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Approximate Global Minimizers to Pairwise Interaction Problems via Convex
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Abstract. We present a new approach for computing approximate global minimizers to a large class of nonlocal
pairwise interaction problems defined over probability distributions. The approach predicts candi-
date global minimizers, with a recovery guarantee, that are sometimes exact, and often within a
few percent of the optimum energy (under appropriate normalization of the energy). The procedure
relies on a convex relaxation of the pairwise energy that exploits translational symmetry, followed by
a recovery procedure that minimizes a relative entropy. Numerical discretizations of the convex re-
laxation yield a linear programming problem over convex cones that can be solved using well-known
methods. One advantage of the approach is that it provides sufficient conditions for global minimizers
to a nonconvex quadratic variational problem, in the form of a linear, convex, optimization problem
for the autocorrelation of the probability density. We demonstrate the approach in a periodic domain
for examples arising from models in materials, social phenomena, and flocking. The approach also
exactly recovers the global minimizer when a lattice of Dirac masses solves the convex relaxation. An
important by-product of the relaxation is a decomposition of the pairwise energy functional into the
sum of a convex functional and nonconvex functional. We observe that in some cases, the nonconvex
component of the decomposition can be used to characterize the support of the recovered minimizers.

Key words. global minimizers, nonconvex energy, pairwise interactions, convex relaxations, conic programming,
semidefinite programming, flocking, self-assembly
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1. Introduction. In this paper, we present a new approach for computing candidate global
minimizers to a class of energy functionals that arise as continuum approximations to a large
collection of interacting particles. Although there are many models for how a collection of
particles may interact, we consider here functionals corresponding to systems where particles
interact only in pairs with each other. The resulting pairwise energy functionals are in gen-
eral nonconvex and quadratic, and may have multiple local minimizers, making the global
optimization a potentially difficult problem. One could in principle numerically discretize
the quadratic functional we consider, using n � 1 spatial grid points, and arrive at a fi-
nite dimensional, quadratic optimization problem. Unfortunately, minimizing such a discrete
problem through currently known methods (see [28, sections 4–5] and references within), is
computationally prohibitive, and requires O(2n) floating point operations. We stress that
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418 MAHDI BANDEGI AND DAVID SHIROKOFF

these computational costs are a currently known upper bound, and future algorithms may
improve upon them.

The idea in the new approach is to avoid minimizing the nonconvex quadratic functional,
and instead minimize a linear convex functional that bounds the nonconvex functional from
below. The solution to this lower bound problem then results in a new sufficient condition
for global minimizers. The advantage of this approach is that numerical discretizations of
the linear, lower bound problem, using n spatial grid points, require O(n) linear constraints,
and hence may be solved using O(n) floating point operators. We then obtain candidate
minimizers, not by minimizing the original energy, but rather choosing ones that try to satisfy
this new sufficient condition. If a candidate satisfies the sufficient condition exactly, then
we are guaranteed that it is a global minimum. If a candidate minimizer does not satisfy
the condition exactly, then by virtue of the fact that the sufficient condition provides a lower
bound to the energy functional, we can quantify a worst case estimate on the energy difference
between the candidate and global minimizer.

Although parts of the approach are numerical in nature, a by-product of the analytic
formulation is an optimal decomposition of the energy functional into the sum of a non-
negative, nonconvex functional, and a convex functional. The resulting convex functional in
the decomposition is then highly reminiscent of a convex envelope. This decomposition will
also help to explain the emergence of new length scales that characterize the patterns of many
interacting particles.

Pair interaction problems are ubiquitous throughout the sciences, appearing in problems
ranging from electromagnetics, the weak interaction of nuclear matter [49], biological swarming
[5, 18, 40, 43, 59, 60, 61], colloids, polymers [17, 44], consensus [41], mathematical physics
[14, 36], and self-assembly [29, 38, 46] to name a few. In these systems, each particle exhibits
and experiences a force from every other particle in the system. The resulting sum of the
pairwise energies then promotes the collective organization of matter into the formation of
structures such as solids or crystalline lattices [16, 54, 55, 56].

Global minimizers or ground states for many particle systems play a key physical role as
they often describe the most likely observed state at low temperatures, influence the structure
of matter at high temperatures, and are also important for computing phase diagrams [21, 26].
Dynamically, global minimizers appear as steady states to gradient flows or as critical points
to Hamiltonian systems, and therefore may play a role in characterizing the long time behavior
in some dynamical systems.

We consider problems motivated by a large number, N � 1, of interacting particles, where
a probability measure ρ(x) dx is used to represent the distribution of particles. Here x ∈ Rd
denotes the spatial coordinates in a dimension d ≥ 1. For problems on a domain Ω ⊆ Rd, we
consider energy functionals that take the form

E(ρ) :=
1

2

∫
Ω

∫
Ω
ρ(x)ρ(y)W (x− y) dx dy.(1.1)

In (1.1), ρ(x) dx (resp., ρ(y) dy) is interpreted as the fraction of particles in the vicinity
of a point x (resp., y) in the domain Ω. Hence, the energy (1.1) is the double integral over all
possible pairs of particles at locations x and y, weighted by the interaction potential W (x−y).
Physically, W (r) typically represents the energy cost of having two particles separated by the
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PAIRWISE INTERACTION MINIMIZERS 419

vector r. Due to the double integral in (1.1) over all possible pairs of locations x and y, we
refer to E(ρ) as the pairwise energy.

Formally ρ(x) dx will be taken as a probability measure, however, for brevity we will
suppress the dx throughout the written text and write ρ(x) with the understanding that ρ(x)
is a measure and includes L1(Ω) probability densities and nonclassical functions such as a
Dirac mass. Without loss of generality, the total mass m of ρ(x) is taken to be 1:

m :=

∫
Ω
ρ(x) dx = 1.(1.2)

If ρ(x) was normalized to m 6= 1 in (1.2), i.e., as the total number of particles in the
system m = N , then a rescaling of ρ̃(x) = m−1ρ(x) rescales E(ρ) = m2E(ρ̃) by m2. As a
result, minimizing E(ρ̃) over ρ̃(x) with mass 1 is equivalent to minimizing a rescaled E(ρ) over
ρ(x) with mass m. In general, the assumption of (1.2), as opposed to a different value of m,
does not alter the approach in this paper.

Remark 1.1. For the purposes of minimizing the energy (1.1) on Ω = Rd, the inter-
action potential W (x) may be assumed to be mirror symmetric, i.e., even with respect
to the simultaneous negation of the coordinates, for all x ∈ Rd, W (−x) = W (x), where
W (−x) := W (−x1, . . . ,−xd). If, for instance, W (x) is not mirror symmetric, one may write
W (x) = WE(x)+WO(x), where WE(x) and WO(x) are the following even and odd components
of W (x):

WE(x) :=
1

2

(
W (x) +W (−x)

)
, WO(x) :=

1

2

(
W (x)−W (−x)

)
.

The function WO(x), when inserted into the energy integral (1.1), then integrates to zero by
a change of variables:

∫
Rd

∫
Rd
ρ(y)WO(x− y)ρ(x) dx dy =

1

2

∫
Rd

∫
Rd
ρ(y)

(
W (x− y)−W (y − x)

)
ρ(x) dx dy = 0.

(1.3)

Hence, the energy E(ρ) in (1.1) is the same for all ρ(x) regardless of whether W (x) or WE(x)
is used. Therefore, one may assume that W (x) = WE(x) is the symmetric component of
W (x), even when W (x) is not mirror symmetric. Note that mirror symmetry does not con-
strain W (x) to be even symmetric in each individual component, i.e., in general one could
have W (x1,−x2) 6= W (x1, x2) and still satisfy W (−x1,−x2) = W (x1, x2). The same results
regarding mirror symmetry hold for the periodic domain Ω = [0, 1]d.

The approach in this paper will focus on energies of the form (1.1), however, we now
briefly discuss how the energy E(ρ), which is defined for probability measures ρ(x), can be
related to the energy of a discrete particle system. For example, restricting ρ(x) in the energy
E(ρ) to a sum of N Dirac masses can be interpreted as the energy of an N particle system.
Specifically, substituting an ansatz of Dirac masses into the energy (1.1) yields

EN (x1,x2, . . . ,xN ) := E(ρN ), where ρN (x) =
1

N

N∑
j=1

δ(x− xj).(1.4)
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420 MAHDI BANDEGI AND DAVID SHIROKOFF

By direct calculation, and assuming that W (x) is continuous so that the integration against
Dirac masses is well defined, one has

EN (x1,x2, . . . ,xN ) =
1

2N2

N∑
i=1

N∑
j=1

W (xi − xj).(1.5)

Within the double-sum (1.5) are N terms, where i = j, that result in a total contribution of
(2N)−1W (0) to the overall energy EN . Provided W (0) < ∞ is bounded1 at the origin, EN
can be identified as the energy of N discrete interacting particles—interacting with the same
interaction potential W (x) as in (1.1). The calculation also shows that minimizing E(ρ) over
probability measures ρ(x) includes the energies EN of all possible arrangements of N particles
for any N ≥ 1.

Remark 1.2 (numerical example: a particle gradient flow for a periodic Morse potential).
Arrangements of particles that minimize the collective energy EN may form patterns on length
scales that are not readily identifiable from the interaction energy W (x). Figure 1 shows the
time evolution for a collection of randomly distributed particles undergoing a one dimensional
gradient flow governed by the system of ordinary differential equations:

dxj
dt

= −∇xjEN , 1 ≤ j ≤ N.(1.6)

Here the periodic Morse potential (6.3) (with parameters σ = 0.1, (L,G) = (1.2, 0.9)) was
used for EN , while the initial particle positions, i.e., xj at t = 0 for 1 ≤ j ≤ N , was taken to be
randomly distributed in the domain [0, 1], sampled from a uniform probability distribution.
A total of N = 400 particles was used in the simulation, however, the same histogram shape
in Figure 1 was observed in repeated trials, for different values of N = 200 and 600, and also
for (slightly perturbed) uniformly distributed initial data. Figure 1 also shows the histogram
of particle positions as t→∞, demonstrating that the particles coalesce into a region with a
width of ∼ 0.159 units.

Recently, computational methods based on convex relaxations or lower bounds have been
used to estimate low energy states and phase diagrams in materials science. For instance,
[52] computed convex lower bounds to estimate the order-disorder phase transition in energy
functionals containing double-wells. Meanwhile, [32] used relaxations to compute approximate
density matrices for quantum systems at zero temperature, while [34, 35, 37] have computed
molecular structures.

The approach we present for computing approximate global minimizers is similar in spirit
to other state of the art algorithms currently used in optimization theory and integer program-
ming that exploit matrix semidefinite programming (SDP) (see also [6, 23, 42] for a discussion
on SDPs and relaxations). For example, semidefinite-based convex relaxations represent some

1Many interaction potentials are not bounded at x = 0; see, for instance, the divergent power law potentials
in [15, 53].
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PAIRWISE INTERACTION MINIMIZERS 421

(a) Gradient flow (b) Particle density

Figure 1. (a) Time evolution of equation (1.6) for the interaction potential (6.3) and N = 400 discrete
particles (only 50 shown), towards a critical point of EN . (b) The density distribution (using 50 bins) of the
discrete particles at steady state (i.e., as t→∞) from part (a). The density is normalized to have area one. The
support of the density has an approximate width of ∼ 0.159 (computed as the difference between the maximum
and minimum particle locations) which is not immediately related to the interaction potential W (x). The width,
however, will emerge as the length scale in the optimal dual decomposition for the energy presented in section
5 (see also Figure 5(a)).

of the best known polynomial time algorithms for computing approximate solutions to the
graph partitioning problem [25] and matrix completion problem (Netflix prize) [11]. They
have also been used in data science to approximately solve the k-disjoint clique problem [2]
and blind deconvolution [1], while other relaxations have been used to characterize the sparsest
element in a discrete set [19].

Our paper is presented as follows: Section 2 introduces the general problem and definition
of the recovery guarantee. In section 3 we formulate the convex relaxation, while in section 4 we
outline the recovery procedure. Section 5 contains a detailed description of the dual problem
and resulting optimal decomposition of the pairwise energy. Sections 7 and 8 present numerical
examples in dimensions one and two, respectively. Finally, Appendix A contains information
on known cases where the convex relaxation is exact, Appendix B contains numerical details,
while Appendix C characterizes solutions to the relaxed problem that take the form of three
Dirac masses.

