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Abstract 

Heterotrimeric G-proteins are key signaling components involved during the regulation of a 

multitude of growth and developmental pathways in all eukaryotes. Although the core proteins 

(Gα, Gβ, Gγ subunits) and their basic biochemistries are conserved between plants and non-plant 

systems, seemingly different inherent properties of specific components, altered wirings of G-

protein network architectures, and the presence of novel receptors and effector proteins make plant 

G-protein signaling mechanisms somewhat distinct from the well-established animal paradigm. G-

protein research in plants is getting a lot of attention recently due to the emerging roles of these 

proteins in controlling many agronomically important traits. New findings on both canonical and 

novel G-protein components and their conserved and unique signaling mechanisms are expected 

to improve our understanding of this important module in affecting critical plant growth and 

development pathways and eventually their utilization to produce plants for the future needs. In 

this review, we briefly summarize what is currently known in plant G-protein research, describe 

new findings and how they are changing our perceptions of the field, and discuss important issues 

that still need to be addressed. 
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1. The heterotrimeric G-protein signaling cycle 

The heterotrimeric G-protein complex plays a vital role in regulating multiple signaling 

pathways in all eukaryotes. The core G-protein heterotrimeric complex is made of one Gα, one Gβ 

and one Gγ protein. As per the classical paradigm, this plasma membrane-localized protein 

complex switches between the inactive and active states depending on the nucleotide-bound form 

of Gα [1-5]. During resting phase, the Gα is GDP-bound and remains associated with a Gβγ dimer. 

Activation occurs when ligand-binding or signal perception causes in a change in the conformation 

of a G-protein coupled receptor (GPCR). Activated GPCR acts as a guanine nucleotide exchange 

factor (GEF), catalyzing the GDP to GTP exchange on the Gα protein (Fig. 1).  GTP bound Gα 

dissociates from the Gβγ dimer. Both the GTP-Gα monomer and the Gβγ dimer then interact with 

a variety of downstream effectors to transduce signals for distinct cellular and physiological 

functions, representing the active state of signaling [1-4]. Deactivation occurs via the inherent 

GTPase activity of Gα, which causes hydrolysis of bound GTP, regenerating its GDP-bound form 

(Fig. 1). GDP-Gα associates with Gβγ restoring the trimeric complex, ready to be activated for the 

next round of signaling [3, 6]. Because of the cyclic nature of G-protein signaling, both the 

activation and deactivation steps have to be synchronized for effective and continuous signaling 

[7]. However, the inherent rate of GTP-hydrolysis by Gα is significantly slower than the 

GDP/GTP-exchange rate [6, 8], necessitating help from proteins that can accelerate the GTPase 

activity of Gα. The GTPase activity accelerating proteins (GAPs), as the name suggests, interact 

with the Gα proteins and increase its rate of GTP-hydrolysis, facilitating effective deactivation and 

consequently continuation of the cycle. The Regulator of G-protein Signaling (RGS) proteins are 

the most well characterized GAPs of Gα proteins [5-7].  

Multiple studies have reported on the structural and functional roles of the members of the G-

protein signaling complex during regulation of various physiological functions in humans. For 

example, dysregulation of GPCR activity and the downstream circuits were reported in many 

prevalent disease conditions such as schizophrenia, Alzheimer's, cancer, vision impairment, 

obesity, hypertension, diabetes and olfaction [9-11] . Not surprisingly, due to the extensive roles 

of GPCRs in sensing various signals, the G-protein signaling pathways are an important target for 

the pharmaceutical industry and their effectors/regulators constitute a majority of commercially 

available therapeutic drugs [5, 12-17].  
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The core of the heterotrimeric G-proteins i.e. the Gα, Gβ and Gγ subunits, and their basic 

biochemistries such as the GTP- versus GDP-bound states dictating the monomeric, active versus 

trimeric, inactive Gα, respectively; the slow inherent GTPase activity of Gα; or the non-

dissociability of the Gβγ dimer are fully conserved in all organisms. However, differences emerge 

when comparing the numbers of each of the subunits or their regulatory mechanisms. For example, 

the human genome encodes 23 Gα, 5 Gβ, 12 Gγ, 37 RGS and more than 800 GPCRs [1-3, 18]. 

