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Abstract: We introduce a quantum notion of parallel transport between subsystems

of a quantum state whose holonomies characterize the structure of entanglement. In

AdS/CFT, entanglement holonomies are reflected in the bulk spacetime connection.

When the subsystems are a pair of holographic CFTs in an entangled state, our quan-

tum transport measures Wilson lines threading the dual wormhole. For subregions of

a single CFT it is generated by the modular Berry connection and computes the effect

of the AdS curvature on the transport of minimal surfaces. Our observation reveals

a new aspect of the spacetime-entanglement duality and yet another concept shared

between gravity and quantum mechanics.ar
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1 Introduction

Do quantum states have curvature? Certain quantum systems admit an effective de-

scription in terms of General Relativity in a higher dimensional AdS universe. The

dynamical geometry of spacetime, in these examples, appears to represent properties

of the system’s state, e.g. the pattern of entanglement [1–3], its complexity [4] and

others, suggesting a view of GR as another language for quantum mechanics. This

idea was summarized in [5] as GR=QM and is supported by a number of similarities

between familiar gravitational and quantum concepts.

A central idea in General Relativity is that the orientations of local frames are

related by a connection, whose holonomies reflect the curvature and topology of space-

time. We propose that quantum states exhibit a similar notion of parallel transport

with non-trivial holonomies determined by the form of entanglement of their subsys-

tems. Operationally, these holonomies are measured by transporting a probe state

between subsystems via the quantum teleportation protocol, using the global state as

resource.
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A concrete example of our proposal is the modular Berry connection, recently

proposed in [6]. It is introduced as a CFT connection that relates the frames of modular

Hamiltonians of nearby subregions. In the bulk, modular Berry holonomies compute the

precession of the local Rindler frame of a Ryu-Takayanagi surface, after a “closed loop”

of deformations of its boundary support. This links our entanglement holonomies to the

bulk spacetime connection, which we view as another non-trivial parallel in support of

GR=QM and a step towards a precise articulation of a spacetime-entanglement duality.

In Section 2, we review the concept of quantum reference frames introduced in [7, 8]

and explain how the form of entanglement determines their alignment.∗ In Section 3, we

illustrate that quantum teleportation defines a transport between quantum frames that

probes this alignment, a fact we then utilize in Section 4 to argue that entanglement

holonomies for a pair of holographic CFTs in the thermofield double state measure

gravitational Wilson lines threading the dual wormhole. In Section 5 we formulate bulk

transport of Rindler frames in the CFT language and explain its quantum description

in terms of the modular Berry connection.

2 Aligned Quantum Frames

Reference frames are idealizations of physical systems such as clocks, meter sticks and

gyroscopes, which we use as standards for comparison with our local measurements.

When these reference systems are taken to be classical, General Relativity provides a

geometric framework for relating their readings at separate locations. However, physical

systems are quantum and so are our reference frames. In this section, we discuss the

framework for describing alignment of quantum frames [7, 8].

Consider two gyroscopes at different locations in our lab and suppose for simplicity

that their orientation is confined on a 2-D plane (fig. 1). Quantum mechanically, each

gyroscope is described by a conjugate pair of operators (Θi, Li), i = A,B where Θi is

the orientation on the plane and Li the corresponding angular momentum.

We can use our quantum gyroscopes to define Cartesian frames in their local neigh-

borhoods. The relative orientation of the two frames can be made meaningful in two

ways. The first is to simply transport gyroscope A to the neighborhood of B through

the lab, align their orientation and then return A to its original location. If gravity is

unimportant, this parallel transport is trivial and would result in a state:

|AB〉 = |Θ〉A|Θ〉B (2.1)

∗For related interesting discussions see [9].

– 2 –



Figure 1: The orientation of a pair of gyroscopes can be used to define local Cartesian frames.

Each of them is a quantum system described by the conjugate pair (Θi, Li), i = A,B which controls

the direction in which they point.

