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Abstract—Identifying parsimonious models is generically a
“hard” nonconvex problem. Available approaches typically rely on
relaxations such as Group Lasso or nuclear norm minimization.
Moreover, incorporating stability and model order constraints into
the formalism in such methods entails a substantial increase in
computational complexity. Motivated by these challenges, in this
paper we present algorithms for parsimonious linear time invariant
system identification aimed at identifying low-complexity models
which i) incorporate a priori knowledge on the system (e.g., sta-
bility), ii) allow for data with missing/nonuniform measurements,
and iii) are able to use data obtained from several runs of the sys-
tem with different unknown initial conditions. The randomized al-
gorithms proposed are based on the concept of atomic norm and
provide a numerically efficient way to identify sparse models from
large amounts of noisy data.

Index Terms—Atomic norm, Frank–Wolfe, Hankel singular val-
ues, identification, optimization.

I. INTRODUCTION

Dynamical system based approaches have proven very successful in

many areas including some “nonstandard” ones such as design of med-

ical/behavioral treatment and video-analytics. However, when identi-

fying models from data, one can be faced with significant challenges.

Namely, i) large data sets, ii) significant amount of measurement noise,

and iii) data fragmentation (due e.g., to missing measurements). Suc-

cessful handling of these scenarios requires an algorithm that uses

both a priori information and the fragmented data to obtain a “simple”

model that explains the behavior observed.

A. Previous Work

Set membership methods [1] generate a model consistent with the

experimental data and priors, along with a bound on the worst case

identification error that can be directly used by robust control methods.

However, they may lead to high-order models, necessitating a model
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reduction step. Alternatively, subspace-based methods [2] are compu-

tationally attractive and can easily be modified to enforce bounds on

the order of the resulting model. However, in this context it is hard

to enforce consistency with existing a priori information such as sta-

bility or bounds on the time constants or the identification error. In

addition, these methods cannot handle fragmented data records. The

latter difficulty can be solved by simply considering the missing data

as parameters (see, e.g., [3] for parametric identification and [4], [5]

for the nonparametric case), but these approaches still cannot impose

consistency.

Recently, considerable effort has been devoted to developing an

identification framework capable of handling noisy, fragmented data,

while leading to low-order models. In most cases, this is accomplished

by reducing the original problem to a sequence of convex semidefinite

programs, by using the nuclear norm as a surrogate for rank [6]–[8].

However, incorporating stability constraints into the formalism entails

a substantial increase in the computational complexity [8].

To address these issues, we present a new, a computationally effi-

cient framework for parsimonious system identification. The proposed

algorithm can easily incorporate a priori knowledge on the system,

seamlessly handle missing/nonuniform measurements and merge data

acquired from multiruns of the system with unknown different initial

conditions. This approach is motivated by the recent work in [9] and

[10], showing that the problem of obtaining sparse representations of

elements contained in the convex hull of a set of suitably chosen points

(atoms) can be recast as a convex constrained approximation problem.

A potential difficulty in applying these results to identification is that

in this case the set of atoms is infinite [all possible impulse responses

of stable linear time invarian (LTI) plants], leading to an infinite di-

mensional (albeit convex) optimization problem. In [9], this difficulty

was handled by approximating this set with a finite one, obtained by

considering an ε-net discretization of the unit disk, combined with an �1

regularization to enforce sparsity of the resulting representation. While

this approach works well for smooth plants, handling lightly damped

systems may require considering very fine discretizations, with the

entailed increase in computational complexity. Moreover, using first-

order plants as the atoms results in complex valued impulse response

vectors. This might introduce numerical problems while solving the

optimization problem. Finally, the atom normalization factor used in

[9] may result in numerical difficulties for systems with slowly decay-

ing modes, especially when the data horizon length is relatively short.

In this paper, a randomized algorithm for parsimonious LTI model

identification that addresses these issues is developed.

II. PRELIMINARIES

A. Notation

Lower (upper)-case boldface letters denote vectors (matrices). For

a complex number p ∈ C, �(p),�(p), and p̄ denote real and imagi-

nary parts of p, and complex conjugate. Dρ denotes the origin cen-

tered closed disc in C, with radius ρ. The convex hull of the set
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S is denoted by conv(S). mat(u, n, m) reshapes the elements of

u into n × m matrix, column-first order. ΥN {·} denotes the trun-

cated N -length impulse response vector of a discrete transfer func-

tion. Finally, the lower triangular block Toeplitz matrix associated with

any finite sequence {xk , k = 0, 1, . . . , n − 1}, or any column vector

x = [x0 , x1 , . . . , xn−1 ]
T is denoted by

Tx
.
=

⎡

⎢

⎢

⎢

⎢

⎣

x0 0 . . . 0

x1 x0

. . . 0
...

