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Abstract

We consider M-theory compactified on 7% x T? and describe the count
of spinning 1/8-BPS states. This refines the classic count of Maldacena-
Moore-Strominger in the physics literature and the recent mathemati-
cal work of Bryan-Oberdieck-Pandharipande-Yin, which studied reduced
Donaldson-Thomas invariants of abelian surfaces and threefolds. As in
previous work on K3 x T? compactification, we track angular momenta
under both the SU(2)r and SU(2)g factors in the 5d little group, provid-
ing predictions for the relevant motivic curve counts.
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1 Introduction

The counting of microstates contributing to BPS black hole entropy in K3 x T2
compactification of M-theory started with the work of Strominger-Vafa in [1],
and was given a more precise description in [2] shortly thereafter. The seemingly
easier, and more supersymmetric, case of a purely toroidal compactification of M-
theory took a few more years until the treatment of [3]. Indeed, the computation
for the N' = 4 theory arising from K3 x T? compactification! proceeded via
computing elliptic genera of the family of CFTs one obtains from the D1 — D5
system, and these analogous counts in the N/ = 8 theory naively vanish. It hence
took some ingenuity to define an appropriately-corrected elliptic genus in order
to perform a nontrivial computation.

Recently, a Hodge-elliptic genus was proposed as an analogous quantity that
would be of use in computing not just the BPS spectrum in such theories, but
also its flavoring by the full SU(2) x SU(2) little group of the theory [4] (while
typically, earlier approaches kept only a single SU(2) quantum number). In [4],
the N' = 4 theory above was treated. Here, we offer an analogous treatment of
the N = 8 theory. This case of maximal supersymmetry is in some sense a nicer
showcase for the Hodge-elliptic genus, in that the unflavored counting function
suffers from subtleties alluded to above: the extra supersymmetry forces the need
for recurring modifications to the counting formulas and techniques used. On the
other hand, the flavored counting function from the Hodge-elliptic genus can be

'We use the convention that half-maximal supersymmetry in 5d is called A/ = 4, while
maximal supersymmetry is A/ = 8; this is in keeping with the normal convention in 4d.



evaluated straightforwardly in the N/ = 8 theory, with no need for special modifi-
cations that do not arise in cases with less supersymmetry. Of course, we remind
the reader that the Hodge-elliptic genus badly fails to be an index and may jump
discontinuously as one moves in moduli space [5]. While this upper semicon-
tinuous jumping is entirely physical in that the flavored BPS spectrum indeed
varies with moduli, one may reasonably object to this added complication if one
is only interested in the unflavored count. Note furthermore that in this case,
the relevant worldsheet theory is a ¢ model with target Hilb” 7*. Maldacena-
Moore-Strominger were certainly able to solve for the full partition function of
this free theory, and worked directly from this even more informative function
before reducing to their supersymmetric index. In this free theory, by studying
the Hodge-elliptic genus we are essentially simply insisting on focusing attention
on a less specialized limit of the easily computable full partition function. We
will leave aesthetic deliberations regarding these approaches to the judgment of
the reader.

Mathematically, as in [4], the effect of flavoring our BPS particle count by the
additional SU(2) angular momentum is to refine a Donaldson-Thomas generating
function to a motivic Donaldson-Thomas generating function [6]. We hence pro-
vide an interpretation of our results here in this language in section 4, extending
conjectures of [7]. Mathematical readers may hence wish to only briefly skim the
intervening sections for the electrifying thrill before focusing on section 4.

The next section recalls the BPS spectrum of this A/ = 8 theory, largely
following [3] and [8, 9, 10]. We present the refined counts in section 3. Section 4
provides the mathematical interpretation in terms of motivic Donaldson-Thomas
invariants.

2 The unflavored 1/8-BPS spectrum

We study the D1-D5 system on 7% x S, and consider the computation of BPS
states on the worldvolume of the resulting effective string. In contrast to the
N = 4 case, here the counting function capturing the 1/4-BPS spectrum is just
1. If we attempt to count Dabholkar-Harvey states [11], we have particles in
the ground state on the right and the excitations of 8 bosonic and 8 fermionic
oscillators on the left. These precisely cancel. More formally, where in the N' = 4
theory we would obtain in this way a sum of Euler characteristics of Hilb™ K3,



now we wish to sum
> X(Hilb" T*)g" = 1. (2.1)

The sum is 1 by localization, as the manifolds occurring in each term except the
zeroth term admit a free T#-action, and hence have trivial Euler characteristic.
In other words, the indexed count of 1/4-BPS states only captures the vacuum.