2. Problem formulation and preliminaries. Consider a periodic domain Ω = [0, 1]d in
dimension d (eventually taken to be d = 1, 2 in sections 6–7), and interaction energy W (x).
We are interested in the problem of finding global minimizers to the pairwise energy (1.1):

(P ) Minimize
1

2

∫
Ω

∫
Ω
ρ(x)ρ(y)W (x− y) dx dy

over probability measures ρ(x) ∈ C1 with

∫
Ω
ρ(x) dx = 1.

D
ow

nl
oa

de
d 

07
/2

6/
18

 to
 1

28
.2

35
.8

3.
16

2.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

422 MAHDI BANDEGI AND DAVID SHIROKOFF

Here we have introduced C1 as a convex cone to characterize nonnegative measures:2

C1 :=
{
f ∈ C0(Ω)′ : 〈f, u〉 ≥ 0 for all u ∈ C0(Ω) with u(x) ≥ 0

}
,

where

〈f, u〉 =

∫
Ω
u(x)f(x) dx

is the integral of the continuous function u(x) against the measure f(x) dx. In the case when
ρ(x) is a classical function, we may equivalently replace C1 with ρ(x) ≥ 0 for all x ∈ Ω. In
the problem (P), we further assume that W (x) satisfies the following properties:
(W1) Mirror symmetric: W (x) = W (−x), holds for all x (see Remark 1.1 for justification).
(W2) Continuous on Ω.
(W3) Periodic with period 1: W (x + k) = W (x) for all x ∈ Ω and integer vectors k ∈ Zd.
(W4) Normalized with mean zero:

∫
ΩW (x) dx = 0. In such a case, the minimum to (P) is

at most zero since E(1) = 0. Note that one can always add, without loss of generality,
a constant to W (x).

Remark 2.1. For numerical simplicity we have intentionally limited the problem (P) to
continuous interaction potentials W (x) on periodic domains Ω. Many of the results presented
here apply to other domains as well, including the sphere or Rd. For instance, when Ω =
Rd, one may still define a convex relaxation for problem (P). In this case, the countable
wavenumbers (i.e., Fourier series) used to define the relaxation in section 3 for the periodic
domain [0, 1]d will be replaced with a continuous set of wavenumbers (i.e., Fourier transform).
Additional difficulties, not encountered here, may arise in the numerical solution when the
domain is unbounded.

For the problems we consider where Ω is compact, (P) admits a global minimum E0 :=
E(ρ0), achieved by some probability measure ρ0(x). Note that ρ0(x) is not unique since E(ρ)
is invariant under translations so that ρ0(x + s) is also a global minimum for any s. For non-
compact domains, the existence and uniqueness [13, 15, 53] (up to translations and rotations)
of global minimizers is more subtle since mass can be spread arbitrarily far apart (see also
[3, 4, 8] for results on the structure of minimizers).

We now review several necessary conditions imposed by the first and second variation of
E(ρ) that a global minimizer ρ0(x) must satisfy (see [5] for a discussion and [12] for a rigor-
ous treatment). First, a candidate global minimizer ρ∗(x) satisfies the first order necessary
conditions if the first variation of E(ρ),

Λ(x) :=

∫
Ω
W (x− y)ρ∗(y) dy,(2.1)

2In the definition of C1, C0(Ω) is the space of periodic continuous functions on Ω endowed with the sup
norm. Since Ω = [0, 1]d is compact, the functions u ∈ C0(Ω) are bounded and also form a Banach space. The
notation here, 〈f, u〉, represents the pairing of elements f in the dual space C0(Ω)′ with continuous functions
u that are elements of C0(Ω) (see [24, Chapter 5] for a general discussion on Banach spaces). In addition,
the Riesz representation theorem for bounded continuous functions (see [24, Chapter 7], or [48, Chapter 2])
shows that elements in C0(Ω)′ can be identified as nonnegative Borel measures, which justifies the integral
representation of 〈f, u〉.
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satisfies

Λ(x) = 2µ for all x ∈ S∗ := supp(ρ∗),(2.2)

Λ(x) ≥ 2µ for all x ∈ Ω (including x /∈ S∗).(2.3)

Here supp(f) is the support of f(x), i.e., the set where f(x) does not vanish,3 while µ ∈ R is
a Lagrange multiplier constant. Note that multiplying (2.2) by ρ∗(x) and integrating over Ω
shows that E(ρ∗) = µ. Hence, if ρ∗(x) satisfies the first order condition (2.2), then ρ∗(x) has
energy µ. As a result, setting µ = E0 in (2.2) shows that the global minimizer ρ0(x) satisfies∫

Ω
W (x− y)ρ0(y) dy = 2E0 for all x ∈ S0 := supp(ρ0).(2.4)

One difficulty with using condition (2.4) to solve for ρ0(x) is that both E0 and S0 are not
known a priori. As implied by the integral equation in [5] (see [12, Remark 2.5] for a rigorous
treatment), consideration of the second variation of E(ρ) will show that knowledge of S0 alone
will be sufficient to compute ρ0(x) through a convex optimization problem. Specifically, a
candidate ρ∗(x) satisfies the second order necessary conditions for a global minimum if the
second variation is nonnegative (within the class of perturbations that make the first variation
vanish):

E(f) ≥ 0 for finite measures f(x) with

∫
Ω
f(x) dx = 0 and supp(f) ⊆ S∗.(2.5)

Here the class of f(x)’s in (2.5) are exactly the measures that when integrated against Λ(x)
vanish. Equation (2.5) also implies the following remark regarding the convexity of E(ρ) when
restricted to probabilities having supports in S∗.

Remark 2.2 (the importance of S0). Examining the necessary condition in (2.5) when
ρ0(x) is a global minimum, one has the following observations:

(i) Condition (2.5) implies that

E(ρ) is convex when restricted to B :=

{
ρ(x) ∈ C1,

∫
Ω
ρ(x) dx = 1, supp(ρ) ⊆ S0

}
.

(ii) Knowledge of the support of ρ0(x), i.e., the set S0, implies that (P) may be formulated
as a convex optimization problem.

Note that B is a convex set. To show (i), take any ρ1(x), ρ2(x) ∈ B and set f(x) := ρ1(x) −
ρ2(x). Therefore, f(x) has support in S0 and satisfies the criteria in (2.5). Then, by direct
calculation using the fact that E(ρ) is quadratic, one has for any 0 ≤ λ ≤ 1,

0 ≤ (1− λ)λ E(f) = λE(ρ1) + (1− λ)E(ρ2)− E(λρ1 + (1− λ)ρ2)(2.6)

⇒ E(λρ1 + (1− λ)ρ2) ≤ λE(ρ1) + (1− λ)E(ρ2).

3If f(x) is a continuous function on Ω, then supp(f ) = cl{x : f(x) 6= 0}, where cl denotes the closure. See
[24, Chapter 7] for the definition when f(x) is a measure.
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The inequality (2.6) shows that E(ρ) is convex when restricted to probabilities in B. For (ii),
note that ρ0(x) ∈ B, so that restricting the optimization of E(ρ) in (P) to the space B produces
the same minimum E0. Moreover, (P) then becomes the following convex problem,

min E(ρ), subject to ρ(x) ∈ B.

Remark 2.2 highlights the importance of finding sets S∗, where E(ρ) is convex. In our approach,
we do not have a proof that the recovered candidate minimizers satisfy the first and second
order necessary conditions; however, in section 5 we provide new sufficient conditions for
E(ρ) to be convex when supp(ρ) ⊆ S∗. Sections 6–7 then demonstrate that our recovered
minimizers often satisfy this new sufficient condition.

A common practice in optimization theory is to guarantee that a candidate minimizer
(or maximizer) is within a factor α of the optimal value. Here we say that an approximate
minimizer ρ∗(x) to problem (P) has an (α, ν) guarantee, where 0 ≤ α ≤ 1, ν ≥ E0, if the
shifted energy E(ρ∗)− ν is optimal to within a factor of α:

(E0 − ν) ≤ E(ρ∗)− ν ≤ α(E0 − ν).

In the context of gradient flows on E(ρ), one may always add an arbitrary constant to
the underlying potential W (x) and, hence, E(ρ), without affecting the dynamics of ρ(x).
To eliminate the ambiguity of adding such an arbitrary constant, we introduce the shift
ν = E(ρref ) as a reference energy with respect to a base probability ρref (x).

Clearly, if α = 1 with any ν then E(ρ∗) = E0 and, hence, ρ∗(x) is a global minimizer. In
this case, we drop the notation ν and simply say the solution ρ∗(x) is optimal with a guarantee
α = 1. In the numerical section of this paper we always report an α guarantee with ν = 0.
Due to the normalization (W4), ν = E(1) = 0 corresponds to the constant state ρref (x) = 1.

In general, problem (P) is difficult to solve since the energy E(ρ) is a nonconvex functional
of ρ(x). In the next section we will show how to replace (P) with a convex relaxation (R) that
is more amenable to analysis. We will

1. formulate a convex relaxation (R) of (P);
2. solve the relaxation (R) using efficient linear programming algorithms;
3. recover a candidate minimizer from (R) using minimal points of the Kullback–Leibler

divergence, and report an (α, ν) guarantee for the candidate minimizer (with ν = 0).

3. The convex relaxation. The purpose of this section is to formulate a convex relaxation
of (P) that takes the form of a constrained linear optimization problem. The linear optimiza-
tion problem may then be numerically approximated and solved using linear programming
techniques.

To obtain the relaxation, we first rewrite E(ρ) by performing a coordinate change of
variables in the integral. Letting s = x− y,

E(ρ) =
1

2

∫
Ω

∫
Ω
ρ(x)ρ(x + s)W (s) dx ds =

1

2
〈F,W 〉,

F (s) :=

∫
Ω
ρ(x)ρ(x + s) dx = ρ ◦ ρ.
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Here we have introduced F (x) as the auto-correlation of ρ(x), along with a shorthand binary
operator notation ◦. In addition, we assume that ρ(x) is defined periodically on Ω so that
F (x) is also periodic on Ω.

The original problem (P) can then be understood as minimizing a linear functional 〈F,W 〉,
over the space of elements F (x) ∈ A that arise as the auto-correlations of probabilities:

A :=

{
F : F (s) =

∫
Ω
ρ(x)ρ(x + s) dx, such that ρ ∈ C1,

∫
Ω
ρ(x) dx = 1

}
.

We will show below that A is not a convex space (see Remark 3.2). Hence, we have
reformulated the original problem (P) of minimizing a nonconvex objective functional over
a convex set, to the minimization of a linear, convex functional over a nonconvex set. Our
goal is now to relax the admissible space of functions A to a convex set. Ideally, one would
like to use the smallest convex relaxation, i.e., the convex hull of A; however, we use a space
of convex cones that may be exploited in subsequent numerical computations. Specifically,
since F (x) is defined in the periodic domain Ω, it is natural to consider representations as a
Fourier series. The following proposition, which characterizes several well-known properties
of auto-correlations, will play an important role in defining the relaxation.

Proposition 3.1 (properties of A). Given any F (x) ∈ A, the following properties hold:
(A1) F (x) is nonnegative, i.e., for any nonnegative continuous function u(x) ≥ 0, 〈F, u〉 ≥

0.
(A2) F (x) integrates to one: 〈F, 1〉 = 1.
(A3) F (x) is mirror symmetric about the origin, i.e., F (−x) = F (x), corresponding to zero

sine modes. For every k ∈ Zd, k 6= 0, 〈F, sin(2πk · x)〉 = 0.
(A4) F (x) has nonnegative cosine modes. For every k ∈ Zd, k 6= 0, 〈F, cos(2πk · x)〉 ≥ 0.

Here Zd is the set of integers defined by

Zd =
{

(n1, . . . , nd) : for integers nj , 0 ≤ j ≤ d
}
.

Note that values of −k in properties (A3)–(A4) characterize the same constraints as k, and
are therefore redundant. We will, however retain all k ∈ Zd to simplify subsequent notation.

Proof. The proof of (A1)–(A4) is straightforward and done by a direct calculation of the
appropriate integrals 〈·, ·〉. If F (x) ∈ A, then F (s) =

∫
Ω ρ(x)ρ(x + s) dx for some ρ(x) ∈ C1.

The integral 〈F, u〉 can then be written as:

〈F, u〉 =

∫
Ω

∫
Ω
ρ(x)ρ(y)u(x− y) dx dy = 〈ρ, U〉, where U(x) :=

∫
Ω
ρ(y)u(x− y) dy.

For (A1), take any continuous, nonnegative function u(x) ≥ 0 to integrate against F (x). Then,
since ρ(x) ∈ C1, the function U(x) ≥ 0 is nonnegative, and also continuous since it is a convolu-
tion. Hence, integrating U(x) against ρ(x) is also nonnegative, implying 〈F, u〉 = 〈ρ, U〉 ≥ 0.