. . .
. . . 0

xn−1 xn−2 . . . x0

⎤

⎥

⎥

⎥

⎥

⎦

.

B. Problem Statement

In this section, we define a simple system identification scenario for

which we develop our core algorithm:

Problem 1: Given

1) an unknown plant G(z), known to be SISO LTI with poles in Dρ

where 1 > ρ > 0;

2) an input sequence ut , applied to G(z), for t = 1, 2, . . . , N ; and

3) an output time domain sequence yt , t = 1, 2, . . . , N , given by

yt = (g ∗ u)t + ηt , t = 1, . . . , N. (1)

where g represents the impulse response of G(z), ∗ denotes con-

volution and ηt denotes a noise sequence bounded by a known

constant (e.g., ‖η‖2 ≤ ηm ax )

find the most parsimonious LTI model that explains the input–output

pair within a given bound on estimation error.

Remark 1: After the tool set to tackle Problem 1 is established,

we will extend the base problem to encompass more complex scenar-

ios, e.g., data with missing samples and multiple runs with different

unknown initial conditions.

C. Parsimonious System Identification

To construct our base sparse system identification problem, we use

the following fact: Every strictly proper transfer function with poles in

Dρ can be approximated to arbitrary precision by a linear combination

of first-order strictly proper transfer functions; i.e., for any proper nth

order G(z), one has

G(z) =
B(z)

A(z)
=

n
∑

i=1

ci

z − pi

: pi ∈ Dρ and ci ∈ C. (2)

Given this, the parsimonious system identification problem can be

formulated as follows: Let gp be the truncated impulse response vector

of the first-order system Gp (z) = 1/(z − p). Given input u and (noisy)

measurements of the output y, solve

min
c

cardinality{c : cp �= 0}

s.t.

N
∑

t=0

⎡

⎣

∑

p∈Dρ

cp (Tu gp )t − yt

⎤

⎦

2

≤ η2
m ax . (3)

Here, the objective function enforces parsimony of the transfer function

G(z), and the constraint enforces fidelity to collected data. However,

there are several challenges associated with (3) that will be addressed

in this paper. (C.1) The complex coefficients in cp can lead to numer-

ical difficulties that prevent finding the sparsest representation; (C.2)

minimizing cardinality subject to constraints is an NP-hard problem;

and (C.3) there are (uncountably) infinite poles in Dρ .

III. CONVEX RELAXATION

In this section, we propose a new set of atoms and a convex relaxation

of (3) to address the challenges C.1 and C.2.

A. Atoms for LTI System Identification

To address the challenge (C1), we propose a set of atoms that always

assures a real impulse response. Define an operator A(·) that takes in

a set of complex poles S as an argument and produces a set of transfer

functions as

A{S} = A1{S} ∪ A2{S} ∪ A3{S} ∪ A4{S}

where each suboperator is defined as follows:

A1{S} =

{

±α1
p

(

1

z − p
+

1

z − p̄

)

: p ∈ S

}

A2{S} =

{

±α2
p

(

−j

z − p
+

j

z − p̄

)

: p ∈ S

}

A3{S} =

{

±
αp

z − p
: p ∈ S, p real

}

A4{S} = {+1,−1} . (4)

Here, αp are scaling factors defined by

α1
p =

√

2
(

�(ϕ2
p ) + ϕ2

a

)

+ 2
√

2Γ
(

|ϕp |2 − ϕ2
a

)

−1

α2
p =

√

2
(

ϕ2
a −�(ϕ2

p )
)

+ 2
√

2Γ
(

|ϕp |2 − ϕ2
a

)

−1

αp = (1 − p2 )/(1 − p2N +2 ) (5)

ϕp =
1 − p2N

1 − p2
and ϕa =

1 − |p|2N

1 − |p|2

Γ =
�(ϕp ) − ϕa −�

(

p2 (p̄)2N ϕp

)

+ |p|2N +2ϕa

1 − |p|2
(6)

where N is the length of the measurement vector y ∈ R
N . The αp

above are chosen so that the Hankel matrix of size N associated with

the impulse response of each atom has nuclear norm equal to 1. Details

of computation of these can be found in [11, Appendix A]. The objective

of such a choice is to make the weight of the atoms in the objective

function as “uniform” as possible. In practice, we have seen that this

choice of weights produces good results.

The set of atoms used in this paper for system identification is

A{Dρ}, which enjoys the following properties.

1) Every proper rational transfer function with poles in Dρ can be

approximated as a real linear combination of atoms in the set [9].

2) Each atom in the set has a transfer function with real coefficients;

hence, it has a purely real impulse response.