In fact, the more refined counts, such as the 1/4-BPS spectrum flavored by the
SU(2)r angular momentum or the 1/8-BPS spectrum (which in a sense already
has the SU(2); flavoring), would also be trivial if not corrected. In order to
provide a nontrivial match to black hole entropy, the authors of [3] performed
a more sophisticated count of these states by weighting the counts by Fa. If
one computes these corrected counts by considering the D1 — D5 frame (using
U-duality to suppose we have a single 5-brane and some variable number of 1-
branes), considering the effective field theory of the 1-branes dissolved in the
5-brane yields the o-model to Hilb” 7%, The relevant counts here are naively
given by the y, genus and the elliptic genus Zgq, respectively. To obtain the
more sophisticated counts, which we denote by the reduced x, genus and the
reduced elliptic genus Zp¢, we need again insert an F 2 in the worldvolume CFT
traces on the effective string. In fact, we only need to know these traces for
the first theory, the o-model to T®. The other CFTs of interest are simply its
orbifold symmetric powers, and any trace over the full series will be given by a
multiplicative lift of the answer for the first CFT [12].

The reduced X, genus is easy to compute. Recalling the full Hodge diamond
of T*, with Hodge polynomial
Hodge(T%) = (y/2 — y~Y2)2(ul/? — 4~ 1/2)?
=yttt =2yt 2ty lu 4 yut - 2u — 2y +yu
= Y, (TH=—(1-0°-2-12+1-22)y ' +(2:0°—4-124+2-2%) — (1-0* —=2- 12 +1-2%)y
=—2y+4-2y " (2.2)

We may multiplicatively lift this result to find the reduced spinning 1/4-BPS



state count

1 1 ~ I n
5 Z(CZL)E)dF}%p”y[TL} =5 Z Yy (Hilb™ T*)p

i (T (P 20
5 \UOu (1= p")A(1 — prug) (1 — pru—y) (1 — pruy=) (1 — pru—ty—1)
+ @By YT =84y + 3y )’ + O(pY). (2.3)

n=1 u=1

Here, we use the notation (/X )sq for the number of 1/4-BPS representations with
spin 7, under SU(2),, in five-dimensions, which we need to weight by two factors
of the right-moving fermion number to cancel fermion zero-modes. We also use
the notation

= 2y e

to track characters of SU(2).

2(0-1)

ot + 5% (2.4)

Note that in the above multiplicative lift procedure (unlike the K3 case), we
have to take some care with fermionic versus bosonic modes, placing them in the
numerator or denominator appropriately.

We could in fact compute the reduced 1/8-BPS spectrum directly, using the
idea that 1/8-BPS particles are dyons of two 1/4-BPS particles [13], thereby
writing the generating function as an additive lift of the reduced spinning 1/4-
BPS spectrum count (in fact, overall as a reduced analog of the Maass-Skoruppa
lift for the reduced unflavored 1/4-BPS spectrum count, which is still just 1).
Here, in fact, the reduced elliptic genus? is, up to a sign, the named Jacobi form
¢_21 (see e.g. §4.3 of [14], eq. (4.29))

ZEG(T4) =—0 91 = Zc(n, g)qnyf (2.5)

and its (correctly reduced) multiplicative lift as per Dijkgraaf-Moore-Verlinde-
Verlinde (DMVV) [12] gives the reduced 1/8-BPS state count

n . m.,t

c(nm, £)p"q™y
(I)5d - Z nAmq,l\2 - (26>
ot (L=1pmamy’)

2Normalized as in eq (2.1) of [8].



In fact, an application of the generating function identity

= int" (2.7)

yields that the reduced 1/8-BPS state count may be rewritten as

O5q = Z sc(nm, 0)p™ g™ y"

n,m,l,s

= Y Y <ZT,£)p"qmyz, (2.8)

n>1,m>0,0 d|(n,m,l)

so that in this case we see the reduced multiplicative lift of the reduced elliptic
genus actually coincides with this kind of additive lift expression.

