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Abstract

We provide a lattice demonstration of (2+1)-dimensional field theory dualities relating
free Dirac or Majorana fermions to strongly-interacting bosonic Chern-Simons-matter
theories. Specifically, we prove the recent conjecture that U(N) level-1 with Ny gauged
complex Wilson-Fisher scalars (where 1 < N <N ) is dual to N ¢ Dirac fermions, as well
as the analogous conjecture relating SO(N) theories with real Wilson-Fisher scalars to
Majorana fermions for 1 < Ny < N — 2. Furthermore, we discover new dualities that
allow us to explain the interesting phase structure of the SO(NN) theories with N —1 and
N scalars, for all N > 2.
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1 Introduction and Conclusion

Recently, new (2+1)-dimensional field theory dualities — including boson-fermion dualities (gen-
eralizing flux attachment in the condensed matter literature) — have been under intensive study.*
They have roots in large N studies of models dual to Vasiliev gravity [2—1], as well as attempts to
understand the physics of the fractional quantum Hall system and topological insulators [5—7].
Many of these dualities were conjectured in [3]. The simplest boson/fermion dualities were then
crystallized in [9, 10], while dualities with non-Abelian gauge groups were further studied in [1 1]
and [12,13], which respectively focused on unitary and orthogonal gauge groups. These simple
dualities serve to generate a larger web of dualities, for instance by using the natural SL(2, Z)
action on (2+1)-dimensional conformal field theories with Abelian global currents [14]. Addi-
tional recent conjectures and tests of dualities include [15-27], and recent condensed matter
applications of these dualities include [258-35].

Heuristic derivations have appeared using wire constructions [36,37], deformations of well-
established supersymmetric dualities [358-12], holography [13], loop models [11], and an exact
lattice duality [15]. In this paper, we generalize the lattice construction of [15] in order to
study non-Abelian theories with multiple matter flavors. (As in all of the ‘derivations’ we
have mentioned, we will need to make some weak assumptions about what our theories flow
to in the infrared. However, our assumptions are very weak, and in many cases, including the
most interesting cases where we provide new dualities, they amount only to the assumption
that our lattice theories flow to their obvious continuum counterparts.?) We have a number
of motivations for doing so. First, while the dualities of interest formally arise from the more
general conjecture [8]

SU(K)

_ny N + Ny Dirac fermions <+— U(N)x + Ny complex Wilson-Fisher scalars (1)
2

and its SO/SO counterpart (with Majorana fermions and real scalars) by setting K = 1, since
SU(1) and SO(1) are trivial, they are nevertheless rather surprising, as one side is independent
of N while the other is not. This aspect of the dualities played an important role in the recent
applications of [34,35]. Second, the lattice non-linear sigma model proves to be an elegant
description of the Wilson-Fisher theories, as it accounts for all of the universal behavior in the

1Relativistic versions of flux attachment are, in fact, an old idea [1]. The novelty in recent proposals is that
this extends even to conformal fixed points.
2See Appendix C.1 for a more detailed discussion of the extent to which our assumptions are innocuous.



potentials of [11, 13] while eliminating the irrelevant radial modes of the scalars. Additionally,
as we explain below, the lattice is a powerful tool for obtaining dualities, and it is important to
see how far this technique can be developed. In fact, we will provide interesting new dualities®
in the SO/SO case when 0 < N — Ny < 1. The phase structure of the latter theories is non-
trivial (see figures 1 and 2 in section 4) and depends on N in interesting ways that are difficult
to discern without explicit calculations such as those that appear below. In the future, we hope
to be able to provide evidence for and nail down some of the details in the proposals of [16].

While we defer a detailed description of our lattice proof to the body of the paper, we
wish to emphasize here the main reasons why the lattice construction is powerful. To an IR
field theorist, Chern-Simons-matter theories are intractable strongly-coupled systems (excepting
certain limiting values of the parameters). However, we can obtain a Chern-Simons interaction
by beginning in the UV with a massive fermion. (Indeed, this approach allows us to guarantee
that we obtain the correct dependence on the gravitational and electromagnetic backgrounds,
as well as the topology, in the IR.) The idea is then to integrate out the gauge field and scalars
and demonstrate that the resulting theory describes free fermions in the infrared. Integrating
out the bosons will generate interactions for the fermions, so one might fear that one loses
control in the infrared. In fact, one might suspect that the resulting theory would be highly
non-local, since we are integrating out massless bosons. However, we only have critical bosons
in the IR; in the UV, the Higgs mechanism and confinement together prevent us from ever
having to integrate out light bosons, and so we are able to find a local fermionic theory. That
this is possible is ultimately due to the existence of the duality. Confinement results from our
setting the Maxwell coupling to infinity at the lattice scale. One might wonder about the IR
description of a gauge field which has no kinetic term in the UV, but the parity anomaly and
the paucity of relevant operators strongly suggest that a level one Chern-Simons-matter theory
obtains in the IR.%

Of course, there are other coupling constants in the IR, namely those of the quadratic
and quartic terms in the scalar potential. By integrating out the radial modes, one obtains a
non-linear sigma model whose temperature, T, is the tuning parameter constructed from these
couplings. The above steps produce a local fermionic theory with a non-zero bare mass and
irrelevant interactions with a coupling constant 7". We will show that for a range of bare fermion
masses in the UV gauge theory there is a critical temperature 7, where the interactions cancel
the effects of the bare mass so that the dual fermion becomes massless, and this 7, is within
the regime of applicability of perturbation theory in T'.> The UV cutoff provided by the lattice

3 As we discuss in Appendix C.1, strictly speaking we are able to prove new dualities for fixed points involving
scalars coupled to Chern-Simons, but calling them ‘gauged Wilson-Fisher’ fixed points might be presumptuous.

4In fact, although we set the Maxwell coupling to infinity, our derivation makes clear that — thanks to the
Higgs mechanism — for the most part only small fluctuations of the gauge field play a role, so the important
gauge field path integrals are performed only over the Lie algebra, and there is no question that our theories
are the appropriate lattice avatars of the continuum theories of interest. The exception to this rule is that in
some cases we will need to assume that certain theories with large gauge field fluctuations confine with a mass
gap, and when we do so we assume that the analogous statement also holds for the continuum theory.

Indeed, one could easily retain the Maxwell interaction with a large coupling constant, €2, but it would not
change anything, as its effects would be suppressed by T'/e2, the inverse of the square of the Higgs scale, as is
evident from the modified propagator. We demonstrate in Appendix C.2 that a small e? is also tractable.

5We emphasize that the appearance of the fixed point at a small value of T is not a fortunate accident, but



is quite useful in this respect, as it provides the scale that determines this regime. We can
then study physics at an IR scale arbitrarily far below that of the UV, where the parameters
of the lattice gauge theory’s effective field theory will hardly appear perturbative and the bare
fermion masses will hardly appear small. But, if we can identify the UV as describing a free
massless fermion, then surely the same can be said for the IR. In short, performing a change of
variables in the UV has a significant effect on the form of the renormalization flow, so that we
can either obtain a strongly-coupled or free theory.

The outline of the rest of the paper is as follows. In section 2, we describe the lattice proof
of the U(N) dualities with Ny = 1. In the following section, we repeat this analysis for the
SO(N) dualities. We then extend the construction to Ny > 1.

As this work was nearing completion, we learned of the forthcoming work [17], which has
some overlap with section 3.

2 Ny =1 Free Dirac Fermion as Complex Boson Coupled
to U(N)l

In this section we give an explicit lattice derivation of the K = Ny = 1 case of (1), generalizing
the N = 1 construction in [15]. The duality in Euclidean signature is explicitly [3,11]°

_ _ 1/ i
—L fermion = VY (V,, — A0 + mypp + 5 (ﬁAdA + z’2Cng)

I (2)
A
_‘Cboson = _’(V,u - Zbu)¢’2 - 7”¢‘2 - 5 (‘¢‘2)2

+ ((b + A)d(b + A)
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(b + A)S) + 42N CSgray -

Here 1 is a Dirac fermion, ¢ a complex boson with N colors, b a U(N) dynamical gauge field,
and A a background “electromagnetic” Spin, connection. The level-1/2 CS term on the fermion
side should be understood as coming from integrating out a heavy “doubler” Dirac fermion with
m — —oo, or alternatively, as +77/2 in terms of the eta-invariant [ 1]. The duality is supposed
to hold with sgn(r) = sgn(m), and most interestingly at the critical point r = m = 0.

In Euclidean signature we choose v* to be the Pauli matrices o# and treat ¢ and 7 as
independent. This famously leads to a reflection positive, but not real, action.” Our conventions
for Wick rotation to Minkowski signature are such that ¢ and ¢ are invariant, while the

rather a consequence of the fact that we choose the bare fermion mass, whose magnitude is invisible in the IR,
to be small compared to the lattice scale.
6The trace in the bosonic theory can be expanded as tr (bdb — %b?’) +2Adtrb+ NAdA, using b+ A = b+ Al.
"In Euclidean signature, we can define a new notion of complex conjugation, 1! = i1, under which the
massless Lagrangian 1T @y is real. However, this should be regarded as a distraction, since the important
condition for a Euclidean action is reflection positivity. Indeed, in the massive or Majorana cases the action
cannot be made real.



coordinate y becomes it, and correspondingly vt = —icg¥. In Minkowski signature we also
relate ¢ and v via ¥ = —ipTyt = —pTo¥, so that the action is real.

