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Abstract

We give arguments for the existence of a thermodynamics of quantum complexity
that includes a “Second Law of Complexity”. To guide us, we derive a correspondence
between the computational (circuit) complexity of a quantum system of K qubits,
and the positional entropy of a related classical system with 2K degrees of freedom.
We also argue that the kinetic entropy of the classical system is equivalent to the
Kolmogorov complexity of the quantum Hamiltonian. We observe that the expected
pattern of growth of the complexity of the quantum system parallels the growth of
entropy of the classical system. We argue that the property of having less-than-
maximal complexity (uncomplexity) is a resource that can be expended to perform
directed quantum computation.

Although this paper is not primarily about black holes, we find a surprising
interpretation of the uncomplexity-resource as the accessible volume of spacetime
behind a black hole horizon.
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1 Quantum Complexity and Classical Entropy

Complexity theory, particularly its quantum version, is a new and relatively unknown

mathematical subject to most physicists1. It’s a difficult subject with few quantitative

results and, at least for the moment, no experimental guidance. Our original interest in

complexity began with questions about black holes [1, 2, 3], but broadened into the issue

of what happens to quantum systems between the time they reach maximum entropy and

the much later time they reach maximum complexity.

The mainstream goals of complexity theory are to organize tasks into broad quali-

tative complexity classes. Our main focus will be somewhat different. Our concern is

with the quantitative behavior of complexity as a system evolves. The two types of ques-

tions are by no means unconnected but they are different and probably require different

tools. In this paper we will consider whether physics—especially statistical mechanics and

thermodynamics—may be useful for analyzing the growth and evolution of complexity in

generic quantum systems.

In particular we are interested in whether there is an analog, involving quantum com-

plexity, for the second law of thermodynamics. In [4, 5] such a Second Law of Complexity

was conjectured, and invoked for the purposes of diagnosing the transparency of horizons,

i.e., the absence of firewalls [6]. It was argued [5] that opaque horizons with firewalls

are associated with states of decreasing complexity, and that as long as the complexity

of the quantum state increases, the horizon will be transparent. A Second Law of Com-

plexity would ensure that a black hole formed from natural processes will have increasing

complexity and therefore a transparent horizon, at least for an exponentially long time.

In this paper we argue that the Second Law of Complexity for a quantum system Q is

a consequence of the second law of thermodynamics for an auxiliary classical system A.

Two distinct notions of quantum complexity will be discussed. The first, denoted C, is

computational complexity, also called circuit complexity or gate complexity. It measures

the minimum number of gates required to prepare a given unitary operator or a given

state2 from an unentangled product state. The second is Kolmogorov complexity, denoted

Cκ, whose relevance will become clear in Sec. 6.4.

1Including the authors of this paper.

2Throughout this paper the term ‘state’ will always mean a pure state. More general density matrices
will be called mixed states.
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1.1 The Evolution of Complexity

The object of interest is the time-development operator U(t) = e−iHt, for a generic k-

local system of the type that model black holes. The question of interest is how the

computational complexity3 of U(t) evolves with time. Both black hole and quantum circuit

considerations suggest the following conjecture summarized in Fig. 1.

complexity

⌧

Cmax

Cmax

K
⇠ exp[exp[K]]

Figure 1: The conjectured evolution of quantum complexity of the operator e−iHt, where H
is a generic time-independent k-local Hamiltonian. The complexity increases with rate K,
and then saturates at a value exponential in K. It fluctuates around this value. Quantum
recurrences occur on a timescale that is double-exponential in K; a very rare, very large
fluctuation bring the complexity down to near zero. This figure would also describe the
entropy of a classical chaotic system with exp[K] degrees of freedom.

The complexity C(t) grows linearly as

C(t) = Kt (1.1)

for a time exponential in K. At t ∼ eK the complexity reaches its maximum possible value

Cmax and flattens out for a very long time. This is the period of complexity equilibrium [5]

3The concept of computational complexity that we are using is essentially the same as quantum circuit
complexity, i.e., the minimal number of quantum gates needed to prepare a given unitary operator.
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during which the complexity fluctuates about the maximum,

Cmax ∼ eK . (1.2)

On a much longer time scale of order exp[eK ] quantum recurrences quasiperiodically return

the complexity to sub-exponential values. All of this is a conjecture which at the moment

cannot be proved, but which can be related to other complexity conjectures [7].

The pattern described above is reminiscent of the evolution of classical entropy. Start-

ing a classical system in a configuration of low entropy (all the molecules in the corner

of the room) the subsequent evolution, as the gas comes to equilibrium, follows a similar

curve to Fig. 1, but for entropy—not complexity. However, for the classical case the linear

growth of entropy will persist for only a time polynomial (in the number of degrees of

freedom), the maximum entropy will also be of order the number of degrees of freedom,

and the recurrence time will be simply exponential and not doubly exponential.

A simple and concise way to express the parallel is:

The quantum complexity for a system of K qubits behaves in a manner similar to the

entropy of a classical system with 2K degrees of freedom.

The primary goal of this paper is to understand this similarity.

In [4] a two-dimensional toy analog model for complexity was conjectured. (We recom-

mend that the reader first read [4] before this paper.) The motivation for the toy model

was Nielsen’s geometric approach to complexity. Here we are going to consider the far

more complex case based directly on a version Nielsen’s high-dimensional geometry [8][9].

Another goal that we discuss is the construction of a resource theory of complexity in

which the relevant thermodynamic resource would be the gap between the complexity of a

system and the maximum possible complexity—the ‘uncomplexity’. This is expended by

performing directed quantum computation, which means reducing the relative complexity

of the initial state and the target state. We suggest that this resource can, under appropri-

ate conditions, be used to do directed quantum computation in much the same way that

in conventional thermodynamics free energy is used to do directed work. We will have

more to say about this in Sec. 8.
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A guide to the notations and conventions and units used in this paper can be found in

Appendix A.

2 The Quantum System Q
2.1 Randomness

There are many problems in both classical and quantum physics that are extremely diffi-

cult when particular instances of the problem are considered. The strategy of averaging

over ensembles of instances sometimes allows conclusions to be drawn about generic be-

havior that would not be possible for specific cases. A particular example, which has

generated recent interest, is the SYK approach to scrambling. By averaging over an ap-

propriate ensemble of time-independent Hamiltonians it is possible to show that almost

all such Hamiltonians saturate the fast-scrambling bound [10][11]. Potentially this kind of

averaging can also be applied to questions about the evolution of complexity.

Another type of randomness is stochastic randomness in which a time-dependent statis-

tically fluctuating (noisy) Hamiltonian is averaged over. Generally the more one averages

over the easier it is to draw conclusions, and indeed stochastic averaging is easier than av-

eraging over time-independent Hamiltonians. Of course, if our interest is in the behavior

of time-independent Hamiltonians (as it is in this paper) it is not entirely clear that the

lessons we learn from stochastic behavior are applicable.

2.2 k-locality

The systems we will consider are constructed from qubits and have a type of dynamics

called k-local. Other than that they are very generic. The building blocks of a k-local

Hamiltonian are hermitian operators that involve at most k qubits. The term “weight”

applied to an operator means the number of single qubit factors that appear in the operator.

A k-local Hamiltonian is one that contains terms of no higher weight than k. Ordinary

lattice Hamiltonians with nearest neighbor couplings are k local—in fact they are 2-local.

But k-locality does not assume any kind of spatial locality. For example we may have

Hamiltonians in which any pair of qubits directly interact. The general form of an exactly

k-local Hamiltonian built out of standard qubits is4,

4By ‘exactly k-local’ we mean a Hamiltonian that is a sum of terms each of which acts on exactly k
qubits (not that each term acts on k or fewer qubits). See clarification 1 in Appendix B.
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H =
∑

i1<i2<...<ik

∑
a1={x,y,z}

. . .
∑

ak={x,y,z}

Ja1,a2,...,aki1,i2,...,ik
σa1i1 σ

a2
i2
.... σakik . (2.1)

The SYK model is another [12, 13, 14, 15] type of k-local system which is built out of

real anti-commuting degrees of freedom χi,

{χi, χj} = δij. (2.2)

The SYK Hamiltonian is similar to Eq. 2.1,

H =
∑

i1<i2<...<ik

Ji1,i2,...,ik χi1 χi2 ....χik . (2.3)

The SYK model is k-local when written in terms of fermions, but if we try to rewrite

it in terms of standard qubit operators it will be highly non-local. Despite this, most of

what we describe applies to it. For definiteness we will illustrate the principles for systems

of standard qubits with Hamiltonians of the form Eq. 2.1.

There is however a caveat. The SYK model is usually studied at low temperature

where it has an approximate conformal invariance and behaves roughly like a near-extremal

charged black hole. At low temperature, standard qubit models are different; for example

they may have spin-glass behavior. Our interest will instead be in the high-temperature

behavior where we expect both kinds of models behave somewhat similarly to uncharged

Schwarzschild black holes. At high temperature the conformal invariance does not play a

role.

It should be noted that for systems of fermions or qubits the high-temperature limit is

not a high energy limit. The energy and entropy per qubit do not go to infinity at infinite

temperature; in fact the entropy per degree of freedom does not change much between the

usual SYK low-temperature regime and infinite temperature. It is also true that the ratio of

the Lyapunov exponent to the energy-per-qubit tends to a finite constant as temperature

increases. This is in contrast to the ratio of the Lyapunov exponent to temperature,

which goes to zero in the high-temperature limit. This means that at higher temperatures

the Maldacena-Shenker-Stanford bound [11] is not tight and a stronger bound might be

expressed in terms of the energy-per-qubit rather than the temperature.