The formula above tells us that the entropy of states with (); D1-branes
wrapping S', Qs D5-branes wrapping 7% x S!, m units of momentum on the
circle, and ¢ units of SU(2), angular momentum is given by

Q1Q5m f)
) d *

Q54 (Q1, Q5,m, l) = Z dc (

d|(n,m,L)

(2.9)

Note that this formula holds for mutually co-prime charges.?

Now, we perform a 4d/5d lift to find the 4d counting function, following
8, 9, 10]. The result is

n . m.,t

c(nm, £)p"q™y
EDY : (2.10)
wsoe 1 =1 myt)?

differing from the 5d result by the inclusion of the n = 0 term. The sum over ¢
should be taken to run over only ¢ > 0 when n =m = 0.

3 The flavored 1/8-BPS spectrum

As in prior work in the K3 case [4, 15], we may refine the above counts by
flavoring by the SU(2)g angular momentum. In this more supersymmetric case,

3By mutually co-prime, we mean that no single factor divides all of the charges. The reason
for the subtlety in cases with non co-prime charges is that the relevant D-brane moduli space
contains multi-center components, rendering the analysis considerably more subtle.



this refinement carries the additional benefit that we no longer need to take some
sort of reduced, sophisticated count in order to find nonvanishing BPS generating
functions. Instead, all our counts proceed in complete analogy with the K3 case.

3.1 Refined counts

We first return to the 1/4-BPS particle spectrum, now flavoring by both SU(2),
and SU(2)g. Putting everything back in the D1 — D5 frame, we find that we are

computing Hodge polynomials of the respective o-model targets and evaluate, by
the logic of [12],

S (s ap ] = ZHodge (Hilb™ T*)p"

H —y M)A —w )L —yp")* (1 — up”)?
S (1= y‘lu p)(L =y~ tup™) (L = p)* (1 — yu='p") (1 — yup™)
(3.1)
We can again write this as the prefactor
lu—y—yt4+ut
3.2
16 u?y? (32)
times the multivariate Jacobi form
0 20 2
p(o,v,2) = 1(9,2)°0:(0,v) , (3.3)
01(o,z+ )by (0,2 — v)n(o)d
where we define y = 2™, u = ¥ p = > and the notation
w2 /2
u-. = —
2 Y
~1/2 _ ,1/2
Yy Y
y- = (3.4)

We now move to the spinning 1/8-BPS state count. As in [4], the five-
dimensional count is given by the multiplicative lift of the Hodge-elliptic genus
Znea, defined as

Zuec = Triight g.s. ((—1)FC_IL°_C/24?/FLUFR) : (3.5)

7



where the trace is taken over the subspace of the Ramond-Ramond Hilbert space
where the right-moving part is a ground state. This definition, applied to a o-
model to 7%, gives a function Zype(T*) that a priori may depend heavily on the
T* in question. And indeed, it does: there are visibly points in the moduli space
of the T* where we may pick up extra chiral currents and Zpypg will jump (upper
semi-continuously). In [4], however, the Hodge-elliptic genus was computed at
a generic point in moduli space for a torus in any dimension, as reconfirmed
there by a mathematical sheaf cohomology computation that should pick out the
large-volume (generic) answer. We recall the generic answer

Zppa(T) = - (42%2: é; U—) (3.6)
Here,
0;(7.0) = —2¢'* T[(1 = ") (3.7)

is essentially a provocative way of writing n(7)3, so that in the above we have the
usual (indexed) answer ¢_5 (7, 2) with some prescribed polynomial dependence
in w.

As stated above, the five-dimensional spinning 1/8-BPS state count is a mul-
tiplicative lift of the Hodge-elliptic genus. At some point in moduli space, given

Zupa(Th) = Z c(n, £, k)q"y"u", (3.8)
we have
(I)g((zjlﬁnod(o_7 TV, Z) _ Z(C;%7m>5dpnyfqmu[mz] — H (1 _ pnyfqmuk)—c(nm,f,k)'
n>1,m>0,0,k
(3.9)

