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ABSTRACT: We introduce a quantum notion of parallel transport between subsystems
of a quantum state whose holonomies characterize the structure of entanglement. In
AdS/CFT, entanglement holonomies are reflected in the bulk spacetime connection.
When the subsystems are a pair of holographic CFTs in an entangled state, our quan-
tum transport measures Wilson lines threading the dual wormhole. For subregions of
a single CF'T it is generated by the modular Berry connection and computes the effect
of the AdS curvature on the transport of minimal surfaces. Our observation reveals
a new aspect of the spacetime-entanglement duality and yet another concept shared
between gravity and quantum mechanics.
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1 Introduction

Do quantum states have curvature? Certain quantum systems admit an effective de-
scription in terms of General Relativity in a higher dimensional AdS universe. The
dynamical geometry of spacetime, in these examples, appears to represent properties
of the system’s state, e.g. the pattern of entanglement [1-3], its complexity [4] and
others, suggesting a view of GR as another language for quantum mechanics. This
idea was summarized in [5] as GR=QM and is supported by a number of similarities
between familiar gravitational and quantum concepts.

A central idea in General Relativity is that the orientations of local frames are
related by a connection, whose holonomies reflect the curvature and topology of space-
time. We propose that quantum states exhibit a similar notion of parallel transport
with non-trivial holonomies determined by the form of entanglement of their subsys-
tems. Operationally, these holonomies are measured by transporting a probe state
between subsystems via the quantum teleportation protocol, using the global state as
resource.



A concrete example of our proposal is the modular Berry connection, recently
proposed in [6]. It is introduced as a CF'T connection that relates the frames of modular
Hamiltonians of nearby subregions. In the bulk, modular Berry holonomies compute the
precession of the local Rindler frame of a Ryu-Takayanagi surface, after a “closed loop”
of deformations of its boundary support. This links our entanglement holonomies to the
bulk spacetime connection, which we view as another non-trivial parallel in support of
GR=QM and a step towards a precise articulation of a spacetime-entanglement duality.

In Section 2, we review the concept of quantum reference frames introduced in [7, §]
and explain how the form of entanglement determines their alignment.* In Section 3, we
illustrate that quantum teleportation defines a transport between quantum frames that
probes this alignment, a fact we then utilize in Section 4 to argue that entanglement
holonomies for a pair of holographic CFTs in the thermofield double state measure
gravitational Wilson lines threading the dual wormhole. In Section 5 we formulate bulk
transport of Rindler frames in the CFT language and explain its quantum description
in terms of the modular Berry connection.

2 Aligned Quantum Frames

Reference frames are idealizations of physical systems such as clocks, meter sticks and
gyroscopes, which we use as standards for comparison with our local measurements.
When these reference systems are taken to be classical, General Relativity provides a
geometric framework for relating their readings at separate locations. However, physical
systems are quantum and so are our reference frames. In this section, we discuss the
framework for describing alignment of quantum frames |7, 8].

Consider two gyroscopes at different locations in our lab and suppose for simplicity
that their orientation is confined on a 2-D plane (fig. 1). Quantum mechanically, each
gyroscope is described by a conjugate pair of operators (0;, L;), i = A, B where ©; is
the orientation on the plane and L; the corresponding angular momentum.

We can use our quantum gyroscopes to define Cartesian frames in their local neigh-
borhoods. The relative orientation of the two frames can be made meaningful in two
ways. The first is to simply transport gyroscope A to the neighborhood of B through
the lab, align their orientation and then return A to its original location. If gravity is
unimportant, this parallel transport is trivial and would result in a state:

|AB) = |©)4|0)5 (2.1)

*For related interesting discussions see [9].
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Figure 1: The orientation of a pair of gyroscopes can be used to define local Cartesian frames.
Each of them is a quantum system described by the conjugate pair (0;, L;), i = A, B which controls
the direction in which they point.

A second method for aligning the Cartesian frames is to entangle the gyroscopes.
Imagine preparing them, for example, in a state with vanishing total angular momen-
tum:

Ltnax

[AB) = > (L) |L)al —L)p (2.2)
L=—Lmax
From the perspective of the global wavefunction, the orientation of both gyroscopes
is now random, since each of them is described by a reduced density matrix which is
diagonal in the angular momentum basis.
The orientation of B relative to A, however, depends sensitively on the form of
entanglement, dictated by the wavefunction ¥ (L). If, for example, we prepare the
state (L) o e'X? then, after a change of basis, (2.2) becomes:

|AB) = |Liot = 0)|Oap = 0) (2.3)

where © 45 = Op — © 4. Therefore, according to A, gyroscope B points in a definite
direction, at a relative angle of 6.
The definite relative alignment of the previous state should be contrasted with the
case Y(L) = dr¢:
|AB) = |0)4]0)5 (2.4)

The relative orientation of A and B in this example has maximal quantum uncertainty
and their corresponding Cartesian frames are uncorrelated.