To relax the nonconvex problem (3) to a convex optimization [ad-

dressing (C.2)], one can consider fixed length impulse responses of the

atoms described in (4). The fact that the impulse response of the linear

combination of multiple LTI plants is the linear combination of the

impulse responses of the individual plants forming the sum leads to the

optimization problem described next.

B. Formulation as a Convex Optimization Problem

To be able to derive a convex approximation of problem (3), we start

by defining the associated atomic norm. Let g be the first N terms of
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Algorithm 1: Randomized algorithm to minimize a convex func-

tion f over the τ -scaled atomic norm ball.

1: x0 ← τΥN {a0 (z)} for arbitrary a0 (z) ∈ A �Init.

2: for k = 0, 1, 2, 3, . . ., km ax do

3: Select Nk poles uniformly distributed over Dρ , denote the

set of these poles Sk

4: ak ← ΥN {argmina (z )∈A{S k }〈∇f (xk ), ΥN {a(z)}〉}
5: αk ← argminα∈[0 ,1]f (xk + α[τak − xk ])
6: xk+1 ← xk + αk [τak − xk ]
7: end for

the impulse response of a system G(z). Define

‖g‖A
.
=

⎧

⎨

⎩

inf
∑

a∈A(Dρ )

|ca | : g =
∑

a∈A(Dρ )

ca ΥN {a}

⎫

⎬

⎭

.

This leads to the following convex relaxation of the parsimonious

system identification problem (3):

min
g

‖Tug − y‖2
�2

subject to ‖g‖A ≤ τ. (7)

Low complexity is promoted by constraining the optimal solution to

be inside the τ -scaled atomic norm ball (‖g‖A ≤ τ ) [10]. Note that

the a priori information about the stability margin of the unknown

system, or other information about the poles of the identified system,

is implicitly incorporated in the choice of the atomic set. Since the

noise sequence is assumed to be bounded, the system to be identified

can be approximated to arbitrary precision as described above with a

finite ‖g‖A.

IV. IDENTIFICATION ALGORITHM

The optimization problem (7) is a special case of the class of prob-

lems studied in [12] where the authors consider problems involving

atomic norms of the form

min
x

f (x)

subject to ‖x‖A ≤ τ (8)

where f (x) is a convex and smooth function. In this paper, we propose

to solve the problem above using the following randomized version of

the well-known Frank–Wolfe algorithm [addressing (C.3)]:

Next, we provide a step by step explanation of Algorithm 1. In step 1,

a random atom is picked and scaled by τ to serve as the initial solution.

Note that the initial solution belongs to the boundary of the feasible

set. Then in step 3, a fixed number
(

Nk

)

of random atoms are selected

from the atomic set. For step 4, the gradient is calculated as ∇f (xk ) =
Tu

T (Tuxk − y) for the objective function in problem (7). The random

atomic responses selected in step 3 are checked exhaustively with the

gradient vector and the optimum atom is found very efficiently. Finding

the optimum αk at step k, given the best atom, is a second-order

polynomial minimization problem in α ∈ [0, 1] where the optimal α∗

has the following closed form:

α∗ = max(0, min(αu , 1)) where

αu =
(Tuxk − y)T (Tu (τak − xk ))

(Tu (τak − xk ))T (Tu (τak − xk ))
. (9)

Thus, calculations of the optimum atom and α are computationally

easy problems, involving only inner products.

Lemma 1: Algorithm 1 converges in expectation and almost surely

for any sequence Nk satisfying Nk ≥ 1 for all k; i.e., let f ∗ be the

optimum of problem (8), then

lim
k→∞

f (xk ) − f ∗ = 0, a.s.

and

lim
k→∞

E [f (xk )] − f ∗ = 0.

The proof of Lemma is presented in Appendix A-A.

Note that the cost function in Algorithm 1 is nonincreasing with

probability 1 at each step, although the rate of descent is typically not

optimal. However, as noted above, the iterations are extremely fast

since they only entail computing inner products. Algorithm 1 enjoys a

linear rate of convergence O(1/k) in expected value. More precisely,

we state the following theorem for the convergence rate of Algorithm 1:

Theorem 2: Let C2 > 0, L > 0 and 0 < s < 1 be given constants.

Let the number of samples Nk be large enough so that for any x with

‖x‖ ≤ τ the following holds:

Prob

{

min
a∈S k

〈∇f (x), ΥN {a(z)}〉 − d∗ ≤ 0.25C2/(k + L)

}

≥ s

where

d∗ = mina ∗∈A〈∇f (x), ΥN {a∗(z)}〉.

Then, there exists a constant C1 so that

E [f (xk+1 ) − f (x∗)] ≤
C1

k + L
+

C2

k + L + 1

where x∗ is an optimal solution of problem (7).

