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ABSTRACT

Research suggests that parental engagement through Joint
Media Engagement (JME) is an important factor in chil-
dren’s learning for coding and programming. Unfortunate-
ly, parents with limited technology background may have
difficulty supporting their children’s access to program-
ming. English-language learning (ELL) families from mar-
ginalized communities face particular challenges in under-
standing and supporting programming, as code is primarily
authored using English text. We present BlockStudio, a
programming tool for empowering ELL families to jointly
engage in introductory coding, using an environment em-
bodying two design principles, text-free and visually con-
crete. We share a case study involving three community
centers serving immigrant and refugee populations. Our
findings show ELL families can jointly engage in pro-
gramming without text, via co-creation and flexible roles,
and can create a range of artifacts, indicating understanding
of aspects of programming within this environment. We
conclude with implications for coding together in ELL fam-
ilies and design ideas for text-free programming research.
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INTRODUCTION

When it comes to children’s resources for learning to code,
there are many programming environments to choose from
[29,42]. However, after a child has access to a program-
ming environment, the contexts in which they use these
environments also matter for learning. In particular, re-
searchers have highlighted how co-engagement, or joint
media engagement (JME) [49], is especially supportive of
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children’s learning with new media and how parental en-
gagement can be a key factor in children’s learning [17,24].
Unfortunately, parents not connected to technology fields
may have less programming knowledge to support their
children’s learning [13]. To address this, family-oriented
programs using design-based activities like Family Creative
Learning (FCL) [43] can empower such families lacking
“preparatory privilege” [35] to get involved with their chil-
dren’s creative activities.

While family-oriented programs can engage diverse popula-
tions, participating in them can be difficult for people fac-
ing English literacy challenges. One reason is that FCL
relies on programming tools using English text (i.e., Scratch
[42]). Yet, among U.S. immigrant families from lower-SES
and marginalized populations, it is common for the children
to have English fluency while the adults continue to experi-
ence difficulties with English literacy [22] (we refer to
these types of families as ELL families). Also, the U.S. is a
multicultural society, with up to 59 different languages
spoken in a single area [46]. While programming tools can
be localized to multiple languages [10], it is challenging for
translation to cover such a large number of languages. Even
if manual or automatic translation was accurate and feasi-
ble, instructors of FCLs would need to understand multiple
languages and use multiple translated versions of the same
interface to adequately support family learning.

Given these challenges, we ask: how might we empower
children and parents in ELL families to jointly engage in
learning to code? We pursued this question by designing a
text-free, visually concrete environment for coding, and
then studying parent-child co-use of this system in multi-
language ELL family-oriented sessions at community cen-
ters. We used English to instruct the bilingual children how
to code in this environment, and then they taught their par-
ents how to use the system. In this paper, we present the
design principles behind this new programming interface
and approach for empowering ELL families to jointly en-
gage in learning to code. We also describe our case study
comprising three family-oriented workshops held at com-
munity centers.

Through this work, we contribute a system embodying two
design principles, and through studying its use, a new un-
derstanding of how such coding environments may support
and empower ELL family members jointly learning to code.
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BACKGROUND

Researchers have created several systems to help children
learn to code [46,29,41,42]. However, many critical soci-
ocultural factors determine whether children successfully
engage and learn. A survey of prior end-user programming
environments can be found in [29], but none of these sys-
tems have focused on ELL families coding together.

Parental support for children to code

One factor is joint media engagement (JME), which
Takeuchi and Stevens define as “spontaneous and designed
experiences of people using media together” [49]. IME
between parents and children is linked to increased family
connectedness [40], higher self-efficacy and expertise with
computers [34], and parental involvement has a positive
effect on grades [17] and academic achievement [24].
Simpkins et. al. [47] found that parent-child coactivity
around computing predicts a child’s interest and engage-
ment in computing, and Armon [1] found that pairing par-
ents and children while learning programming improved
creativity and thinking skills. Thus, for children learning to
code, parents can be an important source of support.

Unfortunately, adults working in areas unrelated to compu-
ting often face challenges in locating ways to support their
children’s coding endeavors [13]. Roque created Family
Creative Learning (FCL) to empower such families to learn
new technologies and design projects together, based on
their interests [43]. However, Scratch [42], the system used
in FCL, generally uses English text. Given that 59% of
children in U.S. newcomer families live with at least one
parent who is not proficient in English [23], existing fami-
ly-oriented programs for coding can pose language barriers.
Further, the U.S. is a multicultural country, with many areas
having high language diversity [46]. Multiple languages
may be used even at a single community center for immi-
grants, implying that programs like FCL using English-
language tools could deter non-English families. Thus, it is
challenging for family-oriented programs to serve such di-
verse ELL populations.

Native language support and removing text

Dasgupta and Hill [10] found that versions of Scratch trans-
lated into local languages were associated with a higher
“growth” rate in learners’ use of programming constructs.
They concluded that the dominant effect of localization
might be that “being able to engage in one’s primary lan-
guage supports users who would otherwise not learn to
code at all.” However, there are many challenges with
simply translating a coding interface. Automated translation
is not guaranteed to make reasonable choices for reserved
keywords, especially with languages having gendered
nouns. Manual translation to avoid these problems takes
time (e.g., a year of work to translate Scratch blocks into
Ambaric [52]), and changing the interface forces this to be
re-done. Also, unlike prior work that focused on homoge-
neous populations [10], diverse languages are a reality for
community centers in the U.S. A family-oriented coding
session could employ multiple translated versions of the
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system, but this would create a dependence on instructors
who can teach and provide help in multiple languages.

