

s−1∑
j=0

bjz
j , c(z) =

s∑
j=0

cjz
j

are polynomials determined by the time stepping coefficients (aj , bj , cj), 0 ≤ j ≤ s.
Hence if ζ is an eigenvalue of W (with possible algebraic multiplicity greater than

one), then there always exists at least one ~V ∗ from (8) with ~v satisfying

T (ζ)~v = 0, where T (z) :=
(1
k
a(z) I − c(z) A− b(z) B

)
.(9)

Note that one may also arrive at (9) by substituting the normal mode ansatz ~un = ζn~v
into the general linear ImEx time stepping scheme (5).

Clearly if T (z) is singular for |z| < 1, then any eigenvector ~V ∗ of W has every
eigenvalue (regardless of algebraic multiplicity) |ζ| < 1. Conditions on T (z) for the
stability of (5) can then be stated as follows.

Proposition 2. If, for a fixed k > 0, the matrix T (z) is nonsingular for all
|z| ≥ 1, i.e., detT (z) 6= 0 for |z| ≥ 1, then the scheme (5) is stable.

Remark 1. Proposition 2 is not sharp as we have omitted the possibility for
detT (ζ) = 0 with |ζ| = 1.

3.1. The stability region D. The N × N matrix equation (9) still couples
both the matrices (A, B) to the scheme coefficients (aj , bj , cj). To decouple the time
stepping stability analysis (i.e., the time stepping coefficients) from the details of
the ODE being solved (i.e., the matrices A and B), we multiply (9) by the positive
definite matrix (−A)p−1, where p ∈ R—p real is all that is needed for the analysis
below to hold. In the examples in section 5, we will eventually focus on p = 1, as
it is observed that this choice provides sufficient estimates for the test problems we
consider. The stability theory obtained with other values of p 6= 1 may still, however,
be of use in the numerical treatment of other PDEs, distinct from those in section 5.
Thus,

1
k
a(ζ)(−A)p−1~v = −c(ζ)(−A)p~v + b(ζ)(−A)p−1B~v.

Dotting through with ~v and setting

y = −k 〈~v, (−A)p~v〉
〈~v, (−A)p−1~v〉

, µ =
〈~v, (−A)p−1B~v〉
〈~v, (−A)p~v〉

,(10)

we obtain the equation3

a(ζ) = y c(ζ)− yµ b(ζ).(11)

Since (−A) is positive definite, y may take any value y < 0 as k varies over the
allowable values k > 0, with any ~v 6= 0 fixed. The following definition is then justified
by the result in Proposition 2.

3The polynomial (11) with µ = 0 was used in convergence proofs in [3, 4, 5, 15]. A similar
equation, a(ζ) = λc(ζ) + µb(ζ), was obtained in [8] for commuting matrices A and B and studied
as a model equation for stability in [20] to estimate explicit time step k restrictions. However, note
that here we do not assume that A and B commute.
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Definition 3 (stability). The polynomial equation (11) is stable, for a given y <
0 and µ ∈ C, if every solution satisfies |ζ| < 1.

Definition 4 (unconditional stability region). We define the region of uncondi-
tional stability D as the values of µ so that (11) is stable for all y ∈ R<0 ∪ {−∞}.
Formally, define the following sets:

Dy := {µ ∈ C : (11) is stable for a fixed y ∈ R<0},
D−∞ := {µ ∈ C : c(ζ)− µb(ζ) has stable roots},

D =
⋂

y∈R<0∪{−∞}

Dy.

Note that D depends only on the ImEx time stepping coefficients and not on the
matrices A,B. Moreover, D may be empty for some schemes.

3.2. Numerical range and sufficient condition for unconditional stabil-
ity. The exact realizable values of µ defined by the expression in (10), for a given
splitting (A,B) and time stepping coefficients, are determined through the normal
modes ~v. To find these values of µ, which form a discrete, finite set in the complex
plane, one must solve the fully coupled eigenvalue problem given by (9). A better
and simpler approach is to overestimate the region in the complex plane where the
values of µ reside. Specifically, the values of µ belong to the complex set obtained by
allowing ~v to vary over all possible vectors. That is,

µ ∈Wp, where Wp :=
{
〈~v, (−A)p−1B~v〉 : 〈~v, (−A)p~v〉 = 1

}
.

Using a straightforward change of variables ~v = (−A)
p
2 ~x, and the fact that A is

symmetric, the set Wp can be identified as

Wp = W
(

(−A)
p
2−1 B (−A)−

p
2

)
.

Here W (X) denotes the numerical range (also known as the field of values) of a
matrix X ∈ CN×N and is defined by

W (X) := {〈~x,X~x〉 : ‖~x‖ = 1, ~x ∈ CN}.(12)

See section SM1 in the supplementary material for a list of standard properties for
W (X). One then arrives at a sufficient condition for unconditional stability for (5).

Theorem 5 (sufficient condition for unconditional stability). Suppose that a ma-
trix splitting (A, B) has sets Wp for p ∈ R and that the LMM time stepping coef-
ficients (aj , bj , cj) have an unconditional stability region D. Then, if there exists a
p ∈ R such that Wp ⊆ D, the scheme (9) is unconditionally stable.

Remark 2. Different values of p may modify the size of Wp in the complex plane.
The sufficient condition for unconditional stability requires only one value of p to
satisfy Wp ⊆ D (even if other values of p violate Wp ⊆ D).

4. New ImEx coefficients.

4.1. Definition of the new ImEx coefficients. The property of unconditional
stability is not limited to LMMs; however, here we focus on LMMs only. Any ImEx
LMM where the number of steps equals the order of the scheme s = r is completely
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defined by specifying the polynomial c(z). For instance, given s = r and a fixed
c(z), the order conditions define the polynomials a(z), b(z) and subsequently all time
stepping coefficients. Therefore, the roots4 of the polynomial c(z) can also be used to
uniquely define any ImEx scheme when r = s. The new ImEx coefficients proposed
in this paper will be prescribed by the location of the roots of c(z). In particular,
regions of unconditional stability D depend strongly on the location of the roots of
c(z) and become large when the roots of c(z) get close to 1 (see also section SM4).
Although there are many options for parameterizing how the roots of c(z) approach
1, we choose the simplest approach and lock all the roots together.