Hamiltonians of the type Eq. 2.1 are very common. They include lattice systems,
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for which the couplings are non-zero only for nearest neighbors on some ordinary lattice.

But these “condensed matter” Hamiltonians are very rare in the space of the couplings.

The generic k-local Hamiltonian is a fast-scrambler [16][10], meaning that every qubit is

coupled to every other qubit, but only through terms involving at most k qubits. We

will be interested in this generic case. Averages over the J ’s will be dominated by fast

scramblers.

For now assume that the J ’s are known definite numbers, but keep in mind that the

trick of averaging over Hamiltonians may make otherwise impossible problems tractable.

To simplify the notation we will write Eq. 2.1 in the schematic form

H =
∑
I

JIσI , (2.4)

where I runs over all (4K − 1) generalized Pauli operators5 with the proviso that only the

k-local couplings are non-zero.

2.3 The Quantum System

The quantum system Q consists of K qubits interacting through a k-local Hamiltonian of

the form Eq. 2.1. Adapting the discussion to fermionic degrees of freedom, as in Eq. 2.3,

should be straightforward.

We will not be interested in any particular Hamiltonian; following Sachdev-Ye and

Kitaev we will consider the properties of the system when averaged over a gaussian sta-

tistical ensemble of the J-coefficients. The probability for the k-local couplings JI to take

a specified set of values is,

P (J) =
1

Z
e−

1
2
Ba

∑
I J

2
I . (2.5)

The constant Ba determines the variance of the distribution. The non-k-local couplings

are assumed to be zero.

The space of states is 2K dimensional. Unimodular unitary operators are represented

by 2K × 2K matrices in SU(2K). These matrices can be thought of in two ways. The first

is as operators acting on the state space of the K qubits. The second is as wavefunctions of

maximally entangled states of 2K qubits. In this latter sense the identity matrix represents

5By the generalized Pauli operators we mean the set of 3K Pauli operators σa
i together with all possible

products, with no locality restrictions.
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a thermofield-double (TFD) state at infinite temperature. As such it is dominated by the

highest energy states of the system.

Let us consider the variance of the Hamiltonian in the infinite temperature TFD state,

(∆H)2 = TrH2

= Tr
∑
I

∑
J

σIσJJIJJ . (2.6)

(Here and throughout this paper we normalize Tr so that Tr1 = 1.) The generalized Pauli

matrices σI satisfy

Tr σIσJ = δIJ . (2.7)

Thus

(∆H)2 =
∑
I

J2
I . (2.8)

Note that the average of the Hamiltonian itself is zero since all the terms in H have zero

trace. We will use the notation E to represent the energy relative to the ground state.

This is not zero. The variance of E is the same as the variance of H.

The normalization of J is a convention related to the normalization of time. We choose

it by observing that fast scramblers are models for neutral static black holes. It is a general

fact about such black holes that their dimensionless Rindler energy E (defined relative to

the ground state), and the variance of the dimensionless energy (∆E)2 are both equal to

the entropy. For the infinite temperature TFD state the entropy of each copy is S = K.

It follows that the distribution of J ’s should satisfy∑
J2
I

∣∣∣
av

= K = E, (2.9)

where the average in
∣∣∣
av

is an ensemble average.

If the Hamiltonian is exactly k-local then the number of J-coefficients is

NJ = 3k
(
K

k

)
≈ (3K)k

k!
. (2.10)
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Letting J2 be the variance of any of the JI , Eq. 2.9 gives

J2 =
k!

3kKk−1
. (2.11)

The same argument, when applied to the SYK model, correctly gives the variance, the

only difference being the absence of the factor 3−k in the SYK case6. The relevance of

these facts will become clear when we study the thermodynamics of the auxiliary system

A.
Hamiltonians of the form Eq. 2.4 can easily be generalized to stochastic evolution by al-

lowing the J ’s to have a time-dependence governed by a stochastic probability distribution.

The resulting “Brownian circuits” were discussed in [17].

3 The Classical System A
For the moment we will ignore issues of complexity and define a classical system that

represents the evolution of a quantum system as the motion of a non-relativistic particle

moving on SU(2K). Later we will modify the geometry to a “complexity geometry” along

the lines of [9].

The space SU(2K) is a homogeneous group space generated by (4K − 1) generators

which in the Pauli basis are the generalized Pauli operators σI . Each point on SU(2K)

corresponds to an element of SU(2K): it is a particular 2K by 2K unimodular matrix U.

Up to an overall constant factor, the unique bi-invariant metric is given by7,

dl2 = Tr dU †dU. (3.12)

This metric is called ‘bi-invariant’ since it is invariant under both left- and right-multiplication:

for any W ∈ SU(2K) and V ∈ SU(2K), transforming U by

U → W †UV (3.13)

does not change the metric distance in Eq. 3.12.

6The factors of 3 are due to there being three Pauli matrices.

7Throughout this paper the notation Tr refers to normalized trace such that Tr 1 = 1.
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3.1 Equations of Motion

The time evolution of the system with Hamiltonian Eq. 2.4 defines a moving point U(t)

which we may think of as the motion of a fictitious particle moving on SU(2K). The particle

starts at the point U = 1, i.e., the identity matrix. The motion can be represented by

ordinary classical mechanics. Begin with the Schrodinger equation for U(t),

iU̇ = HU. (3.14)

This is a first order (in time) equation and, given the Hamiltonian, through every point

U there is a unique trajectory. We would like to write this in a way that does not make

reference to a specific Hamiltonian. To that end we first solve for H,

H = iU̇U †. (3.15)

Differentiating Eq. 3.14 with respect to time and then plugging in Eq. 3.15 gives the

equation of motion

Ü − U̇U †U̇ = 0. (3.16)

This is the second order equation of motion of a non-relativistic particle moving on SU(2K).

It is well known that such motion is along geodesics with constant velocity. In terms of

general coordinates the equation of motion has the familiar form

ẌM = −ΓMABẊ
AẊB, (3.17)

where ΓMAB are the Christoffel symbols derived from the standard metric on SU(2K).

3.2 Velocity-Coupling Correspondence

Note that the equation of motion Eq. 3.16 no longer makes reference to the Hamiltonian.

That information is now encoded in the initial conditions. To see how this works we write

the Hamiltonian Eq. 2.1 as

H =
∑
I

JIσI . (3.18)
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The Schrodinger equation takes the form

U̇ = −i
∑
I

JIσI U. (3.19)

We can easily solve for JI ,

JI = iTr σIU̇U
†. (3.20)

At the origin U = 1 we may write

iTr U̇σI = JI . (3.21)

The left side of this equation is the projection of the initial velocity onto the tangent space

axes oriented along the Pauli basis. In other words the JI are the initial values of the

velocity components VI ,

JI = VI

∣∣∣
initial

. (3.22)

We’ll call Eq. 3.22 Velocity-Coupling correspondence, or just V/J-correspondence.

A point to emphasize is that the classical mechanics described by the equation of

motion Eq. 3.19 is not the theory of any particular Hamiltonian. It is the theory of all

Hamiltonians of the form Eq. 2.1 with the J ’s playing the role of initial velocities.

3.3 Action

The equations of motion Eq. 3.17, or equivalently Eq. 3.16, may be derived from an action8,

Aa =

∫
Ladt

La =
1

2
GMNẊ

MẊN . (3.23)

In terms of U , this action has the simple form

La =
1

2
Tr U̇ †U̇ . (3.24)

8The subscript a refers to the auxiliary system; for a guide to conventions see Appendix A.
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3.4 Conservation Laws

The A-system has a conserved Hamiltonian which is not to be identified with the Hamil-

tonian of the Q-system (namely Eq. 2.1). From the form of the Lagrangian one finds that

the auxiliary energy is the same as the Lagrangian,

Ea = La =
1

2
Tr U̇ †U̇ . (3.25)

The energy is of course just the familiar non-relativistic expression for a particle of unit

mass,

Ea =
1

2
V 2
a . (3.26)

The other conservation laws follow from the bi-invariance of the metric. Invariance under

right multiplication gives rise to conservation of the matrix elements of the right charges,

QR
I = iTr σIU

†U̇ . (3.27)

The left charges,

QL
I = iTr σIU̇U

†, (3.28)

are also conserved, but they are not functionally independent of the right charges—the

QL
I s can be written in terms of the QR

I s and the matrices U .

3.5 Ergodicity

Naively we might expect the motion generated by a generic time-independent k-local

Hamiltonian to be ergodic on SU(2K). But in fact the motion is very far from ergodic.

To see this, consider writing e−iHt in the energy basis

e−iHt =
∑
n

e−iEnt|n〉〈n|. (3.29)

For a given Hamiltonian there are 2K energy eigenvalues and it follows that U moves on a

torus of dimension 2K . This is much smaller than the dimension of SU(2K), which is 4K .

The particular torus defined by Eq. 3.29 depends on the Hamiltonian. We may ask how

big a space is swept out by varying over all Hamiltonians of the form Eq. 2.1. Specifically

13



does varying over Hamiltonians lead to an almost space-filling set on SU(2K)? The answer

is no; the number of parameters specifying H (the J ’s) is polynomial in K and given by

Eq. 2.10. Thus for a given k the dimension of the set covered by k-local evolution is only

slightly bigger than a 2K-dimensional subset.

On the other hand we may ask: For each Hamiltonian is the motion on the 2K-torus

ergodic? Generically the answer is yes. Ergodicity is equivalent to the incommensurability

of the energy eigenvalues, a condition which will be satisfied for almost all members of the

ensemble of J ’s.