Instead of localizing interfaces, some work has explored
removing text altogether. Medhi et. al. [36] worked with
lower-SES illiterate communities in Bangalore to investi-
gate the usability of text-free interfaces for finding em-
ployment. They found that “text-free designs are strongly
preferred over standard text-based interfaces” by these
communities, with such interfaces “potentially able to bring
even complex computer functions within the reach of users
who are unable to read” [36]. Prior coding interfaces have
removed text from their interface, using abstract representa-
tions to represent computation. PICT [20] programs were
flowcharts with icons representing operations connected to
form computations, while DataFactory [50] programs were
numbers moving on conveyor belts between machines.
ToonTalk [26] used metaphors connecting real-world ob-
jects (e.g. robots, birds, boxes, etc.) with programming con-
cepts. These systems visually depicted abstract computa-
tional ideas using a graphical metaphor (e.g., icons for func-
tions, birds or conveyor belts for data channels, etc.), ex-
posing an animated interface for doing numeric computa-
tion. In KidSim [9], users created visual rewrite rules to
implement agent-based simulations. diSessa’s Boxer used
Naive Realism [14] to depict programs via graphical nota-
tion, but its notation also used text (e.g., boxes labeled with
text representing variables or procedures).

Among recent systems, Scratch Jr. [19] replaced the text
labels on code blocks with graphical symbols. While using
graphical symbols removes the explicit need for natural
language, such symbols are rarely universal across language
and culture [27]. Also, Scratch Jr. is aimed at children ages
5-7, and would be less helpful for older children (ages 9-
12). Moreover, graphical, symbolic notations do not neces-
sarily support learning. According to du Boulay, a “running
program is a kind of mechanism and it takes quite a long
time to learn the relation between a program on the page
and the mechanism it describes.” ([16], p. 285) Neither tex-
tual nor graphical notations make this relation visible. Re-
cent work has found ways to teach such relations using pro-
gram visualization, but this relies heavily on natural lan-
guage explanations [39].

Children teaching parents

Since many children in immigrant families in the U.S. are
fluent in English [22], an alternative to having the coding
environment convey the meaning of symbols is for children
to learn the programming language in a text-free system via
verbal instruction in English, then teach their parents using
their native language. For example, Yip et. al. [56] studied
how children in ELL families often act as translators and
information brokers, leveraging their linguistic capabilities,
cultural familiarity, and technical skills to help their fami-
lies gain access to information resources. To learn to code
together, children could teach programming to their parents,
allowing families to jointly engage in coding. Few other
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prior works have explored this possibility of supporting
ELL parents, and none in the learning of a coding interface.

THE BLOCKSTUDIO SYSTEM

Prior systems have employed either textual or graphical
notation that pose barriers to ELL families learning to code
via joint media engagement. We present BlockStudio, a
programming-by-demonstration [8] environment free of
notation, supporting our goal through a unique combination
of two design principles.

First, BlockStudio is text-free, in that it avoids any use of
text in the coding interface. We achieve this through the
existing programming paradigm of programming-by-
demonstration [8], in which users provide examples of the
behavior they would like the system to perform, and then
the system synthesizes a more general rule from those ex-
amples. By using demonstrations, our system supports au-
thoring by showing with examples rather than by telling
with natural language.

Second, BlockStudio is visually concrete. By following a
programming-by-demonstration paradigm, BlockStudio can
express program state and operations via visually concrete
attributes on the screen, like position, size, shape, and color.
Through its visually concrete universe, BlockStudio poses a
notional machine [16] where the program on the screen
attempts to self-describe its execution behavior through
examples, rather than keeping the machine behavior invisi-
ble, and therefore requiring natural language explanation to
learn. The abstract task of reasoning through “what does
this code block in the program do?” is replaced by the con-
crete task of thinking through, and then enacting “how
should the on-screen rectangles change in this particular
scenario?” The concreteness of this paradigm could allow a
child to learn the language through demonstration, and po-
tentially teach a parent the language through similar exam-
ples, all without any reliance on natural language. Block-
Studio’s interface is shown in Figure 1 (left), with its main
parts labeled in Figure 1 (right). Figure 2 shows how
BlockStudio leverages these principles to allow users to
specify program behavior without dealing with abstract text
or graphical symbols that represent behavior. Users place
rectangular blocks on the screen (the spaceship in the fig-
ure), and then demonstrate to the system how these blocks
should be modified in response to user input and collisions
with other blocks. This simple set of programming-by-
demonstration abstractions achieves both principles of be-
ing text-free and visually concrete. In the remainder of this
section, we describe our design process and provide further
details about the system.

Design Process

Previously, researchers working with KidsTeam UW, an
intergenerational design team at a university, had iteratively
refined a coding environment aimed at children ages 9
through 12 [2]. In these sessions, they used Cooperative
Inquiry [15], which is a participatory design [30] method
focused on developing equal and equitable partnerships
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Screens

Button

Palette

Figure 1: BlockStudio user interface (left) and main parts
(right): Palette, Grid, Rules, Play button, and Screens.

Figure 2. How to create a rule in BlockStudio: (a) Click space-

ship to trigger event, (b) Drag spaceship up to demonstrate the

change, (c) Click ¢ to end demonstration, (d) Clicking space-
ship now moves it up. (See supplementary video for details)

with children through co-design [57]. This prior work ex-
plored the idea of minimizing text in a coding interface [2],
but not joint use by families, or ELL users. During the
summer of 2016, we used this system to conduct a pilot
study (unpublished) with children at Springdale Middle
School (pseudonym), where the school was in charge of
recruitment. Here, we had ELL students (Spanish, Amharic)
who wanted to participate, even though the instructor did
not speak these languages. Using translators enabled these
children to create some artifacts using this prior system,
indicating that people facing challenges with English can
learn to use a coding interface via translation.