Definition 6 (new ImEx coefficients). For orders 1 ≤ r ≤ 5 and 0 < δ ≤ 1,
the new ImEx coefficients (aj , bj , cj), for 0 ≤ j ≤ r, are defined as the following
polynomial coefficients:

(Implicit coeff.) c(z) = (z − 1 + δ)r,(13)
(Explicit coeff.) b(z) = (z − 1 + δ)r − (z − 1)r.(14)

The time stepping polynomial a(z) is concisely written as the rth order Taylor poly-
nomial centered at z = 1 of the generating function f(z),

(Derivative coeff.) a(z) =
r∑
j=1

f (j)(1)
j!

(z − 1)j , f(z) = (ln z)(z − 1 + δ)r.(15)

Note that once c(z) is chosen, a(z) and b(z) are uniquely determined. For more on
this, see Proposition 7 below. In section 7 we report the ImEx coefficients (aj , bj , cj)
as polynomial functions of δ. In the case when δ = 1, the new coefficients recover
the combined SBDF—backward differentiation formula (for the implicit c(z)) and
Adams–Bashforth (for the explicit b(z)). For δ < 1 the roots of c(z) shift towards
z = 1. The new coefficients bear some similarity to the one-parameter, high order,
multistep schemes with large absolute stability regions studied in [29, 30]. We stress,
however, that our use of the ImEx coefficients in Definition 6 is of a fundamentally
different nature than the non-ImEx investigation found in [29, 30]. Specifically, we
select a δ value that is strictly bounded away from 0, based on the ImEx splitting
(A, B) of L, which yields an unconditionally stable method. Moreover, a subsequent
error investigation indicates that δ should be selected as large as possible, while still
maintaining unconditional stability.

Remark 3. We limit Definition 6 to orders r ≤ 5. SBDF schemes (δ = 1) with
orders r ≥ 7 are not zero stable. Furthermore, the characterization of D for r = 6
is not contained within the theory presented in the following subsection. Specifically,
Numerical Observation 1 (see section 4.2) fails for r = 6 and δ = 1.

Proposition 7. For all 0 < δ ≤ 1 and orders 1 ≤ r ≤ 5, the ImEx coefficients
in Definition 6 are zero stable and satisfy the rth order conditions.

See section SM2 for the verification of Proposition 7.

4.2. Stability regions for the new ImEx coefficients. The region D was
introduced in the context of the sufficient conditions for unconditional stability. As
we will see later (in section 4.3) it also plays a role in the necessary conditions for

4Since rescaling the ImEx coefficients (aj , bj , cj) by an overall constant does not modify a scheme,
one can take without loss of generality the leading coefficient of c(z) to be 1.
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unconditional stability. In this section we characterize the geometry of D for the ImEx
coefficients in Definition 6. This geometry (i.e., the size and shape of D in the complex
plane) fixes classes of splittings (A,B) that are, or are not, unconditionally stable.
Roughly speaking, for small δ values, D approaches the union of (i) a large circle
with radius ∼ (rδ)−1 and center ∼ −(rδ)−1, and (ii) a triangular region, symmetric
relative to the real axis, with its tip on the positive real axis. See Figure 4.

We first focus on describing the set D−∞, since by definition the unconditional
stability region D is a subset of D−∞, i.e., D ⊆ D−∞. However, we show later that
this subset inclusion is in fact an equality, so that D = D−∞. Thus one should keep in
mind that statements characterizing D−∞ are statements about D. The main result
regarding D−∞ is summarized by the following theorem.

Theorem 8 (the set D−∞). The set D−∞ is simply connected, contains the origin
µ = 0, and has a boundary parameterized by the curve

∂D−∞ =
{ (z − 1 + δ)r

(z − 1 + δ)r − (z − 1)r
: |z| = 1, arg z0 ≤ arg z ≤ 2π − arg z0

}
,(16)

where

z0 = 1 for order r = 1, and

z0 =
2− δ − 2(1− δ) cos(π/r)eıπ/r

2− δ − 2 cos(π/r)eıπ/r
for orders 2 ≤ r ≤ 5.(17)

Moreover, let mr (resp., ml) be the rightmost (resp., leftmost) point of ∂D−∞. Then
mr (resp., ml) is obtained at the parameter value z = z0 (resp., z = −1). Thus

for r = 1, ml = −(2−δ)
δ and mr = 1,

for 2 ≤ r ≤ 5, ml = −(2−δ)r
2r−(2−δ)r and mr = (2−δ)r

(2−δ)r+2r cosr(π/r) .

Note that both ml and mr are on the real axis.

Proof. For r = 1 the proof is straightforward as ∂D−∞ is a circle for all 0 < δ ≤ 1.
The idea for the proof when 2 ≤ r ≤ 5 is to show that D−∞ = ϕ−1(T ) is the preimage
of a set T (which is a triangle for r ≥ 3 and a strip for r = 2) under the mapping of
a complex function ϕ(z). The results in the theorem then follow from basic calculus
arguments, and the conformal properties of complex mappings.

The set D−∞ consists of the values µ ∈ C, which ensure that the solutions z ∈ C
to the following polynomial equation are stable (see Definition 3):

c(z)− µb(z) = 0 ⇐⇒ (z − 1 + δ)r − µ
(

(z − 1 + δ)r − (z − 1)r
)

= 0.(18)

Note that 0 ∈ D∞, since c(z) has a single root: z = 1− δ (with multiplicity r). As a
direct result of the simple structure of the polynomials c(z) and b(z), equation (18)
can be solved explicitly to write the solutions zj(µ) (for 0 ≤ j ≤ r − 1) in terms of µ
as

zj(µ) = 1 +
δ

ξjϕ(µ)− 1
, where ξj = e

ı2πj
r , 0 ≤ j ≤ r − 1.(19)

Here ϕ(µ) is the complex-valued function defined using a branch cut taken along the
negative real axis:

ϕ(µ) :=
( µ

µ− 1

)1/r
, where

(
Reıθ

)1/r := R1/re
ıθ
r , (−π < θ ≤ π, R ≥ 0).(20)
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The set T (darker shaded
region) in relation to W
for r = 3. The rotated
sets ξjT (lighter shaded
regions) satisfy the con-
straint inequality in equa-
tion (21), Re(ξjT ) < 1 −
δ/2. The set D−∞ is given
by D−∞ = ϕ−1(T ).