To summarize, while the A-system is formally defined on a 4K-dimensional configura-

tion space, the effective dimension of the system is actually much smaller ∼ 2K .

In Sec. 2.1 we explained that by starting with a random time-dependent quantum

Hamiltonian, a stochastic system can be defined. That stochastic system can be thought

of as a classical stochastic version of the auxiliary system A. Reference [17] refers to such

systems as Brownian circuits. In that case, since the Hamiltonian is now time-dependent,

the motion on SU(2K) is a random walk not restricted to a torus—it fills up all 4K

dimensions and is ergodic on SU(2K).

4 Geometry of Complexity

4.1 The Distance Between Quantum States

Consider the question: how far apart are two quantum states |A〉 and |B〉? The usual

measure of the distance between them is defined by

dAB = arccos |〈B|A〉|. (4.1)

The distance dAB is bounded between 0 (when the two states are the same) and π/2 (when

the two states are orthogonal). The metric defined by Eq. 4.1 is called the Fubini-Study

metric. It has the property that if dAB is very small then the expectation values of all

observables in the states |A〉 and |B〉 are very close. But this definition misses something

important. Suppose we have a very large number of qubits in a complicated pure state that

looks thermal, although it is actually pure. Now add one more qubit, either in state |0〉 or

state |1〉. Let’s call the two states that we get this way |A〉 and |B〉. They are orthogonal

so they are as far apart as possible according to Eq. 4.1. But in some sense they are not

very different; they only differ by the orientation of a single qubit.
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On the other hand we can consider two states |A′〉 and |B′〉 in which all of the qubits

are mixed up (scrambled) by two very different scrambling operations. These two states

would also be orthogonal, and therefore no further apart than |A〉 and |B〉. But clearly

there is some sense in which |A′〉 and |B′〉 are much further apart than |A〉 and |B〉. The

inner product distance of Eq. 4.1 fails to capture this difference.

The difference between the two senses of distance has operational consequences. Con-

sider the first case with |A〉 and |B〉: it is not hard to create a coherent superposition of

states, α|A〉+β|B〉; nor is it hard to do an interference experiment that is sensitive to the

relative phase of α and β; and nor is it hard to cause a transition between |A〉 and |B〉.
But doing any of these three things with |A′〉 and |B′〉 would be extremely difficult.

Distances according to the Fubini-Study metric of Eq. 4.1 are conserved under time

evolution: the inner product between U |A〉 and U |B〉 is the same as between |A〉 and |B〉.
But that does not mean that if they start easy to interfere, they will remain so: large

differences between initially similar states can be created merely by the passage of time.

Let’s take the states |A〉 and |B〉 which are in some sense similar, although orthogonal.

Now let’s evolve them both by some generic Hamiltonian that allows all the qubits to

interact. After a long time the evolved states are

|A′〉 = e−iHt|A〉
|B′〉 = e−iHt|B〉. (4.2)

If the system is chaotic then the states |A′〉 and |B′〉 will be very different from one

another, and also very difficult to interfere. Some kind of distance between the states will

have grown very large. Moreover that distance will continue to grow long after the extra

qubit has thermalized with the others. In fact it will grow until it becomes exponentially

difficult to interfere the states.

Of course you could argue that the states |A′〉 and |B′〉 are easy to interfere. Just

initially interfere |A〉 and |B〉 to make α|A〉 + β|B〉 and then evolve the superposition

forward for time t. That is true, but the point is that this way of preparing α|A′〉+ β|B′〉
takes a very long time. With some locality assumptions we can show that there is no faster

way to do it.

The question then is: Is there a different measure of the distance between states that

captures the similarity of |A〉 and |B〉, and at the same time the large difference between

|A′〉 and |B′〉? To our knowledge this fundamental issue has not been discussed before.

Here we propose that the answer is a metric based on a concept of relative complexity.
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Consider all the unitary operators that can connect the two states,

|B〉 = U |A〉. (4.3)

The relative complexity of |A〉 and |B〉 may be defined as the complexity of the least

complex unitary operator satisfying Eq. 4.3. This of course tells us nothing unless we have

a criterion for the complexity of a unitary operator. We shall be very brief here and just

remind the reader of the concept of circuit complexity. We consider all K qubit circuits

composed of k-local gates that allow us to prepare U. For simplicity we take the gates to

act in series,

U = gNgN−1.....g1 . (4.4)

The circuit complexity of U is denoted C(U). It is the minimum number of k-local gates

that it takes to construct U in this way. It depends on the choice of allowable gates; for

example it depends on k, but the dependence is rather weak and we assume that it can

be accounted for.

We will demand that whenever g is an allowed gate so too is g†; it follows that the

complexities of U and U † are the same. As a consequence the relative complexity is a

symmetric function of |A〉 and |B〉.
Relative complexity defines a notion of distance between states—a complexity metric—

which is exactly what we want in order to know how hard it is to make transitions between

states, to interfere them, and to measure the relative phases between them in a superpo-

sition9.

Relative complexity can also be defined for a pair of unitary operators. Let U and

V be such a pair. The relative complexity of U and V is just the complexity of U †V, or

equivalently V †U.

Inspired by ideas of Nielsen [8, 9] we will build a new auxiliary theory, A, based on a

complexity metric.

9It can be proved that the relative complexity, i.e., the circuit complexity of making a transition
between two states; and the circuit complexity of distinguishing the phase of a superposition of the same
two states is approximately equal. It can also be proved that the complexity of creating a superposition
of the two states is at least as large as the relative complexity [7].
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4.2 Complexity Geometry

In this subsection we examine and adapt the ideas of Nielsen et al. [8, 9] about ‘complexity

geometry’. The idea of the complexity geometry is to make a new metric on SU(2K),

different from the standard metric, in which the distance between two elements of SU(2K)

reflects their relative complexity. We will have a great deal more to say about complexity

geometry in a forthcoming paper [18], in which we derive some of the results quoted below,

and illustrate them with simple low-dimensional examples.

There is no single unique definition of complexity, even in the context of quantum

circuits. The definition depends on the allowed set of gates. For example one possibility

is to allow all one- and two-qubit gates. Another is to allow up to three-qubit gates, or to

choose a discrete collection of gates as long as it is universal. Each gate set gives a different

quantitative measure of the complexity of a unitary operator. Since any universal gate

set can be simulated by any other universal gate set, the ambiguity is multiplicative and

order unity10.

We get a different perspective by focusing on what is not allowed. In this way of

thinking we assign a very large, or even infinite, complexity to all un-allowed gates. For

example we may allow arbitrary gates but penalize all those with weight greater than 2,

i.e., those involving more than two qubits, by assigning them a large complexity. This

strategy of allowing all gates but introducing a penalty for large gates underlies Nielsen’s

geometric approach.

The bottom line is that there is no unique definition of circuit complexity but rather

there is a family of complexity measures, which under certain conditions may be multi-

plicatively related.

We need a concept of complexity that is appropriate for continuous Hamiltonian sys-

tems, and which matches expectations summarized by the toy model of [4]. Nielsen’s

idea of a geometry of computation—from now on called complexity geometry—is a good

starting point. By a complexity geometry we will mean a non-standard metric on SU(2K)

such that the minimum geodesic distance between points U and V is proportional to the

relative complexity (or complexity distance) between them. Here are some of the features

that such a geometry should have:

10For the purpose of organizing qualitative complexity classes such as P, NP, or BQP, which care only
about the distinction between polynomial and exponential, these ambiguities are unimportant.
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• It should be a geometry on SU(2K). The evolution of U(t) defines a path on SU(2K).

For a discrete quantum circuit the path consists of a sequence of discrete segments.

The segments represent individual gates in the case of a series circuit, or K/k gates

for a parallel Hayden-Preskill circuit11.

For continuous Hamiltonian systems discrete paths are replaced by continuous paths

generated by possibly time-dependent Hamiltonians. Figure 2 shows schematic rep-

resentations of discrete and continuous paths through SU(2K).

Figure 2: The shaded regions in these figures depict the space SU(2K). The broken
trajectory represents the evolution of a discrete quantum circuit and the smooth curve
represents Hamiltonian evolution. In both cases computational complexity is identified
with the shortest path between the identity and the unitary operator U.

• Hayden-Preskill circuits exhibit an effect called the switchback effect [2, 3]. The

switchback effect is closely related to scrambling [10]. This same effect appears in

the complexity-action duality of [19, 20] and we regard it as an important require-

ment that the geometry of computation should reproduce it. As we will see Nielsen’s

original complexity geometry fails in this respect and requires significant modifica-

tion.

• The distance function should satisfy the triangle inequality. Given two unitary op-

erators U and V the complexity of the product UV should be less than or equal to

the sum of the complexities of the two operators. This follows from the definition of

11A Hayden-Preskill circuit is one that in each time step applies K/k gates in parallel, so that each
qubit is touched exactly once. See Appendix A.
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complexity. The triangle inequality is not enough to prove that complexity geometry

is Riemannian, but we will assume that it is.

• The geometry should be right-invariant. Consider the construction of U by a se-

quence of gates in time order starting with the unitary operator W :

U = gNgN−1.....g1W . (4.5)

The relative complexity of U and W is the minimum number of gates that satisfies

this equation. Now multiply on the right by an arbitrary unitary V ,

UV = gNgN−1.....g1WV. (4.6)

It follows that the relative complexity of UV and WV is the same as the relative

complexity of U and W . This is not true of V U and VW. To see this we write

V U = (V gNgN−1.....g1V
†)VW . (4.7)

The operator V gNgN−1.....g1V
† will generally not be a product of N gates. Thus

the complexity distance is right-invariant but not left-invariant. Right-invariance is

enough to ensure that the geometry is homogeneous.