Revised System

Given our positive experience with human translators, and
guided by our focus on ELL families and our design princi-
ples derived from this objective, we modified the user inter-
face of BlockStudio’s prior version to create a revised sys-
tem suitable for ELL families. To meet our text-free design
principle, we removed all text from the interface (Figure 3),
consisting of around a dozen words, mostly labeling parts
of the interface. We replaced text with symbols only when
absolutely unavoidable, ending up with three abstract sym-
bols in our interface: v/, X, and ?, for ‘confirm’, ‘cancel’
and ‘question’, respectively. The first two are standard
symbols in interfaces and thus familiar to non-English users
who use a smartphone, while the question mark may be
revised in future versions. To meet our visually concrete
design principle, we rebuilt some of the interface. At
Springdale, we had found that the lack of visual feedback
showing block modifications during rule demonstration
caused usability problems, as did the absence of a way to

Page 3



CHI 2018 Honourable Mention

Figure 3. The top row shows the prior system, with text
circled in red. The bottom shows BlockStudio, without the
text. The left shows block placement and the right shows
rule creation.

edit rules (in the prior version, rules had to be deleted and
recreated). We addressed these issues by explicitly provid-
ing visual feedback showing changes made by the user (one
example is shown in Figure 3d), and by letting users modify
the demonstration for a rule after its creation.

Programming Model

Programs in BlockStudio consist of rectangles called blocks
(which can be created, repositioned, resized, changed, or
deleted) as well as rules, which specify actions (changes to
blocks) in response to events. BlockStudio blocks should
not be confused with code blocks found in block-based
programming languages [6,45], which are visual representa-
tions of abstract syntax trees [25], and are labeled accord-
ingly (e.g., “repeat”, “if — then”, etc.).

BlockStudio blocks may have a solid color appearance or
display a picture (like a cat or a spaceship), but BlockStudio
internally treats all blocks as rectangles to detect overlaps.
Our system uses simplified notions of movement, namely
linear motion and collision/overlap, both of which are visu-
ally concrete and can be communicated without having to
speak English (if nothing else, one can convey direction of
motion by pointing with one’s finger). This visually con-
crete vocabulary allows the creation of familiar 2D games
(like Pong™, Space Invaders™, PacMan™, Flappy Bird™,
maze games, etc.), composed of simple patterns, like mov-
ing a character, firing at objects, controlling a paddle to
catch a bouncing object, eating collectibles, keeping track
of lives, loading a new level, etc. Thus, BlockStudio affords
a range of creative possibilities, while adhering to our two
design principles. Rules are based on block types. Thus, if
clicking a spaceship (“touch spaceship” event) causes the
spaceship to emit a pellet moving up (“create pellet” ac-
tion), then clicking any spaceship on the screen makes that
particular spaceship emit a pellet with the same velocity.
Similarly, if the user specifies that a pellet colliding with an
asteroid causes both colliding blocks to be deleted, then all
asteroids can be deleted by moving the spaceship around
(using additional rules) and clicking it to fire pellets.
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Event

Type How the Event is Triggered Default Action
By clicking (mouse) or tappin .

Touch (tzuchscrein) a block ppine Do nothing

Key By pressing a key on the keyboard Do nothing

Collision  When blocks with motion collide Bounce

Action Example

Create block A spaceship “fires” a pellet

Move block A spaceship moves right

Resize block Eating a dot makes a character “grow”

Edit block type Eating power pellet makes PacMan™ invincible

Delete block A fired pellet destroys an asteroid

Bounce A ball deflects off a “Pong” paddle

Load screen Go to saved block arrangement (e.g. “You Win”)

Table 1. All Events and Actions possible in BlockStudio.

Creating blocks and rules

Users create blocks by dragging from the palette (Figure 1,
blue) onto the grid (Figure 1, green). Users can reposition,
resize, replace, or delete blocks to set up the “starting ap-
pearance” of a game or an animation. If a user changes their
mind, they can stop the program and change the blocks
again. Figure 2 illustrates BlockStudio’s rule-authoring
process. Children create and modify rules through pro-
gramming-by-demonstration [8]. When an event occurs
(e.g., clicking a block), BlockStudio allows the user to
demonstrate the response for that event, thus creating a rule.
These demonstrations are concrete, showing which block(s)
need to change, and in what way(s). By comparing the on-
screen blocks before and after this demonstration, Block-
Studio infers a generalized state change, and internally syn-
thesizes code to accomplish this change. For instance, if the
user presses spacebar and moves a block from the position
(4,10) to a new position (6,10), then BlockStudio infers that
every time spacebar is pressed, that block’s x-coordinate
should be increased by 2. Besides changing a block’s posi-
tion, a user can demonstrate other concrete changes. Ta-
ble 1 shows BlockStudio’s events and actions.

CASE STUDY METHOD

To investigate how well ELL families could jointly engage
in learning BlockStudio, we conducted a case study [37]
involving three different community centers. Every site
included a workshop of either one or two sessions at a sin-
gle community center. Each of the sites used the BlockStu-
dio system, had the same instructor (the 1* author), and had
ELL families as participants.

Context

We organized “family night” workshops at three different
family-based community centers (Table 2) serving African
immigrants and refugees serving marginalized communi-
ties. We refer to these locations using the pseudonyms
Bulsho, Rajo and Farxad centers. Each of the community
centers served a high population of ELL immigrants and
refugees from Ethiopia, Somalia, Sudan, and other African
communities. A community center context provided ad-
vantages over individual usability testing with multiple
families. For instance, certain families needed child care
services, because some of their children were too young to
participate. Therefore, community center employees helped
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Audio,

Venue Workshop Video Screen Copies
Capture of Cre-
(Comm. Format and and R
Center) People Field with ated
P Cursor Artifacts
Notes
Bulsho Day 1: children ¥ ¥ Not
11/2016 Day 2: families Saved
Rajo Days 1 and 2: ¥ Slow ¥
5/2017 families Internet
Farxad Only 1 Day:
6/2017 families & & &

Table 2. An overview of the workshops showing their for-
mats and listing what data was gathered at each location.

set up childcare on the premises, in adjoining rooms. Host-
ing our workshops at community centers was also important
because we could not assume that all families would have
an Internet connection at home, or an appropriate space to
set up a computer and a video camera. Every community
center had functional Internet connectivity, even if it was
slow. Also, a family night setting allowed parents to come
pick up their children from routine after-school activities,
but spend extra time with their child (based on their sched-
ule), thus jointly participating in our coding workshops.
Takeuchi and Stevens [49] would define this as fit: for
families “to use a new platform with any regularity, it
should easily slot into existing routines, parent work sched-
ules, and classroom practices.”