For (A2), taking u(x) = 1 in the definition for U(x) implies that U(x) = 1. It then follows
that 〈F, 1〉 = 〈ρ, 1〉 = 1.
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For (A3), integrating F (x) against any sine mode, sin(2πk · x), yields

〈F, sin(2πk · x)〉 =

∫
Ω

∫
Ω
ρ(x)ρ(y)

(
sin(2πk · x) cos(2πk · y)− sin(2πk · y) cos(2πk · x)

)
dx dy

= 0.

Note also that a similar calculation shows that F (x) is mirror symmetric, i.e., for any continu-
ous function u(x), one has 〈F (−x), u(x)〉 = 〈F (x), u(x)〉. Here, (−x) denotes the simultaneous
negation of all coordinates (see also Remark 1.1).

Finally, for (A4), integrating F (x) against any cosine mode, cos(2πk · x), yields

〈F, cos(2πk · x)〉 =

∫
Ω

∫
Ω
ρ(x)ρ(y) cos(2πk · (x− y)) dx dy

= |〈ρ, cos(2πk · x)〉|2 + |〈ρ, sin(2πk · x)〉|2 ≥ 0.

Remark 3.2 (the set A is not convex). To show that A is not convex take f1(x) =
1 + cos(2πx) and f2(x) = 1 + cos(2nπx) on Ω = [0, 1], where n � 1 is a large integer. The
convex combination of

λ(f1 ◦ f1) + (1− λ)(f2 ◦ f2) = 1 +
1

4
cos(2πx) +

1

4
cos(2nπx),

when λ = 1
2 , must come from an auto-correlation of a function taking the form (with arbitrary

phases ϕ1, ϕ2)

f3(x) = 1 +
1√
2

cos(2πx− ϕ1) +
1√
2

cos(2nπx− ϕ2).

Choosing n large enough, the minimum value of f3(x), regardless of the values ϕ1, ϕ2, can be
made arbitrarily close to 1 −

√
2 < 0. Hence, for sufficiently large n, there is no nonnegative

function f3(x) with auto-correlation (λf1 ◦ f1 + (1− λ)f2 ◦ f2).

Properties (A1)–(A2) characterize F (x) ∈ A as a probability measure, and therefore show
that the set A is a subset of the convex cone C1, i.e., A ⊆ C1. Properties (A3)–(A4) are related
to a standard result in signal processing—that the Fourier series of an auto-correlation is a
power spectrum. In the case at hand, (A3)–(A4) motivate the definition of a second convex
cone, C2, defined by measures having nonnegative cosine modes and zero sine modes:

C2 :=
{
f ∈ C0(Ω)′ : 〈f, cos(2πk · x) 〉 ≥ 0, 〈f, sin(2πk · x) 〉 = 0, ∀ k ∈ Zd \ 0

}
.(3.1)

Hence, properties (A3)–(A4) show that the set A is also a subset of C2, i.e., A ⊆ C2. Finally,
taking the properties (A1)–(A4) together, we define the set

C :=
{
f ∈ C0(Ω)′ : for all continuous u(x) ≥ 0, and k ∈ Zd \ 0,

〈f, cos(2πk · x) 〉 ≥ 0, 〈f, u(x)〉 ≥ 0,

〈f, sin(2πk · x) 〉 = 0, 〈f, 1〉 = 1
}
.
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Proposition 3.1 may then be alternatively stated as A is a subset of C, i.e., A ⊆ C. Our goal
now is to extend the nonconvex set A, in the optimization of (P), to a relaxed set C. The
purpose of introducing C1 and C2 is to identify the set C as a convex subset of a convex cone.
To this end, we make the following remarks characterizing C.

Remark 3.3 (the set C is a convex cone with an affine constraint). The set C is defined
through linear constraints and inequalities and, hence, is a convex set. However, C may also
be written alternatively as

C =
{
f : f ∈ C1 ∩ C2, and 〈f, 1〉 = 1

}
.

Here we have used the cones C1 and C2 to represent the properties (A1), (A3), and (A4) in
the definition of C. Since both C1 and C2 are convex cones, by the intersection properties of
convex cones, it follows that C1 ∩ C2 is also a convex cone. As a result, the set C may be
interpreted as the convex cone C1 ∩ C2, whose elements satisfy the additional affine constraint
〈f, 1〉 = 1.

Remark 3.4 (the set C contains elements that are not in A). Consider Ω = [0, 1] and
F (x) = 1 + cos(2πx) ∈ C. Then, only functions of the form f(x) = 1 +

√
2 cos(2πx − ϕ)

for any ϕ, have auto-correlations equal to F (x). Since f(x) contains negative values, then
f(x) /∈ C1 showing that F (x) /∈ A. Moreover, a similar calculation shows that F (x) cannot
be written as the convex combination of two, or even a finite number of, elements in A, i.e.,
F (x) 6= λf1 ◦ f1 + (1−λ)f2 ◦ f2 for probabilities f1(x) and f2(x) and 0 ≤ λ ≤ 1. This suggests
that F (x) cannot be approximated by convex combinations of elements in A.

We now define the relaxed problem by extending the set A to the convex set C:

(R) Minimize
1

2
〈F,W 〉

subject to 〈F, cos(2πk · x)〉 ≥ 0, 〈F, u(x)〉 ≥ 0,

〈F, sin(2πk · x)〉 = 0, 〈F, 1〉 = 1

for all integers k ∈ Zd \ 0 and nonnegative continuous functions u(x) ≥ 0.

We denote any solution to (R) as FR(x) and set ER = 1
2〈FR,W 〉. Moreover, we note that ER

is a lower bound to E0, i.e., E0 ≥ ER, since (R) can be understood as optimizing (P) over a
feasible set C that contains A.

As discussed in Remark 3.3, the constraints in (R) are both (i) linear in F (x) and (ii) (up
to the affine constraint 〈F, 1〉 = 1) restricted to lie in the convex cone C1 ∩ C2. This will lead
to numerical discretizations of (R) that take the form of a conic linear programming problem.
Note that in practice when solving (R), it is often better to enforce the mirror symmetry of
F (x) directly, and remove redundant k values (i.e., k and −k yield the same constraint) for
the cosine constraints. This will also allow for the removal of the sine constraints in (R), and
reduce the size of the domain Ω, and hence the optimization problem. A few remarks are now
in order.

Remark 3.5 (sufficient conditions for a global minimizer). The relaxation (R) may in some
cases verify that a candidate minimizer ρ∗(x) solves (P). Suppose ρ∗(x) is a probability distri-
bution with auto-correlation FR(x). Then, since any probability distribution is by definition
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428 MAHDI BANDEGI AND DAVID SHIROKOFF

larger than the minimizer E(ρ∗) = ER ≥ E0 ≥ ER. Therefore, one has ER = E0, which implies
that ρ0(x) = ρ∗(x) is a, possibly nonunique, global minimum.

Remark 3.6 (lattices are exact). If the solution FR(x) forms a periodic lattice pattern4

χ ⊂ Ω,

FR(x) =
1

|χ|
∑
s∈χ

δ(x− s),(3.2)

where |χ| is the number of points in the lattice pattern, then the relaxation is exact. For
solutions of the form (3.2), FR ◦ FR = FR(x). Hence, taking ρ∗(x) = FR(x) satisfies FR(x) =
ρ∗ ◦ ρ∗ thereby implying that a lattice is the global minimizer.

Minimizers that take the form of a lattice are of great physical interest, as they explain why
matter may form crystal structures. Proofs that particle models, in the large particle number
limit, exhibit lattice minimizers have been done for sticky disk models [27, 45], Lennard–
Jones-type interaction potentials [57], and energies which include the sum of Lennard–Jones
interaction potentials and three particle interactions [20, 22].

In Appendix B, we discuss how to numerically discretize and solve (R). In general, we
observe that numerical solutions converge to either (i) classical functions FR(x) that are
continuous, i.e., FR(x) ∈ C0(Ω), or (ii) nonclassical functions FR(x) that consist of a finite
collection of Dirac point masses. Motivated by Remark 3.5, the following section presents one
approach for recovering a candidate minimizer ρ∗(x) using FR(x).

In the case when FR(x) is a collection of Dirac masses, we will expect recovered candidates
ρ∗(x) to also be a collection of Dirac masses. This is because the auto-correlation of a discrete
set of Dirac masses is a discrete set of Dirac masses. In contrast, when FR(x) is a continuous
function, we will expect ρ∗(x) to be in L2(Ω), and typically take the form of a piece-wise
continuous function, i.e., since the auto-correlation of a piece-wise continuous function is
continuous.

4. Recovering ρ∗(x) from FR(x) by minimizing a relative entropy. In this section we
outline a procedure for recovering a candidate global minimizer ρ∗(x) from knowledge of the
solution to (R), i.e., FR(x). In general, the relaxed space C, and therefore solutions to problem
(R) may include measures that are not auto-correlations of probabilities (see Remark 3.4).
Hence, A ⊂ C is only a proper subset of C and, as a result, the solution FR(x) may not come
from an auto-correlation of a probability distribution.

The problem of recovering ρ∗(x) from FR(x) is equivalent to deauto-correlating a function
F (x) ∈ C, with the caveat that the source function ρ∗(x) is also a probability distribution.
The additional nonnegativity restriction, i.e., ρ∗(x) ∈ C1, distinguishes the phase recovery
problem at hand from other phase recovery problems recently studied in the context of signal

4 A lattice X is the infinite array of discrete points defined by a set of primitive vectors vj : X = {
∑d
j=1 njvj :

nj ∈ Z, for 1 ≤ j ≤ d}. Take χ = X ∩ Ω as the points in X restricted to the computational domain. Hence χ
may be defined for any X. We refer here to χ as a lattice pattern if X can be written as translated copies of χ:
X = ∪~n∈Zd(χ + ~n). Note that χ may be a set that is larger than one containing the primitive lattice vectors,
and that X cannot always be written as the collection of translated copies of χ (in which case χ would not be
a lattice pattern).
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processing [9, 10, 11, 30, 58]. In our recovery process we follow a procedure introduced by
Schulz and Snyder [50] (see also [51]) which chooses ρ∗(x) as a minimizer of the Kullback–
Leibler divergence functional (also known as the information divergence) between FR(x) and
the auto-correlation Fρ(x) = ρ◦ρ. As discussed in [50] (and references within) the information
divergence functional has many nice properties for the recovery of nonnegative signals making
it a natural choice for the recovery of ρ∗(x).

In this discussion we assume that FR(x) ∈ C ∩ C0(Ω) is a continuous function; however,
the approach here can also be extended to handle cases where FR(x) is a collection of discrete
Delta masses. The Kullback–Leibler divergence is defined as

F(ρ) :=

∫
Ω
FR(x) ln

(
FR(x)

Fρ(x)

)
dx =

∫
Ω
FR(x) ln

(
FR(x)

ρ ◦ ρ

)
dx,(4.1)

where we assume that ρ(x) ∈ C ∩ L2(Ω) with
∫

Ω ρ(x) dx = 1. In the definition of F(ρ), one
adopts the conventions

0 ln
0

a
:= 0, 0 ln

0

0
:= 0, a ln

a

0
:=∞,(4.2)

to allow for both FR(x) and ρ ◦ ρ to vanish on some set.
Viewing both FR(x) and Fρ(x) as probability distributions, the Kullback–Leibler diver-

gence, defined by F(ρ), measures the mismatch between probabilities FR(x) and Fρ(x). Al-
though F(ρ) does not define a metric between FR(x) and Fρ(x), for instance, since it is
not symmetric, it is always nonnegative F(ρ) ≥ 0, and may still be used to guarantee an
exact match between FR(x) and Fρ(x). Specifically, F(ρ∗) = 0 only when FR(x) = Fρ(x)
(see, for instance, Pinsker’s inequality in [39, Chapter 2]). Hence, in light of Remark 3.5, we
have the following alternative sufficient condition for a global minimizer—which motivates the
minimization of F(ρ).

Remark 4.1 (equivalent sufficient condition for a global minimizer). Let FR(x) solve (R).
Then if F(ρ∗) = 0, it follows that ρ∗(x) solves (P). For instance, if F(ρ∗) = 0, then the two
auto-correlations are equal: FR(x) = Fρ∗(x) = ρ∗ ◦ ρ∗, so that the conditions in Remark 3.5
are satisfied.

To compute minimizers of F(ρ) we use the Schulz–Snyder iterative algorithm,5 which is
an iterative method on the space of nonnegative probabilities. The advantage of the Schulz–
Snyder algorithm is not only that it minimizes the functional F(ρ), but the iterations naturally
enforce the probability constraints. As a result, the algorithm is very easy to implement.