• All right-invariant metrics are parameterized by a symmetric “moment of inertia”

tensor12 IIJ , in terms of which the metric has the form [21]

dl2 = dΩI IIJ dΩJ , (4.8)

where

dΩI = i Tr dU †σI U . (4.9)

The metric should penalize motions along directions σI that are themselves highly

complex. This is the analog of what in circuit theory corresponds to the requirement

12The parallel with the equations for an asymmetric rigid body is intentional. The case K = 1 is
mathematically the same as an ordinary rigid body in three dimensions, since SO(3) = SU(2)/Z2. The
matrix I would be the moment of inertia tensor and dΩ/dt would be the angular velocity vector. The
symmetric rigid body corresponds to Eq. A.1. We will have more to say about this in [18].
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that gates be simple. Thus we require the metric distance along non-k-local directions

to be increased relative to k-local directions. This is accomplished by an appropriate

choice of IIJ . The ambiguity in choosing I is analogous to the ambiguity in the

choice of a gate set for circuit complexity.

The matrix IIJ should be chosen block diagonal with one block corresponding to

the unpenalized k-local directions, and the other block corresponding to directions

σI containing more than k single qubit operators. Being unpenalized, the k-local

block is naturally taken to be the unit matrix with eigenvalues all equal to 1. The

non-k-local block (the penalized block) should be positive definite, with eigenvalues

greater than 1. The eigenvalues should increase as the weights of the σI increase.

• It was shown in [4] that consistent descriptions of scrambling and the switchback

effect require that generic sectional curvatures be negative, and of order13 1/K. If

no penalty is imposed, in other words if IIJ = δIJ , the metric is bi-invariant and

all sections are positively curved. The introduction of penalty factors tends to make

the sectional curvatures negative, but it is not obvious that the natural order of

magnitude is 1/K. In Sec. 4.4 we will show that is indeed the case.

The original version of complexity geometry in [8][9] fails badly in this last respect.

In our present notation the proposal is equivalent to choosing the non-k-local block to be

diagonal with all eigenvalues being equal to the enormously large value 4K . As we will

see this has the effect of making typical sectional curvatures negative (that’s good) but

huge ∼ 4K (not good). This is a far cry from the sectional curvatures ∼ 1/K required by

[4] in order to reproduce the switchback effect. The penalty assumed in [9] is much too

draconian and must be made more moderate.

4.3 A More Moderate Penalty

The reason why [9] chooses the penalty factor for non-k-local operators to be of order

4K is that the most complex unitary operators have complexity of order 4K . In order to

insure that this is reflected in the properties of the complexity metric, the authors simply

penalize all non-k-local operators by the common factor 4K . It is certainly true that the

13At first sight this seem inconsistent with [4] where we claimed the curvature should be 1/K2. The
reason for the discrepancy is that in [4] we assumed complexity is geodesic length rather than action as
in Sec. 5.2. The factor of

√
K relating length and action in Eq. 5.32 accounts for the difference. This is

explained in Appendix C.
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highest weight operators should be penalized by such a factor but the switchback effect

requires a much more gradual growth of the penalty as the weight of σI increases. This

will be seen in Sec. 4.4.

Let wI be the weight of the generalized Pauli operator σI . We’ll assume that the

moment of inertia tensor is diagonal,

IIJ = δIJI(wI) (no sum). (4.10)

For wI ≤ k the coefficients I(wI) = 1. Our basic assumption is that the penalty factors

I(w) for w < K are independent of K. In other words the price that we pay for moving

along the direction I is independent of the total number of qubits and depends only on

the weight of σI .

For wI > k we assume the eigenvalues smoothly increase from order 1 to order 4K . A

simple behavior would be

I(w) = 1 (w ≤ k)

I(w) = c 4w−k (w > k), (4.11)

with c some constant of order one.

We will now show that for14 k = 2 the typical sectional curvatures are indeed negative

and of order 1/K as required by the switchback effect.

In a companion paper devoted to quantitate aspects of complexity geometry [18], we

will calculate geometric properties of the complexity metric for various k-local systems.

In the next section we will show the answer for one particular such system, and show how

the sectional curvature is typically negative and of order 1/K.

4.4 Sectional Curvature

Our intuition for how complexity geometry should work is based on the two-dimensional

toy model of [3] and [4]. We will now argue that the toy geometry can be thought of as

being embedded as a two-dimensional section of the full complexity geometry.

14As an illustration we will consider the case in which there are only weight 2 operators in the Hamil-
tonians defining the section.
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Certain basic facts about the evolution of complexity can be summarized by two prop-

erties of such sections (that are briefly reviewed in Appendix C): the geometry should be

uniformly negatively curved; and the magnitude of the curvature should be of order 1/K.

Thus the typical sectional metric has the form

dl2 = K(dt2 + sinh2 t dθ2) = K

(
dt2 +

∑
n=1

Cnt
2ndθ2

)
, (4.12)

with Cn some set of numerical coefficients. We will now compare this geometry with the

two-dimensional sectional curvatures of the complexity geometry defined by Eqs. 4.8 &

4.9, and see that the sectional geometries indeed have the same general form as the right

side of Eq. 4.12 (though not necessarily exactly the same Cns). This may be regarded as

a partial derivation of the toy model from the more complete complexity geometry.

Our ‘section’ is the two-dimensional surface consisting of all geodesics through a given

point (we will label this point the ‘origin’) that are generated by linear combinations of

two k-local Hamiltonians. For definiteness we will choose k = 2 for the remainder of this

section. Without loss of generality we may choose one Hamiltonian to be H and the other

to be H + ∆dθ, where ∆ is a 2-local operator orthogonal to H and dθ is an infinitesimal

angle.

The surface defined in this way will generally not have zero extrinsic curvature, and

so geodesics connecting two points on the section will in general take short-cuts off the

surface. For this reason, strictly speaking the sectional curvature is usually defined as the

curvature at the origin, t = 0, where this issue does not arise. We will mean something

more general, namely the curvature of this section as a full function of t; the nonzero

extrinsic curvature will not be an issue so long as we restrict ourselves to working at

leading order in dθ.
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Figure 3: Two neighboring geodesics (in blue) leave the origin at t = 0; this corresponds
to evolution under two nearby k-local Hamiltonians. The two geodesics are connected by
a Jacobi vector (in red); this corresponds to the (non-k-local) connecting operator eΛ =
e−iHtei(H+∆dθ)t. As t increases the connecting Jacobi vector grows, and the acceleration
of this growth rate gives the geodesic deviation. In the bi-invariant metric the geodesics
always converge, but on the complexity metric the geodesics can diverge for I3 > 4/3.

The Loschmidt echo operator eΛ is defined by

eΛ = e−iHtei(H+∆dθ)t. (4.13)

By the Baker-Cambell-Hausdorff formula,

Λ = −
∑
m=0

(it)m+1

(m+ 1)!
[H, [H, [H, [H︸ ︷︷ ︸

m

,∆]]]] dθ

= −
(
it∆ +

(it)2

2
[H,∆] +

(it)3

3!
[H, [H,∆]] +

(it)4

4!
[H, [H, [H,∆]]] + ..

)
dθ.(4.14)

We find that, to order dθ and t3, this comes to

Λ =

(
i∆t+

t2

2
[H,∆]− it3

6
[H, [H,∆]] + . . .

)
dθ. (4.15)

The metric distance along the infinitesimal interval defined by ∆ is

dl2 = Tr[Λ† · Λ]dθ2, (4.16)
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where the dot-product is taken with the moment of inertia tensor IIJ as the metric15. The

metric distance along the radial direction (the t direction) is

dl2 = Tr[H ·H]dt2. (4.17)

In total, to order t4 and order dθ2 the metric is

dl2 = Tr[H ·H]dt2 +

(
Tr[∆ ·∆]t2 − t4

3
Tr[∆ · [H, [H,∆]]]− t4

4
Tr[[H,∆] · [H,∆]]

)
dθ2.

(4.18)

In order to evaluate the weighted traces, we need to know the weights of the operators

involved. The first two terms are easy—since both H and ∆ are by assumption 2-local, and

since 2-local terms by assumption are unpunished, we have I = 1 and so Tr[H ·H] = Tr[H2]

and Tr[∆ ·∆] = Tr[∆2]. For the third term, the commutator [H, [H,∆]] has both 2-local

and 4-local pieces, but only the 2-local pieces survive when the trace is taken against ∆,

and so the third term also has I = 1. The fourth term is harder: [H,∆] has both 1-local

and 3-local pieces. However, as we will argue, in the limit of large K the expression is

dominated by the three-local terms, so it is a good approximation to treat it as weighted

by a factor we will denote I3. In total we have

dl2 = Tr[H2]dt2 +

(
Tr[∆2]t2 − t4

3
Tr[∆[H, [H,∆]]]− t4

4
I3 Tr

[
[H,∆][H,∆]

])
dθ2. (4.19)

Notice that the last term is positive because [H,∆] is anti-Hermitian.

The sectional curvature at the origin (t = 0) is proportional to the coefficient of the t4

term with a minus sign,

R
∣∣∣
t=0,K�k=2

=
Tr
(
+1

3
∆[H, [H,∆]]− 1

4
I3[H,∆][∆, H]

)
Tr ∆2 TrH2

(4.20)

=

(
1

3
− I3

4

)
2{Tr[H,∆][∆, H]}

Tr ∆2 TrH2
, (4.21)

where in the last step we have used the identity Tr
(
[H,∆][∆, H]

)
= Tr

(
∆[H, [H,∆]]

)
. The

factor in the curly brackets is positive.