Fig. 1. Left: the set T . Right: plot of G(δ), as defined by (24).

Observe that ϕ(µ) is the composition of a Möbius transformation (which has the
property that it is a one-to-one mapping of the compactified complex plane to itself,
with the identification that the point 1→∞ and∞→ 1), with the rth root function.
Hence, ϕ(µ) : C→W, where

W =
{
z ∈ C : z = 0, or − π

r
< argz ≤ π

r

}
.

Next, we note that the modulus constraints |zj | < 1 restrict the range of ϕ(µ) to the
intersection of r half-planes given by the following inequalities:∣∣∣1 +

δ

ξjϕ(µ)− 1

∣∣∣ < 1 ⇐⇒ Re(ξjϕ(µ)) < 1− δ

2
.(21)

Clearly, inequality (21) must be satisfied by all roots 0 ≤ j ≤ r − 1. Satisfying
inequality (21) for j = 0, however, will automatically guarantee the satisfaction of
the remaining 1 ≤ j ≤ r − 1 inequalities. To make this correspondence precise, we
introduce the set T (which is a triangle for r ≥ 3, a strip for r = 2, and half-plane for
r = 1), obtained by taking the intersection of W with the j = 0 inequality in (21),

T =
{
z ∈ W : Re(z) < 1− δ

2

}
.(22)

Figure 1 (left) shows the triangle T , as well as the rotated triangles ξjT , for r = 3. A
simple use of inequalities,5 whose geometric interpretation is highlighted in Figure 1
(left), shows that if w ∈ T , then Re(ξjw) < 1− δ

2 . Hence, if ϕ(µ) ∈ T , then µ ∈ D−∞.
That is, D−∞ = ϕ−1(T ) is the preimage of T under the mapping ϕ(z). The sets D−∞,
for the parameter value δ = 1 and orders 1 ≤ r ≤ 3, are shown in Figure 2.

The properties of D−∞ now follow by observing that the set ϕ−1(T ) = M(T r) is
the image under the Möbius transformation M(z) = z/(z − 1) of the set T r, where
T r = {zr : z ∈ T } is the rth power of T . Below, we will use the following simple
properties [2, Chapter 3] of the Möbius transformation M(z) in the Riemann sphere,
with the understanding that M(1) =∞ and M(∞) = 1:

(M1) The real axis is invariant under M(z).
(M2) If D is a closed disk centered on the real axis, with Re(D) < 1, then M(D)

is also a disk centered on the real axis with Re(M(D)) < 1.

5Specifically, if w = Reıθ with R < (1 − δ/2) sec(θ) so that Re(w) < 1 − δ/2, then Re(ξjw) =
R cos(θ + 2πj/r) < (1− δ/2), since cos(θ + 2πj/r) ≤ cos(θ) for |θ| ≥ π/r.
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Fig. 2. The sets D−∞ (which by virtue of Proposition 9 equal D) are shown shaded. The
parameters are δ = 1 (SBDF schemes) and orders r = 1, 2, 3 (left to right). Formulas for the
boundary are given by Theorem 8.

(M3) The half-plane Re(z) ≤ 1 is invariant under M(z). Any half-plane Re(z) ≤
α < 1 (α ∈ R) is mapped to a disk D with center on the real axis and
Re(D) < 1.

(M4) M is a continuous map on the Riemann sphere, and M = M−1.
Note that D−∞ = ϕ−1(T ) = M(T r) is simply connected, since M is continuous and
T r is simply connected. To obtain the formula for the boundary ∂D−∞, we observe
that the line segments θ = ±π/r on ∂T are mapped (under the rth power, T → T r)
to identical line segments along the negative real axis. Further, these segments are
contained in the interior of T r. Hence the boundary of T r, and subsequently the
boundary ∂D−∞ = ϕ−1(`r), is the preimage of the line or line segment which is the
right side of T . Here `r is defined as follows:

For r = 2, `2 =
{

Re(z) = 1− δ/2
}
,

For r ≥ 3, `r =
{

(1− τ)z̄e + τze : 0 < τ ≤ 1, ze = (1− δ/2) sec(π/r)eıπ/r
}
.

Substituting ϕ(`r) into (19) for j = 0 yields the root locus parameterization of the
boundary ∂D−∞ stated in the theorem. The value z0 in the theorem statement
corresponds to substituting the endpoint z̄e of `r for µ = ϕ−1(ze) into the formula for
z0(µ) in (19),

z0 =
2− δ − 2(1− δ) cos(π/r)eıπ/r

2− δ − 2 cos(π/r)eıπ/r
for 2 ≤ r ≤ 5.

In the above expression, and for our subsequent calculations below, it is understood
that for r = 2, ze is taken as ze = (1− δ/2) + ı∞.

Finally, to verify the result for the right- and leftmost endpoints of ∂D−∞, our goal
is to show that T r is contained in a suitably chosen disk (r ≥ 3) or half-plane (r = 2)
and to use properties (M1)–(M3). First denote the midpoint of `r as zm = (1− δ/2).
Then the only values of ∂T r along the real axis are zrm and zre . Hence by property
(M1), ml := ϕ−1(zm) and mr := ϕ−1(ze) are the only values of ∂D−∞ along the
real axis. To show that ml and mr are the leftmost and rightmost points of D−∞
for r = 2, note that T r is contained within the half-plane Re(z) ≤ z2

m and contains
the point along the negative real axis −∞ ∈ T r. Hence, by property (M3), mr = 1
is the rightmost point, and by combining properties (M1) and (M3), ml is the left-
most point of ∂D−∞. For r ≥ 3, it is sufficient to show that T r is contained in
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the disk D = {z ∈ C : |z − zd| ≤ Rd} centered at zd = 1
2 (zre + zrm) with a radius

Rd = 1
2 (zrm−zre), and right and left endpoints zrm and zre , respectively. This is because

properties (M1) and (M2) imply that mr = M(zrm) and ml = M(zre) will be preserved
as the right- and leftmost points of ∂D−∞ under the transformation M(z). To show
T r ⊆ D, write the boundaries ∂T r and ∂D in polar coordinates r eıθ, with r = f(θ)
and r = g(θ), respectively. Then, with βr = secr(π/r),

f(θ) = (1− δ/2)r secr(θ/r) and

g(θ) = (1− δ/2)r
(1

2
(1− βr) cos(θ) +

√
βr +

(1
2

(1− βr) cos(θ)
)2)

.