We now briefly summarize the derivation, and properties of the Schulz–Snyder algorithm.
The idea is to iterate the Euler–Lagrange equation that one obtains by taking the first variation
of F(ρ). Namely, the Euler–Lagrange equation of (4.1) is given as follows: For any mean zero
perturbation g(x) whose support is contained in the support of ρ∗(x), the first variation

5In the original paper [50], the functional F(ρ) +
∫

Ω
FR(x) − Fρ(x) dx was used instead of F(ρ). Due to

the fact that the Schulz–Snyder iterative algorithm conserves the constraint
∫

Ω
Fρ(x) dx = 1, the discrepancy

in the functional definition has no effect on the algorithm or results.
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vanishes, ∫
Ω
g(x)

δF
δρ

(ρ∗) = 0 =⇒ δF
δρ

(ρ∗) = const. for any x ∈ supp(ρ∗).(4.3)

By direct calculation, the (unconstrained) L2 variation of F(ρ) is

δF
δρ

(ρ) = −2

∫
Ω
ρ(x + y)

FR(y)

Fρ(y)
dy.(4.4)

Hence, multiplying (4.4) by ρ∗(x) and integrating over space yields the constant in (4.3).
Critical points of F(ρ) satisfying the first variation conditions are then concisely described by

δF
δρ

(ρ∗)

{
= −2 if ρ∗(x) > 0,
> −2 if ρ∗(x) = 0

=⇒ ρ∗(x) = ρ∗(x)

∫
Ω
ρ∗(x + y)

FR(y)

Fρ∗(y)
dy.(4.5)

Equation (4.5) may now be used to devise an iterative fixed-point algorithm.

Recovering ρ∗(x) from FR(x) (Schulz–Snyder).
1. Initialize ρ0(x) > 0 to be strictly positive with

∫
Ω ρ0(x) dx = 1. Ensure that ρ0(x)

has no planes of symmetry: For any fixed vector a, the shifted ρ0(x) is not even
symmetric, ρ0(a− x) 6= ρ0(x− a).

2. Iterate the discrete mapping:

ρn+1(x) = −1

2
ρn(x)

δF
δρ

(ρn) for x ∈ Ω and n = 1, 2, 3 . . .

= ρn(x)

∫
Ω
ρn(x + y)

FR(y)

Fρn(y)
dy,

where Fρn(x) = ρn ◦ ρn and we have used the fact that FR(y) = FR(−y).

3. Take ρ∗(x) = ρ∞(x) as the candidate global minimizer to (P).

The algorithm also ensures the following properties, which we state without proof:6

1. (positivity preserving) ρn(x) ≥ 0 for all x and n ≥ 0.
2. (mass preserving)

∫
Ω ρn(x) dx = 1 for all n ≥ 0.

3. (monotonicity) F(ρn+1) ≤ F(ρn) for all n ≥ 0.
4. (fixed points) If ρ∗(x) is a fixed point in the Schulz–Snyder algorithm, then ρ∗(x)

satisfies the first variation conditions (4.5).
Finally, as prescribed in step 1 of the Schulz–Snyder algorithm, it is important to avoid
initializing the data ρ0(x) to lie in any invariant set of the iterative map from step 2. Initializing
the data ρ0(x) to lie in an invariant set can potentially constrain the resulting fixed-point
minimizer ρ∗(x) to have the same symmetry as ρ0(x). The Schulz–Snyder algorithm has
invariant sets that include the following subspaces:

6Note: properties 1, 2, and 4 are straightforward to prove. See [50] for a proof of a discrete version of the
monotonicity property 3.
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• If ρn(xp) = 0 for some point xp ∈ Ω, then ρn+1(xp) = 0.
• If for a fixed vector a, ρn(a− x) = ρn(x− a), then ρn+1(a− x) = ρn+1(x− a).

The first symmetry regarding ρn+1(xp) = 0 follows directly from testing both sides of step 2
in the iterative scheme at a point xp ∈ Ω. The second property, regarding planes of symmetry,
can be shown as well since both FR(x) and Fρ(x) are mirror symmetric about 0:

ρn+1(a− x) = ρn(a− x)

∫
Ω
ρn(a− x + y)

FR(y)

Fρn(y)
dy

= ρn(a− x)

∫
Ω
ρn(a− x− y)

FR(y)

Fρn(y)
dy

= ρn(x− a)

∫
Ω
ρn(x− a + y)

FR(y)

Fρn(y)
dy = ρn+1(x + a).

We now briefly discuss several numerical details of the Schulz–Snyder algorithm. One
advantage with minimizing the Kullback–Liebler divergence over other norms or metrics is
that the Schulz–Snyder algorithm may be numerically computed using integral quadrature
rules, without enforcing nonnegativity and mass constraints. Moreover, up to a negative sign
in x, the integral in step 2 of the algorithm has the form of a convolution—which may also
be computed in an efficient manner using the fast Fourier transform. Finally, regarding the
convergence rate of the scheme, one might heuristically expect it to behave in a fashion similar
to other iterative methods with an exponential convergence at large n, i.e., |F(ρn)−F(ρ∞)| ∼
γn for a value of 0 < γ < 1. Together these properties make using the Kullback–Liebler
divergence an attractive approach for practitioners.

In section 2, necessary conditions for a candidate minimizer to solve (P) were given by
(2.2), (2.3), and (2.5). Although numerical examples in sections 6 and 7 provide supporting
evidence that solutions to (4.5) may (at least in some cases) satisfy (2.2), (2.3), and (2.5), we
have no formal proof of such a result. The minimization via the Schultz–Snyder algorithm
does, however, often recover candidates ρ∗(x) with Fρ∗(x) having the same support as FR(x)—
which, as we will show through the introduction of the dual formulation to (R), guarantees
the necessary condition related to (2.5) in Remark 2.2.

5. The dual decomposition. The purpose of this section is to formulate the dual opti-
mization problem to the convex relation (R), and show how it may be used, in some cases, to
explain why the supports of the recovered minimizers ρ∗(x) satisfy the necessary conditions
in Remark 2.2. This will be done in two steps. First, the dual formulation will provide a de-
composition of the pairwise energy E(ρ) that takes the form of a nonconvex/convex splitting,

E(ρ) = E+(ρ) +K(ρ),(5.1)

where
1. E+(ρ) ≥ 0, is a nonnegative functional for all nonnegative measures ρ(x) ∈ C1 and, in

general, is nonconvex.
2. K(f) is convex for all finite measures f(x). Namely, for all 0 ≤ λ ≤ 1 and f1(x), f2(x)

(which may be negative), one has

K(λf1 + (1− λ)f2) ≤ λK(f1) + (1− λ)K(f2).

D
ow

nl
oa

de
d 

07
/2

6/
18

 to
 1

28
.2

35
.8

3.
16

2.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

432 MAHDI BANDEGI AND DAVID SHIROKOFF

Second, the nonnegative part of the decomposition (5.1), E+(ρ), will be used to provide a
sufficient condition to satisfy the necessary conditions in Remark 2.2.

Decompositions of the form given by (5.1) are in general not unique. However, the dual
formulation to (R) will provide such a decomposition that also maximizes the minimum value
of the convex functional K(ρ) over probabilities ρ(x). In other words, we will seek K(ρ) to
be, in some sense, the largest convex functional that underestimates E(ρ). As a result, the
optimal functional K(ρ) that we compute has a strong resemblance to the convex envelope of
E(ρ).

We will show below that an optimal decomposition of the form (5.1) may be formulated
as the dual problem to (R)—and therefore computed with the same computational cost as
solving (R). Here the construction of the optimal decomposition of the form (5.1) will arise
by decomposing the interaction energy W (x) into the sum of a nonnegative function, and a
function with nonnegative cosine modes.

To motivate the dual formulation to (R), first consider any decomposition for W (x) that
takes the form

W (x) = W+(x) +K(x) + 2ED,(5.2)

where
(D1) 0 ≤ W+(x) ∈ C0(Ω) is a continuous, nonnegative, mirror symmetric function (see

Remark 1.1).
(D2) K(x) is a continuous, mirror symmetric, mean-zero function with real nonnegative

cosine coefficients, i.e.,

K̂(k) :=

∫
Ω
K(x) cos(2πk · x) dx ≥ 0 for all k ∈ Zd \ 0 and K̂(0) = 0,

K(x) =
∑
k∈Zd

K̂(k) cos(2πk · x).

Note that the summation in the above cosine series includes all k ∈ Zd, and the
inclusion of K̂(−k) = K̂(k) accounts for the apparent missing factor of 2.
We also make the following technical assumption on the cosine coefficients of K(x):∑

k∈Zd
K̂(k) <∞.(5.3)

Assumption (5.3) guarantees that the cosine series for K(x) converges uniformly, for
instance, by a Weierstrass M-test. Moreover (5.3) will be sufficient to use a Plancherel-
type theorem when integrating K(x) against probability measures.

(D3) ED is a constant. Due to the normalization convention (W4), of W (x), we see that
ED = −1

2

∫
ΩW

+(x) dx will be negative for decompositions of the form (5.2).

Proposition 5.1 (properties of the decomposition (5.2)). Any decomposition of the form
(5.2) with properties (D1)–(D3) satisfies the following:

1. The functions W+(x) and K(x) are in the dual cones to C1 and C2, i.e., W+(x) ∈ C∗1
and K(x) ∈ C∗2 , where the dual cone X∗ to a convex cone X is given by

X∗ := {x ∈ X ′ : 〈x, y〉 ≥ 0, ∀y ∈ X}.
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2. ED ≤ ER is a lower bound to (R).
3. The following functional is nonnegative:

E+(ρ) :=
1

2

∫
Ω

∫
Ω
ρ(x)ρ(y)W+(x− y) dx dy ≥ 0 for all ρ(x) ∈ C1.

4. The following functional is convex for ρ(x) ∈ C1:

K(ρ) :=
1

2

∫
Ω

∫
Ω
ρ(x)ρ(y)K(x− y) dx dy + ED.

Proof. The proof again involves computing the appropriate integrals.
For 1 we have the following.

• Given F (x) ∈ C1, then 〈F,W+〉 =
∫

ΩW
+(x)F (x) dx ≥ 0, since W+(x) ≥ 0, and

F (x) ∈ C1 is nonnegative.
• Given F (x) ∈ C2, then 〈F,K〉 =

∑
k∈Zd K̂(k)F̂ (k) ≥ 0, since7 K̂(k) ≥ 0, and F̂ (k) :=

〈F, cos(2πk · x)〉 ≥ 0 for all k ∈ Zd.
Hence W+(x) and K(x) are in the dual cones to C1 and C2, respectively.

For 2, a direct calculations shows

ER =
1

2
〈FR,W 〉(5.4)

=
1

2

(
〈FR,W+〉+ 〈FR,K〉

)
+ ED ≥ ED.

The last inequality follows since each pairing independently is nonnegative. Namely, FR(x)
is in both C1 and C2 and so the result in part 1 applies. Hence, both 〈FR,W+〉 ≥ 0 and
〈FR,K〉 ≥ 0.

For 3, the proof is identical to the proof of property (A1) in Proposition 3.1.
For 4: Since K(x) satisfies (5.3), uniform convergence of the cosine series allows one to

write K(ρ) using a Plancherel-type identity. Specifically, for any ρ(x) ∈ C1,

K(ρ) =
1

2

∑
k∈Zd

K̂(k)
(
〈ρ, cos(2πk · x)〉2 + 〈ρ, sin(2πk · x)〉2

)
+ ED.

Since K̂(k) ≥ 0, the functional K(ρ) is a positive definite quadratic—and hence convex. Note
that, in general, numerical observations later show it is often the case that K̂(k) = 0 for some
subset of integers k, indicating that K(ρ) is not strictly convex.

The dual problem (D) to (R) is then formulated as optimizing (5.2) to find the best possible
constant ED and corresponding decomposition for W (x) into the sum of a nonnegative function
and a function with nonnegative cosine modes:

(D) Maximize ED,(5.5)

subject to
(
W (x)− 2ED

)
∈ cl

(
C∗1 + C∗2

)
.

7Here we provide some details justifying the series expansion for 〈F,K〉. Note that if K(x) satisfies as-
sumption (5.3), then the cosine series converges uniformly. Hence, for any ε > 0, there exists an M > 0, such
that maxx∈[0,1]d ‖DM (x)‖ < ε, where DM (x) := K(x)−

∑
|k|<M K̂(k) cos(2πk ·x). Since DM (x) is continuous

with a maximum norm of ε, this implies that 〈F,DM 〉 → 0 as M →∞. Hence, 〈F,K〉 →
∑

k∈Zd K̂(k)F̂ (k) as
M →∞.