The lesson of this discussion is that the alignment of quantum reference frames,
which can be either definite or indefinite, is determined by the particular pattern of
entanglement in the global state.

3 Entanglement Holonomies

We now want to define a quantum notion of parallel transport. Given an entangled
state of our quantum reference frames, we wish to devise a rule for transporting a probe
state between them so that it “learns” about their relative orientation. Since the latter
depends on the form of entanglement, quantum teleportation provides an appropriate
rule, as we now illustrate.

In order to emphasize that our transport is quantum mechanical in nature and it
does not rely on assumptions of robustness or classicality of the reference frames, we
will consider the simplest type of gyroscopes: single qubits.

Standard teleportation assumes an entangled state between reference frames A and
B, which we choose to be maximally entangled in a state of zero o, component:

1 0 )
4B) = (e 5w aldys — €4[d)alu)s ) (3.1)

Here u, d refer to spin along the z axis and # € [0,27) is an arbitrary phase.

Consider a third system C' whose state |¢)c we will teleport from B to A. The
protocol proceeds with a joint measurement on BC' in the Bell basis. For simplicity,
we will consider probabilistic teleportation so that if BC' is found in the singlet state

1
Bell) po = 7 (Ju)sld)c — |d) Blu)c) (3.2)

then teleportation is successful and the state of A gets updated with information about
C'. Otherwise we discard the state and repeat the protocol.
At the end of the protocol, the state of A is:

[6)a = po(Bell|(|AB) @ [9)0) = 27|¢) (3-3)

which is rotated by an angle # on the xy—plane with respect to |¢p)c. We can then
return the teleported qubit to point B by simple geometric transport through the lab
and compare the result with a record of the original state |¢)c. The comparison can
be implemented experimentally by interfering |¢) 4 and |¢)¢ and eq. (3.3) will relate
the observed fringe pattern to the relative phase in our resource state (3.1). Similar
statements hold for higher angular momentum gyroscopes, like those in Section 2.
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Figure 2: Transporting a probe gyroscope (C) around a closed loop. The solid blue line corresponds
to standard spacetime transport of the gyroscope in the lab. The dashed light blue lines represent
quantum transport of the gyroscope from reference frame B to A via quantum teleportation with
reference state |AB) (3.1). The angle between the gyroscopes transported along the two different
paths measures the holonomy of the loop.

We interpret this procedure as the parallel transport of the state of C' along a closed
loop (fig. 2). One leg of this path is ordinary geometric transport of the gyroscope
through the lab while the other is quantum “transport through the entangled state
|AB)”. From the perspective of the ER=EPR proposal, we may interpret the latter as
the parallel transport through a small Einstein-Rosen bridge. The relative orientation
of the original and the transported state defines a quantum holonomy, induced by the
form of entanglement of the reference state.

4 Wormbhole-Threading Wilson lines

We argue that entanglement holonomies, as defined in the previous section, translate
to geometric holonomies in spacetime when applied to CFTs with a holographic dual.
We can substitute the two gyroscopes of our toy example with a pair of large N CFTs
that Alice and Bob have engineered on two shells of matter in their lab. Moreover,
they have entangled them in the thermofield double state so that they admit a dual
description in terms of a two-sided AdS black hole.



Rotation. Alice and Bob can choose to further entangle the angular momenta of
their CFTs with relative phases as in (3.1):

) = e PP E) ©|-L,E) (4.1)

L.E

The angle 6 relates the orientation at the two ends of the wormhole. As before,
the experimentalists can measure it by first aligning two gyroscopes in the lab using
ordinary transport and then “closing a loop” with Alice teleporting her gyroscope’s
state to Bob using (4.1).

According to recent results [10-13], however, the quantum teleportation proto-
col on the boundary renders the bulk wormhole temporarily traversable, allowing the
teleported system to physically propagate to the other side through the open bridge.
Therefore, when the quantum systems are holographic the quantum transport we de-
fined in the previous section becomes geometric transport through the wormhole. The
holonomy Alice and Bob measure when they read off the misalignment of the trans-
ported gyroscopes is, from the bulk perspective, induced by a gravitational Wilson line
threading the wormhole.