By symmetry across the real axis, it is sufficient to show that f(θ) ≤ g(θ) for 0 ≤
θ ≤ π. This is true (i.e., after manipulating f(θ) ≤ g(θ)), provided that the following
inequality holds for 0 ≤ θ ≤ π:

hr(θ) := βr − sec2r(θ/r) + secr(θ/r) cos(θ)
(
1− βr

)
≥ 0.

Expanding cos(θ) in powers of cos(θ/r) via the binomial series, a direct computation
of hr(θ) (on 0 ≤ θ ≤ π) yields

h3(θ) =
(

sec2(θ/3)− 1
)(

4− sec2(θ/3)
)(

5 + sec2(θ/3)
)
≥ 0,

h4(θ) =
(

sec2(θ/4)− 1
)(

2− sec2(θ/4)
)(

10 + 3 sec2(θ/4) + sec4(θ/4)
)
≥ 0.

For h5(θ) we write

h5(θ) =
(

sec2(θ/5)− 1
)
h̃5
(

sec2(θ/5)
)
,

where h̃5(x) = −x4 − x3 − x2 − (5β5 − 4)x− 16 + 15β5.

We claim now that h̃5(x) ≥ 0 for 1 ≤ x ≤ sec2(π/5). For this, note that β5 >
sec4(π/6) = 16/9, which shows that h̃5(1) > 10(16/9− 3/2) > 0. By construction, we
also know that the boundaries ∂T 5 and D touch at θ = π, which implies f(π) = g(π).
This can then be used to show that h̃5(sec2(π/5)) = 0. Finally, applying Descartes’
rule of signs to the derivative h̃′5(x) shows that h̃′5(x) has no roots for x > 0. Hence,
h̃5(x) is decreasing, and thus h̃5(x) ≥ 0 on 1 ≤ x ≤ sec2(π/5).

Figure 2 illustrates Theorem 8 by plotting the sets D−∞ for the well-known SBDF
schemes. Using the characterization of D−∞ in Theorem 8, we are now in a position to
show not only that D ⊆ D−∞, but that this inclusion is also an equality: D = D−∞.

To first illustrate that D = D−∞, in Figure 3 we plot Dy for different values of y,
using the boundary locus [38, Chapter 7.6] method. Specifically, Dy is a region whose
boundary is a subset of the locus

Γy :=
{ 1
b(z)

(
c(z)− y−1a(z)

)
: |z| = 1

}
, Γ−∞ :=

{c(z)
b(z)

: |z| = 1
}
.(23)

Equation (23) is obtained by isolating µ in (11) and letting z vary over the unit
circle. Figure 3 shows the nested stability regions Dy for orders r = 3, 4, 5 and fixed
parameter value δ = 1. In the figure, the solid curve traces out Γy corresponding to
the boundary locus for Dy. The dashed curves show as a reference Γy for different y
values. Although the plots are only for one value of δ, the limiting behavior D = D−∞
is observed for all 0 < δ ≤ 1.
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Fig. 3. Visualization of Proposition 9: D−∞ is contained in Dy for all y < 0. Plot of the bound-
ary locus Γy (black curves) and the stability regions Dy (shaded regions) for y = −1,−2,−7,−∞
(top to bottom), orders r = 3, 4, 5 (left to right), and fixed parameter value δ = 1. In each plot, the
dashed lines Γ−1, Γ−2, Γ−7, Γ−∞ are shown for reference. Note that the inclusion D−∞ ⊆ Dy is
valid for all y ∈ R<0.

We now show that the set equality D = D−∞ is a direct consequence of the
fact that the function G(δ) (defined below for the ImEx schemes in Definition 6) is
positive. Note that G(δ), roughly speaking, is a measure of the distance of Γy to the
set D−∞—and it is the key to showing that D = D−∞:

G(δ) := inf
y<0

min
w∈Γy

[(
Re
(
ϕ(w)

)
− (1− δ/2)

)
(1− y)δ−2

]
.(24)

This function may be numerically computed, which leads to the following.

Numerical Observation 1. Numerical computations (shown in Figure 1, right) in-
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dicate that for 0 < δ ≤ 1 and 2 ≤ r ≤ 5, G(δ) > 0.

This fact is introduced below as an assumption in Proposition 9.
The positive factor (1−y)δ−2 in (24) is included to rescale the difference between

Re(ϕ(w)) and (1 − δ/2), which vanishes as y → −∞ or δ → 0. This rescaling helps
to visually verify that G(δ) does not change sign, even as y → −∞ or δ → 0. To
computationally handle the infinite interval −∞ < y < 0, we introduce the change of
variables ỹ = (1− y)−1, so that 0 < ỹ < 1. For each fixed value of ỹ, we parameterize
Γy as the image of the unit circle, which then allows us to compute G(δ) as a double
minimization over two real variables on bounded intervals.

Proposition 9 (the set D = D−∞). (i) For r = 1 and 0 < δ ≤ 1, D = D−∞.
(ii) For 2 ≤ r ≤ 5, assume that G(δ) > 0, 0 < δ ≤ 1. Then

µ ∈ D−∞ =⇒ µ ∈ Dy for any y ∈ R<0.(25)

In other words, for every y ∈ R<0 the set Dy contains the limiting set D−∞. As a
result, the unconditional stability region is D = D−∞.

Proof. For (i), the proof is straightforward as Dy is a disk centered at 1− (δ−1 −
y−1) with radius δ−1 − y−1. For (ii) the proof involves two steps. First, we use
a standard continuity argument to show that if µ ∈ D−∞, but µ /∈ Dy0 for some
y0 < 0, then there is an intermediate y-value (−∞ < y < y0) where µ must lie on
the boundary locus µ ∈ Γy. Next we show that Γy is bounded away from D−∞ when
y < 0. It then follows that µ ∈ Dy whenever µ ∈ D−∞.