2.1 Lattice Constructions

We will construct two lattice gauge theories representing the two sides of the duality and
show that they are manifestly equivalent. We work on a cubic lattice representing the three-
dimensional flat spacetime; we will discuss how to incorporate a gravitational background later.
A lattice site is labeled by n = (z,y, z), and the link between the sites n and n+ i (1 = Z,9, 2)
is labeled by npu. The lattice unit length is set to 1. On the lattice sites there live matter fields
while on the links there live gauge fields. Specifically, the theories are as follows.

On the Dirac fermion side, at each site n there is a pair of two-component Grassmann
variables (¢,)® and (¢,,)a, Where a =7, is the Dirac spinor index. On each link nju there
is the background electromagnetic gauge field e*4# and its conjugate e *4»+. The partition
function takes the form

2°4) = [ DyDg eSS, DyDG =[] s,

VTR - _ B
—SwlAl =) (wnwLelA”“wn F feiam L 1¢n+ﬂ> +> Myutbn.  (3)

2 2
np
The properties of Wilson’s lattice fermion Sy, [18,19] are reviewed in Appendix A; we are
particularly interested in the vicinity M, ~ 3 [15], where there is a continuum Dirac mode

whose mass m changes from negative to positive as M, increases across 3, while the remaining
“doubler” Dirac modes with masses at the lattice scale contribute a net level-1/2 CS term for
the background A. We have also included some possible lattice scale interactions S;,;, which
are irrelevant in the continuum, up to some renormalization of the IR mass m that we will take
into account later.

On the boson side, we realize the N-color complex boson by a U(N) non-linear sigma model
in the fundamental representation. More precisely, at each site n there is a U(NN) matrix (V,,)%
where a,b = 1,..., N is the color index. The non-linear sigma model boson variable is given
by ¢2 = (V;,)% £, where the “reference” column vector is

e=1 | (®)

Besides the scalar, there is also a dynamical gauge field, which is realized by a U(N) matrix
(Unp)®, = (€)% on each link nu. There is again the background electromagnetic gauge field
eFAne The gauge field (b+ A) has a CS term in the IR. While it is tricky to directly implement
CS action at the lattice scale, to implement it in the IR, we can use a lattice fermion x“ in
the fundamental representation of U(N), with 1 < M, < 3 [15,50] (see Appendix A). Piecing



together these ingredients, the boson side of the duality’s partition function is

Z|A] = / DU z°[U] 2X[U, 4], DU = [[(dUn)1aar-

np
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Note that the U(N) variables are integrated with the Haar measure,® and the non-linear sigma
model S, is a direct generalization of the U(1) XY model, with the “temperature” T' controlling
the radius.

We note that in (5) one may include a Yang-Mills term for U. In Appendix C, we discuss the
consequences of doing so. In particular, we demonstrate that it changes neither our procedure
nor our conclusions.

Our claim is that one can explicitly show
Z[A] o« ZY[A] (6)

for any background A, with some overall proportionality constant independent of A. The two
sides will involve some different M, and My, such that M, is a function of M, and T the
fermion side will also involve some irrelevant interactions S;,,;. Moreover, when M, implements
level-1 CS, there is some critical value of T" such that ¢ has the desired massless Dirac mode
in IR.

2.2 Procedure

Our plan is to integrate out the gauge field U and discover that the boson ¢ binds with one
color component of y to make a new fermion ), while the remaining components of x become
invisible in the IR. As a first step, we single out one color by adopting the unitary gauge where

80ne might worry that a different prescription is required, so that the gauge field for the central U(1) C U(N)
is ‘non-compact’ [51] (in the sense that there is no potential for the dual photon [52] — i.e., the global U(1)
symmetry corresponding to A under which monopole operators are charged is unbroken). However, because of
the absence of the Maxwell term this distinction is immaterial. See also footnotes 4 and 30.



V,, is the identity matrix and ¢, = £ (see (4)) for all n. 9 11 Thus, each link nu ends up
contributing

"(Uny + U} )E—2 =1, |
/dUnM exp & (U, nu)f X 7—6“4"“ WXn—i—)ZnU,Twe’ZA”“7 5 Xn+i

oT + Xn+p 9
(7)

to Z[A]. As U,, does not appear elsewhere, the integral is done on each link separately [15].
For definiteness, let’s choose v* = ¢ and look at a link nz without loss of generality. The
integral is

fT Unz—i‘Urtzg_Q - i - —1
/dUnZ exp( ( ) — Xn+21€ Ans anZ _XnJ,U;rze AmXiH-;} : (8)

2T

Note that on each link, only one spinor component of each Grassmann variable appears.

To get an idea what will happen under the U integral, let’s consider the T" — oo and the
T — 0 limits. The T" — oo limit is equivalent to starting with Ny = 0. One expects the
strongly fluctuating U to confine the x’s into massive color singlets that are invisible in the
IR. In the integration (8), the exponent can be exactly expanded to finite order in the 4N
Grassmann variables X7, -1, X7 |, T, XZi ;.. These expanded terms form a polynomial in U
and UT. A term in this polynomial survives the dU integral only if it has equal numbers of
U and UT matrices. This in turn means the surviving terms must be independent of A, and
must involve 4k (k = 0,..., N) Grassmann variables, forming color singlets on both sites n
and n + 2.'2 These terms involving 4k Grassmann variables can either be viewed as 2k-body
interactions across the link nz, or as the hopping of heavy color singlet bosonic objects, made
out of 2k fermions, across the link nz."* Thus, when T — oo (or equivalently, at N; = 0) the
theory is (almost) trivial'* in the IR. This agrees with the expectation from the IR theory (2)
in the r,m — +o00 limit.

In the opposite T' — 0 limit, the integrand will be non-vanishing only if U leaves £ invariant,
i.e. the U(N) gauge field U9 is spontaneously broken to a U(N — 1) field U’*; acting on the

9In [45], this gauge fixing step is avoided by a division by the volume of the gauge group in (3.2).

10This is an incomplete gauge choice, since any U(N — 1) gauge transformation that fixes ¢ preserves our
gauge, but it will suffice for our purposes.

11 All Faddeev-Popov determinants in this paper are trivial. This is clear from the fact that our gauge choice
does not involve the gauge field or the fermion which remain in the path integral after our gauge fixing.

12The result of the integration can be expressed in terms of Weingarten functions, but we do not need the
details here.

BThere is no analytic proof that these order 1 complicated terms will make the bosonic objects massive and
invisible in the IR, but this is highly plausible on physical grounds, and is necessary for the duality to hold at
Ny =0.

14The Ny = 0 theory is the U(0); theory with a vanishing Lagrangian discussed in [11]. Intuitively, the purpose
of this theory is to preserve the memory that our theory once had fermions and required a spin structure until
we coupled it to A. See also our discussion in section 3.



colors B =2,...,N. Thus, (8) becomes
exXp <_1Zn+2T€iAmw2 - @nie_iAnzwiH.g)
’ /de{LZ €xp (_X;LJréTeiAnz UT/LZX/IL - X;L‘LU/ZLzeiiAnZX/‘TLLJr%) (9)

where ¢ = %! = £Ty is the first color component of x, and (x')? = x* are the remaining
N — 1 color components. Now ¢ is fully decoupled from X’ (the same is true in the mass
term); in particular, ¢ is a free Wilson fermion with M, = M,. On the other hand, the dU’
integral involving the decoupled x’ degrees of freedom is the same as the above dU integral in
the T — oo limit with N replaced by N — 1, and hence Y’ is completely invisible in the IR.
Thus, all we have is Z¥ with My = M, (and with S;,, fully decoupled from ). Since we have
chosen 1 < M, < 3 to implement level-1 CS, ¢ will now implement a level-1 CS term for the
background field A. This matches with the r,m < 0 phase (since m = My — 3 = M, — 3, as
explained in Appendix A) from the IR theory (2).

We are, in the end, interested in the finite T' case where an m = 0 Dirac mode is developed
in the IR. From the discussion above we expect y*=! = &y on the boson side to become 1)
on the fermion side. Indeed, this has to happen because after the dU integral, any term must
be built out of color singlets on both sites n and n + 2, and the only possible quadratic terms
(in x) are (Xni:46)(EMx)) and (0 €)(E7Xnizy). In other words, from the UV perspective, x*
is singled out by a Higgsed gauge field, while from the IR perspective, x! plays the role of the
monopole operator binding with the boson ¢. What we still need to verify is that as T" increases
from 0, the IR mass of ¢ will increase from m = M, — 3 < 0 and hit m = 0. Now there comes
a nice aspect of the lattice gauge theory construction. We are free to set the IR energy scale
arbitrarily low compared to the inverse lattice scale, so we can arrange the parameters such
that

IR energy scale of interest < |M, —3| < 1 = Inverse lattice scale. (10)

We have shown m = M, —3 < 0 at T"= 0. Now that we have arranged M, very close to 3, we
expect a massless Dirac mode for ¢ will appear, if at all, at some finite but small T, ~ 3 — M,.
We can thus expand in 7" and check that a small (compared to the inverse lattice scale) but
non-zero 7' indeed helps to increase m so that it hits 0 at some small 7" = 7..'* This low
temperature expansion in the UV is fully under control, despite the strong coupling nature of
the problem in the IR.

15An alternative to our approach, where we make a small T expansion before performing the integral (8),
might be available: one might be able to use the Itzytson-Zuber formalism [53-55]. However, the expansion is
necessary for computing the IR mass m anyways, as well as for making contact with the continuum a la footnote
4, so we may as well employ it from the beginning; in fact, it helps to clarify the physics under consideration.