Here ¢, 0m is the count of 1/8-BPS states with n = @Q1Q5 (the product of the
numbers of D1 and D5 branes), ¢ giving the SU(2),, angular momentum, k giving
the SU(2) g angular momentum, and m counting the momentum on the circle. By
analogy with the familiar picture of A/ = 4 black holes, it may also be convenient
to think of the quantum numbers other than SU(2)g as electric and magnetic



charges, via

1
= 5@ Qe
m = ; m* Gm
(=Qc Qn (3.10)

Note that the counting in ®f"d is again valid for mutually co-prime charges.
We will be content to work at this level of generality, but it is important to
remember that there would be two natural extensions. The BPS count admits
further flavoring to keep track of individual U(1) symmetries instead of just U-
duality invariants. And as the U-duality symmetry in five dimensions is Fg¢(Z),
there should be automorphic forms for Eg ¢ which play a natural role in the theory.
See e.g. [9] for further discussion of this aspect.

As usual, and as studied in detail for this theory in [8, 9, 10], we may also
recover the four-dimensional state count via the 4d/5d lift. In terms of the mul-
tiplicative lift, this adds back the n = 0 term that is absent in ®&fired yielding

(I)reﬁnod(o_7 T, 2) = Z(C:LRZ m) dpnyfqmu[mz] — H (1— pnyzqmuk) c(nm, k)
- n>0,m>0,0,k

(3.11)

It is to be understood in taking the product that when n = m = 0, one should
restrict to £ < 0. The resulting 4d count takes the form

(I)roﬁned (

1
O, TV, 2) = ZM Prefined (5 7 ) 2) (3.12)
u?

Once again, a natural extension would be to promote this to an E7 7(Z) invariant
expression to respect the U-duality of the 4d theory; in the unrefined case, such
an expression was provided in [16].

The above invariants do reduce back to the invariants of [3] in a suitable
limit of parameters, but in a slightly sophisticated way. If one simply unflavors
the SU(2)r angular momentum by taking v — 1, the counts simply vanish. In
order to obtain the nontrivial counts with the F'3 insertion, we note following the



definition of the Hodge-elliptic genus that

1 ug 2ZHEG 1 ug 2T1"'ht <(_1>FqL0_c/24yFLuFR>
2\ Ou ou et e

=t 2 -
;Trrlghtgs ((_1)FQLO_C/24yFL(FR)zuFR) -
o (1)
— %Tr ((_1)F(FR)2qLo—c/24yFL>‘ (3.13)

Notice that the last step, where we replace the trace over the sub-Hilbert space
of states with right-moving part a ground state (all in the Ramond-Ramond
sector) with the full Hilbert space, only works given sufficient supersymmetry
and fermion zero-modes to make the usual index vanish, as is the case here. One
can check explicitly now that our refined counts can be simplified back to the
original count of Maldacena-Moore-Strominger [3] yielding ®sq4, or the expression
of Sen for ®,4 [10], by applying 53—52 to the appropriate refined counting function
and taking v — 0.

Finally we note that because our refined count is not an index, and is computed
at the symmetric orbifold point where g; = 0 in the gravity dual arising in
AdS/CFT, we are not counting black hole entropy. It is possible that cancellations
occur as we move away from the orbifold point, and the black hole entropy is
smaller as one moves away (see e.g. [17]).

3.2 SL(2,Z) invariance

We now discuss automorphy properties of ®fined  In particular we show that
Prefined exhibits invariance under an SL(2,7Z) snnilar to the one which preserves
®44q, as discussed in [10] (where it is related to S-duality). The SL(2,Z) action is

@reﬁned (

o, V)= @reﬁ“ed(a, T, 2, V) (3.14)

where

o' = d*o + b7 + 2bdz

7' = o + a*1 + 2acz

2" = cdo + abt + (ad + be)z

V= (3.15)

10



and (CCL Z) € SL(2,Z). To show this, we will prove invariance under both

0 -1 1 1
S_<1 O)andT—(O 1).
The S transform takes

/

T
/
o

"= —2 (3.16)

2. L 9
Il

which exchanges p and ¢, and takes y to y~!. From the definition of ®cfined in
(3.11), it is clear that there is a p, ¢ exchange symmetry. Exchanging y with y=*
is charge conjugation which is also a symmetry present.