Proof: The proof and details are presented in Appendix A-C.

We note that, although Theorem 2 assumes that a specific adaptive

Nk is used, drawing a fixed number of atoms at each iteration of

Algorithm 1 performs well in practice.

Remark 3: It can be shown that the number Nk is finite. The proof

relies on the fact that given the a priori information about the LTI

system, the gradient vector can be bounded at each iteration in terms of

the �∞ norm (or uniformly bounded for all steps by a single bound) for

bounded inputs and finite data horizons. Details on the computation of

Nk are given in Appendix A-B.

V. LTI MODEL FROM MULTIRUNS WITH MISSING DATA

As mentioned in Section I, many practical problems require iden-

tifying a system from multiple runs, with unknown initial conditions,

nonuniform sampling, and possibly missing data. In this section, we

show that this scenario can be easily accommodated by the proposed

framework.

Consider P different runs of an LTI system. More precisely, given

P input/output vector pairs, we assume that, for each experiment i =
1, 2, . . . ,P , the following noise-corrupted output is available:

yi = gic
i + Tu i

g + ηi (10)

where gic
i is the initial condition response for the ith run, ui is the input

applied at ith run, and g is the impulse response of the system to be

identified. For simplicity of presentation and without loss of generality,

we assume that all the runs have the same data horizon length N .

First of all, the initial condition response of any transfer function can

be approximated with arbitrary precision by the same set of atoms de-

fined for impulse response identification, only shifted up one sampling
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time:

gic
i ≈

∑

a (z )∈A

cic
i ,a ΥN {za(z)} ∀cic

i ,a ∈ R, i = 1, 2, . . . ,P. (11)

Hence, the problem of identifying the most parsimonious model from

multirun experiments with different initial conditions can be posed as

maximizing the “right” block sparsity measure. Define

ca
.
=

[

cic
1 ,a cic

2 ,a . . . cic
1 ,P ca

]T
.

Then, the parsimonious identification problem can be formulated as

min
c

cardinality{c : ca �= 0}

s.t.

i=P
∑

i=1

‖Tu i
g + gic

i − yi‖
2
�2

≤ η2
m ax

gic
i =

∑

a∈A

cic
i ,a ΥN {za(z)}; i = 1, 2, . . . ,P

g =
∑

a∈A

ca ΥN {a(z)}. (12)

As before, in order to develop a convex relaxation of the sparsity

problem above, we define a suitable atomic norm. Let

g̃
.
= [gic T

1 gic T
2 . . . gic T

P gT ]T .

In this context, the atomic norm of interest is

‖g̃‖Ã = inf
c

∑

a∈A

‖ca ‖∞

s.t. gic
i =

∑

a (z )∈A

cic
i ,a ΥN {za(z)}; i = 1, 2, . . . ,P

g =
∑

a (z )∈A

ca ΥN {a(z)}

and a convex relaxation of the parsimonious system identification

problem from multiple runs is given by

min
g̃

1

2

i=P
∑

i=1

‖
(

Tu i
g + gic

i − yi

)

‖2
�2

subject to ‖g̃‖Ã ≤ τ. (13)

Next, consider the identification problem described in here but where

one has nonuniform sampling/missing samples. Formally, assume that

for each of the responses, noisy measurements of yi (t) are collected at

(commensurate) times

0 ≤ ti ,1 < ti ,2 < · · · < ti ,m i
= N ; mi ≤ N + 1.

Without loss of generality, we assume that the sampling instants ti ,j

are integers. Define an mi × ni measurement matrix Ωi whose (j, k)
entry is 1 if k = ti ,j and 0 otherwise, which “extracts” the output at the

measured times from the overall response for i = 1, 2, . . . ,P . Then,

we propose the following formulation:

min
g̃

1

2

i=P
∑

i=1

‖Ωi

(

Tu i
g + gic

i − yi

)

‖2
�2

subject to ‖g̃‖Ã ≤ τ (14)

where g̃
.
= [gic T

1 gic T
2 . . . gic T

P gT ]T . Note that the proposed algo-

rithm estimates an impulse response of the system from this multirun

data.

TABLE I
CONVERGENCE RATE VERSUS NUMBER OF ATOMS CHECKED

Atoms checked per iteration 1 2 4 8 16 32 64
Approximate iterations 19 k 9 k 4 k 2 k 1 k 500 300

VI. NUMERICAL EXAMPLES

In this section, first an analysis of the effect of number of atoms

used at each step on the convergence rate of the algorithm is given.

Next, a selection of well-known identification methods in the literature

are compared against the proposed method on a number of random

synthetic examples. Due to space limitations, multiple runs examples

are not provided (these can be found in [13]). Finally, the performance

of the proposed method is illustrated on real data for different τ .