15Let’s be more explicit. Since Λ is anti-Hermitian it can be written as a weighted sum over the
generalized Pauli matrices Λ =

∑
I iΛIσI . With the standard bi-invariant metric the trace would be

Tr[σIσJ ] = δIJ , but with the complexity metric of Eq. 4.8 this trace gets weighted by a factor of the
moment of inertia, Tr[σI · σJ ] = IIJδIJ . Equation 4.16 then gives dl2 =

∑
I Λ2

IIII .
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We have already assumed that H and ∆ have the exactly 2-local form

H =
∑

Jαβij σ
α
i σ

β
j

∆ =
∑

Dαβ
ij σ

α
i σ

β
j ; (4.22)

let us now assume that all the coefficients are independent random variables with zero

mean (for example they could be Gaussian, though that will not be essential). After

averaging over the random variables we have (for large K)

{Tr[H,∆][∆, H]}
Tr ∆2 TrH2

∼ 1

K
. (4.23)

Were it not for k-locality this quantity would be of order one, but because of k-locality all

except a fraction 1/K of terms in H commute with ∆, so the answer is ∼ 1/K. Putting

it together we will find [18]

R
∣∣∣
t=0,K�k=2

=
28

K

(
1

3
− I3

4

)
+O

(
1

K2

)
. (4.24)

Let us now examine the implications of this remarkable formula. First (as noted in [9])

the sectional curvatures will generically be negative if I3 is large enough, I3 > 4/3. Second,

Equation 4.24 shows that if I3 is of order 4K (as assumed in [9]) the curvature will also

be of order 4K , which as we explained is not a good thing. In particular it is incompatible

with the switchback effect and with the scrambling time being logK. (Instead, geodesics

would deviate so violently that scrambling would be almost immediate.) However suppose

that Eq. 4.11 governs the Iw. In that case I3 is about 4 and the curvature is of order

1/K. If this curvature stays roughly constant at higher orders in t, this is exactly what is

required by the toy model of [4] in order to correctly reproduce the switchback effect with

a scrambling time t∗ ∼ logK. No fine-tuning of I3 is required, we only need I3 to be of

order unity and larger than 4/3.

(We have also confirmed [18] that for all k-local generalizations of Eq. 4.22 the sectional

curvature is generically ∼ k2/K. Again, this is because the probability that two randomly

chosen k-local terms share a qubit and therefore fail to commute is roughly k2/K.)

Given H and ∆ the sectional curvature is a single number that describes the geometry

of the section near the tangent plane where t = 0. As we’ve seen it is only dependent on the

first penalty factor I3. A full derivation of the toy model would require an understanding
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of the dependence of the sectional curvature on the distance t away from the origin. The

Baker-Campbell-Hausdorff formula allows us to calculate the metric Eq. 4.19 to arbitrary

order in t. We have not carried out a full calculation, but we have done enough to show

the pattern is

dl2 = K

(
dt2 +

∑
n=1

C̃nt
2n dθ2

)
,

for some coefficients C̃n. This reproduces both the form and the K-dependence of Eq. 4.12.

The coefficients C̃n can be shown to depend on all penalty factors up to and including In+1;

as we will show in [18], the general pattern has the form

C̃n =
∑
m≤n

(−1)mC(m,n)Im+1, (4.25)

with C(m,n) > 0. If follows that the curvature is uniformly of order 1/K and that for

appropriate choices of the penalty factors Iw can be made negative and constant. What we

have not yet been able to show is that the penalty factors determined by this requirement

grow exponentially as in Eq. 4.11 but we expect this to be the case.

5 Particle on the Complexity Geometry

Earlier we considered the motion of a particle on the bi-invariant geometry of SU(2K).

What we really want to study is the motion on the right-invariant complexity metric

Eq. 4.8.

What is the relation between the geodesics of the bi-invariant metric and those of the

complexity metric Eq. 4.8? The answer is simple and easy to prove. Suppose the initial

velocity components lie in the k-local subspace. In that case the geodesic will always lie

in the k-local subspace. That follows from the right-invariance of the metric. Furthermore

such a geodesic will be exactly the same for either metric—bi-invariant or right-invariant.

This includes the length along the geodesic.

In fact we only care about these k-local geodesics, but we can generalize the above

statement to a wider class. Suppose the initial velocity is any eigenvector of IIJ ,∑
I

IJIJI = λJJ . (5.26)
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Again this will continue to be the case along the entire geodesic. Furthermore such

geodesics will define the same curves for both metrics, but the length along them will

differ by a factor equal to the corresponding eigenvalue
√
λ.

Since we are only interested in the k-local geodesics we can calculate them and their

lengths from an action principle using either metric. In fact most of the discussion in

Sec. 3 remains the same if we replace the bi-invariant metric with the complexity metric.

The only exception is that the complexity metric is not left-invariant and as a result the

left charges are not conserved.

5.1 Geodesic Deviation

Let us consider a pair of neighboring geodesics, both generated by k-local Hamiltonians

H and H + ∆dθ. The geodesics intersect at the origin t = 0 as in Fig. 3.

Geodesic deviation is defined in terms of the rate of change of the length of the Jacobi

vectors along the geodesics. Because length in the complexity metric and in the standard

metric are not the same, geodesic deviation will be different in the two metrics. In par-

ticular the sign of the geodesic deviation is controlled by the sectional curvature of the

section containing the two geodesics. The sectional curvatures in the standard metric are

all positive, corresponding to geodesic convergence (negative geodesic deviation). By con-

trast in the complexity geometry the sectional curvatures are typically negative for large

enough penalty factors, and geodesics diverge (positive geodesic deviation). This property

of negative sectional curvature is central to the duality between classical and quantum

chaos that we are proposing.

Ergodic behavior (see Sec. 3.5) is necessary for classical chaos but not sufficient. The

additional ingredient is the sort of instability characteristic of negative curvature and

geodesic deviation. Without being precise about the definition of chaos, positive deviation

leads to the kind of sensitivity to initial conditions that characterizes chaos. However,

because of the conservation laws the chaos of the A-system can only take place within a

2K-dimensional sub-manifold

The fact that merely ergodic motion can be made to appear chaotic by changing the

metric from the standard metric to the complexity metric is a mathematical representation

of the differences discussed in Sec. 4.1. It is something that needs more study.

The negative curvature controls the Lyapunov exponents of the classical auxiliary

model and the largest Lyapunov exponent may be identified with the quantum Lyapunov

exponent discussed in [4].
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5.2 Complexity Equals Action

The obvious guess would be that the complexity of the unitary operator U(t) is the minimal

geodesic distance separating it from the identity operator 1,

C =

∫ U

1

√
GMNdXMdXN , (5.27)

where the integral is taken along the shortest geodesic connecting 1 and U. However, with

the normalization for the metric we have chosen in Eq. 3.12, rather than using geodesic

length we instead use the action of the auxiliary system16, as discussed further in Ap-

pendix C,

C =
1

2

∫ U

1
GMNẊ

MẊNdτ, (5.28)

with the constraint that the conserved energy Ea is proportional to the actual energy E

of the quantum system,

Ea = K. (5.29)

We note that in Rindler units the total energy of a black hole is proportional to its

entropy which may be identified with K. The constraint Eq. 5.29 says that the auxiliary

energy is equal to the true energy of the system Q,

Ea = E. (5.30)

Thus we postulate that:

The complexity of a unitary operator U is the minimum action of any trajectory connecting

U and the identity, subject to the condition that the energy Ea of the particle is fixed and

equal to K.

(The minimum action here refers to the action evaluated in the complexity metric, not the

bi-invariant metric.)

16This is another example of the connection between action and complexity. Its relation with the
action-complexity connection of [19][20] is at the moment not clear but we certainly find it suggestive.
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The relation between geodesic length Eq. 5.27 and the quadratic action of Eq. 5.28 is

easy to derive,

Action =
√

Ea Length, (5.31)

or, using Ea = K,

Action =
√

K Length. (5.32)

Now let us argue that length and complexity C are related in exactly the same way; in

other words that,

C =
√
K Length. (5.33)

In order to normalize length, we note that according to the standard (bi-invariant)

metric the geodesic length between any two orthogonal unitary operators is π/2 ∼ 1.

Along k-local directions this is also the distance that it takes for U to become orthogonal

to its initial value17. In other words two points U and U ′ are orthogonal if they are

separated along a k-local direction by a distance π
2
∼ 1.

Second, the Aharonov-Anandan bound [22] tells us that the time for U to become

orthogonal to its previous value (orthogonality time) is ∼ 1/∆E where E here refers to

theQ system. From Eqs. 2.8 & 2.9 we see that ∆E =
√
K. It follows that the orthogonality

time is ∼ 1/
√
K. This is discussed in detail in [23] and also in [20].

On the other hand the rate at which effective gates act (the rate of complexity growth)

is K. Therefore the number of gates that act in an orthogonality time is ∼
√
K. Putting

it all together we see that the number of gates corresponding to a geodesic distance ∼ 1

is
√
K. Thus the complexity accumulated over a distance L is

∆C =
√
K∆L, (5.34)

where L is length. It follows that complexity and length differ by precisely the same

factor—namely
√
K—as action and length. The factor of

√
K in Eq. 5.33 is the same

factor that appears in Appendix C.