A second method for aligning the Cartesian frames is to entangle the gyroscopes.

Imagine preparing them, for example, in a state with vanishing total angular momen-

tum:

|AB〉 =
Lmax∑

L=−Lmax

ψ(L) |L〉A| −L〉B (2.2)

From the perspective of the global wavefunction, the orientation of both gyroscopes

is now random, since each of them is described by a reduced density matrix which is

diagonal in the angular momentum basis.

The orientation of B relative to A, however, depends sensitively on the form of

entanglement, dictated by the wavefunction ψ(L). If, for example, we prepare the

state ψ(L) ∝ eiLθ then, after a change of basis, (2.2) becomes:

|AB〉 = |Ltot = 0〉|ΘAB = θ〉 (2.3)

where ΘAB = ΘB − ΘA. Therefore, according to A, gyroscope B points in a definite

direction, at a relative angle of θ.

The definite relative alignment of the previous state should be contrasted with the

case ψ(L) = δL,0:

|AB〉 = |0〉A|0〉B (2.4)

The relative orientation of A and B in this example has maximal quantum uncertainty

and their corresponding Cartesian frames are uncorrelated.
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The lesson of this discussion is that the alignment of quantum reference frames,

which can be either definite or indefinite, is determined by the particular pattern of

entanglement in the global state.

3 Entanglement Holonomies

We now want to define a quantum notion of parallel transport. Given an entangled

state of our quantum reference frames, we wish to devise a rule for transporting a probe

state between them so that it “learns” about their relative orientation. Since the latter

depends on the form of entanglement, quantum teleportation provides an appropriate

rule, as we now illustrate.

In order to emphasize that our transport is quantum mechanical in nature and it

does not rely on assumptions of robustness or classicality of the reference frames, we

will consider the simplest type of gyroscopes: single qubits.

Standard teleportation assumes an entangled state between reference frames A and

B, which we choose to be maximally entangled in a state of zero σz component:

|AB〉 =
1√
2

(
e−i

θ
2 |u〉A|d〉B − ei

θ
2 |d〉A|u〉B

)
. (3.1)

Here u, d refer to spin along the z axis and θ ∈ [0, 2π) is an arbitrary phase.

Consider a third system C whose state |φ〉C we will teleport from B to A. The

protocol proceeds with a joint measurement on BC in the Bell basis. For simplicity,

we will consider probabilistic teleportation so that if BC is found in the singlet state

|Bell〉BC =
1√
2

(|u〉B|d〉C − |d〉B|u〉C) , (3.2)

then teleportation is successful and the state of A gets updated with information about

C. Otherwise we discard the state and repeat the protocol.

At the end of the protocol, the state of A is:

|φ̃〉A = BC〈Bell|
(
|AB〉 ⊗ |φ〉C

)
= e

i
2
σzθ|φ〉A (3.3)

which is rotated by an angle θ on the xy−plane with respect to |φ〉C . We can then

return the teleported qubit to point B by simple geometric transport through the lab

and compare the result with a record of the original state |φ〉C . The comparison can

be implemented experimentally by interfering |φ̃〉A and |φ〉C and eq. (3.3) will relate

the observed fringe pattern to the relative phase in our resource state (3.1). Similar

statements hold for higher angular momentum gyroscopes, like those in Section 2.
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Figure 2: Transporting a probe gyroscope (C) around a closed loop. The solid blue line corresponds

to standard spacetime transport of the gyroscope in the lab. The dashed light blue lines represent

quantum transport of the gyroscope from reference frame B to A via quantum teleportation with

reference state |AB〉 (3.1). The angle between the gyroscopes transported along the two different

paths measures the holonomy of the loop.

We interpret this procedure as the parallel transport of the state of C along a closed

loop (fig. 2). One leg of this path is ordinary geometric transport of the gyroscope

through the lab while the other is quantum “transport through the entangled state

|AB〉”. From the perspective of the ER=EPR proposal, we may interpret the latter as

the parallel transport through a small Einstein-Rosen bridge. The relative orientation

of the original and the transported state defines a quantum holonomy, induced by the

form of entanglement of the reference state.