To proceed with the first step, we define the following polynomial function based
on (11):

P (z; ỹ) := c(z)− µb(z) +
ỹ

1− ỹ
a(z).(26)

Here y = 1 − ỹ−1, so that 0 < ỹ < 1 (resp., ỹ = 0) corresponds to y < 0 (resp.,
y = −∞), which will be useful in the subsequent continuity argument. To minimize
additional notation, we will continue to use Dy and Γy as sets, and ỹ as the parameter
in the polynomials, with the understanding that y = 1 − ỹ−1. Then Dy is defined
as µ ∈ C such that P (z; ỹ) has r roots inside the unit circle or, alternatively, (i)
P (z; ỹ) 6= 0 on the unit circle |z| = 1, and (ii) the function F (ỹ) = r, where F (ỹ)
counts the number of roots |z| < 1 via the Cauchy integral formula:

F (ỹ) :=
1

2πı

∮
|z|=1

Pz(z; ỹ)
P (z; ỹ)

dz.

Now, F (ỹ) is continuous as a function of ỹ, and also a constant, as long as it is defined.
The only way F (ỹ) may change values is if P (z; ỹ) = 0 vanishes for some |z| = 1 on
the unit circle, which implies µ ∈ Γy. Hence, if for a given µ, F (0) = r and F (ỹ0) 6= r,
then there must exist a point 0 < ỹ < ỹ0 such that µ ∈ Γy.

To show that Γy does not intersect D−∞ for 0 < ỹ < 1, we exploit the fact
that the mapping ϕ(z), defined in Theorem 8, simplifies the shape of ϕ(D−∞) = T .
Specifically, ϕ(z) is a one-to-one mapping of C to the wedge W, so that it is sufficient
to show that the mappings of D−∞ and Γy under ϕ(z) do not intersect, i.e., ϕ(Γy)
does not intersect T , for 0 < ỹ < 1. Since T is contained within the half-plane
Re(z) < 1− δ/2, we arrive at the following observation: if

Re
(
ϕ(w)

)
− (1− δ/2) > 0 for all 0 < ỹ < 1, w ∈ Γy,(27)
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then ϕ(Γy) and T do not intersect. Multiplying the left-hand side of the inequality
(27) by the positive factor δ−2ỹ−1 = δ−2(1 − y) > 0, and minimizing over 0 < ỹ <
1, w ∈ Γy, yields the function G(δ). Hence, we arrive at the conclusion that ϕ(Γy)
and T do not intersect whenever G(δ) > 0, which, together with the first step of the
proof, implies D−∞ ⊆ Dy for all y < 0.

With the exact boundary locus description in Theorem 8 and the subsequent
result that D = D−∞, one may provide an asymptotic description of D in the limit
δ � 1.

Remark 4 (asymptotic D). Define the circle C as

C =
{
z ∈ C :

∣∣∣z +
1
rδ
− r + 1

2r

∣∣∣ ≤ 1
rδ

}
.

Taking the asymptotic limit δ � 1 and values of |z − 1| � δ in formula (16) for ∂D
(which correspond to points in D away from the rightmost values along the real axis),
the exact boundary ∂D approaches the circle ∂C: D ≈ C + O(δ). For r = 1, the
domain D = C is a circle for all 0 < δ ≤ 1.

The circle C in Remark 4 is obtained via an asymptotic computation, i.e., δ → 0,
of (16). Specifically, note that the starting value of the locus description for D−∞
in Theorem 8 satisfies |z0 − 1| = O(δ), so that the locus parameter z almost traces
through an entire circle. Consider points |z − 1| � δ and expand c(z)/b(z) in a
Laurent series in powers of δ about z = 1:

c(z)
b(z)

=
(z − 1)r + δr(z − 1)r−1 + · · ·

δr(z − 1)r−1 + δ2 r(r−1)
2 (z − 1)r−2 + · · ·

=
1
δr

(
(z − 1) + δr +O(δ2)

1 + δ (r−1)
2 (z − 1)−1 +O(δ2)

)
=

1
rδ

(z − 1) +
r + 1

2r
+O(δ).(28)

For values |z| = 1, equation (28) describes the boundary of the circle C defined in
Remark 4 with radius 1

rδ and center r+1
2r −

1
rδ . Hence ∂D ≈ 1

rδ (z − 1) + r+1
2r +O(δ)

for |z− 1| � O(δ). Figure 4 shows the regions D for different parameter values δ and
orders 2 ≤ r ≤ 5. In particular, the figure illustrates how the regions D grow larger
with decreasing δ values, and also approach the asymptotic circle C.

Having precise estimates for the geometric properties of D, such as the formulas
for mr, ml, and C, is very useful for the design of unconditionally stable schemes.
Specifically the design of an unconditionally stable scheme requires a simultaneous
choice of matrix splitting (A, B) and time stepping coefficients (aj , bj , cj). If one
knows, either through direct numerical computation or analytic estimates, Wp for a
matrix splitting (A, B), then the estimates for mr, ml, and C can be used to choose
a δ value large enough to guarantee that Wp ⊆ D. Such a choice of δ will then
provide the suitable time stepping coefficients that guarantee unconditional stability.
We highlight such an approach in several numerical examples in section 5, as well
as in greater detail in a companion paper on the practical aspects of unconditional
stability for multistep ImEx schemes.

4.3. Necessary conditions for unconditional stability. The sufficient con-
ditions for unconditional stability Wp ⊆ D are not sharp, and we supplement them
with additional necessary conditions. Let

σ((−A)−1B) = {µ ∈ C : µ(−A)~u = B~u, ~u 6= ~0}

be the generalized eigenvalues of (−A),B.
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Fig. 4. Region of unconditional stability D for orders r = 2, 3, 4, 5. In each subfigure, the
boundary ∂D (solid line) is shown for parameter values δ = 0.2, 0.4, 0.6, 1 (δ = 1 corresponds to
SBDF). For small δ � 1, the stability region becomes arbitrarily large. With the exception of points
near the positive real axis, it approaches the asymptotic circle C defined in Theorem 8. The dots
(◦) show C for δ = 0.2.

Proposition 10 (necessary condition for unconditional stability). Given a set of
ImEx time stepping coefficients (Definition 6) and the corresponding stability diagram
D, a necessary condition for unconditional stability of the scheme in (5) is that the
eigenvalues satisfy σ((−A)−1B) ⊆ D ∪ Γ−∞.

Proof. The idea behind the necessary condition is that in the limit of large time
steps k →∞, the nonlinear eigenvalue problem (9) governing stability can be solved
using the eigenvectors of the matrix (−A)−1B. As a result, a necessary condition for
unconditional stability may be placed on the eigenvalue spectrum µ ∈ σ((−A)−1B).