Time translation. We could also imagine that Alice and Bob prepared their system
in a state with some energy-dependent relative phases:

W) =) e P2 E) @ |—L, E) (4.2)

L.E

This could be done by applying some amount of time evolution on the two sides inde-
pendently. In this case, the phases determine the relative alignment of the Schwarzchild
clocks on the two sides of the wormhole. The holonomy induced by this entanglement
pattern can again be measured in the lab. Alice and Bob can sync a pair of clocks
and use them to define time on each of their CFTs. When Alice teleports her clock to
Bob, he will observe that the two clocks’ readings are off by a time-shift equal to n. A
similar setup was recently discussed in [14].

For a bulk observer who traverses the wormhole opened via the Gao-Jafferis-Wall
method, this time-shift induced by the entanglement of (4.2) is an extra contribution
to his time dilation with respect to boundary time, in addition to the familiar effect
stemming from spacetime curvature. The internal observer attributes this, once more,
to the non-trivial spacetime connection induced by a wormhole-threading Wilson line.



5 Transport in AdS and Modular Berry Connection

Spacetime holonomies are also induced by the curvature of spacetime. When curva-
ture is non-vanishing, parallel transport of an observer’s local Lorentz frame around
a closed loop will result in a Lorentz transformation. In AdS/CFT this gravitational
phenomenon has its origin in the entanglement pattern between subregions in a single
CFT and it is captured by the modular Berry connection [6, 15], as we now explain.

5.1 Geometric Transport of Minimal Surfaces

We will sketch the idea in pure AdS; a more complete and rigorous discussion will
appear in [15]. Moreover, instead of transporting the local frame of a point along a
curve in spacetime, we will consider the transport of a codimension-2 minimal surface.
A minimal surface I' 4 partitions spacetime in two complementary Rindler wedges W4,
W ;. The bulk metric is invariant under a coordinated time translation in both wedges
(ta,tz) = (ta+ €tz —€) (fig. 3). These transformations preserve the location of the
surface and act as Lorentz boosts in its vicinity.

In order to describe the bulk from the perspective of the minimal surface we need
to select a Rindler frame. Physically, this amounts to choosing a Rindler clock for the
wedges or, equivalently, a boost angle coordinate in the neighborhood of the horizon.
The Rindler frame of the minimal surface is, therefore, the analogue of the Lorentz
frame on the tangent space of a point in the ordinary discussion of parallel transport.

We can now transport ["4 to another infinitesimally separated surface and study the
transformation of the associated Rindler frame. While the general rules for generating
this transport need to be carefully defined—and will be the subject of [15]—in the
vacuum we can move in the space of minimal surfaces by simply utilizing the AdS
isometries. For example, transport around the infinitesimal loopI'y = T'p > T'c = I'4
of fig. 4 will induce a holonomy

UacUcpUpa = Sa, (5.1)

where Uj; are the isometries that map I'; to I'; and Sy € SO(1,d—1) x SO(1, 1) belongs
to the stabilizer group of the minimal surface I'y. The SO(1,d — 1) component of the
holonomy computes an overall translation and rotation of the internal coordinates on
the minimal surface and was discussed in detail in [6]. The SO(1, 1) component, on the
other hand, measures the Rindler boost of the frame of the minimal surface. In what
follows we focus on this boost component of the holonomy.

The origin of the holonomy is the curvature of AdS. The isometries Uy; in (5.1)
map individual points on I'; and their local tangent spaces to corresponding points on
I'; via ordinary parallel transport. Upon closing a loop, every point on I'4 gets parallel



Figure 3: A minimal surface I'4 in AdS and the associated pair of Rindler wedges Wa, W5. The
red arrows represent Rindler time translations in the two wedges. The combined transformation
(ta,t3) = (ta+ €tz —e€)is an isometry of AdS and acts as a boost in the vicinity of T' 4. Fixing the
Rindler frame of I' 4 amounts to choosing an origin for the Rindler clocks. The clocks on Wy, W4 are
synced, as dictated by the vacuum state (5.2).

transported to some new point on it by following a curve in AdS and its local Lorentz
frame can be compared with the original frame at that location. The difference between
the two measures a spacetime holonomy. In a general geometry this boost angle may
vary along the minimal surface, but in pure AdS the homogeneity of the space-time
reduces it to a global shift of the Rindler clock.