D
ow

nl
oa

de
d 

07
/2

6/
18

 to
 1

28
.2

35
.8

3.
16

2.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

434 MAHDI BANDEGI AND DAVID SHIROKOFF

Here cl is the weak∗ closure, C∗1,2 are the dual cones8 to C1,2, where the sum C∗1 + C∗2 =
{u+ v : u ∈ C∗1 , v ∈ C∗2}.

Assumption 5.2 (regularity assumption). We assume there exists functions W+
R (x) ∈ C∗1

and KR(x) ∈ C∗2 that solve (D), and also satisfy the smoothness properties in (D1)–(D2). In
other words, W (x) may be written as an optimal decomposition into the dual cones of C1 and
C2:

W (x) = W+
R (x) +KR(x) + 2ER,(5.6)

where the optimum value of ED in (D) is the same as ER.

We refer to the optimal decomposition (5.6) of the interaction energy as the dual de-
composition, as it arises from the dual formulation of (D) to (R). At the level of numerical
discretizations presented in Appendix B, the Assumption 5.2 is justified by the following
remark.

Remark 5.3 (numerical justification of Assumption 5.2). Numerical discretizations of (R)
presented in Appendix B result in a linear program—which, therefore, has a duality gap of
zero. Hence, every numerical discretization of (R) has the optimal value ER equal to the
optimal value ED in (D). Moreover, the finite dimensional cones C1,h and C2,h that arise as the
discrete approximations to C1 and C2 are closed, self-dual, and polyhedral. The sum of two
polyhedral cones is also polyhedral and hence closed ([47, Theorem 19.1 and Corollary 19.32]).
Therefore, for any finite discretization, one has (C1,h ∩ C2,h)∗ = cl(C∗1,h + C∗2,h) = C1,h + C2,h,
showing that the dual cone C∗h can be written as the sum of the cones C1,h and C2,h. This
justifies, for any finite dimensional discretization, the existence of an optimal dual decomposi-
tion of the form (5.6). Note that in general, the sum of two closed, but nonpolyhedral cones,
may not be closed. For example, for two closed convex cones C1, C2 ⊂ Rn, one may have the
pathological situation where a point x ∈ cl(C1 + C2), however, there are no values y ∈ C1,
z ∈ C2 such that x = y + z.

With the Assumption 5.2 on the existence of a dual decomposition, the dual problem (D)
may be written as a conic optimization problem with linear constraints:

(D) Maximize ED,
subject to

(
W (x)− 2ED −K(x)

)
≥ 0,

〈K, cos(2πk · x)〉 ≥ 0, 〈K, 1〉 = 0,

〈K, sin(2πk · x)〉 = 0

for all x ∈ Ω and k ∈ Zd \ 0.

Remark 5.4 (regularity observation). The regularity of the optimal decomposition to (D)
is an interesting problem: Numerical solutions in dimension one (see section 6) suggest that
if W (x) is smooth at x, then W+

R (x) and KR(x) are not necessarily smooth at x (although
continuity of W+

R (x) and KR(x) has been observed).

8The formulation (D) is over the dual cone C∗, which (see Lemma 3.1 in [7] for two intersecting closed
convex cones) is equal to C∗ = (C1 ∩ C2)∗ = cl

(
C∗1 + C∗2

)
.
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Remark 5.5 (examples of decompositions for W (x)). Two examples of feasible dual decom-
positions, i.e., of the form in (5.2), are the following.

Example 1: Take ED = 1
2 minx∈ΩW (x), K(x) = 0, and W+(x) := W (x)− 2ED ≥ 0.

Example 2: WriteW (x) = K+(x)+K−(x)+2ED as the sum of two functions, where K±(x)
has only ± cosine coefficients. Take K(x) = K+(x) to be the projection of
W (x) onto cosine modes with positive coefficients, let ED := 1

2 minx∈Ω(W (x)−
K(x)), and take W+(x) = W (x)−K(x)− 2ED ≥ 0.

5.1. Properties of the optimal dual decomposition. The purpose of this subsection is to
show that the support of W+

R (x) can be used to identify sets S∗ in which the functional E(ρ)
is convex whenever supp(ρ) ⊆ S∗. Specifically, the conclusion of the subsection will provide
a sufficient condition for a candidate minimizer ρ∗(x) to satisfy the necessary condition given
in Remark 2.2.

We first discuss the support of W+
R (x) in relation to FR(x). Revisiting the lower bound

(R) and writing W (x) using the optimal dual decomposition yields

ER =
1

2
〈W,FR〉 =

1

2
〈W+

R , FR〉+
1

2
〈KR, FR〉+ ER.(5.7)

Since both W+
R (x),KR(x) are in the appropriate dual cones, the pairings 〈W+

R , FR〉 ≥ 0 and
〈KR, FR〉 ≥ 0. Therefore, (5.7) holds only if the integrals vanish,

〈W+
R , FR〉 = 0, 〈KR, FR〉 = 0.(5.8)

Here the constraint (5.8) can be used to infer that FR(x) must have a complementary support
to W+

R (x) in real space, and KR(x) in k space. Specifically we have the following cases.
Case 1: When FR(x) ∈ C0(Ω) is continuous, the dual decomposition satisfies

W+
R (x)FR(x) = 0 for all x ∈ Ω,(5.9)

K̂R(k)F̂R(k) = 0 for all k ∈ Zd.(5.10)

Here F̂R(k), K̂R(k) are the cosine coefficients defined in the proof of Proposition 5.1.
Case 2: When FR(x) =

∑
r∈R fR(r)δ(x−r) is a collection of Dirac masses at the locations

R = {x1,x2, . . .xm}, with amplitudes fR(r),

W+
R (r) = 0 for all r ∈ R,(5.11)

K̂R(k)F̂R(k) = 0 for all k ∈ Zd.(5.12)

Again K̂R(k) and F̂R(k) are the cosine coefficients of KR(x) and FR(x), where FR(k) can be
expressed in terms of fR(r):

F̂R(k) = 〈FR, cos(2πk · x)〉 =
∑
r∈R

fR(r) cos(2πk · r).

Equation (5.9) (or the discrete version of (5.11)) shows that W+
R (x) = 0 whenever FR(x) 6= 0,

and vice versa. We now combine this observation with the results from Proposition 5.1. First
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set

E+
R (ρ) :=

1

2

∫
Ω

∫
Ω
ρ(x)ρ(y)W+

R (x− y) dx dy =
1

2
〈ρ ◦ ρ,W+

R 〉,

KR(ρ) :=
1

2

∫
Ω

∫
Ω
ρ(x)ρ(y)KR(x− y) dx dy + ER,

where E(ρ) = E+
R (ρ) + KR(ρ) is the functional decomposition for E(ρ) that arises from the

optimal dual decomposition. We now arrive at the main observation.

Proposition 5.6 (sets where E(ρ) is convex). Consider a candidate minimizer ρ∗(x) with
support S∗, and suppose that the support of Fρ(x) = ρ∗ ◦ ρ∗ lies in the support of FR(x), i.e.,
supp(ρ∗ ◦ ρ∗) ⊆ supp(FR). Then E(ρ) is convex on the space of probabilities having support
S∗. In other words, E(ρ) is convex when restricted to the set

B∗ :=

{
ρ(x) ∈ C1,

∫
Ω
ρ(x) dx = 1, supp(ρ) ⊆ S∗

}
.

Proof. The proof uses the dual decomposition and the complementary support equations
(5.9) or (5.11). It will be sufficient to show that for any ρ(x) ∈ B∗, we have E+

R (ρ) = 0. This
will imply that on the space B∗, the functional E(ρ) = KR(ρ) is convex.

Suppose that ρ(x) ∈ B∗, then supp(ρ ◦ ρ) ⊆ supp(ρ∗ ◦ ρ∗) by a basic property of the
auto-correlation of probabilities. Using the hypothesis in Proposition 5.6, one then has that
supp(ρ ◦ ρ) ⊆ supp(FR). However (5.9) or (5.11) guarantees that W+

R (x) = 0 for any
x ∈ supp(FR), and hence W+

R (x) = 0 for any x ∈ supp(ρ ◦ ρ). Therefore the integral
E+
R (ρ) = 1

2〈ρ ◦ ρ,W
+
R 〉 = 0.

Proposition 5.1 shows that if a recovered minimizer ρ∗(x) has an auto-correlation with
support supp(Fρ) ⊆ supp(FR), then ρ∗(x) satisfies the necessary condition for a candidate
minimizer outlined in Remark 2.2. In the subsequent numerical examples, we will observe
that the recovery procedure outlined in section 4 will generate candidate minimizers ρ∗(x)
that often satisfy the hypothesis in Proposition 5.6

Finally, we conclude this section with the observation that finding analytic descriptions
for sets S∗ in which the energy functional E(ρ), when restricted to ρ(x) with supp(ρ) ⊆ S∗,
is convex is not a simple problem. The importance of the dual decomposition for W (x) is
that it is a constructive approach that allows one to find such sets S∗. Specifically, W+

R (x)
and KR(x) are constructed analytically from W (x); and if a set S∗ satisfies the property that
supp(ρ) ⊆ S∗ implies E+

R (ρ) = 0, then E(ρ) is convex when restricted to probabilities with
supports in S∗.

6. Results: Examples in one dimension.

6.1. The Morse potential. In this section we use the convex relaxation and recovery
approach to generate candidate minimizers to the Morse potential on a periodic domain. The
Morse potential is a simple example of an attractive-repulsive potential that has been used
recently [5, 33, 40] to model swarms and collective behavior in social phenomena. On Ω = R,
we write the Morse potential as

WM (x) = −GLe−|x|/l1 + e−|x|/l2 , G, L > 0, x ∈ R,(6.1)
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where L := l1/l2 is a dimensionless quantity; l1 and l2 are the length scales associated with
an attractive and repulsive force, respectively; and G denotes the strength of the attractive
part of the potential. Mathematically, for different strengths of attraction and repulsion, the
Morse potential results in a nonconvex energy functional E(ρ). For computational purposes,
we work on a periodic domain. To make WM (x) periodic, we introduce a box size lbox, and
define the periodic Morse potential as

WPM (x) =
∑
n∈Z

WM (x+ nlbox).(6.2)

Equation (6.2) can then be summed exactly by converting it into a geometric series. To non-
dimensionalize WPM (x), we use lbox as the length scale, and replace x → x/lbox. We also
introduce the dimensionless parameter σ := l2/lbox. After summation and nondimensionaliza-
tion, the function WPM (x), when restricted to one period 0 ≤ x ≤ 1, takes the form

WPM (x) =
−GL

1− e−1/(Lσ)

(
e−x/(Lσ) + e−(1−x)/(Lσ)

)
+

1

1− e−1/σ

(
e−x/σ + e−(1−x)/σ

)
−W.

(6.3)

Here W is a constant9 added for numerical purposes to normalize WPM (x) to have mean zero
(see property (W4)). When the box size lbox � l1, l2 is much larger than the interaction length
scales, the periodic effects of WPM (x) are expected to be small, and minimizers of E(ρ) with
WPM (x) are expected to recover the results of minimizing WM (x) on the infinite line R.

In the following numerical examples we fix σ = 0.1, so that lbox is several times larger
than l1 and l2. To illustrate the utility of the new approach, we compute the phase diagram
for WPM (x) and characterize the results in the (L,G) parameter plane. This is done by
systematically computing the minimizer FR(x) and recovered ρ∗(x) for every value of (L,G).
We find that the qualitative properties, which are characterized by four different regions, A–
D, in Figure 2 are in agreement with the ones computed in [33]. In particular, the region D
corresponds to the blowup region observed in [33]. Within this region, we observe a cascade
where minimizers form lattices of Dirac masses—with progressively smaller lattice spacings,
as G decreases at a fixed value of L.

Figures 3–5 show explicit results for a fixed value of (L,G) = (1.2, 0.9), that lies in the
region where FR(x) is a continuous function. Figure 3 demonstrates the convergence of the
Schulz–Snyder algorithm, while Figure 4 shows the optimal dual decomposition for WPM (x).