4 Wormhole-Threading Wilson lines

We argue that entanglement holonomies, as defined in the previous section, translate

to geometric holonomies in spacetime when applied to CFTs with a holographic dual.

We can substitute the two gyroscopes of our toy example with a pair of large N CFTs

that Alice and Bob have engineered on two shells of matter in their lab. Moreover,

they have entangled them in the thermofield double state so that they admit a dual

description in terms of a two-sided AdS black hole.
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Rotation. Alice and Bob can choose to further entangle the angular momenta of

their CFTs with relative phases as in (3.1):

|ψ〉 =
∑
L,E

e−βE/2 eiLθ |L,E〉 ⊗ |−L,E〉 (4.1)

The angle θ relates the orientation at the two ends of the wormhole. As before,

the experimentalists can measure it by first aligning two gyroscopes in the lab using

ordinary transport and then “closing a loop” with Alice teleporting her gyroscope’s

state to Bob using (4.1).

According to recent results [10–13], however, the quantum teleportation proto-

col on the boundary renders the bulk wormhole temporarily traversable, allowing the

teleported system to physically propagate to the other side through the open bridge.

Therefore, when the quantum systems are holographic the quantum transport we de-

fined in the previous section becomes geometric transport through the wormhole. The

holonomy Alice and Bob measure when they read off the misalignment of the trans-

ported gyroscopes is, from the bulk perspective, induced by a gravitational Wilson line

threading the wormhole.

Time translation. We could also imagine that Alice and Bob prepared their system

in a state with some energy-dependent relative phases:

|ψ′〉 =
∑
L,E

e−βE/2 eiEη |L,E〉 ⊗ |−L,E〉 (4.2)

This could be done by applying some amount of time evolution on the two sides inde-

pendently. In this case, the phases determine the relative alignment of the Schwarzchild

clocks on the two sides of the wormhole. The holonomy induced by this entanglement

pattern can again be measured in the lab. Alice and Bob can sync a pair of clocks

and use them to define time on each of their CFTs. When Alice teleports her clock to

Bob, he will observe that the two clocks’ readings are off by a time-shift equal to η. A

similar setup was recently discussed in [14].

For a bulk observer who traverses the wormhole opened via the Gao-Jafferis-Wall

method, this time-shift induced by the entanglement of (4.2) is an extra contribution

to his time dilation with respect to boundary time, in addition to the familiar effect

stemming from spacetime curvature. The internal observer attributes this, once more,

to the non-trivial spacetime connection induced by a wormhole-threading Wilson line.
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5 Transport in AdS and Modular Berry Connection

Spacetime holonomies are also induced by the curvature of spacetime. When curva-

ture is non-vanishing, parallel transport of an observer’s local Lorentz frame around

a closed loop will result in a Lorentz transformation. In AdS/CFT this gravitational

phenomenon has its origin in the entanglement pattern between subregions in a single

CFT and it is captured by the modular Berry connection [6, 15], as we now explain.

5.1 Geometric Transport of Minimal Surfaces

We will sketch the idea in pure AdS; a more complete and rigorous discussion will

appear in [15]. Moreover, instead of transporting the local frame of a point along a

curve in spacetime, we will consider the transport of a codimension-2 minimal surface.

A minimal surface ΓA partitions spacetime in two complementary Rindler wedges WA,

WĀ. The bulk metric is invariant under a coordinated time translation in both wedges

(tA, tĀ) → (tA + ε, tĀ − ε) (fig. 3). These transformations preserve the location of the

surface and act as Lorentz boosts in its vicinity.

In order to describe the bulk from the perspective of the minimal surface we need

to select a Rindler frame. Physically, this amounts to choosing a Rindler clock for the

wedges or, equivalently, a boost angle coordinate in the neighborhood of the horizon.