17The inner product of two unitary operators U1 and U2 is defined as TrU†1U2.
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5.3 The Growth of Complexity

From the ordinary nonrelativistic connection between kinetic energy and velocity, and from

Eq. 5.29, we find that the velocity of the auxiliary particle satisfies,

La =
1

2
V 2
a = K. (5.35)

It also follows that the value of the Lagrangian is

La = K. (5.36)

Our basic hypothesis—that complexity equals action—implies that the rate of growth of

complexity is La. Thus we find that as expected, complexity grows according to

C = Kt. (5.37)

As we have seen, the classical motion generated by k-local Hamiltonians takes place on

a sub-manifold of dimension slightly larger than 2K . Recall the conjecture of Sec. 1 that the

quantum computational complexity of a K-qubit system Q evolves in a similar manner to

the entropy of a classical system with ∼ 2K degrees of freedom. The new conjecture should

now be obvious: Up to a factor to be determined, the ensemble-averaged complexity of Q
is the entropy of A, denoted Sa. We will have to refine this idea, but in essence that’s the

proposal. Given an energy and entropy, the classical system A has its own thermodynamics

which is quite distinct from the thermodynamics of Q. We may call it the thermodynamics

of complexity.

As we mentioned at the end of Sec. 2 we can generalize the quantum system by allowing

stochastic time dependence in the J ’s. The effect on the classical auxiliary system is to

turn it into a problem of diffusion on the complexity geometry.

6 Statistical Mechanics of Complexity

As we mentioned early in this paper, the growth of complexity for a quantum system of K

qubits resembles the growth of entropy for a classical system with an exponential number

of degrees of freedom. We will now consider the statistical mechanics of A and how it is

related to the complexity of Q.
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6.1 Average Complexity Equals Entropy

The phase space probability distribution for a classical non-relativistic gas often separates

into two factors, one depending on the positions of the particles and the other on the

momenta,

P (x, p) = F (x)G(p). (6.1)

As a consequence the total entropy is a sum of two terms: the positional entropy associated

with the distribution F (x), and the kinetic entropy associated with G(p),

S = −
∫
F (x) logF (x) dx−

∫
G(p) logG(p) dp. (6.2)

It is not necessary that the system be in equilibrium for the entropy to separate in this

way. It is only necessary that the probability factorizes.

Let us now state the basic two-part conjecture. The first part is about the compu-

tational complexity of U and the positional entropy of the A-system. The second part

is about kinetic entropy and Kolmogorov complexity. In both cases the term ensemble

average implies an average over initial velocities, or by V/J-correspondence, an average

over the couplings J.

6.2 Computational Complexity and Positional Entropy

Our conjecture states that:

At any instant, the ensemble average of the computational complexity of the quantum

system Q, is proportional to the classical positional entropy of the auxiliary system A.

There are two qualifications to note. The first is that we identify computational complexity

with positional entropy instead of total entropy. The reason for this qualification is that

computational complexity has only to do with the distance of a point U from the origin;

in other words its position in complexity space, not its velocity. In subsection 6.4 we will

consider kinetic entropy and its connection with complexity.

The other qualification is the use of proportional to rather than equal to. Computa-

tional (or circuit) complexity depends on a number of factors such as the gate set. We

assume that different choices lead to a multiplicative ambiguity in the definition of com-

plexity. On the other hand, if our conjecture is correct, a particular normalization of
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complexity will allow us to equate average complexity with positional entropy.

The conjecture can be stated in another way. We consider the number of unitary

operators that can be reached by time-independent k-local Hamiltonians, with complexity

less than or equal to C. Call it N(C). Our conjecture amounts to the claim that for

1� C < 2K

N(C) = ea C, (6.3)

with a being a constant independent of K, but dependent on the specific scheme (gate

set, etc.) for defining complexity. If true it would allow us to define a normalization for

complexity for which a = 1.

An intuitive counting argument for the conjecture will be given shortly.

6.3 Kinetics

We have considered the positional aspects of entropy. Now let us consider the kinetic

aspects. The auxiliary energy in Eq. 3.26 is simply expressed in terms of J,

Ea =
1

2

∑
J2, (6.4)

i.e. the energy is proportional to the sum of the squares of the couplings. Recall that

the probability distribution P (J) in Eq. 2.5 has the form of a gaussian. Using the

velocity-coupling (V/J) correspondence of Sec. 3.2 this distribution is seen to be a Maxwell-

Boltzmann velocity distribution,

P (V ) =
1

Z
e−

1
2
Ba

∑
I V

2
I . (6.5)

Alternatively it defines a Gibbs ensemble,

P =
e−BaEa

Z
, (6.6)

with the constant Ba being the inverse temperature of the auxiliary system.

Ta = 1/Ba. (6.7)

The temperature may be determined in a number of ways, the easiest being to use the
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fact that every degree of freedom in a Maxwell-Boltzmann distribution has energy Ta/2.

The result depends on the locality parameter k. For illustration we consider k = 2. The

total energy is given by Eq. 5.29 as Ea = K and there are of order
(
K
2

)
32 excited degrees

of freedom18. Thus the energy per degree of freedom is 2/9K and the temperature is

Ta =
4

9K
. (6.8)

More generally, if the Hamiltonian is k-local instead of 2-local the temperature will

satisfy,

Ta ∼ 1/Kk−1. (6.9)

(To be clear, Ta is the temperature of the classical auxiliary system A; it is not the

temperature of the quantum system Q.)

There is of course an entropy associated with the probability distribution of the J ’s.

By V/J-correspondence it may be thought of as the kinetic part of the total entropy.

6.4 Kolmogorov Complexity and Kinetic Entropy

This raises an interesting question: What, if anything, does the kinetic term in the entropy

have to do with complexity? It would be odd and maybe disappointing if one term in the

auxiliary entropy (the positional entropy) was an average complexity and the other (the

kinetic entropy) was not. We don’t believe this to be the case.

Given that the velocities are related to the J-coefficients we can identify the kinetic

entropy of the classical auxiliary system A with the entropy of the probability distribution

P (J). (Since this is a function of the coupling constants J , this is a property not of the

quantum state but of the quantum Hamiltonian; this is a consequence of Sec. 3.1, where

we saw that the velocities in A are given by the quantum Hamiltonian in Q.)

For a moment suppose the J ’s are each either 0 or 1. The Hamiltonian Eq. 2.1 would

then be specified by a bit-string (0110100.....). It would be natural to ascribe a Kolmogorov

complexity Cκ(s) to the string s. Kolmogorov complexity measures the length of the

shortest algorithm that can prepare a string. Applied to the string of J ’s it would define

a Kolmogorov complexity for each specific instance of a Hamiltonian.

The Kolmogorov complexity is a measure of randomness which, unlike classical entropy,

18Once again the factor 9 = 32 is due to the three Pauli operators for each qubit.
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does not depend on probabilistic assumptions, or the existence of a statistical ensemble.

In some respects it is a more physical quantity than entropy in that it is defined for each

instance and does not make reference to the state of knowledge of the observer [24]. Its

disadvantage is that it is uncomputable and difficult to work with. Fortunately under

suitable assumptions the average Kolmogorov complexity is connected to entropy.

If we are given a statistical ensemble of bit-strings we may define two measures of

randomness or genericity for the ensemble. The first is the good old entropy defined by the

usual formula −∑P (J) logP (J). The other is the ensemble average of the Kolmogorov

complexity
∑
P (J)Cκ(J). What if anything is the relation between these quantities? In

fact under mild assumptions19 the two are the same [24][25],

−
∑

P (J) logP (J) =
∑

P (J)Cκ(J) = 〈Cκ〉. (6.10)

The J ’s are real numbers, not binary digits. This means that to specify them with

infinite accuracy will in general take an infinite amount of information, which means

infinite Kolmogorov complexity (the same infinity that shows up in the classical entropy

of continuous variables, such velocity). We will fall back on a discrete approximation to

the continuum. For example, suppose J takes on real values on some interval. We can

replace the real numbers by a fine lattice with spacing δ. All together there are ∼ 1/δ

points on the lattice. A value of J can be specified by an integer from 1 to 1/δ. It is well

known that the typical Kolmogorov complexity of such an integer is of order log (1/δ) and

therefore diverges logarithmically as δ → 0.

Despite this divergence we still expect the ensemble averaged complexity to be the

same as entropy. This is because the same log δ divergence appears in the entropy for

the reason that the probability for any value of J is order δ and the sum
∑
P logP

will be proportional to − log δ. The average Kolmogorov complexity of the J ’s depends

logarithmically on the tolerance in specifying the Hamiltonian20.

19The important assumption is that the probability distribution itself not be too complex. For simple
distributions, such as gaussian, this complexity is negligible. See Grunwald and Vitanyi [25].

20To be clear, we are calculating the Kolmogorov complexity of a time-independent Hamiltonian, with
a tolerance δ. The time t does not appear. If instead we were calculating the Kolmogorov complexity of
a quantum state evolving under a time-independent Hamiltonian—which, to be even clearer, is not the
quantity of interest for the purposes of relating Q and A—we would find that this generically scales like
like log t at intermediate time. Consider the algorithm for specifying the state that first gives the (simple)
initial state, then says ‘evolve for time t’, and then specifies the time-independent Hamiltonian to be used
in the evolution. The first part is a fixed overhead that doesn’t scale with t. The second part—specifying
the time—requires log t bits. The third part—specifying the Hamiltonian—also requires log t bits, because
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Before concluding this section we will give a circuit analogy. The analog of Hamiltonian

evolution would be to start with a unitary circuit of small depth, call it Γ, and to repeat

it over and over,

U(t) = Γt (t = integer). (6.11)

Most of what we described here can be adapted to that case. Averaging over Hamiltonians

would be replaced by averaging over an ensemble of Γ’s.