Compared to this, the repertoire of G-proteins is extremely limited in plants such as Arabidopsis 

which possess only 1 canonical Gα, 1 Gβ, 2 canonical Gγ, 1 unique RGS and no GEF activity 

possessing GPCR; although additional non-canonical, plant-specific proteins exist and function 

together with the G-protein cycle [19-21]. Furthermore, comparative in vitro biochemical studies 

suggest that the regulation of the G-protein cycle itself may differ between the established models 

mostly derived from mammalian systems versus those that exist in plants [22-25]. The current 

hypothesis is that although the core G-protein complex is conserved among eukaryotes, it may be 

wired distinctly in different organisms depending on their specific needs. The receptors, regulators, 

and effectors may differ, especially between plants and non-plant systems, and novel mechanisms 

beyond what is known from the mammalian systems remain to be explored. In the next sections, 

we will discuss the heterotrimeric G-protein signaling in plants – beginning with what is known 

based on the studies in Arabidopsis thaliana (Arabidopsis, hereafter), where it is most well 

characterized, and then include information from other plant species and how it is changing our 

understanding of this important signaling paradigm.  

2. G-protein signaling in plants 

Several pharmacological studies in the late eighties and early nineties underlined the 

importance of G-protein signaling in plants [26-33]. However, our knowledge about the molecular 

genetic details of plant G-protein signaling originated from studies in Arabidopsis, where the 

proteins were first identified by gene cloning and expression analysis [34-37]. Further studies 

using gene knockout and overexpression lines of each of the genes of the G-protein complex 

established their pivotal roles in regulating a multitude of plant growth, development and 

physiological processes. Arabidopsis has one canonical Gα (GPA1), one Gβ (AGB1) and three Gγ 

(AGG1, AGG2, AGG3) proteins (Table 1). Using loss-of-function mutants in each of these genes 

or their combinations, the roles of Gα, Gβ and Gγ proteins have been demonstrated in seed 

germination, seedling development, cell division and patterning, ion channel regulation, stomatal 
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development and physiology, defense response, stress response, hormone signaling, sugar sensing, 

ROS mediated signaling, light sensing and response and yield improvement, encompassing almost 

every aspect of plants’ life [38-60]. The detailed phenotypic analyses also uncovered certain novel 

aspects of G-protein signaling in plants. For example, certain responses were regulated by classical 

modes where knocking-out either Gα or Gβ led to similar phenotypes; whereas others were more 

complex. Some of the plant phenotypes such as root mass, stomatal density or defense responses, 

were oppositely regulated by Gα or Gβ proteins. Still others were independently regulated by one 

of the proteins (e.g. silique shape by Gβ) while a subset such as leaf shape, hypocotyl lengths and 

abscisic acid response showed quantitative differences in their regulation [61-63].  

Biochemical characterization of the Arabidopsis Gα protein also suggested an altered 

mechanism of its activation compared to the mammalian models. Because an authentic GEF 

activity possessing GPCR has yet not been identified in plants, and because the Arabidopsis GPA1 

exhibits an extremely high rate of GTP/GDP exchange coupled with a very slow rate of GTP 

hydrolysis; it has been proposed that the plant Gα proteins are self-activating GTPases. Moreover 

the key, rate-limiting regulatory step of plant G-protein cycle is its deactivation, which is facilitated 

by an unusual RGS protein [22-25, 64, 65]. Studies of G-protein signaling in rice confirmed some 

of these observations. Similar to Arabidopsis the repertoire of G-proteins in rice is also limited 

with one canonical Gα (RGA1), one Gβ (RGB1) and few Gγ proteins (Table 1) and they regulate 

critical growth, development and defense responses [66-77]. However, few differences became 

obvious as well, such as the rice Gα mutants are severely dwarf- a phenotype not observed in 

Arabidopsis Gα mutants [66, 75, 78].  Furthermore, a homolog of the RGS protein, which is 

thought to be critically important for the regulation of plant G-protein signaling, is missing from 

the rice genome [20, 79].  Overall, by the year 2010, a general consensus had emerged in the field 

suggesting that (i) the repertoire of G-proteins in plants is extremely limited compared to the 

mammalian systems, (ii) G-proteins are missing from the basal plant lineages, (iii) G-proteins are 

non-essential for plant survival (iv) the signaling mechanisms pertaining to the 

activation/deactivation of Gα are distinct for plant G-protein cycle and (v) monocots with one or 

two exceptions, have lost the regulatory RGS proteins [20, 80]. While these studies in the selected 

model species facilitated establishment of the G-protein core components and the regulation of 

multiple plant phenotypes by them, recent studies encompassing multiple species have 

significantly expanded our understanding of this important signaling pathway.  
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3. Plants possess an extensive repertoire of heterotrimeric G-proteins consisting of both 

canonical and novel proteins 

One of the most obvious contrasts between the plant and non-plant G-protein signaling is the 

number of each of the subunits of the core complex. Upon sequencing of Arabidopsis and rice 

genomes it became clear that these plants contain a single Gα and Gβ protein, compared to 23 Gα 

and 5 Gβ proteins in humans (and similar expansion in other mammalian species) [81]. The plant 