The Rindler frame of the minimal surface is, therefore, the analogue of the Lorentz

frame on the tangent space of a point in the ordinary discussion of parallel transport.

We can now transport ΓA to another infinitesimally separated surface and study the

transformation of the associated Rindler frame. While the general rules for generating

this transport need to be carefully defined—and will be the subject of [15]—in the

vacuum we can move in the space of minimal surfaces by simply utilizing the AdS

isometries. For example, transport around the infinitesimal loop ΓA → ΓB → ΓC → ΓA
of fig. 4 will induce a holonomy

UACUCBUBA = SA, (5.1)

where Uji are the isometries that map Γi to Γj and SA ∈ SO(1, d−1)×SO(1, 1) belongs

to the stabilizer group of the minimal surface ΓA. The SO(1, d− 1) component of the

holonomy computes an overall translation and rotation of the internal coordinates on

the minimal surface and was discussed in detail in [6]. The SO(1, 1) component, on the

other hand, measures the Rindler boost of the frame of the minimal surface. In what

follows we focus on this boost component of the holonomy.

The origin of the holonomy is the curvature of AdS. The isometries Uji in (5.1)

map individual points on Γi and their local tangent spaces to corresponding points on

Γj via ordinary parallel transport. Upon closing a loop, every point on ΓA gets parallel
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Figure 3: A minimal surface ΓA in AdS and the associated pair of Rindler wedges WA,WĀ. The

red arrows represent Rindler time translations in the two wedges. The combined transformation

(tA, tĀ)→ (tA + ε, tĀ − ε) is an isometry of AdS and acts as a boost in the vicinity of ΓA. Fixing the

Rindler frame of ΓA amounts to choosing an origin for the Rindler clocks. The clocks on WA, WĀ are

synced, as dictated by the vacuum state (5.2).

transported to some new point on it by following a curve in AdS and its local Lorentz

frame can be compared with the original frame at that location. The difference between

the two measures a spacetime holonomy. In a general geometry this boost angle may

vary along the minimal surface, but in pure AdS the homogeneity of the space-time

reduces it to a global shift of the Rindler clock.

In a nutshell, spacetime geometry relates the internal clocks of different Rindler

wedges via an integrated version of the bulk connection that parallel transports their

horizons.

5.2 Modular Berry Holonomies

The two wedges WA, WĀ selected by the minimal surface ΓA are described by the

reduced density matrices of their dual boundary subregions, ρA, ρĀ respectively. Their

modular Hamiltonians, defined by Hmod = − log ρ, are Hermitian CFT operators that

generate Rindler time translations in the corresponding bulk wedge. The choice of a

Rindler clock in WA is, therefore, mapped to the selection of an origin for modular time
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(t = 0) in subregion A or, equivalently, to a convention for the phases of the modular

eigenstates eiEt|E〉A.

In the modular eigenbasis, the global vacuum state reads:

|0〉CFT =
1

Z

∑
E

e−πE|E〉A|E〉Ā. (5.2)

Recalling our discussion of eq. (4.2), the absence of relative phases in (5.2) implies

that the Rindler clocks on the opposite sides of the minimal surface are synced (fig. 3).

Furthermore, it is evident from (5.2) that the state is annihilated by the full modular

Hamiltonian: (
Hmod,A −Hmod,Ā

)
|0〉CFT = 0 (5.3)

This is the boundary incarnation of the Rindler boost symmetry that preserves the

minimal surface in AdS. For every CFT bipartition, there is a “local” gauge ambiguity

in the frame of the full modular Hamiltonian. This ambiguity is the boundary avatar

of the bulk freedom to pick a Rindler frame for ΓA (fig. 3).

Transport of modular frames. Our task, now, is to transport a Rindler clock from

a subregion to another in two different ways in order to form a loop and measure a

spacetime holonomy. The closed loop we will consider is composed by three infinites-

imal steps, passing through the minimal surfaces ΓA, ΓB and ΓC illustrated in fig. 4.