Figure 5 altogether shows the recovered minimizer ρ∗(x) (with a guarantee α = 0.99),
along with the solutions to (R) and (D), i.e., FR(x),W+

R (x),KR(x). The purpose of showing
the solutions both to (R) and (D) is to highlight the complementarity conditions (5.9)–(5.10).
Specifically, Figure 5(a) shows ρ∗(x) to have a support S∗ with length |S∗| = 0.161, which is
consistent with the histogram width observed in the particle simulations in Figure 1. The auto-
correlation Fρ(x) also has a support supp(Fρ) = supp(FR), and, therefore is complementary
to W+

R (x), i.e., W+
R (x)Fρ(x) = 0 for all x ∈ Ω (See Figure 5(b)). Hence, ρ∗(x) satisfies the

hypothesis in Proposition 5.6, which implies that E(ρ) is convex when restricted to probabilities

9 W = −GL
1−e−1/(Lσ)A+ 1

1−e−1/σB, where A =
∫ 1

0
e−x/(Lσ)+e−(1−x)/(Lσ) dx, and B =

∫ 1

0
e−x/σ+e−(1−x)/σ dx.
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438 MAHDI BANDEGI AND DAVID SHIROKOFF

Figure 2. The phase diagram for the periodic Morse potential (6.3) with σ = 0.1. The (L,G) plane is
partitioned by thick black lines into 4 regions, denoted by A–D, which show qualitatively different minimizers
ρ∗(x) (Note that these regions are similar to the ones observed in [33].) Region A: The global minimum is
ρ∗(x) = δ(x). Region B: Densities ρ∗(x) have a nonzero width whose support is contained strictly inside [0, 1];
and have a continuous auto-correlation FR(x). Here, one recovered solution is shown for the parameter values
(L,G) = (1.2, 0.9). Region C: ρ∗(x) = 1 corresponds to an evenly spread probability distribution. Region D:
Solutions are a collection of Dirac masses, and may form lattices. For instance, the white banded regions show
a cascade of lattice minimizers. Plotted are lattices with 2, 3, 4, and 5 evenly spaced Dirac δ(x)’s, and the
number continues to increase as G approaches 1. The small transition regions (black shading), between the
lattice regions, may contain (possibly infinitely) many different solutions. Minimizers in regions A, C, as well
as the lattice solutions in D are exact global minimizers with α = 1 (see Remark 3.6 and Appendix A).

having support with a width of ∼ 0.161. Figure 5(c), shows the complementarity condition
(5.10). Finally, we note that the size |S∗| emerges as a new length scale for the particle density,
and is exactly 1/2 of the length where W+

R (x) = 0.

6.2. A local potential. In the context of social interactions, recent work [41] has focused
on a class of local interaction potentials where W (x) has compact support. In this section we
examine the approximate global minimizers and dual decomposition for a continuous periodic
version of the local potential examined in [41]:

ψ(x) =


0.1, |x| ≤ 1

2 ,
9|x| − 4.4, 1

2 < |x| ≤
3
5 ,

1, 3
5 < |x| ≤

9
10 ,

10− 10|x|, 9
10 < |x| ≤ 1,

0, |x| > 1,

for x ∈ R,(6.4)

W (x) =
∑
n∈Z

(
ψ
(x+ n

lc

)
− ψ

)
.
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Figure 3. Convergence versus iteration for log10 ‖ρn − ρn+1‖L1(Ωh) (dashed curve), and log10(F(ρn)) →
7.98×10−6 (solid line) in the Schulz–Snyder algorithm. The quantities are for the periodic Morse potential (6.3)
with σ = 0.1, (L,G) = (1.2, 0.9), and grid n = 800. The nonzero value of 7.98×10−6 is the result of a mismatch
between the converged Fρ∗(x), and target FR(x), and may be due to (i) round-off or tolerance errors introduced
into the numerical discretizations or (ii) a fundamental limitation that for the analytic solution FR(x) at hand,
there may not exist a ρ∗(x) that exactly satisfies the sufficient conditions in Remark 4.1.

Figure 4. The figure shows the optimal dual decomposition (5.6) for the periodic Morse potential WPM (x)
defined in (6.3). Here the parameters are σ = 0.1, (L,G) = (1.2, 0.9), and grid n = 800. Note that the cosine
coefficients of KR(x) are nonnegative, while ER is the largest possible constant as described by the solution to
(D).

Figure 6(c) shows the potential ψ(x), which differs primarily from the one in [41] by replacing
the discontinuous jumps (at range values 0.1, 1, and 0) by linear interpolation. The quantity
lc > 0 enters as the (dimensionless) ratio of the local interaction length to periodic domain
length, with W (x) entering in as a full periodic potential. One might expect in the limit lc � 1
to recover the characteristics of the nonperiodic model. For lc = 0.1, which is commensurate
with the periodic domain length, and n = 360 grid points, one recovers the auto-correlation
with 10 equispaced Dirac masses:

FR(x) =
∑
s∈S

fR(s)δ(x− s),(6.5)

fR(s) =
1

10
, where S =

{
0,

1

10
,

2

10
, . . . ,

9

10

}
.
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(a) ρ∗(x), Λ(x). (b) FR(x), Fρ∗(x),W+
R (x). (c) ρ̂∗(k), F̂R(k), K̂R(k).

Figure 5. Example for the Morse potential (6.3) with σ = 0.1, (L,G) = (1.2, 0.9), and grid n = 800. (a)
shows the recovered minimizer ρ∗(x) (solid curve), which has a guarantee of α = 0.99, along with Λ(x) (dashed
curve, arbitrary units). The width of the support of ρ∗(x) is ∼ 0.161. (b) shows the auto-correlation Fρ∗(x)
(solid line), target auto-correlation FR(x) (circles), and a rescaled W+

R (x) (blue curve). Here W+
R (x) is drawn

to show that Fρ(x) and W+
R (x) have complementary supports, i.e., W+

R (x)Fρ(x) = 0. This implies that ρ∗(x)
satisfies the hypothesis in Proposition 5.6 and, therefore, E(ρ) is convex when restricted to probabilities with a
width ∼ 0.161. (c) shows that the cosine coefficients (coefficients not plotted are numerically zero) F̂R(k) (green
circles), and K̂R(k) (red squares), have complementary support for different values of k, i.e., F̂R(k)K̂R(k) = 0.
Here the cosine coefficients F̂ρ∗(k) (blue crosses) of the recovered solution are shown for reference.

Since FR(x) = FR ◦ FR, letting ρ∗(x) = FR(x) recovers the exact auto-correlation and hence
is a global minimizer with guarantee α = 1. Figure 6(a) shows the dual decomposition of
W (x) = W+

R (x) +KR(x) + 2ER. Numerically, it is observed that both W+
R (x) and KR(x) are

constant in regions where the local potential W (x) = 0, so that they too are effectively local
potentials. As a final remark, if lc is not taken as an integer fraction of the domain length,
or the grid spacing h = 1/n (see Appendix B) is not commensurate with the spacing of the
Dirac masses, one may have nonlattice minimizers that become sensitive to the number of
grid points n, and tolerance chosen in the numerical optimization routine.

6.3. A regularized power law potential. Power law potentials are often used in models
of social dynamics. Here we illustrate the approach for a regularized power law potential on
a periodic domain. Set

Wp(x) = x−0.4 − 1

3.5
x−0.2 −W,

W (x) = Wp(x+ ε) +Wp(1− x+ ε) for x ∈ [0, 1], extended periodically.(6.6)

The exponents −0.4,−0.2 and parameter 3.5 are chosen arbitrarily. The parameter ε = 0.01
is taken to regularize the discontinuity at x = 0. Without the regularization, the value W (0)
becomes undefined and the optimization routine in Appendix B must be modified to obtain
a convergent minimizer to (R). As a note, the shape of the potential is somewhat sensitive
to the parameters ε and deviations from the constant 3.5. The candidate minimizer ρ∗(x) is
shown in Figure 7 and has a guarantee α = 0.988.

D
ow

nl
oa

de
d 

07
/2

6/
18

 to
 1

28
.2

35
.8

3.
16

2.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PAIRWISE INTERACTION MINIMIZERS 441

(a) W+
R (x), KR(x). (b) FR(x), Fρ∗(x), ρ∗(x). (c) ψ(x).

Figure 6. Results for local potential (6.4), n = 360 grid. (a) Optimal dual decomposition for W (x) into
W+
R (x) (blue curve), and KR(x) (red curve). (b) FR(x) (circles), Fρ∗(x) = ρ∗(x) (solid lines). The recovery

is exact with α = 1. (c) Local interaction potential ψ(x).

(a) W+
R (x), KR(x), W (x). (b) ρ∗(x), Λ(x). (c) FR(x), Fρ∗(x),W+

R (x).

Figure 7. Results for regularized power law potential (6.6), n = 1000 grid. (a) Optimal dual decomposition
for W (x) (black curve) into W+

R (x) (blue curve), and KR(x) (red curve). (b) ρ∗(x) (solid) with guarantee
α = 0.988, rescaled Λ(x) (dashed) with arbitrary units. (c) Auto-correlation FR(x) (dots), and Fρ∗(x) (solid).
Here W+

R (x) is plotted (blue curve, arbitrary units) to show that Fρ(x)W+
R (x) = 0, thereby implying that ρ∗(x)

satisfies the hypothesis in Proposition 5.6.

6.4. A potential with multiple length scales. Another interesting example occurs for
potentials that promote several length scales by having multiple local minima in W (x). As
an example, take

Wt(x) = max{1− x, 0} −W for x ∈ [0, 1],

W (x) = Wt

( x
10

)
+Wt

(
1− x

10

)
− 1

2
cos(4πx) for x ∈ [0, 1], extended periodically.(6.7)

Here Wt(x) is a repulsive triangle potential which has nonnegative cosine modes. The cos(4πx)
term is added to make E(ρ) nonconvex. We find a candidate minimizer ρ∗(x) with a guarantee
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(a) W+
R (x), KR(x), W (x). (b) ρ∗(x), Λ(x). (c) FR(x), Fρ∗(x),W+

R (x).

Figure 8. Results for potential with multiple length scales (6.7), n = 1024 grid. (a) Optimal dual decompo-
sition for W (x) (black curve) into W+

R (x) (blue curve), and KR(x) (red curve). (b) ρ∗(x) (solid) with guarantee
α = 0.988, rescaled Λ(x) (dashed) with arbitrary units. (c) Auto-correlation FR(x) (dots), and Fρ∗(x) (solid).
Here W+

R (x) is plotted (blue curve, arbitrary units) to show that Fρ(x)W+
R (x) = 0, thereby implying that ρ∗(x)

satisfies the hypothesis in Proposition 5.6.

α = 0.988 (see Figure 8). The dual decomposition solution found in Figure 8(a) also highlights
the fact that KR(x) and W+

R (x) are not, in general, smooth.

Remark 6.1 (minimizers with disconnected supports). Other works, such as [5] have been
successful in characterizing global minimizers under the assumption that ρ∗(x) has connected
support. The recovery process for potential (6.7) yields an FR(x) with disconnected support,
thereby resulting in ρ∗(x) with multiply connected supports.

7. Results: Examples in two dimensions. The purpose of this section is to solve the
relaxation (R), and compute minimizers in some examples with two spatial dimensions. The
examples will also highlight several difficulties and drawbacks that become more significant
in higher dimensions. Specifically, due to the enlarged set of constraints encountered in two
dimensions, the numerical solution using the MATLAB solver becomes slow, and motivates
the need for more efficient numerical schemes.

Here, we focus on an attractive-repulsive potential that shares some similarity to the
periodic Morse potential:

W (x, y) = −GLe−
1
L

(| sin(πx)|+| sin(πy)|) + e−(| sin(πx)|+| sin(πy)|) −W, G,L > 0, x, y ∈ R.
(7.1)

As a result of the similar parameterization to WPM (x), we may expect minimizers with the
potential (7.1) for different G and L values to have qualitatively similar behavior to those
described in the phase diagram in Figure 2. For different fixed values of (L,G), we solve (R)
for FR(x), followed by performing the recovery procedure outline in section 4.

7.1. Solutions FR(x) to (R) that are continuous. Using values of (L,G) = (1.5, 0.9) in
(7.1), we obtained a solution FR(x) that is continuous, as seen in Figure 9(a). In the numerical
solution, we were limited to a coarse 40× 40 grid due to the increased solution times required
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(a) FR(x). (b) ρ∗(x).

(c) FR(x). (d) W+
R (x).