In a nutshell, spacetime geometry relates the internal clocks of different Rindler
wedges via an integrated version of the bulk connection that parallel transports their
horizons.

5.2 Modular Berry Holonomies

The two wedges W4, W3 selected by the minimal surface 'y are described by the
reduced density matrices of their dual boundary subregions, p4, pi respectively. Their
modular Hamiltonians, defined by H,,,q = — log p, are Hermitian CFT operators that
generate Rindler time translations in the corresponding bulk wedge. The choice of a
Rindler clock in W, is, therefore, mapped to the selection of an origin for modular time



(t = 0) in subregion A or, equivalently, to a convention for the phases of the modular
eigenstates e'Ft|E) 4.
In the modular eigenbasis, the global vacuum state reads:

Ocrr =5 3 e |B)AlE)z 5.2

Recalling our discussion of eq. (4.2), the absence of relative phases in (5.2) implies
that the Rindler clocks on the opposite sides of the minimal surface are synced (fig. 3).
Furthermore, it is evident from (5.2) that the state is annihilated by the full modular
Hamiltonian:

(Hmod,A - Hmod,A) |0>CFT =0 (53)

This is the boundary incarnation of the Rindler boost symmetry that preserves the
minimal surface in AdS. For every CFT bipartition, there is a “local” gauge ambiguity
in the frame of the full modular Hamiltonian. This ambiguity is the boundary avatar
of the bulk freedom to pick a Rindler frame for I'4 (fig. 3).

Transport of modular frames. Our task, now, is to transport a Rindler clock from
a subregion to another in two different ways in order to form a loop and measure a
spacetime holonomy. The closed loop we will consider is composed by three infinites-
imal steps, passing through the minimal surfaces I'4, I'g and I'¢ illustrated in fig. 4.
According to our discussion in Sec. 2, the result of the transport in the CFT should be
reflected in the form of entanglement between the modular eigenbases of the subregions
along our path.

We can exploit the modular gauge freedom (5.3) to align the modular clocks of
(A, A) and (C, C), simply by synchronizing them with the AdS time-slice that contains
both minimal surfaces (fig. 4). In this convenient gauge, teleportation of a clock from
A to C using (5.2) will result in no time-translation. To be more precise, when I' 4 and
['c are infinitesimally separated, we can think of |E) 5 and |E)s as states in the same
Hilbert space [16]. A convenient gauge choice for the modular frames sets the phases of
the H,,0q 4 and H,,,q ¢ eigenvectors so that & (E|E) is real. In this gauge, the state
of AC, which in the limit C' — A is approximately given by

AC) ~ 3 e o(BE)V s E)al Ble (5.4

comes with no relative phases between A and C and the two clocks are synced.
On the other hand, the alignment of A and B in the above gauge is non-trivial
(fig. 4). If we set the origin of modular time for (B, B) to be the Rindler time-slice



tgc =0 tip=0.

Figure 4: Three infinitesimally minimal surfaces in AdS, I'4,I'5,T'¢, can be used to close a loop of
modular Hamiltonians and compute the precession of the modular frame. The first leg of the closed
path is transport of a Rindler clock directly from A to C' (LEFT). The invariance of the state under
(5.3) can be utilized to sync the Rindler clocks (4 = t¢ and t; = t&) and trivialize the transport.
The second leg is transport from A to B and then to C' (RIGHT). The clock of B is now misaligned
with both A and C as can be seen by the kinks in the red and blue AdS time-slices. The modular
Berry holonomy (5.7) depends on the hyperbolic angles of these kinks.

that contains both 'z and 'y then g(E|E); = cp e, where cp € R and 1, is the
hyperbolic angle of the “kink” of the red-colored time-slice at the minimal surface I"4
in fig. 4. As a result, the state of AB is approximately:

AB) ~ ZZ = 5{EIE) 4| B)lE) 5

— Z E e e |E)A|E) 5 (5.5)

The two Rindler clocks are misaligned by 74.

To close the loop, we need to relate the frames of the Hg and Hg eigenvectors. As
before, this is determined by the inner product &(FE|FE)z which allows us to obtain a
state for AC from (5.5):

AC) ~ ZefﬂE (E|\E)p (E|E)4|E)alE)c (5.6)

As fig. 4 illustrates, with the above gauge choices &(FE|E)z is imaginary with phase
equal to F(nc — ng), where ng,nc are the boost angles of the “kinks” at I'p and T'¢,

— 10 —



respectively. This is because in order to make ~(E|E) g real, namely to sync the clocks
of B and C, we would need to boost the state of B by exp [iHmod,B 773] and the state
of C' by exp [iHmod,C* 770].