We first prove a slightly stronger statement. Let

A := {µ ∈ C : (18) has a solution |z| > 1}.

Then σ((−A)−1B) ⊆ Ac is a necessary condition for unconditionally stability. This
is because, in the limit k →∞, the nonlinear eigenvalue problem (9) becomes

T (z)~u = −c(z)A~u− b(z)B~u = 0.(29)

Hence, an eigenvector ~uµ to (−A)−1B with eigenvalue µ ∈ σ((−A)−1B) becomes an
eigenvector of (29):

T (z)~uµ = −(c(z)− µb(z))A~uµ = 0.(30)

Thus the eigenvalues z satisfy (18), since A~uµ 6= 0 because A is invertible. If µ is
also in A, then at least one solution to (30) satisfies |z| > 1. Finally, we note that
any nonlinear eigenvalue |z| > 1, arising in the limit k → ∞, will yield a slightly

D
ow

nl
oa

de
d 

07
/2

6/
18

 to
 1

28
.2

35
.8

3.
16

2.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

IMEX LMM UNCONDITIONAL STABILITY 2353

perturbed eigenvalue when 0 < k−1 � 1. Thus, for any k sufficiently large (but
finite) an unstable eigenvalue satisfying |z| > 1 will exist.

Finally we observe that Ac ⊆ D ∪ Γ−∞. The reason is that every µ ∈ Ac has
one of the following properties: (i) all solutions to (18) have |z| < 1, implying µ ∈ D,
or (ii) at least one solution to (18) has |z| = 1 (while all the others have |z| < 1),
implying µ ∈ Γ−∞.

Remark 5. Numerical experiments (such as the diagrams in Figure 3) suggest
that the set D ∪ Γ−∞ in Proposition 10 can be further reduced to include only the
portion of Γ−∞ that is the boundary ∂D and the single point {1}.

Remark 6. In the limit δ → 0, D approaches the circle C which encompasses an
entire complex half-plane:{

µ ∈ C : Re(µ) <
r + 1

2r
, 1 ≤ r ≤ 5

}
⊆ lim
δ→0
D.(31)

The limiting D also contains the real half-line (−∞, (1 + cosr(π/r))−1) for 2 ≤ r ≤ 5.

4.4. Numerical error dependence on δ for the new ImEx coefficients.
Up to now, the results appear to indicate that one should choose δ � 1 (extremely
small) to yield a large unconditional stability region. In this section we describe why
this is not a good strategy. In particular, we investigate the dependence of the global
truncation error (GTE) on δ for the new ImEx coefficients. We do so by running
numerical tests and computing the error constants which characterize the leading
order asymptotic GTE behavior in k.

The GTE at time tn = nk is defined by ‖~un − ~u∗(nk)‖`∞ and depends on L, the
time stepping coefficients, and the forcing ~f(t). Here ~u∗(t) is the exact ODE solution
to (1) at time t. Formally, the new ImEx schemes given in Definition 6 achieve rth
order accuracy, so that the GTE = O(kr). The leading order constant in the GTE
depends on A,B, ~f and the time stepping coefficients (for error constants in an LMM,
see [26, equation (2.3), p. 373]). In ImEx schemes one may examine two separate error
constants, an implicit CI,r (resp., explicit CE,r) constant characterizing the error of
a purely implicit (resp., explicit) scheme where B = 0 (resp., A = 0):

CI,r :=
RI,r
c(1)

= δ−rRI,r, CE,r :=
RE,r
b(1)

= δ−rRE,r.(32)

Here we have used the fact that c(1) = b(1) = δr for the new ImEx schemes, while
the constants RI,r, RE,r quantify how much the rth order coefficients (when r = s)
fail to satisfy the (r + 1)th order conditions (SM3):

RI,r =
1

(r + 1)!

r∑
j=0

(
ajj

r+1−(r+1)cjjr
)
, RE,r =

1
(r + 1)!

r∑
j=0

(
ajj

r+1−(r+1)bjjr
)
.

Even though RI,r, RE,r depend on δ, both constants satisfy RI,r = O(1), RE,r = O(1)
for all values of 0 < δ ≤ 1. As a result, the asymptotic δ � 1 behavior on the GTE for
the new ImEx coefficients is GTE = O(δ−rkr). The numerical tests in section 5, as
well as those in section SM3, confirm the estimate GTE ∼ δ−rkr. As a result of this
scaling, we adopt the following general philosophy: given a splitting (A, B), choose
δ as large as possible while maintaining unconditional stability.
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Fig. 5. ODE example (33). Note that W1
(◦) is contained in D (shaded region) for the pa-
rameter value δ = 0.04 and order r = 5. Using
the new ImEx coefficients with δ = 0.04 yields
an unconditionally stable scheme.

Fig. 6. PDE example for variable diffu-
sion coefficient problem. The stability diagram
D (shaded region) is for the parameter δ = 0.12
and order r = 5, and contains W1 (red curve
shows the boundary). The black dots show the
generalized eigenvalues σ((−A)−1B).

5. Two illustrative examples. In this section we highlight the potential of
the new ImEx coefficients to obtain unconditionally stable schemes. The first exam-
ple (section 5.1) illustrates that a small implicit term can stabilize a larger explicit
term. The second example (section 5.2) represents the numerical discretization of a
variable coefficient diffusion equation. For this stiff problem, unconditional stability
for orders r > 2 is beyond the capabilities of classical SBDF schemes; however, the
new coefficients achieve the goal.

5.1. A single variable ODE. Consider the ODE

ut = −10u = −u− 9u,(33)

with splitting Au := −u and Bu := −9u. For this simple case, (A,B) are numbers,
or 1× 1 matrices. An important observation is that |A| = 1, while |B| = 9; i.e., the
implicit term is 9 times smaller than the explicit term.

The set W1 = {−9} consists of one element, and it is also equal to the generalized
eigenvalue σ((−A)−1B) = {−9}. Therefore unconditional stability requires that
{−9} ⊆ D. Using the fact that the leftmost endpoint of D is given by ml in the
formula in Remark 8, one obtains unconditional stability for an rth order scheme,
provided that

−(2− δ)r

2r − (2− δ)r
< −9 ⇐⇒ δ < 2

[
1−

( 9
10

)1/r]
.