G-proteins are also widely expressed, which suggested that the diversity in plant G-protein 

signaling potentially arose from the diversity in the Gγ proteins [67, 80, 82]. However, two recent 

developments have changed this perception. One, polyploid plants or many plants with diplodized 

genomes have retained multiple G-protein subunits. For example, the soybean genome, which is 

an allotetraploid, encodes 4 Gα, 4 Gβ and 10 Gγ proteins [83-85]. The genome of Camelina sativa, 

a highly undifferentiated hexaploid species of Brassicaceae family, codes for 3 Gα, 3 Gβ and 

potentially 8 Gγ proteins [86, 87]. Because more than 70% of the plants are polyploid and many 

others possess diplodized genomes, it is expected that these will reveal the presence of multiple 

copies of each of the G-protein subunits. Another, even more significant development is the 

identification and characterization of additional, plant-specific G-protein components. Some of 

these have been known for a while, such as the extra-large Gα (XLG) proteins (Table 1). The XLG 

proteins are double the size of the classical Gα proteins and possess a Gα like domain at their C-

terminal region, with an N-terminal domain of unknown function [88-90]. Most diploid 

angiosperms contain three copies of XLG proteins, with higher numbers in polyploid plants. The 

XLG proteins were initially thought to work independently of the G-proteins due to the limited 

sequence similarities in their Gα domain with canonical Gα proteins and also due to the absence 

of certain key amino acid residues in their active site. However, recent studies have confirmed that 

the XLG proteins are indeed a part of the functional G-protein heterotrimer in plants. The proteins 

do interact with the Gβ proteins and regulate critical growth and developmental pathways in 

Arabidopsis [45, 89-93]. 

The studies of G-protein in the moss Physcomitrella patens further confirmed the role of XLG 

proteins as a part of functional G-protein complex. P. patens is unique among plants as it does not 

possess a canonical Gα protein but does have an XLG protein homolog as well as two canonical 

Gβ proteins. Therefore, this species presented an opportunity to evaluate the role of XLG proteins 

without the confounding effects of the presence of Gα. Loss of function of either PpXLG or PpGβ2 

https://www.google.com/search?rlz=1C2AFAB_enUS445IN456&q=allotetraploid&spell=1&sa=X&ved=0ahUKEwjmy_OBhuXXAhVL4SYKHRALA7QQvwUIJCgA
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gene resulted in identical phenotypes with mutants showing slower growth, smaller, less elongated 

gametophytes and the inability to form a sporophyte. Furthermore, all these phenotypes can be 

fully complemented by introducing the Arabidopsis XLG2 or AGB1 genes in the corresponding 

moss mutants, confirming that the moss genes are their true functional orthologs and that the XLG 

and Gβ proteins work in the same genetic pathways [94]. 

Some unique, plant-specific Gγ proteins exemplify additional, novel G-protein components. . 

Sequence homology-based searches have identified three types of Gγ proteins in plants [67, 82, 

85] (Table 1). The group I (or type A) are the canonical Gγ proteins found in all eukaryotes. These 

are small (100-120 aa) proteins, with a conserved DPLL/I motif, which together with few 

additional conserved amino acids in the middle coiled-coil region is required for their interaction 

with the Gβ proteins; and a C-terminal CAAX prenylation motif, which is required for their 

targeting to the plasma membrane. The originally identified AGG1 and AGG2 proteins of 

Arabidopsis, RGG1 of rice and Gγ1, Gγ2, Gγ3 and Gγ4 of soybean, all belong to this group [67, 

82, 85]. Most plants (e.g. except for the members of Brassicaceae) also possess another variation 

of these proteins, which is almost identical to the group I Gγ except for the absence of prenylation 

motif at their C-terminal region. These have been named group II or type B Gγ proteins [85]. This 

is an interesting variation as the mutations that alter the prenylation sites in mammalian Gγ proteins 

usually result in severely altered phenotypes because the proteins can no longer be targeted to the 

plasma membrane [95-98]. The group II Gγ proteins (e.g. RGG2 of rice), despite lacking the 

prenylation motif, seem to be targeted to the plant plasma membrane and have been shown to work 

together with the Gβ proteins [99, 100]. The group III or type C Gγ proteins are unique both in 

terms of their size and domain architecture. These proteins are unusually long with an N-terminal 