According to our discussion in Sec. 2, the result of the transport in the CFT should be

reflected in the form of entanglement between the modular eigenbases of the subregions

along our path.

We can exploit the modular gauge freedom (5.3) to align the modular clocks of

(A, Ā) and (C, C̄), simply by synchronizing them with the AdS time-slice that contains

both minimal surfaces (fig. 4). In this convenient gauge, teleportation of a clock from

A to C̄ using (5.2) will result in no time-translation. To be more precise, when ΓA and

ΓC are infinitesimally separated, we can think of |E〉Ā and |E〉C̄ as states in the same

Hilbert space [16]. A convenient gauge choice for the modular frames sets the phases of

the Hmod,Ā and Hmod,C̄ eigenvectors so that C̄〈E|E〉Ā is real. In this gauge, the state

of AC̄, which in the limit C̄ → Ā is approximately given by

|AC̄〉 ≈ 1

Z

∑
E

e−πE C̄〈E|E〉Ā |E〉A|E〉C̄ , (5.4)

comes with no relative phases between A and C̄ and the two clocks are synced.

On the other hand, the alignment of A and B̄ in the above gauge is non-trivial

(fig. 4). If we set the origin of modular time for (B, B̄) to be the Rindler time-slice
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Figure 4: Three infinitesimally minimal surfaces in AdS, ΓA,ΓB ,ΓC , can be used to close a loop of

modular Hamiltonians and compute the precession of the modular frame. The first leg of the closed

path is transport of a Rindler clock directly from A to C̄ (LEFT). The invariance of the state under

(5.3) can be utilized to sync the Rindler clocks (tA = tC and tĀ = tC̄) and trivialize the transport.

The second leg is transport from A to B̄ and then to C̄ (RIGHT). The clock of B̄ is now misaligned

with both A and C̄ as can be seen by the kinks in the red and blue AdS time-slices. The modular

Berry holonomy (5.7) depends on the hyperbolic angles of these kinks.

that contains both ΓB and ΓA then B̄〈E|E〉Ā = cE e
iEηA , where cE ∈ R and ηA is the

hyperbolic angle of the “kink” of the red-colored time-slice at the minimal surface ΓA
in fig. 4. As a result, the state of AB̄ is approximately:

|AB̄〉 ≈ 1

Z

∑
E

e−πE B̄〈E|E〉Ā |E〉A|E〉B̄

≈ 1

Z

∑
E

e−πE cE e
iEηA |E〉A|E〉B̄ (5.5)

The two Rindler clocks are misaligned by ηA.

To close the loop, we need to relate the frames of the HB̄ and HC̄ eigenvectors. As

before, this is determined by the inner product C̄〈E|E〉B̄ which allows us to obtain a

state for AC̄ from (5.5):

|ÃC̄〉 ≈ 1

Z

∑
E

e−πE C̄〈E|E〉B̄ B̄〈E|E〉Ā |E〉A|E〉C̄ (5.6)

As fig. 4 illustrates, with the above gauge choices C̄〈E|E〉B̄ is imaginary with phase

equal to E(ηC − ηB), where ηB, ηC are the boost angles of the “kinks” at ΓB and ΓC ,
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respectively. This is because in order to make C̄〈E|E〉B̄ real, namely to sync the clocks

of B̄ and C̄, we would need to boost the state of B̄ by exp
[
iHmod,B̄ ηB

]
and the state

of C̄ by exp
[
iHmod,C̄ ηC

]
.

Modular Berry holonomy and bulk curvature. The relative phase between the

modular eigenstates |E〉A and |E〉C̄ differs between the two ways of relating them—(5.4)

and (5.6)—by:

Im log [ Ā〈E|E〉C̄ C̄〈E|E〉B̄ B̄〈E|E〉Ā] = E(ηB + ηA − ηC) (5.7)

This expression holds independently of our convenient gauge choice C̄〈E|E〉Ā ∈ R.