Figure 9. Results for the two dimensional periodic potential in (7.1) with (L,G) = (1.5, 0.9), and 40× 40
grid. (a) Target auto-correlation FR(x). (b) ρ∗(x) with guarantee α = 0.99. (c) Contour plot for FR(x) showing
the support. (d) Contour plot of W+

R (x) with a black line indicating the region where W+
R (x) = 0. Note that

W+
R (x)Fρ(x) = 0, implying that ρ∗(x) satisfies Proposition 5.6.

by the MATLAB solvers. In future work we plan to increase the efficiency of the solvers so
that larger spatial discretizations may be used. Despite the relatively coarse mesh, we still
resolved a numerical solution to FR(x), which likely has an error to the true solution that is
first order, i.e., O(1/n). We also set the built-in MATLAB tolerance to 10−8. The recovered
candidate ρ∗(x) (see Figure 9) was found to have a guarantee of α = 0.99, and a relative
entropy to FR(x) of F(ρ∗) = 0.0011. We now make several remarks on the characteristics of
ρ∗(x):

(i) The support of Fρ(x) is complementary to W+
R (x), i.e., Fρ(x)W+

R (x) = 0. This implies
that ρ∗(x) satisfies Proposition 5.6 and, hence, E(ρ) is convex when restricted to
densities having a support contained in the support of ρ∗(x).

(ii) The solution ρ∗(x) with support S∗, exhibits spikes at the four corners of the support.
To provide some explanation for the spikes, note that the previous item (i) implies that
E(ρ∗) = KR(ρ∗) (see also Proposition 5.6). The spikes may then be attributed to the
recovered solution ρ∗(x) wanting to minimizing the convex part of the energy KR(ρ)
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(a) ρ∗(x). (b) N = 1000 particles.

Figure 10. A comparison of the recovered solution ρ∗(x) for the two dimensional periodic potential in (7.1)
(for parameters (L,G) = (1.5, 0.9), and 40 × 40 grid); with a discrete steady state gradient flow. (a) shows
the contour plot of ρ∗(x), while (b) shows the steady state solution of (1.6) with N = 1000 particles. Note the
similarity in the support of ρ∗(x) with the coalescence of the individual particles.

that arises from an interaction potential KR(x). For this example W+
R (x) = 0 in a

diamond neighborhood near the origin, so that within this region KR(x) = W (x)−2ER
contains the attractive-repulsive behavior of W (x). Hence, ρ∗(x) can be thought of
as a density that arises from locally repelling particles confined to the set S∗. As a
result, the majority of the density concentrates near the boundary and corners of S∗.

(iii) Figure 10 shows the support of the recovered minimizer ρ∗(x), and the steady state
arrangement of N = 1000 particles obtained from the gradient flow of (1.6) (using
random initial data). The recovered minimizer identifies the emergent length scale
and pattern obtained by the collective interaction of a large number of particles.

7.2. Solutions FR(x) to (R) that are nonclassical. For values of (L,G) = (0.5, 1.5),
the solution FR(x) is a collection of discrete Dirac masses. Figure 11 shows the support of
FR(x), Fρ∗(x), and ρ∗(x). As is evident by the small dots in Figure 11(c), this is a case
where the recovered ρ∗(x) has an auto-correlation Fρ(x) that is not exactly inside FR(x), i.e.,
supp(Fρ) * supp(FR). This implies that Proposition 5.6 does not hold, and the recovered
minimizer from FR(x) is only an approximate one at best. One interesting observation is that
the recovery procedure successfully matches 93% of the support of Fρ∗(x) with FR(x), so that
ρ∗(x) contains length scales that try to optimize the overall energy E(ρ). However relative
to the constant state ρ(x) = 1, the guarantee is α = 0.54, indicating there is a large gap
between E(ρ∗) and the lower bound ER. For this example, it is possible that even the true
global minimum ρ0(x) still has a large gap relative to the bound ER. Figure 12 compares the
support of ρ∗(x) with the steady state arrangement of N = 1000 particles obtained from the
gradient flow of (1.6) (using random initial data). The figure shows that particles coalesce
into points that are not in a well-defined pattern. Finally, we remark that when the recovered
minimizers ρ∗(x) have sharp spikes, the exact height and symmetry of the spikes obtained
from the Schultz–Snyder algorithm may become sensitive to small perturbations in the target
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(a) FR(x), Fρ∗(x). (b) FR(x). (c) Fρ∗(x).

Figure 11. Results for the two dimensional potential in (7.1) with (L,G) = (0.5, 1.5) and a 40 × 40 grid.
(a) shows FR(x) (black lines) and the recovered Fρ∗(x) (blue circles). (b) shows the support of FR(x), while
(c) shows the support of Fρ∗(x). The large circles account for a total mass of 0.9267, while the small circles
(each with mass < 0.006) account for the remaining mass. The value of the functional F(ρ∗) = 0.086.

(a) ρ∗(x). (b) N = 1000 particles.

Figure 12. A comparison of the recovered solution ρ∗(x) (with guarantee α = 0.54) for the two dimensional
periodic potential in (7.1) and parameters (L,G) = (0.5, 1.5) with a discrete steady state gradient flow. (a)
shows the support of ρ∗(x). The support contains 0.9894 of the mass of ρ∗(x). (b) shows the steady state
solution of (1.6) with N = 1000 particles.

function FR(x). Developing alternative recovery methods with improved stability properties
may therefore be important in the future.

8. Discussion and conclusions. In this paper we provide a new approach for systemati-
cally computing approximate minimizers to an energy that models pairwise interactions. This
is done by relaxing the nonconvex optimization problem into a convex one to obtain a new
sufficient condition for global minimizers. A recovery procedure is then introduced as a way
to find candidate minimizers that satisfy the new sufficient condition (see Remark 3.5). The
advantage of the approach is that the resulting convex relaxation may be described analyti-
cally, which then leads to numerical discretizations of the new condition that may be solved
using well-known methods.
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Analytically, the sufficient condition arises from a lower bound to the minimum energy
of the nonconvex objective function. The new lower bound then provides a way to quantify
how optimal a candidate minimizer is. The utility of the approach is demonstrated by the
computation of a phase diagram for the periodic Morse potential, and also with the com-
putation of minimizers for numerous interaction potentials in one and two dimensions. For
example, a lattice of Dirac masses is shown to be the global minimum, for specific parameter
values, in the periodic Morse potential. Verifying that a lattice is a global minimizer to a
nonlocal energy is a difficult problem in mathematical physics, with great practical interest
(see Remark 3.6). Hence, new approaches that can show when a lattice minimizes a nonlocal
energy are of theoretical interest.

Last, a fundamental problem in the minimization of pairwise energies over probabilities is
to identify sets S∗ where the functional E(ρ) is convex, whenever the support of ρ(x) is con-
tained in S∗. To this end, our approach provides one way to identify such sets by exploiting
a dual optimization problem. Specifically, the dual formulation results in an optimal decom-
position of the energy functional E(ρ) into the sum of a convex and nonconvex functional.
The resulting convex/nonconvex splitting can then be used to analytically identify supports
in which E(ρ) is convex. From a physical perspective, this dual decomposition provides new
insight into the natural length scales that many particle systems may self-assemble into and
may eventually help in designing and controlling pattern formation in many particle systems.

Appendix A. Cases where the lower bound (R) is sharp. There are several straight-
forward cases where the lower bound (R) is sharp, and the recovery ρ∗(x) is guaranteed to
be the exact global minimum—even when E(ρ) is nonconvex. In this section we outline the
known cases where (R) is sharp. We also characterize the corresponding dual decomposition
obtained from (D) in the known exact cases.

Proposition A.1. For a W (x) satisfying properties (W1)–(W4), ρ0(x) = δ(x) is a global
minimizer to (P) if and only if W (0) ≤W (x) for all x ∈ Ω.

Proof. If W (0) ≤ W (x) for all x ∈ Ω, set ρ0(x) = δ(x). Then for any probability
distribution ρ(x),

E(ρ) =
1

2

∫
Ω

∫
Ω
W (x− y)ρ(x)ρ(y) dx dy

≥ 1

2
W (0)

∫
Ω

∫
Ω
ρ(x)ρ(y) dx dy = E(ρ0).

Hence ρ0(x) solves (P). To show the converse, take ρ0(x) = δ(x) as a global minimizer to
(P) and assume by contradiction there exists an s 6= 0 such that W (s) < W (0). Testing the
energy with a candidate ρ∗(x) = 1

2(δ(x) + δ(x− s)) yields

E(ρ∗) =
1

4

(
W (0) +W (s)

)
(A.1)

<
1

2
W (0) = E(ρ0).(A.2)

Hence, ρ0(x) cannot be a global minimizer and therefore W (0) ≤W (s) for all s ∈ Ω.D
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Remark A.2. What is interesting about Proposition A.1 is that the condition on W (x)
does not at all imply that E(ρ) is a convex functional. As an example, take W (x) = − cos(x)−
cos(2x) + 0.1 cos(3x). Here W (0) is the minimum value of W (x) yet E(ρ) is nonconvex.

The following simple proposition is known in the literature, however, we repeat it here for
completion.

Proposition A.3. Suppose W (x) satisfies properties (W1)–(W4) and, in addition, satisfies
property (5.3), i.e., ∑

k∈Zd
Ŵ (k) <∞, where Ŵ (k) := 〈W, cos(2πk · x)〉(A.3)

and W (x) =
∑
k∈Zd

Ŵ (k) cos(2πk · x).(A.4)

Then the function ρ0(x) = 1 is a global minimizer to (P) if and only if Ŵ (k) ≥ 0 for all
k ∈ Zd.

Proof. If Ŵ (k∗) < 0 for some k∗ 6= 0, then ρ∗(x) = 1 + cos(2πx · k∗) has energy

E(ρ∗) =
1

4
〈W, cos(2πk∗ · x)〉 < 0 = E(1).

Therefore the constant state is not the global minimum. To show the converse, substitute the
cosine series expansion for W (x) into E(ρ):

E(ρ) =
1

2

∑
k∈Zd

Ŵ (k)
(
〈ρ, cos(2πk · x)〉2 + 〈ρ, sin(2πk · x)〉2

)
≥ 0.

This series is justified by the regularity assumption in (A.3). Since Ŵ (k) ≥ 0, the series
expansion for E(ρ) over k is always nonnegative. Hence E(ρ) ≥ 0 = E(1).

Proposition A.4. Assume that W (x) satisfies (W1)–(W4) and property (A.3). Then, the
lower bound (R) is sharp when ρ∗(x) = 1 or ρ∗(x) = δ(x) is a global minimum to (P).

Proof. When ρ∗(x) = 1, W (x) has nonnegative cosine modes. The lower bound functional
in (R) may then be expanded in a cosine series (again which is justified by (A.3)):

〈F,W 〉 =
∑
k∈Zd

F̂ (k)Ŵ (k) ≥ 0 = 〈1,W 〉 = E0.

Hence F (x) = 1 is the minimizer to (R) over continuous functions, and FR(x) = 1 solves
(R). Alternatively, if ρ∗(x) = δ(x) is a global minimizer to (P), W (0) ≤ W (x) for all x ∈ Ω.
Hence, for any probability distribution F (x),

E0 =
1

2
W (0) =

1

2
〈δ(x),W (x)〉 ≤ 〈F,W 〉.

Therefore FR(x) = δ(x) solves (R) and is sharp.
In both cases, when FR(x) = 1 and FR(x) = δ(x), the solution FR(x) satisfies FR ◦ FR =

FR. Hence, taking ρ∗(x) = FR(x), yields an exact recovery: FR(x) = ρ∗ ◦ ρ∗.
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Remark A.5. The cases discussed in Proposition A.4 result in simple optimal dual decom-
positions:

• When FR(x) = 1 solves (R), the optimal dual decomposition is

W+
R (x) = 0, KR(x) = W (x), ER = 0.

• When FR(x) = δ(x) solves (R) the optimal dual decomposition is

W+
R (x) = W (x)−W (0), KR(x) = 0, ER =

1

2
W (0).

Appendix B. Numerical solution of (R). In this section we present numerical details
regarding the solution of (R) and dual decomposition (D). We discuss explicit details in
dimension d = 1 and note that the extension to higher dimensions follows in a straightforward
manner. To solve the relaxed problem, we use the MATLAB built-in optimization routines,
which require the construction of matrices representing the linear constraints in (R).

Here we adopt the convention that vectors and matrices start with an index of 0 (as op-
posed to MATLAB) so that row indices coincide with Fourier mode numbers. For the general
problem (R) we discretize space with an even number, n > 0, of points on an equispaced grid:

h =
1

n
xj = jh for 0 ≤ j ≤ n− 1.

The functions W (x) and F (x) are then taken as n dimensional vectors w, f ∈ Rn so that

wj ≈W (xj), fj ≈ F (xj).

There are two choices for imposing the mirror (or odd) symmetry of f . One can do it
directly and set fj = fn−j , which will allow for a reduction in the number of variables to n/2;
or one can build and enforce, a sine constraint matrix. For efficiency reasons, we adopt the
direct approach; however we also describe how to construct the sine constraint matrix.