Gγ domain, which is highly similar to the group I or II proteins, and a 100-400 aa C-terminal 

extension [67, 85, 101, 102]. This extended C-terminal region of group III Gγ proteins is extremely 

rich in amino acid cysteine, which may constitute up to 40% of the total amino acids in this region. 

The group III Gγ proteins are exemplified by AGG3 in Arabidopsis, DEP1, GS3 and GCG2 in rice 

and GmGγ8, GmGγ9 and GmGγ10 in soybean (Table 1). The homologs of group III Gγ proteins 

are missing from basal plants, but are present in all gymnosperms and angiosperms analyzed, to 

date. The proteins regulate critical growth and development pathways and have been shown to 

work together with the Gβ proteins [40, 85, 101-105].  
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These findings confirm that plants do possess an extensive network of G-proteins. Even a 

simple system such as Arabidopsis has 4 Gα (1 canonical and 3 XLGs), 1 Gβ and 3 Gγ proteins 

resulting in 12 possible G-protein heterotrimers; whereas plants such as soybean have 12 Gα, 4 

Gβ and 10 Gγ proteins, with even more elaborate networks possible in plants with more complex 

genomes [83, 85]. The proteins are expected to interact in specific combinations, depending on the 

signal, expression patterns, tissue types or developmental stages, to expand the G-protein signaling 

and regulatory networks.  

4. G-protein genes are present in the entire plant (Viridiplantae) lineage 

Earlier sequence analyses identified the presence of G-protein genes in all the sequenced plant 

genomes, except in the green algae. The fully sequenced genomes of the green algae such as Volvox 

carteri, Chlamydomonas reinhardtii, Coccomyxa subellipsoidea C-169, Micromonas pusilla 

CCMP1545, M. pusilla RCC299, and Ostreococcus lucimarinus exhibited no genes with 

significant sequence homology to G-protein genes [80]. Furthermore, the absence of a canonical 

Gα protein in the moss P. patens genome was also intriguing. It was presumed that the G-proteins 

do not exist in basal plants and were acquired when the plants became land-bound, with P. patens 

representing a transition state (possessing only a subset of the G-proteins). However, the 

identification of the complete functional G-protein complex genes in Chara braunii and in many 

other Charophyaceae algae changed this perception [106, 107]. The Chara genome codes for Gα, 

Gβ, Gγ as well as regulatory RGS proteins, all of which show high sequence similarity with the 

Arabidopsis proteins. The biochemical properties of Chara and Arabidopsis G-proteins are similar, 

suggesting that these proteins are indeed functional G-proteins [108]. Furthermore, a recent study 

has identified a C. reinhardtii gene CGA1 as a heterotrimeric Gα protein subunit. The gene is 

functional as the knock-down mutant of CGA1 exhibited higher survival rate in response to heat 

and osmotic stress [109]. This along with our demonstration that the XLG protein of the moss P. 

patens is a functional Gα protein [94] confirms that the G-proteins are present in and are functional 

along the entire plant lineage.  

5. Both conserved and novel (plant-specific) signaling and regulatory mechanisms operate 

during plant G-protein signaling 

As described in the previous sections, plant genomes possess both conserved and unique G-

protein components and the proteins regulate critical growth and development pathways. 
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Moreover, the basic biochemistry of the G-protein components is similar to what is known for the 

metazoan G-proteins: the Gα binds and hydrolyzes GTP and the binding dictates its active versus 

inactive status. However, while the classic GPCRs are required for GDP to GTP exchange and 

activation of Gα proteins in all metazoans, these proteins are intriguingly missing from the plant 

genomes. This suggests that the regulation of G-protein cycle in plants is potentially different from 

what is known based on the metazoan systems.  