A. Number of Atoms Checked at Each Step

Versus Convergence

To illustrate the effect of “number of random atoms checked per

iteration” on the convergence rate, a sample case is presented in Table I.

Algorithm 1 is run to solve the minimization problem, where the atoms

are unit norm unit cardinality vectors, f (x) = ‖Tx − y‖2
2 with T ∈

R
30×64 , and y is generated from a normal distribution with zero mean

and unit standard deviation. The ground truth is obtained using matlab

software for disciplined convex programming (CVX) [14]. For each

trial, the algorithm was started at zero initial conditions and terminated

when the relative error with respect to the ground truth fell below 1%.

Thirty random experiments were conducted for each case. The average

number of iterations is presented in Table I.

Given that in most cases, calculation of the gradient vector at a

particular step is considerably more expensive than checking a random

atom with the calculated gradient (a dot product), a reasonable approach

is to check multiple atoms with the gradient at a particular iteration, as

suggested by Table I.

B. Comparison of ID Methods on Random Synthetic Examples

In this section, the atomic norm minimization approach with grid-

ding, i.e., discretized atomic soft thresholding (DAST) [9], subspace ID

[15], prediction error estimate (PEM) [16], and the proposed method

are compared on random synthetic examples. DAST is implemented

using a uniformly spaced discrete net of the unit disk consisting of ap-

proximately 2000 poles. In order to present a fair comparison, ground

truth bounds on the atomic norms are supplied to DAST ( the true

bound on the �1 norm in the problem [9] can be calculated based on

the partial fraction of the true transfer function) and to the proposed

algorithm, and the correct model order is fed to subspace ID and PEM.

Additionally, the model identified by subspace ID is used as an initial

model for the PEMinitialzied method. One hundred experiments were run

with randomly picked stable LTI systems and orders ranging from 1

to 10 as a base comparison. The data horizon was chosen randomly

between 50 and 150. Pseudorandom binary signals (PRBS) input was

applied, and the output was corrupted by additive noise bounded by

5% of the peak absolute value the output. The statistics are summa-

rized in Table II. For each experiment, the estimated impulse response

is placed in a Hankel matrix and the tail sum of normalized singu-

lar values vector, i.e.,
∑

i> n σ(i)/σ(1), is given as sparsity measure,

where n is the LTI system order. Note that this measure is identically

0 for the ground truth, subspace ID, PEMinitialized, and PEM. Next, the

identification is carried out on lightly damped systems and/or systems

with slowly decaying modes. Keeping everything else the same as in
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TABLE II
BASE COMPARISON STATISTICS

Estimation Error Sparsity Measure

Min Avr Max Min Avr Max

Proposed method 0.11 6.39 28.81 ≈ 0 0.19 0.86
DAST 0.15 7.30 50.73 ≈ 0 0.22 2.34
Subspace ID 0.41 7.82 54.92 0.00 0.00 0.00
PEMinitialized 0.42 6.58 38.65 0.00 0.00 0.00
PEM 0.42 1.185 e+9 8.64 e+10 0.00 0.00 0.00

TABLE III
COMPARISON STATISTICS FOR LIGHTLY DAMPED SYSTEMS

Estimation Error Sparsity Measure

Min Avr Max Min Avr Max

Proposed method 1.55 9.57 34.78 ≈ 0 0.07 0.4
DAST 2.28 29.44 65.35 ≈ 0 0.07 0.53
Subspace ID 2.82 29.61 110.97 0.00 0.00 0.00
PEMinitialized 0.20 12.20 105.91 0.00 0.00 0.00
PEM 0.26 2.9 e+39 2.9 e+41 0.00 0.00 0.00

the base comparison, for this set the plants are randomly chosen to have

at least one pole with 0.98 ≤ |p| ≤ 1. Results are given in Table III.

For the base case (Table II), our method has significantly better

performance than DAST, Subspace ID, PEMinitialized, and PEM. The

advantages of the proposed algorithm are even more evident in the

case where the system to be identified has slow decaying modes (see

Table III). A possible explanation for the better performance with

respect to DAST are the facts that our algorithm is not constrained

to have the poles in a specific net and that its scaling is much better

suited for short runs. As for the comparison with subspace ID and

PEM, our method had both the advantage of using a priori information

on the allowable set for the poles and being able to better deal with

measurements with a significant amount of noise. Regarding PEM,

note that, in this set of experiments, it outperforms the proposed

method only in the best case scenario, even when provided with the

model identified by subspace ID.