Note that for a fixed δ value, the unconditional stability regions D become smaller
with increasing r. Setting r = 5 inside the inequality yields δ < 0.0417. Therefore,
a choice of the parameter value δ = 0.04 inside the new ImEx coefficients guarantees
that W1 ⊆ D for r = 5 (as seen in Figure 5), and hence subsequently for all 1 ≤ r ≤ 5.
Hence, the smaller implicit term stabilizes the instabilities generated by the explicit
term, thus achieving unconditional stability.

5.2. A PDE example: Variable coefficient diffusion. This example demon-
strates how one might use the new ImEx coefficients, in conjunction with the sufficient
conditions for unconditional stability, to avoid a stiff time step restriction in the spa-
tial discretization of a PDE. Specifically, we numerically solve the variable coefficient
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diffusion equation on the domain Ω = (−1, 1):

ut =
(
d(x)ux

)
x

+ f(x, t) on Ω × (0, T ],

with Dirichlet boundary conditions, u = 0, on x ∈ {−1, 1}. Here d(x) > 0 is a
spatially dependent diffusion coefficient.

For the spatial discretization, we adopt a Chebyshev spectral method [46, Chap-
ters 5–7] using the N + 2 Chebyshev collocation points6

xj = cos
( jπ

N + 1

)
, 0 ≤ j ≤ N + 1, with ~u =

(
u(x1), . . . , u(xN )

)T ∈ RN .

We also use the boundary conditions to set u(x0) = u(xN+1) = 0 so that there are
only N independent variables. Let DN be the spectral differentiation matrix, so that
DN~u ≈ ux(x). The matrix L is then built using the Dirichlet boundary conditions
by constructing

L = DN diag
(
d(xj)

)
DN .

Here L acts on ~u at the N grid points x1, x2, . . . , xN (see [46, Chapter 7, p. 62] for
details). Note that due to collocation of the boundary conditions, the matrix L as
well as the Laplacian (DN )2 are not symmetric. However, the spectrum of L and
D2
N are still purely real, in contrast with the situation in truly asymmetric problems,

such as advection-diffusion.
In practice, the semi-implicit time stepping of (5), using the schemes defined

by Definition 6, requires both a choice of splitting (A,B) and a set of new ImEx
coefficients fixed by a choice of δ. For this example we consider a splitting where A
is a scalar multiple of the symmetrized part of the discrete, spectral Laplacian:

A =
α

2

(
(DN )2 + (D2

N )T
)
, B = L−A

with an α > 0. Here the choice of A is negative definite and symmetric.
It is worth noting that, in general, A andB do not commute, therefore motivating

the use of the new unconditional stability criteria. For this class of splittings, we focus
on using the generalized numerical range W1. The reason is that the size and shape
of W1 depends only very weakly on N for large N .

There are now two free variables to choose: (i) α, which fixes the relative splitting
of the (symmetric) implicit Laplacian to the explicit variable diffusion, and (ii) δ,
which fixes the ImEx coefficients. Ideally, one would like to simultaneously choose
α and δ to obtain unconditional stability and also minimize the overall error in the
scheme. For a detailed discussion on how one may minimize the error, we defer to a
companion paper on practical aspects of unconditional stability. Here we state briefly
how one may first choose α, followed by δ, to obtain unconditional stability.

Decreasing α moves the set W1 left in the complex plane—into a region that may
be stabilized by the new ImEx coefficients. Specifically, we choose α small enough
so that the rightmost point of W1 is pushed to the left of the rightmost point of the
limiting set D (see Remark 6 for the rightmost point of D). Once W1 is sufficiently far
left, we choose a sufficiently small δ value to ensure that W1 ⊆ D. To compute W1,
we first build the matrix X = (−A)−

1
2 B (−A)−

1
2 , followed by using the MATLAB

6Note that here the points 1 = x0 > x1 > · · · > xN+1 = −1 are in reverse order, following the
usage in [46].
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Table 1
Errors for variable coefficient diffusion test case α = 2.5, δ = 0.12, tf = 1, N = 100. Exact

solution u∗ = sin(20t) sin(2πx)esin(2πx). Note that an explicit scheme, such as explicit Euler, would
require a time step restriction O(N−2) ∼ 10−4 ∼ 2−13. Here unconditional stability allows one to
choose a time step based solely on accuracy considerations.

k Error Rate Error Rate Error Rate Error Rate Error Rate
r = 1 r = 2 r = 3 r = 4 r = 5

2−6 2.1e+00 0.4 1.4e+00 0.5 1.0e+00 1.8 1.9e+00 4.4 4.0e+00 5.9
2−7 1.3e+00 0.7 7.6e-01 0.9 4.4e-01 1.2 4.2e-01 2.2 6.8e-01 2.6
2−8 7.0e-01 0.9 1.8e-01 2.1 2.4e-01 0.9 1.5e-01 1.5 1.9e-02 5.2
2−9 3.6e-01 1.0 7.3e-02 1.3 5.1e-02 2.2 3.8e-03 5.3 4.8e-03 2.0
2−10 1.8e-01 1.0 3.0e-02 1.3 5.8e-03 3.1 5.5e-04 2.8 1.8e-04 4.7
2−11 8.2e-02 1.1 8.8e-03 1.8 6.0e-04 3.3 5.4e-05 3.4 4.7e-06 5.3
2−12 3.9e-02 1.1 2.3e-03 1.9 6.7e-05 3.2 3.9e-06 3.8 1.2e-07 5.3
2−13 1.9e-02 1.0 6.0e-04 2.0 7.9e-06 3.1 2.6e-07 3.9 3.7e-09 5.0

Chebfun routine [17] to compute W1 = W (X), based on a classical algorithm due to
Johnson [31].

Finally, we perform a convergence test using the variable diffusion coefficient

d(x) = 4 + 3 cos(2πx).

Figure 6 shows the set W1 for a variable coefficient d(x) and a value of α = 2.5.
In addition, the figure also shows a plot of the enclosing stability region D for order
r = 5 and the parameter value δ = 0.12. Note that the unconditional stability region
D becomes smaller as the order r increases, so that δ = 0.12 automatically guarantees
unconditional stability for all orders 1 ≤ r ≤ 5. For a convergence test, we use a
manufactured solution approach and prescribe a forcing function f(x, t) to yield an
exact solution:

u∗(x, t) = sin(20t) sin(2πx)esin(2πx).