2.3 Integrating out the (GGauge Field

To perform the low temperature expansion, it is natural to separate U(XN) into the U(N — 1)
part that does not act on ¢ and the U(N)/U(N — 1) part that acts on &:

e\ng 1] 0

Uw = exp |t . . 11
b L R R ) 0| ULy (11)

In this notation,

T e 2 2 2 2\2 21,12
eXp(g(UJrU)& 2>_eXp(_9 P (0% 4 [nP")° + 6%l +>

(12)
2T 2T 24T

Now we rescale 0 and n4 by v/T, and due to the smallness of T, we can take the integration
ranges of # and 14 to be R and C respectively; an overall constant from the Jacobian of this
rescaling is omitted.!'® The integral (8) on the link nz can be expanded in powers of T (we
absorb ein=U! — U’ and omit the nz subscript common to all gauge fields):

2 2 2 2\2 2 2

. A T A - - !
exp <—wn+2T€Z wg — Yo’ wi—i—é - X;%+2TU,X/n - X;¢U,TX,n+z>

{ Ut (Fnees O )T+ G A+ s+ sy 7 U+ XU )
T ((Burs1080) (000 ) + (Bnssr ' UNL) (KU )
F (e l) (i) + 0 | )
where in the expansion we have omitted terms that are odd in 6 or holomorphic / anti-

holomorphic in 74, as they vanish upon integration; terms with repeated Grassmann variables
also vanish. Now we can perform the Gaussian integrals over 6 and n; note that the 7/24 term

160ne might worry that we need a Jacobian in the change of variables from U to {#,n,U’}. However, thanks
to this rescaling, and the fact that the Lie algebra yields (via exponentiation) Riemann normal coordinates on
the group manifold, the (6,7n)-dependence in the Jacobian is O(T). As we will shortly explain in footnote 17,
this makes the Jacobian inconsequential. It is also important that the Jacobian does not yield terms odd in 6
or 7, since we drop terms that are odd in these variables.

(The statement about normal coordinates obtains after combining a few standard results (see, e.g., §4 of [50],
chapter 18 of [57], and [58]) about compact connected Lie groups. There is always a bi-invariant metric whose
volume form is the Haar measure (which is also always bi-invariant). Indeed, when the Lie algebra is simple
(e.g. su(N) or so(N)), the Cartan-Killing form is the unique such metric, up to multiplication by a positive
constant. For any bi-invariant metric, the geodesics starting at the identity are precisely the one-parameter
groups, e'*X, where t € R and X is in the Lie algebra. Said another way, with this metric, the Lie group and
Riemannian exponential maps coincide. Finally, since right multiplication is an isometry of this metric, the
geodesics originating at a group element U’ are of the form e*XU".)



in the first line just produces an overall constant plus O(7T?) terms.'” The result to order T is
/ dU” exp <_J}"+2T el — b e zA%Jrz X;HMU,X, XmU,TX n+Z)
|: 1 + T <N - _) <wn+zTe wT + w”ie lAwn-l—z) + T (X;H»ETU/X + XniU/T n+z>

+ T (Ynyz1)) (¢n¢¢n+z> + 2T ((imm X'Z“) ()Z'Zubmz) ( ) ) (im X’ﬁg))}

(14)

up to overall constants. Now we can re-exponentiate these terms. The terms quadratic in 1
receive a renormalization factor of (1 — T'(IV — 1/2)), while the terms quadratic in x’ receive a

renormalization factor of (1 —7"). We can remove these factors by a wavefunction renormaliza-
tion:

VI-T(N=1/2)¢ — ¢, V1-Tx — X. (15)
After this rescaling, we arrive at
/dU’ exp [ —~Pnpzre Pl — &niefmq/’fzw - 9_6;+2¢U/X XmU/TX nts
+ T (Ynyz19)) (&nﬂ’i%) + 2T <<@En+2T X'ﬁ) (ilnﬂ’nﬂ) <7IZ+ZTQ/} > @ni X’tia))}
(16)

(plus O(T?)). The same idea clearly works for links in the z and y directions too, with 7,
replaced by the eigenvectors of ¢ and o¥ respectively.

The redefinition (15) changes the mass term in (5):
MxXan — Mw&nwn + MX’X”N,X;’L ) (17)
where, to linear order in 7T,

My =M, (1+T(N —1/2)), (18)

and M,, = M, (14 T). Piecing together all the above, we arrive at the form of Z¥[A] given in
(3), with My, given above and the interactions given by

TZ <¢n+u _72_ 177Z) ) <¢n7u — 1¢n+u>]
ZTZ ((¢n+u _7“ — 1X/Z,> (/a’7 ¢n+u)

_1a! _’yﬂ_l 7,}/,11_1 o
+ (X/n-H]Twn) (wnTX,n_;_ﬂ .

(19)

(& — 5

" = exp

X / DyDy DU’ e 5wV exp

17This statement relies on the following manipulation: 1+ CT + DT + O(T?) = (1+ CT)(1+ DT + O(T?)).

10



The first line is a self-interaction of 1, while the remainder is an interaction of ¢ mediated by
the x’ sector. It seems the latter is complicated. However, it only affects the v sector at order
T2, and hence to order T' we can decouple the x’ sector and simply take

R int — TZ (&n—&-ﬂ#d’n) (_n$¢n+ﬂ) : (20>
ny

The reason is the following. As we discussed in the T' — 0 case, thanks to confinement,

[ DUe=5w Ul will yield terms with 4k (k runs from 0 to N — 1) x’ fields across each link. On
the other hand, each T }"x" interaction involves only two x' fields. Therefore, to connect the
X' sector to the 1) sector, an even number of T1)Y'y’ interactions must take place,'® i.e. these

contributions are O(T?).

In summary, we have shown that Z[A] given by (5) is, up to overall constants, equivalent to
Z¥[A] given by (3) after integrating out U and x’. The lattice mass My is given by (18) and the
lattice scale interaction S;,, is given by (20). This analysis is made to order T, which is controlled
and sufficient, as we discussed below (10). Note that to this order, the only place N appears
is in (18); for N = 1, the above reduces to the U(1) result [15] as Io(1/T)/1,(1/T) — T/2
at small 7. At higher orders in 7', the form of Z¥[A] is unchanged, though M, and S;,; will
receive higher order corrections.

Along the same lines of reasoning, one can also show the 2k-point correlation functions
satisfy

<¢m .. .1/,%1;%1 .. %k>A

where the expectation values on the two sides are evaluated using theories (3) and (5), respec-
tively, with an arbitrary background A.

2.4 Vanishing of the IR Dirac Mass at T' = T.

Now we have a single fermion theory (3), with lattice mass M, given by (18) and lattice scale
self-interaction S;,; given by (20). Were it not for the interaction Sy, this would be a free
theory with a Dirac mode near p, = 0 with mass m = M, — 3 (in addition to Dirac modes
at other points in the Brillouin zone with masses of order the lattice scale, as explained in
Appendix A); recall that we have chosen 0 < 3 — M, ~ T < 1 in (10), so to first order we
have m = (M, — 3) + 3T(N — 1/2), and indeed there is a solution 0 < 7, < 1 to the equation
m = 0. However, it is not legitimate to ignore Sj;,; since it makes an order-T" contribution to
the IR mass.

BOne caveat is that /DU’ e—SwlU'l inherits the quadratic mass term. But, this cannot couple the x’ sector
to TY1hx’x’, due to their spinor structures being orthogonal. The mass term is associated with a lattice site,
and the spinor structure on a site is Xjx} + x| x|. All other X’ terms are associated with a link, ny, such that
on either site at the ends of that link, ¥’ and x’ have opposite spins in the p direction. So the spinor structure
in the mass term is orthogonal to that in all other terms that are associated with links.
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In fact, this is its only important effect, since it is irrelevant. (It is a UV realization of a
current-current interaction. Note that our description of this interaction as irrelevant relies on
our perturbative setup: 7' < 1.) Explicitly, the IR mass of the Dirac mode near p, = 0 is given
by

m=M,—3+X(p=0), (22)

where ¥ is the self-energy of ¢ at p, = 0 to first order in 7." Tt suffices to compute ¥ with
only one S;,; insertion. The computation is the same as the U(1) case [15]; the details can be
found in Appendix B. We find ¥(p = 0) ~ 0.113 T, i.e.

m =M, —3+T(3N —3/2+0.113) , (23)

which, thanks to 0 < 3 — M, ~ T < 1, can hit m = 0 for some 0 < T, < 1 as desired. This
completes the exact lattice derivation of the duality.

If one wants a theory of ¢ that is not only free in the IR, but also on the lattice, one
can simply include a counter-term (20) for the y theory [15]. By similar reasoning as above,
when the 1 theory has a m = 0 mode, the corresponding x theory, with the S;,; self-energy,
implements level-1 CS.

2.5 Gravitational Background and Topology

By now we have carried out the lattice construction of the duality (2) on an infinite cubic
lattice, representing infinite flat spacetime. We now verify that this construction yields the
correct behavior with a gravitational background, and even with a non-trivial topology [11].
In fact, these properties are naturally integrated into our construction. Regarding gravity, one
can readily see that the y fermion we have in (5) indeed reproduces the right coefficient of
CSgrav 10 (2). As for topology, the CS (or BF) terms that can be consistently put on a Spin,
manifold [10,11,59] can always be obtained from integrating out heavy fermions.