In computer science terms Γ is the program that determines what computation the

circuit carries out. Part of the complexity of the entire computation is the Kolmogorov

complexity of Γ. The ensemble average defines an entropy, which as we’ve seen, is related

to kinetic entropy.

The kinetic entropy of theA system is time-independent and of order the number of J ’s.

This is polynomial in K. On the other hand the positional entropy is time dependent and

can grow to exponential size ∼ 2K at equilibrium. During the early period of complexity

growth the two can compete but in equilibrium the entropy is dominated by the positional

term. To put it another way, the Kolmogorov complexity is essentially a fixed overhead

having to do with the complexity of the algorithm, but after the algorithm has run for a

long time the computational complexity vastly exceeds the fixed overhead.

The computational complexity measures the total number of gates required to build

the minimal circuit that generates the state. Even for a time-independent Hamiltonian,

this scales like t since you need to keep paying over and over again to apply the same

gates over and over again. The Kolmogorov complexity is (no more than) the number

of bits in the most compressed possible description of this circuit. For time-independent

Hamiltonians you do not need to keep paying over and over again as you concatenate

identical sub-circuits, since you can just specify the total number of such sub-circuits with

log t bits.

Whether or not we add the Kolmogorov complexity to the circuit complexity to define

a total complexity is a matter of definition. In ordinary thermodynamics the two kinds

of entropy are transmutable into each other, for example by adiabatic compression or

expansion, so adding them is essential. In the present context one thing is clear: the

Kolmogorov complexity of Γ and the circuit complexity both contribute to the overall

complexity of carrying out a computation.

to approximate e−iHt for a time t requires an accuracy in H that is an inverse polynomial in t [26].

35



6.5 A Counting Argument

The set of operators reached by evolving with k-local Hamiltonians forms a space of di-

mension not much bigger than 2K . Ideally we would like to know how much of the volume

of that space is occupied by operators of complexity C. The conjecture of Eq. 6.3 is that

it is exponential but we haven’t proved it. Brownian or random circuits which fill all

(4K − 1) dimensions of SU(2K) are easier to analyze. The counting problem in this case

is the unrestricted counting of all unitary operators with complexity less than or equal to

C. We’ll do that counting now.

There is an important difference between the time-independent Hamiltonian model

and stochastic random circuit models. The difference has to do with the Kolmogorov

complexity of the circuit. In both the time-independent Hamiltonian model, and the

repeated-Γ model the Kolmogorov complexity is essentially a fixed overhead which does

not grow linearly as the circuit evolves. Thus whether we include it or not, we may ignore

it over long time scales. This is not the case for random circuits, where at each time

step a new random choice of gates has to be made. It is evident that the Kolmogorov

complexity increases linearly with time and therefore, if included, it will contribute to the

growing total complexity of an evolving circuit. In what follows we include the Kolmogorov

complexity in the counting for a stochastic or Brownian circuit.

In the simplest model at each instant a single gate acts. If we only have to choose from

a small gate set, the Kolmogorov complexity per gate would be order 1 and would not be

very important. But at each step the choice also involves which set of k qubits the gate

acts between. For example in the case k = 2 there are K(K − 1)/2 possibilities to choose

from. That means that each gate adds a Kolmogorov complexity ∼ logK2. We can easily

account for this by assigning a complexity logK2 to each gate. (We would not do this in

the Γ model in which the Kolmogorov complexity is essentially a fixed overhead. In that

case each gate is assigned complexity O(1).) The full complexity of a unitary operator

in the stochastic model is logK2 times the minimum number gates that are required to

prepare U.

We can give a rough counting argument for how complexity grows. The argument is

closely related to one given by Roberts and Yoshida [27]. Let’s consider a path through

SU(2K) defined by a series of n 2-qubit gates

U(n) = gngn−1...g1. (6.12)
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The gate-set is assumed universal and includes m gate-types which can act on any pair

of qubits. Thus each gate involves a choice of mK(K−1)
2

possibilities. The system of paths

defined this way forms a tree [4]. The tree is a discrete analog of complexity geometry.

The number of such paths of length n is

N(n) ∼
(
mK(K − 1)

2

)n
∼ en log (mK2). (6.13)

Does each path produce a different unitary operator or are there collisions where two paths

produce the same operator? Because of the very high dimensionality of SU(2K) collisions

of this type are rare until n is very large. In fact the fundamental assumption that this

work is based on is that collisions do not generically occur until n is exponential in K.

Under these conditions the set of unitary operators that can be reached in this way

include all U with complexity less than C = n logK2, and no U with complexity greater

than n logK2. The conclusion is that the number of unitary operators with complexity

less than or equal to n logK2 is N(n). Thus the number of U ′s with complexity of order

C is

N(C) = eC. (6.14)

We may think of all the operators with complexity between C and C+ δC as living in a

shell of volume eC surrounding the root of the tree. The positional entropy of an ensemble

supported in this shell is the logarithm of this volume and is therefore

Sa ≈ C. (6.15)

Thus, if the Kolmogorov complexity is included, in the stochastic model we are justified

in identifying average complexity with auxiliary entropy.

6.6 A State-Complexity Argument

We’ll give one more argument for Eq. 6.3, not based on operator complexity but on state

complexity. Earlier, in Sec. 4.1, we discussed relative state complexity. In order to define

absolute state complexity one needs a concept of a simple state. By a simple state we will

mean one with no entanglement, for example the product state |000..00〉. Once one specifies
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what states are simple, the absolute state complexity of |ψ〉 just means the smallest relative

complexity between |ψ〉 and a simple state. To say it another way, the state complexity

of |ψ〉 is the minimum number of gates required to convert it to an unentangled state.

The geometry of state complexity is similar to that of unitary operator complexity [18].

The most important difference with unitary operator complexity is that the space SU(2K)

is replaced by the projective space of normalized states CP (2K − 1).

In order to count states we have to regularize CP (2K − 1) by dividing it into cells of

linear size ε. The number of such cells in CP (2K − 1) is obtained by dividing the volume

of CP (2K−1) by the volume of a ball of radius ε. The answer is that the number of states

is given by

Nε = ε−2K = e| log ε|2K . (6.16)

This is often simplified to e2K . We will return to the ε dependence in a moment.

Now consider the number of states that have complexity C. Let us assume that it is

exponential

N(C) = eαC, (6.17)

where α is a constant to be determined. The maximum state complexity is ∼ 2K and

almost all states have that complexity. On the other hand the total number of epsilon-

balls in CP (2K − 1) is given by

Nε = e2K . (6.18)

Consistency of Eq. 6.17 and Eq. 6.18 requires α = 1. Thus the number of quantum states

with a given complexity grows as the exponential of the complexity. Taking the logarithm

implies that average complexity is auxiliary entropy.

Coming back to the ε dependence, the logarithmic divergence in the counting of states is

familiar in classical statistical mechanics. Strictly speaking the continuous nature of phase

space implies that entropy is infinite. The divergence may be regulated by discretizing

space and momentum space, and one finds the divergence being logarithmic as in the

exponent of Eq. 6.16.

On the complexity side we have been a bit sloppy in claiming that the maximum

complexity is 2K . Complexity, like entropy, also requires a cutoff, and a more correct

statement is that the maximum complexity is |log ε|2K . Thus the divergences in complexity
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and entropy match.

The two arguments we’ve given—the counting argument and the state-complexity

argument—are arguments for the plausibility of our conclusion, but are far from rigor-

ous, and it would be interesting to explore this question further.

7 The Second Law

In this section we come back to the original question that we asked in Sec. 1: is there a

Second Law of Complexity? Let us first discuss an obstruction to complete thermalization

of A.

7.1 Obstruction to Thermalization

The Maxwell-Boltzmann velocity distribution in Eq. 6.5 is an initial condition connected

with a choice of a gaussian distribution for the coupling constants J. It is not a consequence

of dynamical thermalization of the A system. In fact the large number of conservation laws

associated with right-multiplication invariance creates an obstruction to thermalization.

By contrast the tendency toward maximal positional entropy is not obstructed and takes

place for each value of the conserved quantities.

There are 4K conserved generators of right multiplication. They are given by Eq. 3.20.

Within each leaf of the foliation (by the values of the generators) the auxiliary system with

complexity metric is chaotic. This means that the positional entropy will grow with time

and eventually reach its maximum, but if the initial velocities are not Maxwell-Boltzmann

distributed, the system will never reach thermal equilibrium. This is roughly like a gas of

completely free particles on a very large negatively curved Riemann surface. The kinetic

energy of every particle is conserved, but the positions will spread out and eventually fill

the space.

Granting the correspondence between average complexity and auxiliary entropy, we can

give a rough analogy for the growth and evolution of computational complexity. Initially

a large number ∼ 2K of particles are located near the origin of a large box of volume

e2K . The velocities are Maxwell-Boltzmann distributed. The gas begins to expand and

the positional entropy grows. Eventually the gas fills the box and comes to equilibrium.

It stays in equilibrium for a very long time but on time scales e2K recurrences happen.

Figure 1 is the result of translating this picture into the computational complexity of the

system Q.
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7.2 Second Law of Complexity

The thermodynamic laws of complexity are just the usual laws of thermodynamics applied

to A. The second law, applied to positional entropy implies a second law of computational

complexity [4]:

If the computational complexity is less than maximum, then with overwhelming likeli-

hood it will increase, both into the future and into the past.