To build the matrices representing the sine and cosine constraints in (R), one may use
the rows in the discrete Fourier transform matrix obtained via the fast Fourier transform.
Meanwhile, for the nonnegativity constraint in (R), one may either use the MATLAB built-in
nonnegativity constraint option, or directly enforce nonnegativity by passing the MATLAB
routine a constraint matrix. Regardless of the option one uses, the three n × n constraint
matrices can be constructed as follows:

Nonnegative constraint matrix: Plj = −δlj , 0 ≤ l, j ≤ n− 1,

Cosine mode matrix: Cl,: = −real(fft(el)), 0 ≤ l ≤ n− 1,

Sine mode matrix: Sl,: = imag(fft(el)), 0 ≤ l ≤ n− 1.

Here Cl,: and Sl,: are the entire lth matrix row, δlj is the Kronecker delta, and el is the
lth row of the n× n identity matrix:

δlj =

{
1 if l = j,
0 if l 6= j,

el =
[
0, 0, . . . , 0, 1, 0, . . . , 0

]
.
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By construction, the matrices have components Ckj = − cos(2πkjh), Skj = sin(2πkjh) so
that cosine and sine integrals are approximated via

−〈cos(2πkx), F (x)〉 ≈ h
n−1∑
j=0

Ckjfj , 〈sin(2πkx), F (x)〉 ≈ h
n−1∑
j=0

Skjfj .(B.1)

To write the mass constraint in (R) explicitly, we also introduce the unit vector

1 =
[
1, 1, 1, . . . , 1

]T ∈ Rn.

Finally, note that by symmetry, the bottom half of the rows in matrices C and S are redundant.
It is therefore sufficient to enforce constraints for only the rows of l with 1 ≤ l ≤ bn2 c, where⌊n

2

⌋
=

{
n
2 if n is even,

n−1
2 if n is odd.

The problem (R) then takes the discrete standard form

(Rh) Minimize
1

2
wT f

subject to P f ≤ 0,

Ck,: f ≤ 0, 1 ≤ k ≤
⌊n

2

⌋
,

Sk,: f = 0, 1 ≤ k ≤
⌊n

2

⌋
,

h 1T f = 1.

Problem (Rh) is then solved using a standard linear programming package with an interior-
point algorithm. We use the MATLAB linprog routine, with a tolerance set to 10−8. In
pseudocode, the command takes the form

[fR, ER, W+, K] = linprog(w, constraint matrices P,C,S,1).

The output then consists of the optimal solution vector fR, the optimal solution value ER, as
well as the dual decomposition vectors W+ and K. In other words, the dual decomposition
comes for free.

We identify two qualitatively different solutions fR to problem (Rh).
Case 1: The solution fR converges as h → 0 to a C0(Ω) function with no Dirac mass

singularities. In this case, the procedure from section 4 is used to recover a
discrete ρ∗(x) from fR. The vector ρ∗(x) is discretized using n grid points on
the same lattice as fR. The integrals in the continuous Schulz–Snyder algorithm
are also computed using vectorized dot products (the standard midpoint rule is
spectrally accurate for smooth solutions on periodic domains and lower order for
nonsmooth solutions FR(x)). The discrete ρ∗(x) is computed to within steady
state tolerances tol1, tol2 so that the discrete quantities satisfy

F(ρn)−F(ρn+1) < tol1, ‖ρn+1 − ρn‖L1(Ωh) < tol2,(B.2)

where ‖f‖L1(Ωh) := h
n−1∑
j=0

|fj |.(B.3)
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Case 2: The solution f → FR(x) converges in distribution to a set of delta distributions as
h → 0. Namely, for any smooth function u(x) and corresponding discrete vector
u, the value h(uT f)→ 〈u(x), FR(x)〉 converges as h→ 0.

Remark B.1. In case 2, one may obtain delta masses in fR with a support of one mesh
point each by modifying the grid size h to naturally accommodate the spacings between the
delta masses. To do this, (i) obtain a solution fR (that may have delta masses smeared over
a few grid points) to (Rh) with a suitably fine mesh h; (ii) estimate the distance between the
Dirac masses in fR; (iii) take a new grid spacing h′, such that the distance between Delta
masses is an integer multiple of h′; (iv) resolve the discrete problem (Rh′) using the new grid
h′ to obtain improved convergence. Improvements in the linear programming time were also
observed when choosing a grid spacing h′ that is commensurate with the spacings of the Dirac
deltas.

Remark B.2. In two dimensions, we found that the solution fR to the linear program
(Rh) can become sensitive to the exact number n, the prescribed tolerance, and the allowable
number of interior-point iterations.

Remark B.3. We systematically ran hundreds of recovery tests and found that the Schulz–
Snyder algorithm often converged to the same value F(ρ∞) within numerical error. We did,
however, observe that when FR(x) was a discrete probability measure in two dimensions, there
were multiple ρ∗(x) that minimized F(ρ). The different ρ∗(x) had almost the same recovery
guarantees α to within ±0.02.

Appendix C. Periodic effects for the solution to (R). The purpose of this section is
to examine a simple subclass of minimizers FR(x) to (R) in one dimension. We show that
provided W (x) satisifies a few regularity properties, minimizers within this subclass always
have spacings that are commensurate with a discrete lattice. This will turn out to be a direct
result of the periodic domain Ω.

In this section, we consider the restricted set of probabilities

F (x) = αδ(x) + βδ(x− s) + βδ(x+ s),(C.1)

α+ 2β = 1, 0 ≤ s ≤ 1

2
.

The subclass (C.1) is then completely characterized by two parameters (s, β). The lower
bound problem (R), restricted to the probabilities (C.1) with three delta masses, is

(R3) minimize
1

2
〈W (x), F (x)〉 =

1

2
W (0) + β

(
W (s)−W (0)

)
.

We now outline why unique minimizers of the form (C.1) to (R3), characterized by values
(s∗, β∗), often have support commensurate with a lattice; that is, s∗ ∈ Q is a rational number.

First optimize the energy (R3) at a fixed s, over the weight β, thereby yielding a function
only of s:

E(s) :=
1

2
W (0) + inf

β

[
β
(
W (s)−W (0)

)]
.
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If W (0) ≤W (s), then E(s) = 1
2W (0), which occurs when β = 0. If W (0) > W (s), then E(s)

takes the following form,

E(s) =
1

2
W (0) + θ(s)

(
W (s)−W (0)

)
,

θ(s) := sup β subject to (1− 2β)δ(x) + βδ(x− s) + βδ(x+ s) ∈ C.(C.2)

The function θ(s) can be computed by examining the convex cone constraint F (x) ∈ C:

〈F, cos(2πkx)〉 = 1− 2β + 2β cos(2πks) ≥ 0 for all k ∈ Z \ 0.

Hence,

0 ≤ β ≤ 1

2(1− cos(2πks))
for all k ∈ Z \ 0.

It follows that,

θ(s) = inf
k∈Z\0

1

2(1− cos(2πks))
.

When the value of s is irrational (denote by Q), cos(2πks) can be made arbitrarily close to
−1:

θ(s) =
1

4
for s ∈ Q, θ(s) = min

0≤k≤p

1

2(1− cos(2πks))
for s =

q

p
∈ Q.

An immediate consequence is that θ(q/p) ≥ θ(s) for all q/p ∈ Q (rational) and s ∈ Q
(irrational). The function θ(s) also has interesting continuity properties.

Proposition C.1. The function θ(s) for 0 < s < 1
2 , is continuous at all s ∈ Q ∪ Qe, and

discontinuous at all s ∈ Qo, where Q = Qe ∪Qo:

Qe = {q/p ∈ Q : gcd(q, p) = 1, p even}, Qo = {q/p ∈ Q : gcd(q, p) = 1, p odd}.

Proof. For simplicity in the proof first introduce

θ̃(s) := −1 for s ∈ Q, θ̃(s) = min
0≤k≤p

cos(2πks) for s :=
q

p
∈ Q.

Since θ(s) is a composition of a continuous function with θ̃(s), it is sufficient to prove Propo-
sition C.1 for the modified function θ̃(s) instead of θ(s).

First we remark on the value of θ̃(q/p) for integers q, p with gcd(q, p) = 1: there exists an
integer k∗ > 0 such that

k∗q ≡ p

2
(mod p) if p is even,

k∗q ≡ p+ 1

2
(mod p) if p is odd.
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Hence the optimal value of θ̃(s) is given by

θ̃(q/p) = cos

(
2πk∗q

p

)
= cos(π) = −1 if p is even,

θ̃(q/p) = cos

(
2πk∗q

p

)
= cos

(
π +

π

p

)
= − cos

(
π

p

)
if p is odd.

If s0 ∈ Qo, then any sequence sj → s0 with sj ∈ Q has

θ̃(s0)− θ̃(sj) = θ̃(s0) + 1 > δ > 0 for some δ.

Hence θ̃(s) is discontinuous at Qo.
For continuity at a point s0 ∈ Q ∪Qe, let ε > 0. Clearly for any s ∈ Q ∪Qe,

|θ̃(s)− θ̃(s0)| = 0 < ε.

To examine the behavior of s ∈ Qo, fix t = dε−1e as the smallest integer larger than ε−1. Note
that there are only a finite number of rational numbers q/p with p ≤ t (and gcd(q, p) = 1) in
the interval s0 − 1 < q/p < s0 + 1. Hence, for any ε > 0, one may take δ = δ(ε) small enough
so that the rational value q/p satisfying |s0− q/p| < δ must have p > t. Consequently for any
rational q/p ∈ Qo,

=⇒
∣∣∣θ̃(q/p)− θ̃(s0)

∣∣∣ =

∣∣∣∣cos

(
π +

π

p

)
− cos(π)

∣∣∣∣ ≤ π

p
≤ π

t
≤ πε.

In the last line we used a Lipschitz constant of 1 for cosine. This concludes the proof.

Proposition C.1 now leads to the following result: if W (s) is smooth enough, s∗ must be
rational.

Proposition C.2. Suppose W (s) satisfies (W1)–(W4) and has a bounded second derivative
on (0, 1). Assume also that W (0) > min0<x<1W (x) is not the strict minimum value of W (x).
Fix 0 < s∗ < 1

2 with s∗ ∈ Q ∪Qe. Then s∗ does not minimize E(s).

Proof. We assume that s∗ ∈ Q ∪ Qe minimizes E(s), and then arrive at a contradiction.
First observe that if s∗ ∈ Q∪Qe and minimizes E(s), then s∗ must also minimize W (s). This
is because E(s∗) = 1

4(W (s∗) + W (0)) whenever s∗ ∈ Q ∪ Qe. Hence, by continuity of W (s),
s∗ must minimize W (s) and therefore W ′(s∗) = 0. Using Taylor’s remainder theorem, there
exists a constant C such that for any s in the neighborhood of s∗,

|W (s)−W (s∗)| ≤ C|s− s∗|2.

We now argue that one can find a rational point close to s∗ that has a lower value of E(s)
than E(s∗). Using basic properties of cosine, as well as the result from Proposition C.1, one
has that for any rational point q/p ∈ Qo in the neighborhood of s∗, there exists a c1 > 0 such
that ∣∣∣θ̃(q/p)− θ̃(s∗)∣∣∣ =

∣∣∣∣cos

(
π

p
+ π

)
− cos(π)

∣∣∣∣ ≥ c1

p2
.
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Now consider a sequence of approximating rational points sj = qj/pj → s∗ for j > 0 with
sj ∈ Q that by a well-known theorem from continued fractions [31] satisfy∣∣∣∣ qjpj − s∗

∣∣∣∣ ≤ c2

p2
j

.

An important remark, is that the sequence of pj generated via continued fractions have pj
odd infinitely often. Therefore, without loss of generality we may restrict the sequence sj to
a subsequence on Qo that has pj odd.10

Hence, combining the previous two inequalities, on this sequence sj ∈ Qo∣∣θ(sj)− θ(s∗)∣∣ ≥ c3

∣∣sj − s∗∣∣.
By direct calculation, for j sufficiently large,

E(sj)− E(s∗) = θ(sj)
(
W (sj)−W (s∗)

)
+
(
θ(sj)− θ(s∗)

)(
W (s∗)−W (0)

)
(C.3)

≤ A1|sj − s∗|2 −A2|sj − s∗|,(C.4)

where A1 > 0 is an upper bound on θ(sj) and the Taylor constant, A2 = c3(W (0)−W (s∗)) > 0.
Finally, for sufficiently large j one has A2|sj − s∗| > A1|sj − s∗|2 implying

E(sj) < E(s∗).

Thus, s∗ cannot minimize E(s).

The purpose of Proposition C.2 is to observe that if W (s) is smooth enough on (0, 1), then
minimizations of the form (C.1) must have rational spacings.
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