5.1. G-protein activation mechanisms in plants 

Several proteins that have sequence features similar to the mammalian GPCRs have been 

identified in plants [110-113]. Many of these interact with Gα and participate in signaling pathways 

regulated by G-proteins [55, 111, 114, 115]. However, none of these receptor-like proteins have 

been shown to possess the GEF activity i.e. the ability to facilitate the exchange of GTP for GDP 

on Gα. How might the G-protein cycle be activated in plants? There are two possible scenarios, 

each with some supporting evidence. One, because the Arabidopsis Gα protein has an extremely 

high rate of GTP-binding, coupled with a very slow GTP hydrolysis rate, it has been proposed to 

be able to spontaneously exchange GTP for GDP, without the requirement of a receptor’s GEF 

activity [23, 25, 64]. In vitro experiments with Arabidopsis GPA1 and to some extent with the 

soybean Gα proteins confirm their unusual biochemical characteristics [21, 23, 25, 64, 116-118]. 

In such a situation, the role of a GAP such as RGS protein becomes central to the regulation of G-

protein cycle (Fig. 1). However, the breadth of such a mechanism for plants in general is not known 

at this point.  Even the four highly similar, canonical soybean Gα proteins differ in their rates of 

GTP-binding and hydrolysis [116, 119]. It is expected that different G-proteins from other plant 

species would also exhibit changes in their biochemical properties. Do all plant Gα proteins fall 

within that range of high GTP-binding and slow GTP-hydrolysis rates that would make them a 

spontaneous GTP/GDP exchanger or are there other possible alternatives? In case of soybean Gα 

proteins where the proteins share more than 90% sequence identity, small differences in their 

biochemical properties lead to differences in the regulation of plant processes by them. For 

example, when used for complementing the Arabidopsis gpa1 mutant, two of the proteins GmGα2 

and GmGα3 could fully complement each of the mutant phenotypes, whereas the other two 

proteins GmGα1 and GmGα4 could complement only a subset of those [120]. Interestingly, the 

soybean Gα proteins also exhibit differences when introduced in the yeast gpa1 mutant. In yeast, 

GmGα1 and GmGα4 could fully restore all the growth and pheromone signaling phenotypes of 
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the yeast gpa1 mutants whereas the GmGα2 and GmGα3 could only partially complement them 

[116].  Because yeast possesses a classic GPCR-dependent GDP/GTP-exchange based Gα 

activation, it implies that at least a subset of the plant Gα proteins can be activated by GPCRs in a 

heterologous system, regardless of their ability to be self-activated. Conversely, another set of Gα 

proteins, despite the ability to be self-activated, are not fully functional in the yeast system. It may 

be that the degree or rate of self-activation of plant Gα proteins varies and influences their ability 

during response regulation. It also suggests that alternative mechanisms may exist that facilitate 

Gα activation in plants, which could be the other possible scenario for G-protein cycle regulation 

[121]. There is mounting evidence that such regulation might be achieved via the interaction of 

receptor-like kinases (RLKs) with the G-protein cycle [39, 54, 122-124]. This is exciting, as plants 

possess a large number of RLKs (~600 in Arabidopsis) responsible for sensing a wide variety of 

signals.    

The first evidence of the interaction of a G-protein component with an RLK was obtained 

during a genetic screen when the Gβ proteins (AGB1) was identified as an interactor of ERECTA 

(an RLK) during silique development in Arabidopsis [54, 125]. Several studies related to defense-

related signaling also provided evidence for the involvement of G-protein subunits with different 

RLKs where both direct physical interactions and functional/genetic interactions have been 

identified. Specific Arabidopsis G-protein subunits directly interact with important defense- or 

development-related RLKs such as chitin elicitor receptor kinase 1 (CERK1), BRI1-associated 

receptor kinase 1 (BAK1) and BAK1-interacting receptor 1 (BIR1), the key immune receptor 

flagellin-sensitive 2 (FLS2), ERECTA, zygotic arrest 1 (ZAR1) and receptor-like protein kinase 2 

(RPK2) [39, 54, 122-124, 126-128]. More definitive results came from the identification of the 

maize Gα protein as an interactor of Fea2 (CLAVATA-2) which is a receptor like protein of 

CLAVATA (an RLK) pathway [129]. Direct biochemical evidence for the regulation of G-protein 

cycle by an RLK was demonstrated during nodule formation in soybean. The Nod factor receptors 

(NFRs), a class of LysM containing RLKs, perceive the Nod factors secreted by rhizobia to 

promote nodule formation in legumes [130]. The soybean NFRs interact with both Gα and RGS 

proteins and phosphorylate the RGS proteins. Phosphorylated RGS exhibits higher GAP activity 

towards the Gα protein, implying that NFR-mediated phosphorylation of RGS leads to faster 

termination of the G-protein cycle. Because the introduction of phosphomimic versions of RGS 

protein in a soybean mutant lacking the active receptor (nod49) resulted in partial restoration of 
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the nodule formation, it confirmed that at least one of the roles of activated NFR1 is to 

phosphorylate RGS proteins for the regulation of G-protein cycle [116]. Given the involvement of 

G-proteins and RGS proteins in a multitude of pathways regulated by RLKs, this could potentially 

be a general, yet unexplored regulatory mechanism.  