The numerical test case is also chosen to satisfy the exact initial data: ~uj = ~u∗(x, jk)
evaluated at the grid points, for j = 0,−1, . . . ,−r + 1. Table 1 shows the absolute
L∞(Ω) errors for an integration time tf = 1 and grid N = 100. Convergence rates
for 1 ≤ r ≤ 5 are observed as expected. Computations are done using MATLAB with
double precision floating point arithmetic. Errors are limited to 10−9 for r = 5 due
to machine precision and round-off errors.

Remark 7. An important observation is that the set W1 remains bounded as
N → ∞. This result is of great practical relevance: one fixed value of δ can yield
a stability region that contains W1 for arbitrary N . For instance, the convergence
results in Table 1 are all computed using the same value of δ. Therefore, the new
time stepping schemes can be advantageous in PDE applications where the parameter
δ can be chosen for a particular splitting of the differential operators, and can hold
uniformly for any level of discretization of those operators (i.e., for a whole family of
matrix splittings).

This example can be seen as a blueprint for many practical applications: the
implicit part is simple and efficient to solve for (symmetric, constant coefficient), and
the new ImEx coefficients enable one to obtain a numerical approximation that is
unconditionally stable, thus avoiding diffusive-type time step restriction associated
with explicit methods.
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6. Discussion and conclusions. We have introduced a stability region D,
along with a generalized numerical range, as a way to guarantee unconditional stability
for ImEx LMMs with a negative definite implicit term. It should be stressed that this
type of study of unconditional stability is, structurally, not limited to ImEx LMMs
and can also be examined in the context of any other time stepping scheme, such
as Runge–Kutta methods, exponential integrators, deferred correction, or Richardson
extrapolation. Moreover, unconditional stability (and further generalizations of D)
can in principle be examined also when the implicit term is not symmetric negative
definite, such as for stiff wave problems.

In addition to sufficient criteria for unconditional stability, we have also introduced
a family of ImEx LMM coefficients, parameterized by 0 < δ ≤ 1 (which reduce to
classical SBDF when δ = 1). This parameter δ incurs crucial implications for stability,
and the examples in section 5 highlight how the new ImEx coefficients can yield highly
efficient time stepping schemes.

In light of these substantial advantages, three points of caution have to be stressed:
(a) The error constant for an rth order method scales as δ−r.
(b) Computations with δ � 1 may substantially amplify round-off errors.
(c) L-stability, or small growth factors, are desirable properties for stiff equations,

and lost for δ < 1. If one uses the new ImEx coefficients as a fully implicit scheme
(i.e., choosing A := L, B = 0), then stability of the test equation ut = λu is
characterized by roots of the polynomial a(z)− kλc(z) = 0. In the limit k →∞,
the roots approach ζ := 1 − δ (repeated r times). L-stability is only attained
when the roots ζ have δ = 1, corresponding to SBDF. Moreover, if δ � 1, then
the growth factor 1− δ is close to 1, implying that stiff modes may require many
time steps to decay.

To conclude, major drawbacks of the new ImEx schemes are incurred only if δ � 1. In
practice, a moderate δ value (for instance, δ ∼ 0.1) is frequently sufficient to stabilize
a matrix splitting. In such a case the debilitating drawbacks of the new coefficients
pale in comparison to the alternative of having to use a stiff time step restriction.

7. Tables of new ImEx coefficients. This section presents the new ImEx
coefficients (aj , bj , cj) for 0 ≤ j ≤ r as a function of 0 < δ ≤ 1. To use the coefficients
in practice, (i) choose a small enough value of δ that guarantees unconditional stability,
(ii) substitute the chosen value of δ into the tables in this section to obtain the time
stepping coefficients at the required order.

Order j = 3 j = 2 j = 1 j = 0
1 aj . . δ −δ

cj . . 1 (δ-1)
bj . . 0 δ

2 aj . 2δ − 1
2δ

2 −4δ + 2δ2 2δ − 3
2δ

2

cj . 1 2(δ − 1) (δ − 1)2

bj . 0 2δ (δ − 1)2 − 1

3 aj 3δ − 3
2δ

2 + 1
3δ

3 −9δ+ 15
2 δ

2− 3
2δ

3 9δ − 21
2 δ

2 + 3δ3 −3δ+ 9
2δ

2− 11
6 δ

3

cj 1 3(δ − 1) 3(δ − 1)2 (δ − 1)3

bj 0 3δ −6δ + 3δ2 (δ − 1)3 + 1D
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Order j = 4

4 aj . 4δ − 3δ2 + 4
3δ

3 − 1
4δ

4

cj . 1
bj . 0

j = 3 j = 2

aj −16δ + 18δ2 − 22
3 δ

3 + 4
3δ

4 24δ − 36δ2 + 18δ3 − 3δ4

cj 4(δ − 1) 6(δ − 1)2

bj 4δ −12δ + 6δ2

j = 1 j = 0

aj −16δ + 30δ2 − 58
3 δ

3 + 4δ4 4δ − 9δ2 + 22
3 δ

3 − 25
12δ

4

cj 4(δ − 1)3 (δ − 1)4

bj 12δ − 12δ2 + 4δ3 (δ − 1)4 − 1

Order j = 5 j = 4

5 aj 5δ − 5δ2 + 10
3 δ

3 − 5
4δ

4 + 1
5δ

5 −25δ + 35δ2 − 65
3 δ

3 + 95
12δ

4 − 5
4δ

5

cj 1 5(δ − 1)
bj 0 5δ

j = 3 j = 2

aj 50δ − 90δ2 + 190
3 δ3 − 65

3 δ
4 + 10

3 δ
5 −50δ + 110δ2 − 280

3 δ3 + 35δ4 − 5δ5

cj 10(δ − 1)2 10(δ − 1)3

bj −20δ + 10δ2 30δ + 10δ3 − 30δ2

j = 1 j = 0

aj 25δ − 65δ2 + 200
3 δ3 − 365

12 δ
4 + 5δ5 −5δ + 15δ2 − 55

3 δ
3 + 125

12 δ
4 − 137

60 δ
5

cj 5(δ − 1)4 (δ − 1)5

bj −20δ + 30δ2 − 20δ3 + 5δ4 (δ − 1)5 + 1
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