In the continuum limit the left-hand side computes the Berry curvature [17], which

arises from taking the modular Hamiltonian around an infinitesimal loop from Hmod,Ā

to Hmod,B̄ to Hmod,C̄ and back to Hmod,Ā. The right-hand side measures the boost angle

by which the Rindler frame of the minimal surface precesses. It is non-zero due to the

curvature of the AdS space-time.

We have, therefore, arrived at a direct link between the geometric connection in

gravity and the Berry connection in quantum mechanics. The Berry connection of in-

terest here, however, is not the familiar one describing evolution under time-dependent

Hamiltonians, but instead a Berry connection relating the eigenspaces of modular

Hamiltonians of different subsystems of the CFT. The modular Berry connection is

the correct tool for studying the relative alignment of quantum frames, which origi-

nates from their entanglement properties in the global wavefunction.

A more rigorous treatment of the modular Berry connection for the CFT vacuum

utilizes the geometric properties of the space of vacuum modular Hamiltonians called

kinematic space [18, 19]; the details of this method were explained in [6]. The extension

of these ideas to other asymptotically AdS spacetimes and general CFT states will be

presented in upcoming work [15].

6 Conclusion

When classical observers at separate locations measure an observable of a given system

they generically disagree on the outcome. Part of the mismatch stems simply from

their individual choice of orientation and grading of their measuring devices; part of it,

however, is physical and can be extracted from the relations of a family of observers

around a closed loop. The connection of General Relativity and its curvature encapsu-

late such relative alignments for measurements of distances, time shifts, rotations and

boosts.
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Similarly, to meaningfully compare their observations of a quantum system, differ-

ent experimentalists need to relate their Hilbert space bases. For a given observable

O, their conventions may differ by the action of any symmetry of O, including the

trivial transformation of rotating its eigenstates by a phase. Although this choice of

“quantum frame” is inconsequential for experiments executed by a single observer, it

is essential for determining the map between reference frames.

Our first central claim was that when the observers themselves—or their devices—

are treated as internal quantum systems, their relative bases are determined by the

way they are entangled in the global state. The observers can operationally probe this

alignment by exchanging a probe state via quantum teleportation, which we interpreted

as a quantum mechanical notion of transport with non-trivial holonomies. Quantum

systems are, therefore, endowed with a connection encoding their entanglement struc-

ture. It would be interesting to explore a potential overlap of this connection with the

emergent gauge field ideas of [20].

We, further, argued that our proposed quantum connection and the geometric

connection in spacetime are identified under the AdS/CFT duality. This potentially

provides a new diagnostic for the emergence of a classical bulk spacetime. The quan-

tum holonomies computed by the modular Berry connection on the boundary are not

expected to be geometric in general. Equation (5.7) produces a unitary rotation for

every eigenspace of the modular Hamiltonian, with the transformations of different

eigenspaces being generically uncorrelated. In the vacuum example of Section 5, con-

formal symmetry ensured that the holonomies were linear in the modular eigenvalues.

This allowed us to interpret them as some amount of modular flow and, therefore, a

geometric boost of the frame of the bulk minimal surface. The requirement that the

modular Berry connection is, at leading order in N , valued in the local symmetry group

of a minimal surface—local boosts and surface diffeomorphisms—appears necessary for

a boundary state to be consistent with a classical bulk.

The idea of using quantum teleportation to extract geometric information about

the bulk is reminiscent of the discussion in [21]. In that work, the length of bulk

curves in AdS3, as computed by differential entropy [22], was identified with the cost

of a communication protocol based on state merging [23], a simple generalization of

teleportation. But differential entropy was also shown in [6] to equal a translational

component of the modular holonomy. This suggests that the protocol of [21] may serve

as a useful guide for generalizing the quantum transport proposed in Section 3 to other

situations, where state merging and not just teleportation is involved.
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