Recruitment

We consulted with each of our three community centers to
decide the timing, number and duration of sessions, to find
a good fit with the parents’ schedules and constraints. The
community center had families sign up in advance, but
some signed-up families were unable to attend due to per-
sonal reasons, while other families that had not signed up
wanted to participate on the day of a workshop. We decided
to not turn away anyone who wished to participate. We
gave participating families a $30 gift card per session to
compensate them for their time. Our participants included
first-generation immigrant adults who had various degrees
of English fluency (Table 3), as well as their children (all of
whom were fluent in English, except for one girl). This
allowed nearly all of the children to function as translators
for their parents (the roles were exchanged for the child
who knew no English). Participants’ schedules constrained
the number of sessions we were able to organize at each
location (see Table 2 for details on each workshop’s format
and data collected). Table 3 details our participants (13
adults, 17 children).

Procedure

Each community center was unique, but we tried to conduct
each workshop using the same structure (influenced by FCL
[45]): obtaining consent and assent, followed by introducto-
ry explanations encouraging the children to teach their par-
ents how to use BlockStudio, and finally opening up to free
exploration, for a total of 60-120 minutes per session. Chil-
dren provided assent, while parents provided parental con-
sent for their children and informed consent for themselves.
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Joint

Parent
Parent, Age, & . Child(ren
Center ID > A8E English ild(ren) ‘f“
Language(s) and Age(s) Time
Fluency N
(min)
Fl1 Mother (46), Somali Low Son (12) 38
F2 Mother (35), Arabic, Afar High Daughter (12) 40
Bulsho | 3 Mother (33), Somali Low Son (11) 39
F4 Mother (33), Amharic Low Daughter (12) 41
g S Daughter (8) 108
F5 Father (48), Amharic None Daughter (9)
F6 Father (52), Amharic Low Daughter (8) 140
Rajo Son (9) 107
F7 Father (51), French Low Son (13)
s Daughter (10) 84
F8 Mother (32), Amharic Low (No English)
. Daughter (12) 29
F9 Mother (38), Somali Low Son (9)
F10 Father (53), Amharic High Daughter (11) 98
Farxad F11 Mother (38), Amharic Low Daughter (10) 100
F12 Father (51), Amharic Low Son (13) 74
. Daughter (7) 73
F13 Mother (36), Amharic Low Son (9)

Table 3. Participant demographics at each location. We refer
to participants by a pseudonym and a family ID (column 2).
Joint Use refers to parent and child(ren) being at the laptop.

As there were multiple non-English languages in use at all
locations, we could not provide translated versions of our
consent form. However, for some English literate parents,
we explained the form using basic English. For adults with
no English literacy, the community center employees or
participants’ children helped us verbally communicate the
contents of the consent form.

After obtaining consent, each family sat at a laptop con-
nected to the Internet with a mouse, with an empty Block-
Studio project on-screen. Next, the 1* author demonstrated
the basic concepts of BlockStudio, like creating a rule (e.g.
“When the up-arrow key is pressed, move a block up.”)
using English explanations, and then encouraged the chil-
dren to try what they had just learned. Once the children
were comfortable with the basics, we encouraged them to
teach their parents the same concepts using their own lan-
guage. Parents were encouraged to ask their children for
help when they got stuck, and if needed, the researchers. As
families got comfortable with the basics, we taught them
more advanced rules involving multiple blocks, like creat-
ing blocks in response to user input, deleting blocks in re-
sponse to collisions, how to create a “loop” pattern, etc. We
also suggested common game design patterns, without tell-
ing children how to implement them. We took care to avoid
saving rules created by us while teaching, by starting a new
project without saving the current one.

Each location was set up for a duration negotiated with the
community center employees (1-2 hours), and families were
free to come and go as they pleased. Parents sometimes had
to leave to take care of their younger children in the adjoin-
ing space (as we had arranged for childcare services).
Providing this flexibility meant that the families did not
start and end sessions in lockstep, leading to different ses-
sion lengths. Each session had four to five researchers pre-
sent as facilitators, who kept field notes and provided help
when requested. Our system was instrumented to record all
keyboard and mouse activity, which we were able to replay
in order to generate hi-fidelity video of our participants’
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Code Explanation

Create Rule A child or parent created a rule

Sharing w. Neighbors, Inviting nearby users to come see/play
Showing Off what they made

Taking Turns Parent/child taking turns driving

Point / Touch Screen Finger pointing at, or touching the screen
Success / Cheering Moments when children/parents go "Yes!"
or visibly celebrate; children turn to parent,
smile ("Look! I did it!")

Parent explaining to or guiding child
Child explaining to or guiding parent

One of us helps a child or parent

Parent Teaching Child
Child Teaching Parent
Researcher Guidance

Table 4. A subset of our video analysis codes

screen activity, and the artifacts that they had created. In
each session, we recorded audio and video footage of all
participants [28] as well as their screens (Table 2).

Though we recorded audio of our participants, people at
these community centers spoke Ambharic, Afar, Arabic,
Somali and French, and we did not have translators for all
five languages. While the children were able to convey vis-
ually concrete instructions to their parents, they could not
have translated nuanced interview questions and answers.
This meant that we did not do follow-up interviews or tran-
scriptions of the audio recordings of our participants. How-
ever, Tucker et. al. [51] showed that exclusively visual
analysis of interactions has high inter-rater reliability with
audio-visual analysis of the same for coding participant
engagement. Based on their findings, we were able to visu-
ally analyze our ELL families’ interactions to code for en-
gagement, without translating their non-English dialogue.