The activation mechanism of XLG proteins have not been explored at the biochemical level 

and whether these proteins have similar kinetics as the canonical Gα is not known. However, XLG 

proteins also interact with various RLKs.  It has been demonstrated that the XLG2 and XLG3 

proteins of Arabidopsis interact with the FLS2-BIK1 receptor complex during flg22 dependent 

defense response. It has been proposed that the ligand (flg22)-dependent activation of the FLS2 

receptor results in dissociation of XLG protein from its trimeric complex with Gβγ, similar to what 

is known for the dissociation of metazoan Gα proteins upon GPCR-mediated activation [128]. The 

freed XLG protein is then phosphorylated by a key cytoplasmic kinase BIK1 to transduce the 

signal. While the detailed characterization of the activation/deactivation mechanisms of XLG 

containing G-protein trimeric complexes remains unknown, this study presents an exciting 

possibility that a plant trimeric G-protein complex can be directly activated by ligand binding to 

an RLK [128]. If such a mechanism holds true or is more widespread, it will certainly expand the 

network of G-proteins with a variety of RLKs potentially affecting the activity or availability of 

Gα proteins.  

5.2. G-protein deactivation mechanisms in plants 

While the exact details of the activation mechanisms of plant Gα proteins are still being 

explored, relatively more is known about their deactivation mechanisms. The Gα proteins, being 

GTPases possess the inherent ability to hydrolyze bound GTP to generate the GDP-bound Gα, 

which reconstitutes the trimeric complex [5]. However, the GTPase activity of Gα proteins in 

general, and the plant Gα proteins in particular, is extremely slow. To keep the G-protein activation 

and deactivation synchronous and enable continuous signaling, several proteins with the GAP 

activity are required for effective deactivation of the cycle [7]. RGS proteins are the most well 

established GAPs in all organisms. In metazoans, wide variety of proteins possess the conserved 

RGS domain, which makes close contact with the Gα protein to increase its GTPase activity [2, 6, 

131]. In plants, all RGS proteins discovered to date are characterized by the presence of a seven 

transmembrane (7TM) domain linked to the RGS domain [108, 132]. The presence of a 7TM 

domain, which is typical of GPCRs, is intriguing but not unprecedented. Several other basal 
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organisms also possess 7TM containing RGS proteins although none of the 37 known RGS 

proteins from humans possesses this domain [81]. In Arabidopsis, the 7TM domain seems to be 

involved in the tethering of the RGS protein to the plasma membrane.  Genetic and biochemical 

evidence confirm that the RGS proteins act together with the Gα proteins [22, 25, 118, 119, 133]. 

The GTPase activity of plant Gα proteins is increased by at least an order of magnitude in the 

presence of an RGS protein and many of the phenotypes of plants lacking Gα protein are similar 

to the plants overexpressing an RGS protein [46, 134].  

Despite the fact that the RGS proteins are functionally important and are required for effective 

signaling via G-proteins, it was astonishing to notice their absence from the genomes of many 

grasses such as rice, Brachypodium, sorghum, maize etc. [108]. It was previously suggested that 

the majority of the monocots have lost the RGS protein due to an adaptive change corresponding 

to a particular amino acid in their Gα protein [23, 79]. However, deeper analysis of a wide range 

of monocots confirmed that this is not the case. Even though all eudicots, most monocots, basal 

angiosperms such as Amborella, gymnosperms, lycophytes and green algae have RGS protein 

coding genes in their genomes, the gene is lost randomly in some monocot orders [108]. Why there 

is a relaxed selection on this important signaling protein in one specific plant lineage remains 

unknown at this time. However, regardless of the presence of an inherent RGS protein, the Gα 

proteins of all plant species exhibit similar biochemical properties and maintain the ability to be 

affected by RGS proteins from heterologous species e.g. the GTPase activity of a Gα protein from 

rice or Brachypodium is increased significantly in the presence of an RGS protein from 

Arabidopsis or soybean [108]. Furthermore, the interaction interface between the RGS:Gα protein 

pairs is conserved through evolution, extending as far as between plants and humans [108].  