To incorporate curved spacetime and non-trivial topology, we introduce the metric and spin
connection on the lattice using the method of [60]; the lattice building blocks might no longer
be cubes. This procedure does not interfere with our main step, integrating out U on each
individual link, in the establishment of the duality. Therefore, our UV analysis goes through
without substantial change. In these more general spacetimes, it would be harder to extract
the IR physics, compared to infinite flat spacetime. Nevertheless, since the field theory duality
holds only in the infrared, we need only concern ourselves with curvature as small as the IR
scale in (10), so that the only change in the IR interpretation is the change from flat to slightly
curved spacetime.

A final issue is that in gauge theory, the overall normalization of the partition function
might contain topological information about the spacetime [61-63] if it cannot be presented as
a product of local factors. In our derivation we dropped overall constants; now let’s look closely

More precisely, for small p one parametrizes X(p) = X(0) + (1/Z — 1)iv*p, + O(p?), where Z = 1+ O(T)
is the wavefunction renormalization. The IR mass should be Z times the right-hand-side of (22). Fortunately,
to compute m to order T, it suffices to take Z = 1.
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at them. There are three sources of overall constants. The first is the gauge redundancy of U,
much of which we have absorbed by setting ¢ = &; the remaining redundancy and the Faddeev-
Popov determinant yield a product of local factors.?’ The second is the overall constants we
dropped in integrating out U and rescaling 1, x’; these constants are associated with the sites
and links, i.e. they are already presented as products of local factors. The third is the decoupled
X' sector; since these fermions bind into heavy bosonic objects after the U’ integration, their
contribution can also be viewed as a local term that contains no information about the topology.

3 N;=1Free Majorana Fermion as Real Boson Coupled
to SO(N)l

Now we turn to an explicit lattice construction of the “SO(N)x + Ny real bosons <+ SO(K )_N+

+ Ny Majorana fermions” duality in the Ny = K = 1 case (where, again, the fermion side is
free). The procedure is very similar to the Dirac case, with some minor differences.

Ny
2

We briefly discuss a subtlety with Euclidean Majorana fermions (see, e.g., §2.2.1 of [61]).
With a Lorentzian metric, Majorana fermions satisfy a reality condition, which in our conven-
tions is (¢7)7 = ¢. In Euclidean signature, such a condition may no longer be imposed, since
1 is in the pseudoreal fundamental representation of SU(2) = Spin(3). That is, ¥ is a complex
2-component spinor (in the sense that it resides in a vector space with complex coefficients), as
in the Dirac case. The difference from the Dirac case is that in the Lorentzian signature one
may express the path integral (including the action) solely in terms of v, and this remains the
case after Wick rotation. Indeed, the Fuclidean action is that obtained from the Dirac case by
replacing ¢ — —¢To¥. We will therefore use the shorthand v for —”o¥; however, it should
be understood that we path integrate only over 1, and not 1.2' Thus, just as in Lorentzian
signature, the path integral for a free Fuclidean Majorana fermion is the Pfaffian of the Dirac
bilinear form (again, see [(1]).

The IR Majorana duality in Euclidean spacetime can be presented as [12, 13]

1 - m - i
_Efermion = 5 ¢7Mvuw + §¢¢ + 5 ngrav
I (24)

1 D W A | 2 .\
—Lposon = -5 (V, —ib,)g)" — §¢ -1 (%) + 3t bdb — 5b +iN CSgray-
Here 1) is a Majorana fermion, ¢ is a real boson with N colors, and b is an SO(N) (N > 3)
dynamical gauge field. Again the duality is supposed to hold with sgn(r) = sgn(m), and most
interestingly at the critical point » = m = 0.

20The exception to this is that one should include a factor for each connected component of spacetime, since
constant ‘gauge transformations’ are actual symmetries.

21Readers may be familiar with a similar discussion involving Weyl fermions in four dimensions. However,
there one treats 1) and 1 as independent 2-component complex spinors, each of which is to be path-integrated
over. 1 transforms in the fundamental representation of the first SU(2) factor in Spin(4) = SU(2) x SU(2),
while 4 is in the fundamental of the second factor.
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We do not couple the theories to a background Spin, connection, since doing so is impossible
for a Majorana fermion. That is, Majorana fermions require a choice of spin structure. This
manifests itself in the fact that our phases are governed by so-called ‘almost trivial” or ‘invertible’
spin-TQFTs [65], namely the SO(n); theories discussed in [59] which are dual to theories whose
Lagrangians are given by —£ = —in CSg,y. The latter formulation allows us to define these
theories for all n € Z, and we have SO(—n); = SO(n)_;. In particular, the m,r — oo phase is
simply SO(N); plus the iN CSgay term, which yields SO(0);. (Despite appearances, even the
n = 0 theory is non-trivial and requires a choice of spin structure.) Similarly, when m,r — —oo,
the gauge group is Higgsed to SO(N —1), and the Chern-Simons terms together yield SO(1)_4
The coefficients of the gravitational Chern-Simons terms in (24) have been chosen [13] so that
the dual theories have the same framing anomaly [62]. As above, they arise naturally in our
setup from integrating out massive fermions as we flow to the infrared.

The lattice construction is an obvious variant of (3) and (5). (We will only do the con-
struction on an infinite cubic lattice representing flat spacetime; the incorporation of a grav-
itational background is straightforward, as discussed in the Dirac case.) On the Majorana
fermion side, at each site n there is a two-component Grassmann variable (¢,,)*, and we denote
(Vn)a = —102(0Y)go. The partition function takes the form

AR / Dip e Sv—Sint Dy = Hd2¢n,
_ Sﬁ/ = Z % <'(Zn+u _7“ — wn + ¢n7u - wn—i-u) Z %@aﬂbn

n

np
T Y+ 1 My 1
= Z Uy p0” o= D S Un 0 (25)

2 n
and 9;,,; is again some irrelevant lattice scale interaction. The IR Majorana modes are straight-
forwardly deduced from the Dirac case.

On the boson side, we realize the N-color real boson by an SO(N) non-linear sigma model
in the vector representation. That is, at each site n there is a SO(N) matrix (V)% where
a,b=1,..., N is the color index, and the scalar is given by ¢¢ = (V;,)% &°, where the “reference”
column vector £° is again the unit vector pointing in the b = 1 direction. The dynamical gauge
field is realized by an SO(N) matrix (O,,,)% = (e®")% on each link nu. The partition function
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18
7= / DO 2°(0] 220}, DO = [[(dO00y)ttaa
np

Z°[0] = / DV % DV = [](dV,)saar:

— 5,01 = 2> (£"V5 00 Vg — 1),

np

240)= [ Dx eSO, D=,
v+ 1 M
- Sylo] = Z XZ;—Q—[LO-yTOn,an + Z fXZUan : (26)
nu n

Again the CS term for b is dynamically generated by a massive — but now Majorana — fermion
X® with 1 < M, < 3.

Our goal is again to show
7 x z¥ , (27)
and more generally
Yy - Py - P
= (const.)k <(§TVn7;Xm) cee (fTVnTank) ()ZﬁlVﬁlf) e (XﬁkVﬁk§)> , (28)
with the parameters arranged according to 0 < 3 — M, ~ T < 1, and in particular at some

critical value of T

The derivation procedure is the same as in the Dirac case, but with a caveat to be explained
soon. The first step is to exploit the SO(N) gauge freedom to fix V,, = 1 at all sites n. Then,
in the theory Z, we look at each individual lattice link ngu, which contributes the factor

T -1 (L
/dOW exp (50+£ + XaﬂayﬁyTOWXn) : (29)

Let’s again discuss the T" — oo and T" = 0 limits, in which the mentioned caveat will appear.
As T" — oo, the first term above vanishes and the theory is essentially at Ny = 0. We then
exactly expand the exponent into a polynomial of Grassmann variables and perform the dO,,,
Haar integral. Previously, in the U(N) Dirac case, only the terms with equal numbers of U
and UT matrices survived the Haar integral. By contrast, thanks to the Majorana condition
only O appears now, and the only terms that survive the Haar integral do so because O has
determinant 1:

/dO O“b1 OO o €41 an bty - (30)
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These surviving terms describe the hopping of a massive color singlet object €. X* -+ XV
which is invisible in the IR.?? Thus, the theory at T — oo (or equivalently, at Ny = 0) is
(almost) trivial in the IR. In the opposite T = 0 limit, the parts of O that rotate £ are infinitely
Higgsed, leaving the residual gauge field SO(N —1). Then, as in the Dirac case, the y2=! = Ty
component is singled out as ¢ (with M, = M, ), and the remaining components fully decouple
from ¢ and bind into SO(N — 1) color singlets, which become invisible in the IR. This also
explains why the Majorana duality holds for N > 3; for N = 2, there is no residual SO(N — 1)
gauge field, so this case must be treated separately. Fortunately, it is identical to the U(1) case
that we have studied. Thanks to our choice of 1 < M, < 3, this gapped phase has a level-1
CSgrav term.