Data Analysis

Our analysis examined inter-participant interactions for
JME and their created artifacts for evidence of learning. We
aimed to characterize the kinds of JME, if any, that were in
these sessions, and also build a nuanced understanding of
computational complexity in artifacts that families created.

JME analysis

To identify JME, we examined the video recordings and the
available screen captures through thematic analysis [7].
First, researchers (two per video) open coded the data to
produce a set of initial codes. They then iteratively re-
viewed the data, combining initial codes and adding new
codes discovered in the process to produce the final code-
book (Table 4 shows examples). Next, the 1 and 2™ au-
thors utilized affinity diagramming to collaboratively group
all codes into consistent themes, using Takeuchi and Ste-
vens’ [49] work as a reference for JME aspects.

Computational analysis

Prior work has characterized the learning of coding con-
cepts by examining the scope of learners’ use of program-
ming constructs [11,32,54]. To assess the extent to which
children and parents co-learned BlockStudio, we followed a
similar strategy and analyzed their BlockStudio artifacts in
three different ways. First, we analyzed Rule Types, aiming
to provide a low-level picture of the kinds of rules within an
artifact. Second, we analyzed Artifact Types to broadly
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characterize the genre of the entire artifact. Third, we ana-
lyzed Pattern Types to highlight the game mechanics and
computational patterns (if any) in their work. In each of
these categories, we report the presence or absence of a
category, instead of counts. Since our participants used
BlockStudio for differing amounts of time, actual counts
would not be comparable across participants. However,
creating a certain type of rule, artifact or pattern at all is
categorical evidence of engaging with computation in
BlockStudio, particularly because there were many ways to
use BlockStudio without creating rules at all (e.g., creating
a static arrangement of blocks). The 1% author and 2™ au-
thors independently performed these three analyses on all
the artifacts from these workshops, and then later compared
their results. Any mismatches were resolved by referring to
the video and the saved artifacts (where available). In theo-
ry, this analysis can be automated. However, since the arti-
facts from Bulsho center were not saved, we had to watch
the screen capture videos to see what kinds of rules, arti-
facts and mechanics each family did (or did not) create.

Rule Types: We looked for touch, keypress, and collision
rules created by each family. We ignored rules with default
actions (see Table 1) and rules created with direct help from
or by a facilitator while teaching. Rules were considered
“complex” if they involved multiple kinds of blocks; oth-
erwise, they were called “simple.” An example of a simple
rule is “when the smiley face is clicked, move that smiley
face left,” while a complex rule example is “when the smi-
ley face is clicked, make it emit a bird flying left.” The lat-
ter rule involves multiple block types because it is triggered
by clicking the smiley face and it leads to the creation of a
bird. We classified all non-default collision rules as “com-
plex” because such rules are similar to an “if then” or a
“switch case,” selecting one of multiple execution paths
depending on the colliding blocks. Other complex rule ex-
amples include deleting one of the colliders, generating
blocks upon collision, and loading a different screen of
blocks. For every family, we tracked whether they had (or
had not) created simple or complex rules of each of the
three types (touch, keypress, and collision).

Artifact Types: While rule categorization provides a low-
level look at each family’s vocabulary of rules, artifact cat-
egorization aims to provide a high-level picture of the kinds
of artifacts created by each family. Looking at all artifacts
across the three sessions, the 1% and 2™ author clustered
them into three groups based on the overall genre of each
artifact. These groups emerged through a joint inductive-
deductive approach [7]. For every family, we tracked
whether they had (or had not) created an artifact that be-
longed to each of these groups.

Artifact Patterns: To provide yet another lens into computa-
tional sophistication inside an artifact, we looked for design
patterns that commonly occur in video games. From the
design patterns, we suggested to the children during the
workshops (including a standard BlockStudio computation-

Page 6



CHI 2018 Honourable Mention

al pattern called a “loop”), we developed a set of patterns to
look for within their artifacts (Table 6). For every family,
we deductively tracked whether they had (or had not) con-
structed an instance of a pattern from each category. We
describe these patterns and examples in our next section.

CASE STUDY RESULTS

Our workshop design did not guarantee that families would
demonstrate productive IME by engaging in creating inter-
active, computational artifacts with BlockStudio. As Roque
et. al. [44] reported, parents sometimes “feel unsure of what
roles they can play to support their children and how their
current supportive practices translate in the context of com-
puting.” Parents could have passively watched while their
children used the system. Alternatively, families could have
assembled blocks in static arrangements, showing JME in
using BlockStudio, but employing it as a painting applica-
tion, instead of as a coding environment. Others might have
created multiple rules, but without any overall understand-
ing of how rules could work together. Our analyses showed,
these ELL families jointly engaged in a variety of ways,
making interactive artifacts with computational complexity.

Evidence of Joint Media Engagement

Co-creation and mutual engagement. In our sessions, fami-
lies jointly engaged in the co-creation of artifacts using the
BlockStudio system in numerous ways. We saw mutual
engagement, where children and parents took turns using
the mouse to move blocks, create rules, and author interac-
tive behavior. They also gestured, pointed at, and directly
touched the screen to offer guidance and to discuss the dif-
ferent aspects of their artifacts. For instance, Dalmar (F3)
caught a mistake his mother was about to make: her space-
ship motion rule would have moved the spaceship diagonal-
ly instead of straight down. Using a combination of point-
ing to the screen and verbal guidance in Somali, he helped
her fix it. Figure 4(a) shows Galad (F1) explaining to his
mother how a “loop” pattern works, using his finger to trace
the mechanism. Importantly, parents and children spoke to
each other in non-English languages, providing support for
our idea that a text-free and visually concrete design could
facilitate JME using non-English languages, letting ELL
families mutually co-create.