Before closing this section, we would like to provide a few remarks

comparing the proposed algorithm against augmented Lagrangian

method (ALM) with Hankel nuclear norm minimization [17]. In this

comparison, we highlight the run-time and the computational complex-

ity of the proposed algorithm and its ability to handle very large data

sets. In this example, the data horizon length is increased from 100 to

1000 by steps of 50, and at each data horizon 10 random experiments

using impulse response data are conducted. The LTI systems are cho-

sen randomly, with maximum order 10, and 10% noise is added. The

ALM formulation is chosen as

min
h

‖(Sh)‖∗ +
λ

2
‖h − d‖2

�2

where Sh is the Hankel matrix associated with vector h, λ is the

parameter penalizing misfit to measurement, and d is the measured

impulse response. Due to the lack of an intuitive way to choose a

“ground truth” λ in the above formulation, the following procedure is

employed: The ground truth h is inserted into the objective function

and the values of the nuclear norm term and the data fidelity term are

observed. The parameter λ is chosen such that, for the ground truth h,

both terms are very close to each other.

The results shown in Fig. 1 are expected. The complexity of the

ALM algorithm is dominated, eventually, by the singular value decom-

Fig. 1. Run time versus data size comparison.

Fig. 2. Proposed method with missing data.

position (SVD) operation, making it practical only for medium size

identification problems. On the other hand, the proposed algorithm

scales gracefully with the data size.

C. Comparison of ID Methods on Missing

Measurement Example

In this section, the available methods for missing measurements

with the proposed method is compared on an example. MATLAB’s

system identification toolbox provides two different methods for such

data sets: the function “misdata” that uses either a known model

or default order state space model to estimate the missing part of

the data by minimizing output prediction errors, and the function

“merge” that combines small isolated clusters. To compare the pro-

posed method and these functions, a second-order system (g(z) =
(0.1037z − 0.08657)/(z2 − 1.78z + 0.9)) is employed. The step re-

sponse of the system is contaminated with N (0, 0.02) and measured at

the local extrema. The proposed method results are shown in Fig. 2. The

function “merge” cannot be used with this data since we do not have

isolated clusters. The function “misdata” requires more data points to

closely interpolate the missing measurements. Note that as the num-

ber of available measurements are gradually increased, the misdata

function correctly interpolates the whole data.
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Fig. 3. Error and order for different τ .

D. Example Using Experimental Data

The proposed algorithm is implemented on a benchmark problem

from DaISy [18]. The experimental data for a hair dryer setup is pro-

vided as an input/output vector of data horizon 1000. The first half

of the data is used for identification and the second half is used for

validation. Results are compared with Subspace ID. Fig. 3 shows the

order of the system identified versus output estimation error as τ is

changed. The initial value for τ is chosen as 0.5, and the heuristic

given in [11, Sec. 4.5.4] is run for 25 steps for illustration purposes, at

the end of which τ reaches the value 1.1. For the model-order calcula-

tion, the estimated impulse response was used to form a Hankel matrix

and the vector of singular values was computed. The first index for

which the cumulative sum of this vector exceeded 99% of its total was

chosen as the system order. Subspace ID achieved 1.9% identification

error and 2.4% validation error. The proposed method achieved 1.8%

identification error and 1.75% validation error.

VII. CONCLUSION AND FUTURE WORK

In this paper, we consider the problem of identifying LTI models

from corrupted input/output measurements. By using a sparsity induc-

ing norm, i.e., atomic norm, we propose a method that is robust to

noise and missing information and that promotes low-order models as

solution to the identification problem. Comparing against competing

system identification methods of similar nature, we showed improved

performance over a statistically meaningful set of random trials. Pos-

sible future research directions include extending the results to more

complex settings, e.g., multi-input multi-output (MIMO) LTI system

identification and Wiener system identification.

APPENDIX A

CONVERGENCE RESULTS AND COMPLEXITY

A. Supermartingale:

Definition 4: [19, Ch. 12.1] Let Y be a sequence of

a random variable. Then, a discrete time supermartingale

satisfies E[Yk+1 |Yk , . . . , Y0 ] ≤ Yk and E[Y −
k+1 ] ≤ ∞ where

Y − = −min(0, Y ).

Proof of Lemma 1: Define the random variable Yk = f (xk ) − f (x∗).

Assume that x∗ is the optimum, i.e., f (x) attains its global minimum

at x∗. Since the objective function is convex, at each iteration, the

inequality Yk ≥ 0 holds for all k. Algorithm 2 also satisfies, for any

k—Yk+1 ≤ Yk . Taking the conditional expectation yields:

E[Yk+1 |Yk , . . . , Y1 , Y0 ] ≤ Yk .

Therefore, we have a supermartingale and this proves the convergence

in expectation and almost surely.