As in the Dirac case, we shall arrange the scales according to (10) and perform a small T
expansion to confirm the existence of a small, but finite, 7. At small T, it is natural to separate
SO(N) into the SO(N — 1) part that does not rotate £ and the SO(N)/SO(N — 1) part that
rotates &:

0 —Tc 1 0

Ou = exp (31)

na 0 . 0 (O/)CB

Since fluctuations of 14 are suppressed by the smallness of T, we can rescale n4 by T and
extend each of its components’ range of integration to R. We perform the 7 integral in (29)
and keep the result to linear order in 7. Defining ' = y4, the result of integrating out Ny iDL
(29) is

N-1 7+ 1 T w
oo () ) [, oo (1 T) o)

(32)

(up to O(T?) corrections). Note that to order T', the Majorana fermion 1 is free (the current-
current interaction of the Dirac case is disallowed by the Majorana condition) but has a wave-
function renormalization, while the x’ fermions are completely decoupled from v and form
massive SO(N — 1) singlets. One can rescale

VI-T(N-1)/2¢ — ¢, (33)

so that the hopping terms retain the usual normalization. This rescaling affects the mass term
as

My = M, (1+T(N —1)/2) . (34)

Thus, we have shown that (26), after integrating out the gauge field, is equivalent to (25), with
My, given above and S;,; negligible at order 7. Since the 1 theory is free at this order, we

22 Again, there is no analytic proof that this object is massive and invisible in the IR, but this is highly
plausible on physical grounds, and is necessary to make the duality hold at Ny = 0. This is also related to the
statement that the gap for Zs C O(N) charged excitations does not close [12,13], as this object is Za-odd.
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know there is an IR Majorana mode with mass m = M, — 3 — this is simpler than the Dirac
case (22) where there is also a self-energy contribution to be considered. As we started with
M, slightly below 3 (recall the arrangement of scales (10)), there is some small, positive value

of T at which M, hits 3. By a similar procedure, one can show (28), where the constant is
1-T(N—-1)/2.

4 Ny >1— Pushing the Flavor Bound

4.1 The generic case: U(N) with Ny < N and SO(N) with Ny < N —2

We now generalize our construction to larger values of Ny. For concreteness we restrict to a
U(N) gauge group, and comment on the small differences with the SO(N) case at the end.
A natural guess for the appropriate non-linear sigma model might be N; unit-length scalars.
However, the condition ¢]¢; = 1 (no sum over i) is not invariant under the desired SU(Ny)
global symmetry. Furthermore, after coupling to the U(N) gauge field and fixing a unitary
gauge, one is still left with continuous vacuum degeneracy. The 7' = 0 phase therefore has
massless scalars, and hardly resembles the gapped phase we expect from the duality. This
degeneracy also suggests that there are additional SU(Ny)-invariant relevant deformations that
we may add to the theory, on top of that parametrized by T. However, the desired IR fixed
point has only one relevant SU(Ny)-invariant deformation [l1], so it cannot be reached by
slightly increasing T' from 0. These considerations all make it clear that imposing <Z5,T¢i =1 for
each ¢ does not yield the desired non-linear sigma model.

To determine the correct condition to impose, recall that we motivated the non-linear sigma
model in the introduction by integrating out the massive radial mode. Clearly, the ‘radial
modes’ in the current case depend on the potential. This is described by the following three
relevant SU(Ny)-invariant terms that we may add to the free scalar Lagrangian [11]:

rolont 3 (616) + o(dlos0l0)) (3)

Focusing on the first two terms, we can, as in the introduction, eliminate them in favor of the
condition (bjgzﬁi = Ny (where now, of course, we are summing over 7). The final term in the
potential is

P (010" +p ) lolesl (36)

i i#]

Since Ny < N, it is geometrically clear that this is minimized when ¢I¢j = 0 for all © # j.
A little more thought (or considering the saturation of the Cauchy-Schwarz inequality) then
shows that the first term is minimized (subject to ngI(bZ = Ny) when gbjgbz =1 for all 7. These
conditions can be unified into the SU(Ny)-invariant constraint

Gl =0y . (37)

This yields the appropriate non-linear sigma model. Geometrically, the N; scalars form an
orthonormal set of N; vectors in CV. The space parametrized by these scalars is known as a
complex Stiefel manifold, Vi, (CV) = U(N)/U(N — Ny).
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We may now trivially generalize our gauge choice from the earlier sections:
ol =6, ¢'=0, (38)

where J =1,..., Ny is a color index, asis A = Ny+1,..., N. Again thinking geometrically, we
have chosen our N; orthonormal vectors to be the first N; vectors in the standard basis for CV.
We emphasize the important point that gauge fixing has eliminated any vacuum degeneracy.

From here, our earlier steps generalize easily. Our gauge group is Higgsed to U(N — Ny),
and this confines Y4 = 4. We are then left with v/, for which integrating out the massive
components of the gauge field yields order T interactions. These may be seen, as above, to
cancel away the mass of Ny Dirac modes at some critical temperature, T.. That is, (23) is
generalized to?3

N
m:M¢—3+E(p=0):Mx—3+T(3<N—7f)+0-113Nf) ) (39)

which has a positive coefficient of 7', so the massless fermions again obtain at some critical 7.

We pause to note that our derivation is particularly trustworthy when Ny = N, as in this
case there is no x’ that needs to confine. This is fortunate, since all of the dualities with Ny < N
may then be derived via mass deformations. A similar observation holds for the extreme SO(V)
cases discussed in sections 4.2 and 4.3.

In the SO(N) case, we simply replace the complex Stiefel manifold by a real one, Vi, (RY) =
O(N)/O(N — Ny), which is the space of N; orthonormal vectors in RY. We again choose the
gauge (38), and our gauge group is Higgsed to SO(N — Ny). Since SO(1) is trivial, we find
the requirement that N — N; > 2. Otherwise, as we discuss below, the story changes. The IR
mass is now

T N +1
m:Mw—S—l—E(p:O):MX—3—|—§(3<N— f; )+0.113(Nf—1)> . (40)

Again, the coefficient of T' is positive.

4.2 SO(N) with Ny =N — 1

If N— Ny =1 (as in the N = 2, Ny = 1 case discussed above), then x’ is not confined, and
we can find an extra light Majorana fermion in the dual theory. This was concretely observed
when N = 2, Ny = 1, where we found a massless Dirac fermion instead of a Majorana one.
However, that case turns out to be quite special, as only when N = 2 are ¢ and y’ massless at
the same value of 7. This agrees with our CFT intuition, since in this case ¢" M, where M is
the monopole operator, being a Dirac fermion relies on the accident SO(2) = U(1) that implies

Z3This follows from the generalization of (11): # becomes a Ny x Ny Hermitian matrix (with NJ% real degrees
of freedom) and n becomes a (N — Ny) x Ny complex matrix (with 2N;(IN — Ny) real degrees of freedom). The
coefficient N — Ny /2 in (39) is the sum of these degrees of freedom, divided by Ny because this is spread over
the Ny flavors. The self-energy is computed in Appendix B.
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that the global symmetry acting on the monopole operator is U(1), not Zy. More generally,
the mass m for /' and the mass m’ for \’ are respectively

T (3
m:M¢—3+E(p:O):MX—3+§<§—|—0.113>N, (41)
m’:MX/—S—i—E’(p:O):MX—3+T(§—|—O.113)(N—l). (42)

(Note that My, in (41) is consistent with (40), but the self-energy is different; see Appendix B.)
We find, for N > 2, two different gauged Wilson-Fisher fixed points,?* corresponding to two
different critical temperatures. The situation is summarized in figure 1. At

1 3—M
M) = X 43
¢ 3/2+0.113 N/2 (43)
1) is massless, while at a lower temperature
@ _ 1 3— M, (44)

¢ 3/2+0113 N—1"
X' is massless. That is, we have the dualities
SO(N); plus N — 1 Wilson-Fisher scalars at T «— N — 1 Majorana fermions (45)
and
SO(N); plus N — 1 Wilson-Fisher scalars at T.> <— 1 Majorana fermion . (46)

Just as we can express the N — 1 fermions in 1 in a gauge-invariant manner as @7y, we can
also write y’ as

X = det([fx]) = €G- G (47)

When N = 2, which is equivalent to the U(1) case, these fixed points coalesce and all N = 2
Majorana fermions are massless at the same 7.

The N = 2 case is usually used as evidence that the usual dualities break down when
N — Ny = 1, since starting from any such configuration one may flow (via Higgsing) to the
N =2, Ny =1 case. We now see that while there are changes when N — N; = 1, this is not the

whole story, and indeed the fixed point at 7Y s quite similar to that of the generic duality. If
we start with V = 3, Ny = 2 and Higgs away one color in order to study the N = 2, Ny =1
theory, then we find the surprise that a new U(1) symmetry emerges that guarantees that ¢ and
Y have the same mass. Acting with this symmetry on ¢ = ¢*x yields an entire Dirac fermion,
1 +1ix'. We are used to mass parameters mapping via the duality to mass parameters, but here
that clearly cannot be the case, since there is only one mass parameter on the boson side while
there are two Majorana masses available on the fermion side. The resolution of this is provided
by noting that the latter mass terms are not invariant under the U(1) global symmetry, and so

248ee Appendix C.1 for a caveat regarding this terminology.
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SO(N); plus N — 1 Wilson-Fisher scalars

1 Majorana fermion N — 1 Majorana fermions

SO(N)_; SO(N —1)_, SO(0);
@ @ @ >
T=0 T®<«1 T « 1

Figure 1: Phase diagram of SO(N); plus N — 1 Wilson-Fisher scalars. Free fermionic descrip-
tions suffice near the repulsive fixed points at 7Y and TC(Q), while the bosonic gauge theory
applies at all T. Both fixed points are accessible in perturbation theory. The phases in this
diagram are discussed below (24). Away from the fixed points, a new relevant operator (asso-
ciated to m near T2 or to m/ near T, 0(1)’ or in the UV to M, ), which is invisible at the fixed
points, drives the renormalization flow away from this line, so that there is no flow between the

two fixed points.

they must map to monopole operators in the dual theory. Only the U(1)-invariant Dirac mass
term maps to the scalar mass. Denoting the monopole operator by M, we thus learn that

U(1); plus a Wilson-Fisher scalar and a (Re ¢"M)? potential +— 1 Majorana fermion ,
B (48)
as the potential on the left hand side is the Majorana mass 1.