Flexible assignment of roles. We designed BlockStudio to
allow children to learn coding concepts in English, and then
teach their parents in their own language. Our intentions
were to create conditions conducive to Teacher and Learner
roles [3] for children and parents respectively, providing a
context for JME. At each of the three locations, we saw
children teach their parent using non-English. At Rajo cen-
ter, Safiyo (F5) taught her father in Amharic how to create
rules, as he did not understand any English (Figure 4c). At
Bulsho center, Dalmar (F3) guided his Somali-speaking
mother through creating rules in Somali. They eventually
created a two-player game where one player (the mother)
would fire obstacles, which the other player (the son) had to
dodge. In some families, these roles did not map onto the
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Figure 4: (a) F1: Galad explaining a loop mechanic to his
mother, (b) F3: Dalmar celebrating with his mother, (c) F5:
Safiyo teaching her father how to create firing pattern, (d)
F8: Falis guiding her daughter to create a rule (child does not
understand English). Names are pseudonyms.

parent and child as anticipated; they were opposite. At Rajo
center, Falis (the parent in F8) guided her daughter Saado,
who had emigrated from Ethiopia two weeks prior to the
workshop and did not understand any English (Figure 4d).
This family benefited from BlockStudio being text-free and
visually concrete, allowing a parent with limited English
fluency to teach her child using Ambharic.

Parents sometimes provided skills not directly related to
coding but important for problem-solving. At Farxad cen-
ter, Ummi’s father (F10) had some prior experience with
programming and was fluent in English. He kept encourag-
ing Ummi to think of the “challenge” in the maze game she
was making. Eight-year old Danabo (F6) often impatiently
clicked the “¢/” button before demonstrating the change in
the blocks, prematurely ending her rule demonstration (thus
creating a default empty rule). Danabo’s father had grasped
the correct sequence, so he encouraged her to slow down
and do the three steps in order. These unexpected variations
showed BlockStudio to be usable via role assignments other
than what we had planned for, suggesting that our two de-
sign principles can accommodate different scenarios for
JME among ELL families.

Success, celebration and self-efficacy. There were numer-
ous instances where the ELL families celebrated success at
creating rules, making games, and beating the games they
made. Their celebrations involved physical affection and
smiling. At Bulsho center, Dalmar (F3) hugged his mother
when she created her first rule (Figure 4b), while at Rajo
center, Danabo (F6) high-fived her father when they suc-
cessfully finished creating a game. At Farxad center,
Nafiso’s mother (F13) even took pictures of the screen
showing her seven-year old daughter’s creation. Our obser-
vations do not imply that all BlockStudio users will cele-
brate successes. However, among ELL families jointly en-
gaging in coding using BlockStudio, many of them made
progress that they considered a positive result worth cele-
brating. Early successes with graphics and coding have
been linked to increased self-efficacy regarding computers
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Artifact Explanation
Static No rules, blocks arranged as a static scene (e.g.: a car).
N Blocks with velocity, relying on default “bounce” to
Animation . : .
create animated artifact (e.g.: block bouncing around)
. At least one block that player can move on screen, either
Interactive

using cursor keys, keyboard, or by clicking other blocks.

Table S. The types of artifacts we observed.

[21], hence such celebrations are noteworthy outcomes. At
the end of each session, multiple parents asked for the name
of BlockStudio (it was not publicly accessible), presumably
to use it on their own later. Finally, even though some fami-
lies arrived late, all participants stayed until the end of eve-
ry session, showing more evidence of high engagement.

Evidence of Computational Complexity

In the following section, we describe the results to our
analysis of the rule vocabulary, the overall artifact type, and
the presence of certain patterns like game mechanics and
loops in our families’ games.

Rule types. All participants created multiple kinds of rules
in BlockStudio (see “Rule Types” column in Table 7),
which highlights two important aspects. First, since we ig-
nored the default (trivial) rules, our results indicate that
every family created some non-default rules, which meant
that they had to engage with the system and modify the
blocks on screen. This is significant because if most fami-
lies were unable to create non-default rules, then that would
have been a failure of the interface, and by extension, an
invalidation of our design principles. Engaging with the
system to create rules is also important because success
with programming helps nurture positive self-efficacy be-
liefs regarding computers [21].

Second, separating rules into simple (affecting one kind of
block) vs. complex (affecting multiple kinds of blocks) is
analogous to classifying code as modifying one object vs.
modifying multiple objects. From a SOLO Hierarchy [33]
perspective, the ability to create simple or complex rules
can be seen as reflecting unistructural vs. multistructural
understanding of BlockStudio’s programming model. Sim-
ple rules create simple mechanics (like clicking a block to
move that block), while complex rules can achieve more
sophisticated mechanics (e.g., clicking one block to create a
new block next to it, or “firing”). As Table 7 shows (first
three columns), several families created complex rules of
multiple types. For instance, at Farxad center, Ummi (F10)
created a maze game with four arrows controlling the mo-
tion of a smiley face. She created a complex touch rule for
each type of arrow that could be clicked, reflecting the mul-
tistructural understanding that an event (mouse click) trig-
gered on one block (arrow) could modify another (smiley).

Artifact types. Our analysis of the artifact types revealed
three genres of artifacts: static, animated and interactive.
Table 5 shows these categories, while Table 7 summarizes
our classification of artifacts (“Artifact Types” column). At
Farxad center, Nafiso (F13) drew a static scene depicting a
church by assembling blocks on the screen (Figure 5b).
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Figure 5: (a) maze (b) static artifact (church), (c) game with
green dots (collectibles) (d) clone of Flappy Bird™

Pattern Explanation
Collectibles  Collect items (e.g., PacMan™ has to eat the dots).
Obstacles There are blocks the player must avoid (e.g., a frog has

to cross the road, avoiding cars).
Firing Player can create blocks (e.g., spaceship fires pellets).
A screen is loaded in response to an event (e.g. when
character hits obstacle, the “Lose” screen shows).
Combining pre-placed blocks with rules, repeating
collisions can automatically perform an action.