Now note that the T transform takes
o=0c+717+22
=7
Z=7+2. (3.17)

refined

This takes y to yg and p to pgy®. Recall that we can write "¢ as [4]

O (0,7, 2,0) = Y p" Zupe(Sym™(T)(7, 2,v). (3.18)

n=0

From this we see that acting on ®fined ' (3.17) has a clear interpretation as spectral
flow on the left by one unit, which we recall takes

LO —)L0+J0+C/6
Jo — Jo +¢/3. (3.19)

Thus ®iefined s invariant under (3.17). Now, to show ®ifined s invariant, we just
need to show
o(r,v,2) = p(T,v,2 + 7). (3.20)

(see (3.12)).

From the classic identity
01(7, 2+ 7)q %y = —0,(7, 2) (3.21)

and the definition of ¢(7,v,2) in (3.3), we see that (3.20) is satisfied, proving
SL(2,7Z) invariance of ®rfined,

11



4 Motivic DT invariants of abelian varieties

We recall the enumerative geometry interpretation of refining by the SU(2)g
angular momentum, following [6]. The refined invariants of the prior section
assume an interpretation as motivic Donaldson-Thomas invariants, refining the
enumerative geometry interpretations found in [7] for the indexed counts, notably
in their Corollary 5. The doubly-spinning 1/4-BPS count finds an interpretation
of a motivic stable pair count on an abelian surface, paralleling [15]. Here, we
focus on giving the interpretation for the more informative refined 1/8-BPS count.

Hence, consider some abelian threefold X that splits as a product A x FE,
with A an abelian surface and F an elliptic curve. In general, for any curve class
p € Hy(X;Z) and some integer n corresponding to our DO number, we may hope
to define a Donaldson-Thomas invariant as a (weighted) Euler characteristic of
some Hilbert scheme Hilb"(X, ) = {Z C X|[Z] = B,x(Oz) = n}, but as this
invariant would essentially always vanish due to the free X-action, it is more
prudent to quotient by the X-action and consider the invariants of the resulting
space. We hence conjecture that in our cases of interest, we have some natural
quotient [Hilb™(X, 8)/X] € K#(St)[L™!] in a version of a Grothendieck group of
Deligne-Mumford stacks, whose Poincaré polynomials P, (as a motivic measure
on the Grothendieck group) assemble into a generating function as follows:

S PHID (X, (6, d)/X]p" ()" = @it (4.1)

Note that, as in [4], we have left the choice of orientation needed to define mo-
tivic Donaldson-Thomas invariants somewhat murky above. As the orientation
is essentially a choice of spin structure on the relevant moduli spaces of sheaves,
we believe that all relevant moduli spaces in this case have trivial dualizing com-
plex, in the appropriate sense, and that there is consequently a preferred “zero”
orientation, which moreover happens to be the physically relevant one. A good
physical understanding of the orientation issue remains to be well understood, to
our knowledge.

The reduced Donaldson-Thomas invariants of 7% x T2 were further discussed
recently in [18]. These authors in particular conjecture a formula (immediately
following their Conjecture 2 on page 10) relating the exponential of the generating
function of reduced Donaldson-Thomas invariants to the multiplicative lift of

12



—¢_o1. In our notation, their formula is*

2
exp L u3 oeed|, | = H ! - (4.2)
2 ou = (1 _ pnqmyé)c(nm,f)

n>0,m>0,¢

One can easily check that this is consistent with the specialization of our refined
results for relatively prime charges (where we know our formulae to hold). Taking
the logarithm of both sides, we obtain from the right hand side

1
— Y clnm, Optqmylog(1—p"g™y) = > e(nm,0) 2y
n>0,m>0,¢ n>0,m>0,k>1,¢
(4.3)
while our formula for the left hand side is
c(nm, O)p g™y’
P = Z ((1 _ n)pmqé)z ' (4.4)
n>0,m>0,¢ pray

Taylor expanding the denominator we obtain

yg= Y. clnm, Okp"rgry™ (4.5)

n>0,m>0,k>1,0

which looks distinct from the result in (4.3) until one recalls that we are only
matching the coefficients for relatively prime charges. This fixes £ = 1, and then
the two expressions coincide as expected. As noted above, extending to non-
coprime charges is sure to be interesting both mathematically, for the correct
multiple-cover formula, and physically, as we expect the moduli space to turn
non-compact.
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