Modular Berry holonomy and bulk curvature. The relative phase between the
modular eigenstates |E) 4 and |E) & differs between the two ways of relating them—(5.4)
and (5.6)—by:

Imlog [ 4(E|E)e o(E|E) 5 3(E|E) 4] = E(n5 4+ 14 — nc) (5.7)

This expression holds independently of our convenient gauge choice (F|FE); € R.

In the continuum limit the left-hand side computes the Berry curvature [17], which
arises from taking the modular Hamiltonian around an infinitesimal loop from H,,.q 4
t0 Hypoa, g 10 Hyyoq o and back to Hoq 4. The right-hand side measures the boost angle
by which the Rindler frame of the minimal surface precesses. It is non-zero due to the
curvature of the AdS space-time.

We have, therefore, arrived at a direct link between the geometric connection in
gravity and the Berry connection in quantum mechanics. The Berry connection of in-
terest here, however, is not the familiar one describing evolution under time-dependent
Hamiltonians, but instead a Berry connection relating the eigenspaces of modular
Hamiltonians of different subsystems of the CFT. The modular Berry connection is
the correct tool for studying the relative alignment of quantum frames, which origi-
nates from their entanglement properties in the global wavefunction.

A more rigorous treatment of the modular Berry connection for the CFT vacuum
utilizes the geometric properties of the space of vacuum modular Hamiltonians called
kinematic space [18, 19]; the details of this method were explained in [6]. The extension
of these ideas to other asymptotically AdS spacetimes and general CFT states will be
presented in upcoming work [15].

6 Conclusion

When classical observers at separate locations measure an observable of a given system
they generically disagree on the outcome. Part of the mismatch stems simply from
their individual choice of orientation and grading of their measuring devices; part of it,
however, is physical and can be extracted from the relations of a family of observers
around a closed loop. The connection of General Relativity and its curvature encapsu-
late such relative alignments for measurements of distances, time shifts, rotations and
boosts.

- 11 -



Similarly, to meaningfully compare their observations of a quantum system, differ-
ent experimentalists need to relate their Hilbert space bases. For a given observable
O, their conventions may differ by the action of any symmetry of O, including the
trivial transformation of rotating its eigenstates by a phase. Although this choice of
“quantum frame” is inconsequential for experiments executed by a single observer, it
is essential for determining the map between reference frames.

Our first central claim was that when the observers themselves—or their devices—
are treated as internal quantum systems, their relative bases are determined by the
way they are entangled in the global state. The observers can operationally probe this
alignment by exchanging a probe state via quantum teleportation, which we interpreted
as a quantum mechanical notion of transport with non-trivial holonomies. Quantum
systems are, therefore, endowed with a connection encoding their entanglement struc-
ture. It would be interesting to explore a potential overlap of this connection with the
emergent gauge field ideas of [20].

We, further, argued that our proposed quantum connection and the geometric
connection in spacetime are identified under the AdS/CFT duality. This potentially
provides a new diagnostic for the emergence of a classical bulk spacetime. The quan-
tum holonomies computed by the modular Berry connection on the boundary are not
expected to be geometric in general. Equation (5.7) produces a unitary rotation for
every eigenspace of the modular Hamiltonian, with the transformations of different
eigenspaces being generically uncorrelated. In the vacuum example of Section 5, con-
formal symmetry ensured that the holonomies were linear in the modular eigenvalues.
This allowed us to interpret them as some amount of modular flow and, therefore, a
geometric boost of the frame of the bulk minimal surface. The requirement that the
modular Berry connection is, at leading order in N, valued in the local symmetry group
of a minimal surface—local boosts and surface diffeomorphisms—appears necessary for
a boundary state to be consistent with a classical bulk.

The idea of using quantum teleportation to extract geometric information about
the bulk is reminiscent of the discussion in [21]. In that work, the length of bulk
curves in AdSs, as computed by differential entropy [22], was identified with the cost
of a communication protocol based on state merging [23], a simple generalization of
teleportation. But differential entropy was also shown in [6] to equal a translational
component of the modular holonomy. This suggests that the protocol of [21] may serve
as a useful guide for generalizing the quantum transport proposed in Section 3 to other
situations, where state merging and not just teleportation is involved.

- 12 —
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