Table 6. The types of patterns we observed.

Transition

Loop

Rugiyo and her mother (F11) created an animated artifact,
where a character bounced around within an enclosure
made up of other blocks. Ummi (F10) created a non-
interactive animation that repeatedly created stars. Every
participating family created one or more interactive artifacts
(middle column in Table 7), indicating a productive out-
come for all ELL families in our workshop. For instance, at
Rajo center, 9-year old Dayib (F7) created an interactive
artifact where the user could move a spaceship around and
fire at other blocks. Other interactive artifacts included
maze games, games similar to PacMan™ and Flappy
Bird™, and variations of Space Invaders™. Creating inter-
active artifacts indicates an understanding of how to create
multiple complex rules using BlockStudio. BlockStudio’s
visually concrete design allows blocks to depict static ob-
jects, be computational components, or both. Hence, a su-
perficial, prestructural understanding of BlockStudio could
explain creation of static artifacts without rules, or anima-
tions with default bounce rules.

Pattern types. Neither the rule-level nor the artifact-level
analysis could capture the higher levels of understanding
present in artifacts combining multiple complex rules to
create higher-level behavior. For instance, at Farxad center,
Rugiyo (F11) created an artifact (Figure 5c) with five rules:
four rules allowing the player to move a character, and one
rule to let the character “eat up” green dots. Our rule-level
analysis reports that the above artifact has four complex
keypress rules and one complex collision rule. Our artifact
categorization calls this an interactive artifact. However,
what both of the above do not capture is that this artifact is
a game where the player can move a character around, eat-
ing up the green dots. Our artifact pattern analysis labeled
this the “collectibles” game mechanic. Table 6 lists the pat-
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Rule Types: Artifact .
Touch, Key, & Types: Patt?rns Types:
. Collision Static, Ani- Collectible, Qbstacle,
Famil, = = ’= Firing, Transition, &
y .. Xiring, 1. on,
D : simple rule, mated, & Loo
* : complex rule Interactive oop
T K C S A I C (0] F T L
Fl * « % ¥ o ¥ o “
F2 e % | | M ™
F3 * « % | ¥ o
F4 . ok ™
F5 e ox | | |
F6 . e * M M M Mo
F7 ok ok *x [V M M ™M
F8 ok . | M
F9 (3 ¢ . * MM ™ M
F10 ok * M ™ | |
Fl1 * * M 4 4 M
F12 . e % M M o ]
F13 ok ¥ 4 o

Table 7. Computational analysis of each family’s creation.

terns we saw, while Table 7 shows each family’s creations
(see “Pattern Types” column). Though we suggested some
of these mechanics or patterns to the families, our analysis
only counted the instances where a family successfully cre-
ated a pattern on their own. Our participants created multi-
ple complex rules in order to implement these mechanics
inside their artifacts. For example, Barkhad and Barni (sib-
lings in F9) created an interactive artifact with collectibles
and obstacles, using multiple complex rules to implement
these patterns. Two families created the transition pattern,
where a goal or obstacle was set up such that reaching it
loaded a different screen. Fahmo (F2) and her mother creat-
ed three successively harder obstacles for a character to
clear, where touching these obstacles would transition to a
“Lose” screen. Kamal (F12) made a game similar to Flappy
Bird™, where avoiding obstacles and reaching a goal al-
lowed the player to transition to the next level (Figure 5d).
A powerful pattern in BlockStudio is the “loop” pattern,
analogous to a “for” or “repeat” statement in text-based
coding. By setting up a block to bounce between two other
blocks, collisions can be used as a repeating event to trigger
changes to blocks. Ummi (F10) created an animation that
repeatedly created stars using this pattern. Galad (F1) guid-
ed his mother through creating a loop that automatically
spawned rocks, which acted like obstacles. Many families
created one or more of these patterns, indicating some rela-
tional understanding of how to combine rules in BlockStu-
dio’s coding paradigm to create such patterns.

DISCUSSION

Forms of JME like parental support can be beneficial for
children’s learning [17,24] and helpful when children are
learning to code [1]. With the goal of empowering ELL
families to jointly engage in learning to code, we distilled
two design principles (text-free, visually concrete), instanti-
ated them in BlockStudio, and studied its use with ELL
families at community centers. Our thematic analysis re-
vealed multiple forms of JME, with parents and children
mutually engaging and co-creating, flexibly taking on dif-
ferent roles, and celebrating successes. Our artifact analysis
showed a range of creations, varying in complexity from
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static arrangements of blocks, to interactive games with
obstacles and level transitions. We now discuss four possi-
ble interpretations of our findings.

One interpretation of these outcomes is as positive valida-
tion for our two design principles, implying that a text-free
and visually concrete interface supports JME among ELL
families for coding. JME outcomes like flexible roles [3]
could be attributed to our text-free interface being depend-
ent on English instruction in our workshop sessions, neces-
sitating the person with a higher level of English fluency to
be the teacher. Seeing parents provide other forms of guid-
ance can also be interpreted as an affordance of our system
design, which replaces the clutter of text-based code (or
text-labeled code blocks) with the visual appearance of the
artifact itself. This lack of clutter may have helped adults
support their child’s thinking about the process and goals,
instead of forcing parents to contend with the low-level
details of a profusion of code blocks on the screen. The
JME indicators we observed, like co-creation, flexible roles,
and celebrations, could be seen as a corroboration of Das-
gupta and Hill’s [10] point that allowing people to engage
in their own language could be the main advantage of local-
ization. Our findings could indicate these design principles
not only support ELL families but might also provide addi-
tional entry paths to coding, besides translated versions of
existing interfaces [52].