This leads to the question whether there are other proteins, in addition to the RGS proteins, 

which can also accelerate GTP-hydrolysis by Gα. Our recent work in Arabidopsis demonstrates 

that phospholipase Dα1 (PLDα1) is one such protein, corroborating some previously published 

biochemical data [135]. The idea of phospholipases acting as GAPs is well established in 

mammalian systems, where phospholipase Cβ (PLCβ) isoforms act both as GAPs and as effectors 

of Gα proteins [7, 136-138]. However, plants lack classical PLCβ homologs precluding such a 

possibility. Our results suggest that this role is likely fulfilled by phospholipase D (PLD) proteins 

in plants. Genetic and biochemical analyses confirm that in Arabidopsis both RGS1 and PLDα1 

accelerate the GTPase activity of Gα [121, 139-142]. Additionally, these two proteins interact with 
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each other as well as with the core G-proteins to form higher-order protein complexes in vivo.  

Furthermore, RGS1 and PLDα1 regulate the activity of each other in a double negative regulatory 

loop. The net outcome of such complex interactions may be an exquisitely controlled level and 

duration of active Gα, modulating the specificity of response regulation [120, 139]. 

The loss of RGS is tolerated in certain monocots can be explained by two alternative scenarios. 

First, it is possible that in plant species without an RGS, the PLD proteins have taken over the role 

of classical GAPs, without an additional regulatory loop, which is normally contributed by RGS. 

Alternatively, other proteins might exist that have similar biochemical properties to RGS, even 

though they lack sequence similarity. One such example could be the COLD1 protein in rice, 

which is reported to increase the GTPase activity of RGA1 [143] although its homologs in 

Arabidopsis, GTG1 and GTG2 proteins do not exhibit such an activity [114]. The deactivation 

mechanisms of XLG proteins are not known at this time, although it is conceivable that because 

the proteins are acting together with the canonical Gβγ proteins and going through the process of 

trimeric versus monomeric stages, a GTPase activity regulatory step would be an inherent part of 

the signaling cycle involving the XLG proteins.   

5.3. G-protein effectors and downstream components 

To perform such diverse functions, the G-proteins must be interacting with various effector (or 

target) proteins. The well-studied effectors in animal models are adenylyl cyclase and 

phospholipase Cβ, both of which are missing in plants and therefore, the identity of different 

effectors and downstream targets remains limited. An interactomics-based study identified several 

proteins that might interact with different G-protein subunits [144]. Few genetic and biochemical 

studies have also identified potential proteins acting downstream of G-proteins [50, 145-156].  

However, a clear connection between a G-protein, its effector and a target protein, leading to a 

response regulation remains unknown at this point. Further studies targeted to specific pathways 

regulated by G-proteins in precise developmental and signaling context are required to identify 

any potential effectors.  

6. G-proteins can be essential for plant growth and development 

Plant G-proteins are involved in regulation of almost every aspect of growth, development, 

response to environmental and hormonal signals, biotic and abiotic stresses. The proteins are also 

known to regulate many fundamental aspects of plant biology, such as control of cell division and 
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regulation of ion channel activity. Despite this, the single and higher order Arabidopsis G-protein 

mutants are relatively normal and complete their life cycle without any major disadvantages. This 

has been a fundamental conundrum in the field, i.e. if the G-proteins are so important why the loss 

of them is tolerated in plants. The general consensus is that the plant G-proteins have evolved to 

suit the sedentary life-style and are involved in regulating the optimum plant response under any 

given condition, rather than being essential for one specific pathway or signal [157]. Overall, the 

idea still holds true. However, studies in plants other than Arabidopsis have started to uncover 

essential roles of plant G-proteins for growth and survival.  

The first example is from rice mutans lacking the Gβ protein. Although the rice Gα mutants 

are severely dwarf and bushy, they do complete the life cycle [78, 158]. However, a complete Gβ 

null mutant of rice could never be obtained. RNAi-mediated knock-down of rice Gβ gene 

confirmed that while the partial suppression of the gene resulted in plants with severe defects in 

growth and development, the complete gene knock-outs are possibly seedling lethal [66].  Because 

the inventory of G-protein components is still being explored and expanded, it is possible that 

additional mutant combinations such as the lack of XLG genes or XLG genes together with the Gα 

gene would also lead to lethality. However it is noteworthy that the Arabidopsis plants lacking all 

three XLG genes are fairly normal under controlled growth conditions and the plants lacking all 

three XLG genes and the canonical Gα gene also survive to complete their life cycle [90, 159].   