One might now wonder if it is possible to have all N Majorana fermions be simultaneously
massless, when N > 2, by allowing one of the scalars to have a temperature ¢ # T'. This would
be extremely interesting, as it would mean that by breaking the O(N — 1) global symmetry in
the bosonic gauge theory one could enhance the global symmetry in the dual theory to O(N).
However, it turns out that this is not possible. Instead, 1 splits into N — 2 fermions with a
mass

3 T Tt
M, — — A1 N-3)—+—+T 4
N 3+(2+O 3)(( 3)2+T+t+ ) (49)
and one fermion with a mass
3 Tt
M, — 3+ <§+0.113) ((N—2)T—+t+t> , (50)
while y’ has a mass
3
M, -3+ (5 + 0.113) (N=2)T+1t) . (51)
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For N > 2, these masses can never be made equal for finite small ¢ # T: the y’ mass is the
greatest, while the first mass is greater / less than the second mass if T" is greater / less than ¢.
Note that these formulae concretely demonstrate the symmetry enhancement described above
as one Higgses from N = 3, Ny =2 to N = 2, N; = 1 by taking ¢ — 0: the masses (49) and
(51) adjust themselves in order to become equal.

4.3 SO(N) with Ny = N

When N = Ny, we are unable to choose the gauge (38), since SO(N) transformations cannot
guarantee that our Ny orthonormal vectors are oriented. So, there is a twofold vacuum de-
generacy, labelled by the vevs (38) and the vev obtained by the replacement ¢ = —1. These
vacua are related by the Zy center of the O(Ny) global symmetry group of the gauge theory.
However, as we already remarked above, this Z, should not be present at the IR fixed points
we seek with free fermion duals.?® So, we should have no qualms about employing spontaneous
symmetry breaking in order to focus on the vacuum (38). Indeed, we may as well break the Z,
symmetry explicitly: when N = N; we can include the potential

1 I
i€ NGR O = — det g (52)
in our non-linear sigma model. For most values of IV, this is dangerously irrelevant; i.e., it is
irrelevant, but nevertheless important, as it dramatically affects the vacuum structure of the
theory. In any case, since (40) still holds (see Appendix B for the self-energy), we are lead, as

above, to the following duality, again for N > 2:26
SO(N); plus N Wilson-Fisher scalars at TV «+— N Majorana fermions . (53)

We emphasize that this last duality is qualitatively different from the rest discussed in this
paper, due to the mechanism by which the renormalization group eliminates the Z, symmetry
from the infrared CF'T. Foreseeing the existence of a second gauged Wilson-Fisher fixed point,
as in the previous section, we have denoted the critical temperature of (53) by T. C(l), which is
again much smaller than the inverse lattice scale.

The duality (53), of course, does not exist when N = 1. However, we can now increase the
temperature and search for a Zs symmetry-restoring phase transition at some T ~ o) >

Tc(l), analogous to that described by the N = 1 Ising fixed point. In fact, we will now argue
that the Ising fixed point obtains for all N:

SO(N); plus N Wilson-Fisher scalars at T s Ising . (54)

25This might seem strange, since the desired free fermionic dual will have O(Ny) global symmetry. However,
the Zs present on the fermion side of the duality maps to a symmetry under which monopole operators of the
gauge theory are charged [13]. More precisely, the operators that are odd under this Zs are those monopole
operators which are allowed in the SO(N) gauge theory, but forbidden in the Spin(N) gauge theory.

26Note that the N = 2 case is different from U(1); with Ny = 2, since the quartic terms in the potential (35)
are not independent, whereas the SO(2); with N; = 2 theory has two independent quartic potential terms. The
missing potential in the U(1) case is of the form —(e;; ¢I $;)?; it is forbidden by the SU(2) flavor symmetry, but
allowed by the O(2) (or SO(2), if we included (52)) flavor symmetry of the SO(2) theory, as is clear if we write
this potential in terms of 2-component real scalars as 2(eab¢>§¢>§)2 = 2((¢F ¢:)* — (¢T ¢;)?). The last equality
expresses this potential using the terms appearing in (the real scalar analogue of) (35).
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SO(N); plus N Wilson-Fisher scalars

N Majorana fermions Ising

SO(N)_; SO(0), SO(0),
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@ O O >
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Figure 2: Phase diagram of SO(N); plus N Wilson-Fisher scalars. Ungauged descriptions
suffice near the repulsive fixed points at 7Y and Tc(2), while the bosonic gauge theory applies
at all 7. Only the free fermion fixed point is accessible in perturbation theory. The phases in
this diagram are discussed below (24). Away from the fixed points, a new relevant operator
(associated to M, ), which is invisible at the fixed points, drives the renormalization flow away
from this line, so that there is no flow between the two fixed points.

This follows from the observation that the fermions’ masses increase as we increase the tem-
perature from the fixed point in (53). The minimal assumption is then that strong interactions
do not yield new light degrees of freedom. We are thus led to the proposal of figure 2.

Alternatively, if one is willing to believe that the gauge theory with an infinite Maxwell
coupling is in the same universality class as the associated continuum theory even at finite T’
(c.f. footnote 4), then our usual arguments can provide additional evidence for the duality, as
we now demonstrate for N = 2. We fix the gauge ¢¢ = (s,0)7, ¢3 = (0,1)", where s = +1 is
an Ising variable. By regarding SO(2) as U(1), we can recast these as 1-component complex
scalars — ¢ = is, ¢ = 1 — which we succinctly write in the 2-component form ¢ = (is, 1).
We similarly regard x as a Dirac fermion. Next, we exactly integrate out the U(1) gauge field,

7(2)

as in [15]; we will not use a small T" expansion since we expect T~ to occur at order 1. The

contribution to the partition function from a link ny is

/ " Do exp ¢n+u e + Ol P — 4
_p 27 2T

e R - i~V 1
exp (Xn € X + X ————Xn | - (55)

2 2

Note that the first factor is the exponential of ((1 + s,S,45) cosby, — 2)/T. We then Fourier
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expand the first exponential and Taylor expand the second. When s,s,4; = 1, we have

" dbn —2/T Wbnuin
[ S T P

- Jnu€Z

=1, - b, —Y =1 =1 i
[ I+ Xn € ’ HXTH—[L + Xn+n€ b Y C Xn——F Xn+i Xn+tip—— %5 Xn

2 2 2 2

_ ] (2/T) _ ryﬂ_l B _/7“_1
— e 2Tr (2/T ! A T
€ 0( / ) exXp |i 10(2/T) Xn 92 Xn+p + Xn+i 2 Xn

+ (1 — gg—%) (onT_lxnﬂz) <Xn+ﬂ#xn) } , (56)

which is identical to the Ny = 1 result of [15] with the replacement 1/7" — 2/T"; recall I; = I_;

is the jth modified Bessel function. On the other hand, when s,s,,;, = —1, the contribution is
simply
- J ot oot
€ 2T |:1 + (Xn 9 Xn-i—;l) (Xn-‘rﬂTXn
_ =1 _ -yt -1
= e ¥T €xp |:(XnTXn+[L) (Xn—‘rﬂTXn . (57)

There are two main differences between s,s,,, = 1. The first difference is the overall factor
of Iy(2/T) that favors Z, symmetry breaking at small temperatures. The second is that the
fermion cannot hop through a link with s,s,,, = —1.

Now the phases can be easily understood. Iy(2/7) behaves as €2/T\/T /47 at small T and
1+ 1/T? at large T. Thus, at T < 1 only the s,s,;5 = 1 configurations will be realized,
and the theory becomes the same as Ny = 1 except T" — T'/2. In particular, at T (where
(40) with N = N; = 2 vanishes, or equivalently where (39) with N = Ny =1 and T — T/2
vanishes), one finds a free Dirac fermion. As T increases, the mass of this fermion increases. If
we always had s,s,1; = 1, then we would suspect that this fermion remains massive at order-1
values of T', so if we want to search for dramatic effects that it causes we should study Ising
domain boundaries on which s, 5,4, = —1. However, the fermion’s correlation length is of order
the lattice scale within each Ising domain, and it cannot hop through domain boundaries, so
it seems unlikely to affect the Ising spin in any interesting way. Thus, we are left only with
the Ising model at temperatures of order-1 and above. It is not hard to see the same physical
picture carries over to higher values of N.
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A Wilson’s Lattice Fermion

We remind the reader of Wilson’s lattice fermion action Sy, [18,19]. In the absence of a gauge
field, the action in momentum space is

g dd _

N H

where in the main text we have set R = +1. Consistent with the fermion doubling theorem [(6],
there are 2” = 8 IR Dirac modes, corresponding to the vicinities p = p + dp of the eight
saddle points where each p, component is either 0 or w. Taking sinp, ~ dp, cosp, and
cos p, ~ cosp, around each of these saddle points, we see that each IR Dirac mode has mass
+(M — R}, cosp,) , where the sign in this expression is [], cos p,,. The role of R is therefore
to make the modes have different masses [13,19]. For example, near M ~ 3R, the Dirac mode
at p = 0 has a small IR mass m = M — 3R, while the other seven Dirac modes have lattice
scale masses.