Second, it is possible that the text-free nature of BlockStu-
dio was inessential and that other factors led to the JME and
artifact complexity we observed, such as BlockStudio’s
overall interaction design. Children could have taught their
parents how to use a text-based coding interface in their
native language. However, given that our contexts had fam-
ilies speaking two or more non-English languages, it would
not have been feasible for us to effectively teach multiple
translated versions of the same text-based coding interface
in a single session. Further, English text could have allowed
a single instructor to teach the children, but their parents
would have been forced to learn a text-based interface in an
unfamiliar language. However, the various creations at
these workshops showed that our text-free design did not
hinder these ELL families. Instead, they created interactive
artifacts with sophisticated patterns, evincing productive
JME. A follow-up study could focus on the impact of text
via text-based and text-free versions of BlockStudio.

A third interpretation of our results is that the families we
observed may have had cultural propensities for JME. Since
we recruited all of our ELL families from community cen-
ters serving East African populations, they shared a similar
cultural background. It might be the case that such families
habitually spend time together, irrespective of the shared
activity. If this were the case, and if our ELL parents were
not engaged, we might still expect them to support their
children and patiently watch them use the system, even if
these adults did not understand what was going on. Howev-
er, our findings demonstrated otherwise; our JME observa-
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tions showed stronger forms of engagement than watching
or observing. We saw turn-taking as well as pointing at and
touching the screen, behaviors not associated with a passive
observer. Studying ELL populations from different cultural
backgrounds would help address this uncertainty.

Finally, most of our ELL families could have had prior cod-
ing experience (the father in F10 seems to be the only one
who did). We did not collect self-reported prior experience,
due to conflicting accounts of self-reported programming
ability being a good and bad predictor of performance
[12,18]. What we do know is that our participants had never
seen the BlockStudio system and they all produced interac-
tive artifacts with computational complexity via minimal
instruction in around two hours.

Limitations

Our research was a small case study with 30 participants.
Our contexts were community centers, not labs, and so
there was considerable variability between sites. Therefore,
our findings are focused on theoretical possibilities, rather
than statistical generalizations [55]. We encountered issues
like games not being saved at Bulsho center, and the log
streaming failing to work at Rajo center. However, due to
data redundancy, we were able to recreate games from logs
(at Bulsho) and view the on-screen interaction using the
video (at Rajo). Hence these issues did not diminish the
quality of the data. The community setting could have
caused a selection bias. The instructor and researchers (au-
thors) not only taught these families, but they also spoke to
them, sometimes sat beside them as they worked, and
helped them when they got stuck. This interacted with what
families learned, making the role of BlockStudio less clear.
Overall, our observations did give us deeper insight into
how ELL families interact [28]; however, as with any quali-
tative research, our work is prone to researcher bias.

DESIGN IMPLICATIONS

Programs like FCL have existed since 2013 [44]. Roque et.
al. described how using the Makey Makey [5] in FCL al-
lowed participation by a mother who “never saw herself
playing a significant role in technology-related projects.”
([45], p- 666) Such family-oriented programs could con-
ceivably be augmented via text-free and visually-concrete
coding tools like BlockStudio, thus expanding their reach to
include ELL families. At each community center, we taught
families how to create rules, and then allowed them to come
up with ideas for how to use what they had learned. An
alternate way for people to learn a new medium is by taking
existing artifacts created by other users, then figuring out
how they work [11]. When seeing somebody else’s artifact,
it can be difficult to figure out how it works, which is the
focus of program comprehension [53]. Text-based coding
often relies on comments, which are pieces of explanatory
text next to a line of code, serving as documentation of how
the code works. Similar to the notion of text-free curricu-
lum, text-free documentation of code could enable program
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comprehension in BlockStudio, paving the way for ELL
families to learn coding by remixing existing artifacts.

Though initial success with coding is helpful, learners can
acquire longer-term benefits by continuing to develop their
skills. This raises the question of how to support users in
transitioning to their next coding environment, like Scratch,
Python, or JavaScript. Since other environments are based
on English text, there are questions about whether our de-
sign principles can be partially relaxed. Though being text-
free appeared to show high ease of use in the initial stages,
the BlockStudio system is intended to be used as a stepping
stone to more complex systems. Thus, one of the most im-
portant questions one can ask of our system is “where do I
go next?” BlockStudio is a standalone system now, but we
intend to explore how to support children in transitioning
and expanding their coding skills. Beyond community cen-
ters, appropriately-designed online curriculum could em-
power ELL families to jointly code at home without an in-
structor. Given BlockStudio’s text-free design, its curricu-
lum could also be free of text. While there are examples of
static assembly manuals, like IKEA™ and Lego™, we are
not aware of other text-free curriculum for a programming
language, making this an interesting research topic.

CONCLUSION AND FUTURE WORK

In this paper, we have presented two design principles (text-
free, visually concrete), a system implementing them, and a
case study showing JME among ELL families learning to
code using this system. Our discussion shows varied possi-
bilities for extending this new understanding of how coding
environments may empower and support such underserved
populations in learning to code together. We encourage the
community to investigate making family-based programs
more accessible to ELL families, building text-free curricu-
lum to teach coding at scale, supporting text-free program
comprehension techniques, and finally, finding ways to
support children as they transition from one coding envi-
ronment to the next.

Our study focused on ELL families, but they are not alone
in facing difficulties with English text. Neurodiverse people
(e.g., those with dyslexia) experience challenges dealing
with written text. The average reading ability of deaf chil-
dren graduating high school is roughly at the third to fourth
grade level [38]. Thus, the removal of text from coding
could be useful beyond ELL populations. At the same time,
it is not evident whether these same principles would be
successful in empowering neurodiverse people to engage in
coding, with or without family-based JME, providing an-
other impactful avenue for future work. With these efforts,
we can achieve more inclusive and diverse learning com-
munities, and ultimately a more computing literate world.
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