The situation is however different in the basal plant P. patens where plants lacking either the 

XLG gene or the Gβ gene can no longer form any sporophyte and therefore are unable to complete 

the life cycle [94]. Further studies with additional basal plants will uncover if the G-proteins were 

essential early during plant evolution and became non-essential later due to the development of 

overlapping regulatory circuits in higher plants. Alternatively, it is also possible that the G-proteins 

are non-essential in the dicot plant lineage, whereas basal plants or monocots require their 

complete repertoire for a successful life cycle. If this is the case, it will be interesting to uncover 

the specific regulatory pathways that differ between these two major plant subgroups. 

7. G-proteins regulate important agronomic traits 

In the earlier days of G-protein signaling in plants, especially with Arabidopsis, it seemed that 

not only the protein complex was non-essential for plants but also not agronomically relevant. This 

was a striking difference from the mammalian systems where the G-protein signaling pathways 

are a target of major pharmaceutical drugs. The d1 dwarf mutant of rice, which is due to the lack 
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of a functional Gα protein, though promising, was not very useful for breeding purposes as it 

resulted in several unwanted phenotypes related to reduced yield [78]. Recent studies have 

changed this perception and identified a direct role of G-proteins in regulating several yield traits.  

The newly identified group III Gγ genes have long been known as major quantitative trait loci 

(QTL) for important agronomic traits such as seed size and panicle architecture, long before their 

characterization as Gγ proteins. Two major yield QTL in rice, Grain size 3 (GS3) and dense and 

erect panicle 1 (DEP1), correspond to the group III Gγ proteins [68, 103, 160-163]. Similarly, the 

Arabidopsis AGG3 (another group III Gγ protein) was identified as an organ size regulator in a 

genetic screen. Overexpression of AGG3 results in bigger flowers, fruits and seeds in Arabidopsis 

and in Camelina [40, 86, 87]. Interestingly, while in both dicot species where it has been studied 

in detail, the protein expression level is directly correlated with bigger organ size and higher yield; 

the situation seems to be more complex in monocots. Different alleles of DEP1 or GS3 result in 

distinct, sometime opposite, phenotypes depending on the position of the mutation or specific 

genetic background [68, 103, 104, 160, 164-168]. A long field-based study with the overexpression 

of the barley homolog of DEP1 gene concluded that the effect of this gene is highly dependent on 

the environment and genetic background and may result in increased or decreased yield upon 

overexpression [169]. Our recent results by overexpressing the AGG3 gene in a model monocot 

Setaria viridis also suggest only a subset of yield traits are directly correlated with the gene 

expression levels [170].  Incidentally, the same DEP1 gene was also identified as a major QTL for 

nitrogen use efficiency in rice [171]. In this case, the protein has been shown to work together with 

the G-protein α and β subunits. These data suggest that the G-protein complex genes are potential 

targets for improved yield, thus deciphering their mode of action will be pivotal to map the regions 

or domains involved as well as for precision breeding.   

8. Perspectives and future direction 

Research in the field of plant G-protein signaling has entered an exciting phase where the 

majority, if not all, of the components have been discovered. Multiple well-established and novel 

mechanisms are being uncovered, and the potential for their use in solving real-world agronomic 

problems is being explored. There are still many unknowns such as what are the receptors upstream 

of G-proteins, what lies downstream of G-proteins, how the proteins connect to the established 

modules of hormone, defense or stress-related signaling. In addition, the question arises if the 

expanse of canonical and novel G-protein components and regulatory proteins and their mode of 
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action have been fully explored. Studies in multiple plant species have already highlighted the 

implicit variability in the numbers and pathways regulated by these proteins and their action 

mechanisms. Future targeted studies will certainly answer these questions and help manipulate the 

true agronomic potential of these proteins.  
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Figure legend 

Figure 1. Schematic diagram of G-protein cycle in mammalian versus plant systems. Only the core 

components of mammalian cycle are shown. Asterisk represents plant-specific components. 

Protein names in plant system are for Arabidopsis proteins. The activation/deactivation 

mechanisms of XLG proteins are not yet known, but they have been shown to function with 

canonical Gβ proteins and therefore represented in the G-protein cycle. The RGS protein is missing 

in many monocot plants.  
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