When coupled to a slowly varying U(1) gauge field A,,,, integrating out the fermion will
produce a level-C' CS term, where each IR Dirac mode contributes (—1/2)sgn(mass) to C.
Therefore [50],

0, 3|R| < |M|
O ={ sen(R), IR| < |M| < 3|R| . (59)
—2sgn(R),  |M| < |R]|

If M = 3R exactly, then there will be one massless Dirac mode, and integrating out the
remaining Dirac modes contributes C' = sgn(R)/2 (the IR meaning of which is supplied by our
UV lattice regularization). Note that the magnitude of R does not affect any IR physics (as
long as we scale M correspondingly), so we set |R| = 1 in the main text, which has the UV
convenience that £+4* — R projects out one spinor component.

If we replace 1 by the N-color fermion x¢, the analysis is very much the same; in particular
the non-Abelian CS level is still as above. Therefore, to implement level-1 CS, we can set
R=+1and 1< M, < 3. A similar discussion holds for Majorana fermions and SO(N) gauge
fields.

B Mass Renormalization from Lattice Scale Interaction

We compute the self-energy in (22) and (39) for 1 < Ny < N Dirac fermions. We set the
external momentum p, = 0, and take M, ~ 3 in the internal lines. The self-energy at p = 0

24



is proportional to the identity matrix in 2 x 2 spinor space, due to the charge conjugation
symmetry 1 — 2T, ¢ — —pTo?. To first order,

J I J I J

I

where the arrowed lines are the ¢! (I = 1,...,N;) Dirac fermions, the wavy lines are the
Hermitian 6;; (Higgsed) gauge fields, and the double wavy lines are the complex 14, (Higgsed
gauge fields). The 11060 and ¥ynin vertices appeared in (13) (and its N; > 1 generalizations),
and are responsible for renormalizing M, to M,, which we have already taken into account.
So we only need to compute the third diagram, whose ¢)@ vertices appeared in the quartic
terms in (13). (One can also draw an additional tadpole diagram, which vanishes by charge
conjugation symmetry.) The Feynman rules are given by

-1
= |- Z (Wisink, —cosk,) — M, | =

I

—M, + 3, (cosk, + " isink,)
(M, =3, cosk,)?+ > (sink,)?

p,IJ = —e "/ (yHicosk, +sink,)

q mod 27
w,IJ e~n~~~rw v, J'I' = wa,(SHI(SJJ/

in Euclidean signature. (The vertex is given by 0y, of the inverse propagator due to gauge
invariance, and there is an additional factor accounting for an Umklapp process.?”) The third
diagram is given by

T Ak
01y Ok T Z ok
w T

< k,
Vi cos -2 5 + sin —

ko\ —My+ >0, (cosky+7i S'in kx) ~*i cos Ky + sin Fu
?) Oh =3 conk 4 5, Gk 7

2

T APk cosk, (M, — >, cosky) — (sink,)?

=6 N A -
1 / )3 Z (M, — >, coske)?+ > (sink,)?

B wﬁ - M, (M, — ", cosk,)
=N [ 55, [ T s is oy vad B o

27 At the vertex, we take —m < k, £ qu/2 < w. But this implies —27 < ¢, < 2m, i.e. g, would have a range
of 47, so we allow it to change by 27 across the interaction line, which corresponds to an Umklapp process. If
this happens, it gives rise to an extra factor e %n/2e~#(F27=4.)/2 — _1  This issue does not come up in our
self-energy computation.
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To first order we can take M, ~ 3. Performing the integration numerically, we find —X(p =
0) ~ —0.113 Ny T. (One can also explicitly check that the first two diagrams renormalize M,
to M, while the tadpole diagram vanishes.)

Next we consider the Majorana cases with 1 < Ny < N -2 and Ny = N; for the Ny = N -1
case one has to also take the unconfined y’ into account, as we will discuss later. The Feynman
rules are

. k . —M, + >, (cosk, + " isinky,) o)
- I - (M, =, cosk,)?+ > (sink,)?
k+q/2 L\ T
R~ 1T = de /2 (—gY) (yicosk, +sink,)
k—q/2 7/ J
g mod 27 T
p,IJ e~~~ ~r~e v, J I = B O (016510 — O1100.17)

where the undirected lines are the ¢! Majorana fermions and the wavy lines are the real,
antisymmetric 07; (Higgsed) gauge fields. It is clear that the self-energy is just that of the
Dirac case with Ny replaced by (Ny —1)/2, so =X(p =0) ~ —0.113 (N — 1)T'/2.

We are left with the Majorana case with Ny = N — 1, at which there is an additional
unconfined Majorana fermion x’. The real ny,; fields which connect the 1 sector to the x’
sector must also be taken into account. The new Feynman rules are

k _ —M, + 3, (cosk, + " isink,) o)
(My, =Y, cosk,)?+ > (sink,)?
k + q/2 L\
q A
AR 1, NI = e %/2 (—gV) (y"icos k,, + sin k,,)
k—q/2 e

q mod 27
/L,Nf[ CXARAANAS V,[/Nf = Téw,é[p

where the double lines are the x’ fermion and the double wavy lines are the real 1y, (Higgsed)
gauge fields. The self-energy of the 1! fermions becomes —X(p = 0) ~ —0.113 (N; + 1)T/2 =
—0.113 NT'/2, while that of the x’ fermion is —¥'(p = 0) ~ —0.113 Ny = —0.113 (N — 1).
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C Lattice and/or Yang-Mills Regularization

C.1 Physical Argument for IR Equivalence

In this paper, we regularized Chern-Simons-matter theories by realizing them on a lattice.
There is, however, another regularization scheme that is commonly used in the continuum: the
addition of a Yang-Mills (YM) term with a coupling constant g. In particular, the fixed points
of interest may be defined as the IR fixed points of UV gauge theories with g? far below the
cutoff scale, which can be regularized by imposing perturbative renormalization conditions. As
one flows to the IR, one expects g — 00, as the YM term is irrelevant. However, it softens the
UV behavior of the gauge field, as is clear from its propagator.

In contrast, on the lattice, there is no compelling reason for us to include the YM term
(indeed, in the main text we took g> — oo on the lattice), as the lattice suffices as a regulator.
From this perspective, YM is no different from other irrelevant terms. However, this leads to the
question of whether the two different regularization schemes flow to the same IR. Universality
suggests an affirmative answer, especially since the YM term is dominated in the IR by the
Chern-Simons (CS) interaction.?® Nevertheless, a phase transition is not out of the question,
especially since we are considering g> < 1 and ¢? > 1. The purpose of this appendix is to
confirm that no phase transition occurs as we decrease g2.

The following simple argument suggests the two regularizations flow to the same IR. First
suppose one uses the continuum YM regularization. If one starts the RG flow at a scale A, then
there is some intermediate scale ' ~ g?A at which the effective coupling, gi,, runs to order 1
in units of x/. That is, at the intermediate scale y', one has the boson coupled to a CS and
YM action, with an order 1 YM coupling. Now suppose one uses our lattice construction. One
gets the same for free. Let the intermediate scale p' be such that p/ < 3 — M,. Then one can
integrate out the x’ fermion, which generates not only the desired CS term, but also a YM term
with gi, ~ 3 — M,, which is again order 1 in units of . Therefore, using either regularization
scheme, there is some intermediate energy scale p/ at which one has a boson coupled to CS
and an order 1 YM, which then flows to the same IR at u < p’. Of course, under these RG
flows, we also generate an infinite set of other order-1 interactions, so we can never say that
the lattice theory has become a CS+YM theory, but it is undeniable that at the scale ' the
two theories obtained by flowing from A appear awfully similar.

The argument above suggests that either the lattice or the YM regularization would yield
the same IR, but one can also consider combining these two regularizations. That is, instead
of taking ¢g> — oo on the lattice, we can take

IR energy scale of interest < ¢ < 1 = Inverse lattice scale . (61)

We emphasize again that there is no compelling reason to do so for regularization purposes.
We simply wish to explore the relationship between the different regularization schemes, and
in particular to demonstrate that introducing a YM term alters neither our method nor our

28When there is no CS term, the YM term becomes the leading term and is important. For instance, lattice
proofs of bosonic particle-vortex duality [67,68] require a Maxwell term to access the critical point.
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conclusions. That is, we will repeat the arguments of the main text in order to find a fixed
point with 7" < 1.

Before proceeding, we note that there is the theoretical possibility of another phase tran-
sition, due to the existence of another dimensionless parameter in the UV: T'— T?, where T7
is the critical temperature of the ungauged non-linear sigma model (which is the appropriate
model to consider because g*> < 1). We will fall short of being able to address the behavior
of our theories at such order-1 values of T'. So, conservatively one might say that this paper
demonstrates equivalences between free fermion (and Ising) fixed points and the IR limits of
Chern-Simons theories coupled to scalars, but that these fixed points might not have the right
to be called ‘gauged Wilson-Fisher’ fixed points, since one cannot necessarily arrive at them by
coupling Wilson-Fisher fixed points to gauge theories and then flowing to the IR (while tuning
appropriately to hit the fixed point). Generally, this perspective seems rather conservative, as
one can imagine increasing 7', and simultaneously increasing 3 — M, , so that one always has a
critical theory; we then require only that this procedure does not dramatically alter the critical
behavior at some 7', and in particular that a ‘gauged Wilson-Fisher’ fixed point exists.?? In
the cases where we have found multiple fixed points, one may or may not be willing to make
the analogous assumption that there are multiple corresponding such ‘gauged Wilson-Fisher’
fixed points. Our arguments do not shed much light on this question; even if there is no phase
transition, it is possible that one (or both) of our fixed points cannot satisfy the stringent
conditions laid out in footnote 29. What we hope to have clearly demonstrated is that it is
overly pessimistic to use the usual Higgsing-down reasoning (which violates the conservative
requirements of footnote 29) in order to rule out the usual dualities in these cases; indeed, this
Higgsing argument forces us to introduce large temperature deformations, and when one does
so new degrees of freedom may become light.