B. Bounding Deviation From Optimal Descent: Given

the gradient vector ∇fk = [df−1 , df0 , df1 , . . . , dfN −2 ]
T at iteration k

of the randomized algorithm, the corresponding optimal pole pk and a

pole p∗ satisfying |pk − p∗| ≤ ε, we want to find a bound of the form

|pk − p∗| ≤ ε ⇒

d = |αp k
〈∇fk , ΥN {ap k

(z)}〉 − α∗
p 〈∇fk , ΥN {ap ∗(z)}〉| ≤ γ

where γ = C 1
k+L

+ C 2
k+L+1

. Here, ΥN {ap ∗(z)} represents the un-

scaled N -length impulse response of the atom generated by the pole p∗

and α∗
p > 0 is the scaling associated with pole p∗ (similar definitions

for pk ).

We consider the atoms in A1 . The other sets can be treated in

a similar fashion. The impulse response ΥN {ap ∗(z)} is given by

ΥN {ap ∗(z)} = [0, 1,�(p∗),�(p∗2 ), . . . ,�(p∗N −2 )]T . We consider

two cases in writing the deviation d from the optimum descent.

Case 1: αp k
< α∗

p = α

d = α∗
p 〈∇fk , ΥN {ap ∗(z)}〉 − αp k

〈∇fk , ΥN {ap k
(z)}〉

≤ α
(

〈∇fk , ΥN {ap ∗(z)}〉 − 〈∇fk , ΥN {ap k
(z)}〉

)

.

Case 2: α∗
p ≤ αp k

= α

d = αp k
〈∇fk , ΥN {ap k

(z)}〉 − α∗
p 〈∇fk , ΥN {ap ∗(z)}〉

≤ α
(

〈∇fk , ΥN {ap k
(z)}〉 − 〈∇fk , ΥN {ap ∗(z)}〉

)

.

Both cases follow the same steps; hence, we only present one of them.

Since the norm of the gradient is uniformly bounded, i.e., ‖∇fk ‖∞ ≤
M for all k, we proceed as follows:

|d| ≤ α
∣

∣∇fk
T ΥN {ap k

(z)} − ∇fk
T ΥN {ap ∗(z)}

∣

∣

≤ α
∣

∣∇fk
T

(

ΥN {ap k
(z)} − ΥN {ap ∗(z)}

)
∣

∣

≤ α

∣

∣

∣

∣

∣

N −2
∑

r=1

dfr (�(pr ) −�(p∗r ))

∣

∣

∣

∣

∣

≤ α
N −2
∑

r=1

|dfr (�(pr ) −�(p∗r ))|

≤ αM
N −2
∑

r=1

|�(pr ) −�(p∗r )| ≤ αM
N −2
∑

r=1

|pr − p∗r | .

Looking at a generic term above, i.e., |pr − p∗r |, we can write

|pr − p∗r |= |p − p∗|
∣

∣pr−1 + pr−2p + . . . pp∗r−2 + p∗r−1
∣

∣ ≤ εrρr−1.

Replacing each |pr − p∗r | term in the previous inequality with its upper

bound found above yields

αM
N −2
∑

r=1

|pr − p∗r | ≤ αMε

{

1 − (N − 1) ρN −2

1 − ρ
+

ρ − ρN −1

(1 − ρ)2

}

.

The final step stems from the fact that
∑N −2

r=1 rρr−1 can be written

as the derivative of the geometric series
∑N −2

r=1 ρr . Hence, for a finite
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horizon N and radius ρ, the upper bound on the deviation from optimum

descent is

|d| ≤ αm axMε

N −2
∑

r=1

rρr−1 (15)

where αm ax is the maximum attained by the scaling function.

Second, we will show how many poles Nk need to be drawn in each

iteration to ensure that the inequality d ≤ γ holds with probability ≥ s,

or, equivalently, |pk − p∗| ≤ ε holds with probability ≥ s.

Given a fixed pole p∗, define an event Ω as follows: out of Nk poles

uniformly drawn from Dρ , at least one pole satisfies |p − p∗| ≤ ε. For

the case inf |p |= ρ |p
∗ − p| ≥ ε, the probability of this event, s, is equal

to the the ratio of area of ε− ball to the area of Dρ :

s = 1 − s = 1 −

(

1 −
ε2

ρ2

)N k

where s = 1 − s. The worst case probability is smaller though, and is

realized when p∗ is on the boundary of Dρ . In this case, the probability

s is the ratio of area of ε− ball in Dρ to the area of Dρ . The analytic

expression for this ratio is given by [20, circle–circle intersection]:

F =
1

π

[

ζ2 cos−1

(

ζ

2

)

+ cos−1

(

1 −
ζ

2

)]

−
ζ
√

4 − ζ2

2
(16)

where ζ = ε/ρ for ε < ρ. With this definition, the worst case probabil-

ity is given by s = 1 − F N k . Therefore, for any given ε and probability

s, the finite number of required poles to be drawn is explicitly given by

Nk (ε, s) = ln(1 − s) − ln F .

C. Proof of Theorem 2:

Definition 5: Curvature Constant [21]: The curvature constant Cf

of a convex and differentiable objective function f : R
n → R in the

set ‖x‖A ≤ τ is defined as follows:

Cf = sup
x

f (x′) − f (x) − 〈∇f (x), x′ − x〉

α2

s.t. ‖x‖A ≤ τ, ‖τa‖A ≤ τ, x′ = x + α(τa − x), α ∈ [0, 1]. (17)

Definition 5 readily implies the following for f (x):

f (xk + α(τak − xk )) ≤ f (xk ) + α〈∇f (xk ), (τak − xk )〉 + α2Cf

which is true for all k. Suppose that number of atoms drawn are such

that at each iteration, event Ω is realized with probability s, guarantee-

ing 〈∇f (xk ), ak 〉 − 〈∇f (xk ), a∗
k 〉 ≤ γk for k ≥ 0. Define the primal

error as h(xk ) = f (xk ) − f (x∗) ≥ 0 and subtract f (x∗) from both

sides of the above inequality:

h(xk+1 ) ≤ h(xk ) + α〈∇f (xk ), (τa∗
k − xk )〉

+ αγk + α2Cf → Prob s

h(xk+1 ) ≤ h(xk ) → Prob > 1 − s.

Hence, we can write

E [h(xk+1 )|xk ] ≤ s(α〈∇f (xk ), (τa∗
k − xk )〉 + αγk + α2Cf )

+ h(xk ).

Note that 〈∇f (xk ), (τa∗
k − xk )〉 ≤ −h(xk ), since any linear approxi-

mation to a convex function at any point is a lower bound to the function

over the domain (weak duality), which implies

E [h(xk+1 )|xk ] ≤ h(xk ) + s(−αh(xk ) + αγk + α2Cf ).

Choosing γk = αk Cf and taking expectation on both sides of above

inequality yields

E [h(xk+1 )] ≤ (1 − sαk )E [h(xk )] + 2sα2
k Cf .

Choose αk = 2
s(k+ k 0 +2)

, where k0 is the smallest integer such that

k0 ≥ 2
s
− 2 holds true for given probability s. We claim that

E [h(xk+1 )] ≤
k0E [h(x0 )]

k + k0 + 2
+

8Cf

s(k + k0 + 3)
.

Base case with k = 0 is straightforward using weak duality as follows:

E [h(x1 )] ≤

(

1 − s
2

s(k0 + 2)

)

E [h(x0 )] + 2s

(

2

s(k0 + 2)

)2

Cf

≤
k0

k0 + 2
E [h(x0 )] +

8Cf

s

1

(k0 + 2)(k0 + 2)

≤
k0

k0 + 2
E [h(x0 )] +

8Cf

s

1

(k0 + 3)
.

The last inequality follows from the fact that (k0 + 2)2 ≥ (k0 + 3) for

k0 ≥ 0. Next, we show that if the inequality holds for k, it also holds

for k + 1, thus proving the theorem by induction. Weak duality for

E [h(xk+1 )] implies

E [h(xk+1 )] ≤

(

1 − s
2

s(k + k0 + 2)

)

E [h(xk )]

+ 2s

(

2

s(k + k0 + 2)

)2

Cf

≤

(

k + k0

k + k0 + 2

)

E [h(xk )] +
8Cf

s

(

1

k + k0 + 2

)2

≤

(

k + k0

k + k0 + 2

) (

k0E [h(x0 )]

k + k0 + 1
+

8Cf

s(k + k0 + 2)

)

+
8Cf

s

(

1

k + k0 + 2

)2

≤
k0E [h(x0 )]

k + k0 + 2
+

(

k + k0 + 1

(k + k0 + 2)2

)

8Cf

s

≤
k0E [h(x0 )]

k + k0 + 2
+

(

1

k + k0 + 3

)

8Cf

s
.

The last step in the above derivation stems from the fact that

(n − 1)(n + 1) < n2 , applied for n = k + k0 + 2. Note that the de-

rived inequality is in the form

E [f (xk+1 ) − f (x∗)] ≤
C1

k + L
+

C2

k + L + 1

with C1 = k0E [h(x0 )], C2 = 8Cf /s, L = k0 + 2, x∗ ∈ ‖x‖A ≤ τ
an optimal solution to the optimization problem.
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