Similarly, one might feel more comfortable studying the generation of CS terms by fermions
with 3 — M, > g¢*. Unfortunately, for small enough N our search for a fixed point (with
T, 3— M, < 1) fails if we demand this, so we do not assume it below. (This would presumably
be rectified by including higher orders of 7', 3 — M, in perturbation theory.) For example, our
solution for T, in the U(N) case requires 3 — M, < 0.6 g N, as can be seen by choosing some
M, slightly below 3 and studying the limit g?/7 — 0 in (66) (and adding to it the analogous
contribution with Ny — N — N; discussed in the preceding paragraph). We are nevertheless
confident that our fermion implements the desired CS interaction, thanks to the parity anomaly.

Having said this, we now assume the condition (61) involving ¢*, as well as the usual analo-
gous assumption (10) for 3 — M,. We make no additional assumptions about the relationships
between ¢, T, and 3 — M,.

290ne can easily argue, as in the main text, for the existence of a phase transition, but as T is increased to be
order-1 there is no proof that it remains second order. Furthermore, even if it is second order there is no proof
that the fixed point exists for sufficiently small g2, |7 —T?| so that it can be considered a ‘gauged Wilson-Fisher’
fixed point. That is, a weakly gauged lattice non-linear sigma model at a temperature near T has an order-1
energy scale above which the scalars are not near their Wilson-Fisher fixed point, and so in order to have a
‘gauged Wilson-Fisher’ fixed point in the strictest sense we must have [T — T?| < g% < 1.
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C.2 Including Yang-Mills on the Lattice

The YM theory on the lattice is given by e=*¥™ where (for a U(N) theory)
~Srw =gz 0 (UL U o Ui U = 1) (62)

n,u,v
For small g2, we can expand the U,, matrix using the Lie algebra elements bgy:

1 2
~Svi =15 (tr (bt i — b — Diosoys + bogs) . + ) , (63)
n,u,v

where (...) are higher order terms. * In our problem, suppose we have N; bosons at tem-
perature 7. Then the gauge field components b,; = bj, (I = 1,..., Ny) are Higgsed; the I.J
components are what we called the Hermitian matrix 6;; and the AJ (A = Ny +1,...,N)
components are what we called the complex matrix n4;. Their perturbative action has the
leading terms

Z‘enﬂt m/_e(nJrl?)u"‘e"#ﬁJ o Z Z‘H"“’U

[,V [
- 4— 22 ‘7] (n+p)v — Thw _n(n+ﬁ)u+nnu|ij + o Z Zmn,ulAJ
g [,V 0

(65)

30While this expansion seems innocent, we recall (see also footnote 8) that it actually dramatically changes
the IR physics, since the new action only has the trivial U = 1 saddle, whereas the original action had many
saddles [51]. These saddles are characterized by the presence of Dirac strings (i.e., 27 flux tubes as narrow as
one plaquette) which end on monopoles. Such saddles do not exist in continuum U(1) gauge theories on R3,
but they can exist on a lattice because the core of a monopole is a lattice cube, which is non-singular. This
distinction is sometimes emphasized by calling the central U(1) C U(N) ‘compact’ when the action is (62) and
‘non-compact’ when (63) is employed. For either a ‘compact’ or ‘non-compact’ U(1) gauge field, a Dirac string
is invisible to charged particles. However, in the former case, a Dirac string is also invisible in the Maxwell
term, while in the latter it costs extra action in the Maxwell term, just like a thin solenoid. So the difference is
really in the prescription of the Maxwell term.

The IR field theory dualities of interest require ‘non-compact’ gauge fields, so we would really prefer to use
(63). We therefore add to (62) the following term that eliminates the extra monopole saddles:

1 1 2
e 3 (arg det (UnuU(n+y)uU(n+;l)uUnu) + 27Tmn,“,) . (64)
n, v

Here, my 0 = —Mny, is a closed integer field on the plaquettes to be summed over in the path integral. ‘Closed’
means the sum of the m field coming out of the faces of each lattice cube must vanish; locally we may write
the closed m field as the lattice curl of some integer gauge field m’ on the link, and we can combine the central
part of b with 2rm/ into a real gauge field. This explains the historical name ‘non-compact’, but note the real
gauge field only makes sense locally. The reason we demand m to be closed is the following: if we relax the
closedness condition of m, then the action will be the Villainized version of the ‘compact’ Maxwell term (62) for
the central part of the gauge field. In this Villainized ‘compact’ Maxwell, the integer m field is interpreted as
the Dirac strings, whose end points (i.e. lattice cubes out of which m is not closed) are fluctuating monopoles,
so that the total flux (the inside of the parenthesis of (64)) appears non-conserved. To keep the computations
below unaltered, we can take 1/g’ ! /g? and ignore (64) in the perturbative expansion.
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On the other hand, there is a residual U(N — Ny) gauge group with gauge field bsp. This is
coupled to the y’ 4 fermions. Since the YM term for bap is irrelevant, we expect this gauge field
to confine Y’ into massive bosons, as in the main text. That is, currents involving y’ vanish.
In particular, these fermions should not contribute a CS term for the background field, A, in
the IR.

Now we compute the self-energy of the ! fermion and show it is again positive and increases
with 7. The main change compared to Appendix B is the gauge field propagator:

q mod 27
w,lJ e~n~~~~e v, J'I'

- . . | »
Ouv | O D€' — 1|2 — (e — 1) (e — 1)
= Ol T + 72

[ 7 (e — 1) (7' — 1)
= 0oy | : 5 | O — A 5
/T + 3, e — 1 Doy len — 1

(e — 1) (e~ — 1)]
Sy leio — 12

Note the following features of this propagator. First, it does not diverge in the IR, due to the
Higgs mechanism; this is related to the locality of the theory that obtains after integrating out
the gauge field. Second, the fact that the second term does not vanish as g% — 0 is responsible
for the fact that we cannot perturbatively compute the fermion self-energy correction when 7T°
is of order 1. Choosing a gauge besides unitary gauge can ameliorate this problem, but then
one must compute the correlation function <¢an¢n/ )an> in a theory where ¢ is dynamical and
T is order 1.

+T

To leading order in (T, g?), the self-energy diagrams for the ! fermions are

R SR SRR O Y e O

We have to include the x’ fields (arrowed double lines) in the internal lines, as in contrast to
the original g2 — oo case where they confine on each lattice link, now, above the scale g2, the
X’ fermions exist as propagating fermions. The propagator of the x’ fermion is the same as that
of the ¢ fermion. The n4; propagator (double wavy lines) is the same as the 6;; propagator
expect for ;7055 — 07044 and T — 2T. In Appendix B the first and third diagrams which
renormalize M, to M, were already accounted for in the real space exact mapping; now we
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have to compute them in momentum space. The 1)100 vertex is given by

ktle—d)2\1 o wl'K
o /
= — 5 O Ocrer € T2 (Ylisin kg, — cos k)

N 2

k—(q—4q¢)/2/ J 1 v, K'J'

(which is 0,0k, /2 of the inverse propagator, by gauge invariance) and the Pty vertex is
obtained by replacing dx g with d44.. In YM theory there are also interactions among the
gauge fields, but thanks to the vanishing of any tadpole diagram, we do not need to include
them to first order in (7, g*).

Let’s compute the first two diagrams with external p = 0 (the last two diagrams are com-
puted the same way with 77 — 27" and Ny — N — Ny). Gauge invariance leads to Ward
identities which imply that the (e — 1) (e7% — 1) terms in the gauge field propagator make
O(¢*(3 — M,)) + O(T(3 — M,)) contributions at p = 0 upon summation of the diagrams,?!
so we only need the ¢ term of the gauge field propagator. The first two diagrams at p = 0
contribute

T Pk g* 1 cosk, (M, — >, cosky) — (sink,)?
51JNf/_ 2 Z[ 5 » < ]
o
24
2

)3 ¢?/T 425, (1 —cosk,y) (My, — >, coskg)?+ > (sink,)?

M, (M, — ", cosky) ]
(M, =5, cosky)?+ > (sink,)?| ’

B T dk g’
_5IJNf/ (27)3 2/T+2ZA (1 —cosky) |:
(66)

where in the square bracket in the first line, the —1/2 is from the first diagram and the rest,
from the second diagram, is the same as (60). The integrand is always negative, and moreover,
its T derivative is also negative. Since the diagrams compute —3, this means the total self-
energy, at leading order in (3 — M,, T, ¢*), is always positive and increases with 7' (towards
~ 0.6 g>N). This is the same as in the g> — oo case of the main text. There is no substantial
change if we consider the SO(N) theories instead of U(N). Therefore, our results in this paper
are independent of whether or not we have a weakly coupled YM term in the UV, in agreement
with our intuitive argument given above.
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