The classical system A tends to positional equilibrium after a time polynomial in

the number of classical degrees of freedom, and then remains in equilibrium for a classical

recurrence time. This implies that the quantum system Q comes to complexity equilibrium

after a time exponential in the number of qubits, and remains there for an even greater

quantum recurrence time, the quantum recurrence time being doubly exponential in K.

Thus we achieve our goal of understanding the growth of complexity for a K qubit Q
system (Fig. 1) in terms of the behavior of classical entropy for an A system of 2K degrees

of freedom.

In principle one can reverse the evolution of a large but finite system by intervening

with a process which changes the sign of its Hamiltonian. In classical physics this reverses

the trajectory in phase space and if it can be done with sufficient precision it will reverse

the increase of entropy, causing an apparent violation of the second law of thermodynamics.

The only problem is that decreasing entropy is unstable when the system is chaotic. The

effect of a tiny change in a single degree of freedom will exponentially grow, and quickly

reverse the decrease of entropy, turning it back to an increase.

We can apply this property of classical physics to the A-system and derive an important

property of quantum complexity. In principle quantum states of a many body system

can be prepared which will evolve toward decreasing complexity21. But the quantum-

classical duality between system Q and system A implies that the decrease is unstable.

The application of a small perturbation to a single degree of freedom will exponentially

spread through the system, and reverse the decrease of complexity. This phenomenon and

its relation to negative curvature was studied in the toy model [4]. It can also be explicitly

seen in black hole dynamics using the classical shock wave calculus of [28].

Finally, as pointed out in [4], the largest classical Lyapunov exponent of A is the

quantum Lyapunov exponent [11] of Q.

21In gravitational physics a white hole is an example of a state of decreasing complexity.
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8 Uncomplexity as a Resource

When a classical gas explodes from the corner of a room that does not contain a turbine,

the increase in entropy is wasted.

In a similar way, when a black hole evolves, it uselessly generates complexity. Black

holes are not only the fastest computers in nature, they are also the most useless. They

implement the highest number of gates per unit mass per unit time, but which gates they

implement are chosen by quantum gravity, not by the user. The result is computation that,

while extremely fast, is undirected—useful only for those whose purpose is to simulate black

holes.

But the second law of thermodynamics has another side to it beyond the inevitability

of the increase in entropy, the side that led to its creation by steam-engineers. An entropy

gap, namely the difference between the entropy of a system and the maximum entropy in

thermal equilibrium, is a resource [29]. This resource can be harnessed to perform directed

work.

In this paper we are interested in the question of whether complexity defines a resource

that can be harnessed in a useful, directed, manner, in analogy with thermodynamic work.

We expect that the analog of directed work is directed quantum computation—we will call

this ‘computational work’.

In exploring this conjecture, we will be guided by the analogy between the complex-

ity of the quantum system Q and the entropy of the classical system A. This is an

incompletely-defined idea, but nevertheless we will give some reasons to believe that a

resource interpretation of complexity exists.

Without giving a formal definition of thermodynamic ‘work’, for a process to do work

it must have the following features:

1. Doing work enacts a directed transition from one macroscopic state to another, with

a deliberate goal. (For example, raising a weight.)

2. Doing work expends a resource. Once the available resource is fully expended, no

further work is possible until the resource is replenished.

3. Doing work involves a procedure that depends only on the macrostate of the system

involved, and not on the specific microstate.

(This definition of work excludes the kind of work that involves Maxwell’s Demons.)
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By a quantum computation we will mean a quantum circuit that begins with a pure

input quantum state and ends with a pure output quantum state. The circuit may be

composed of gates or a possibly time-dependent Hamiltonian. In other words it is a

quantum-in—quantum-out process and its purpose is to reach a target state. The com-

putation can be thought of as a trajectory on the space of states or in the configuration

space of the auxiliary system A. No measurement is allowed during the course of the

computation, as measurements are not part of the Q-A correspondence. Of course to be

useful the computation must be followed by a measurement but only at the very end. The

computational work and the necessary resources refer to the quantum-in—quantum-out

computation and not to the measurement.

In thermodynamics, the free energy

F = E − TS,

is a resource that represents the amount of energy that can be directed toward useful

work. Applied to the auxiliary system the definition of free energy would be Ea − TaSa,
or equating auxiliary entropy with complexity,

Fa = Ea − TaC. (8.1)

For the auxiliary system, as formulated thus far, both the energy Ea and the temperature

Ta are fixed parameters that only depend on the number of qubits through Eqs. 5.29

& 6.8. The only variable in the free energy is the complexity. Therefore we propose that

the quantity −C be treated as a resource. More exactly we propose that the gap between

the complexity and the maximum possible complexity—the ‘uncomplexity’—is a resource

that can be utilized for directed computation,

Resource = ∆C = (Cmax − C). (8.2)

To understand why uncomplexity might be viewed as a resource, let’s consider how

useful a computer would be if the resource is all used up. Consider a tired old quantum

computer that has been allowed to run for such a long time that the state-complexity has

reached its maximum value, exponential in K, and therefore ∆C = 0.

For most purposes a state of maximal complexity is indistinguishable from a maximally

mixed density matrix. In both cases the expectation values of all but the most complex

operators are given by their Haar-random values. Suppose our computer is initialized in
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a mixed state with density matrix proportional to the unit operator,

ρ ∼ 1.

Consider any unitary operation G that we may apply. (We use the notation G to suggest

that the operation may be composed of gates.) The action of G on any density matrix

changes it to G ρ G†. This may or may not be useful in general, but when applied to the

maximally mixed density matrix it does nothing. Whatever operation is applied, the result

is the same: the maximally mixed state. Therefore unless the computer is re-initialized no

useful computation is possible.

The same is true for a maximally complex state as long as G is not so complex that it

can undo the exponential complexity of the initial state.

The state with the maximal resource has C = 0 which means a simple unentangled

product state. It seems reasonable that the most powerful initial state for general all-

purpose computing would be the simplest state.

In attempting to think of the uncomplexity ∆C as a resource we will use the correspon-

dence between the quantum complexity of Q and the classical entropy of A as a guide.

We will now give some examples based on thermodynamic analogies.

8.1 Combining Systems: A Paradox

Many thermodynamic questions concern what happens when two isolated systems, each

in equilibrium, are brought into contact. The first question is: What does it mean to

combine two auxiliary systems, and how is it related to combining the corresponding

quantum systems? Here we will consider a simple case: two thermodynamically identical

A subsystems at the same temperature Ta and entropy Sa are combined. This should give

rise to a single system in equilibrium at the same temperature, with an entropy 2Sa.

We would like to understand what it means to combine two classical auxiliary systems,

each in complexity equilibrium, into a composite auxiliary system. In other words given

an auxiliary system A, what is the meaning of A×A?

Here is the paradox: Naively we might think that combining two auxiliary systems

involves combining the two corresponding quantum systems in the form Q ⊗ Q, where

each factor contains K qubits, and is in complexity equilibrium. Let’s see what happens if

we do so. Each subsystem has complexity of order C = 2K . Immediately after combining

the systems the total entropy is 2 × 2K , and the maximum complexity of the combined
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system is

Cmax = 2(2K). (8.3)

This is the square of the individual complexities, not the sum. Therefore the resulting

systems, when combined, will be very far out of complexity equilibrium. That is not what

should happen if we combine two identical thermodynamic systems; the entropy should

be additive.

Evidently combining two quantum systems does not correspond to combining the aux-

iliary systems in an additive way. Instead it multiplies the number of degrees of freedom

of the auxiliary systems. This seems to be evidence that complexity does not behave like

entropy.

The resolution of this paradox is that the operation of combining auxiliary systems is

entirely different from combining the corresponding quantum systems. The right idea is

to take the system of K qubits and add just a single additional qubit. Adding one qubit

doubles the dimension of the Hilbert space, and therefore doubles the number of classical

degrees of freedom of the auxiliary system.

Let’s show this in equations. If |ψ0〉 and |ψ1〉 are both K qubits states with 〈ψ0|ψ1〉 = 0,

we combine these two systems by constructing the maximally-entangled K + 1 qubit state

|Ψ〉 =
|0〉|ψ0〉+ |1〉|ψ1〉√

2
. (8.4)

The new auxiliary system has twice as many degrees of freedom22 as the auxiliary system

for the original K qubit quantum system. This is because the wavefunction has twice

as many components. Thus we see that the addition of one qubit is the operation that

doubles the auxiliary system.

If the states |ψ0〉 and |ψ1〉 are independently picked at random their relative complexity

will almost always be maximal. In that case it can be shown that the complexity of |Ψ〉
will be twice the complexity of either |ψ0〉 or |ψ1〉.

Let’s suppose that the new qubit, which we’ll call τ , is uncoupled from the other qubits

and that |ψ0〉 and |ψ1〉 are separately maximally complex. Thus the overall auxiliary system

is two copies, each in complexity equilibrium.

22Technically it has more than twice, because a K qubit system has 2K+1 − 2 real degrees of freedom,
but this distinction is unimportant in the limit of large K.
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Next we turn on generic k-local interactions between τ and all the other qubits. The

overall system will come to complexity equilibrium with complexity

Cfinal = 2K+1 = 2K + 2K . (8.5)

In other words the final complexity will be the same as the sum of the complexities of

|ψ1〉 and |ψ0〉. This is exactly like mixing two uncorrelated gases of classically identical

particles, each initially in equilibrium at the same temperature. The final entropy is the

sum of the initial entropies and the process is reversible.

In the thermodynamic case it is obvious that no useful work can be extracted from

such a process. In the complexity case, at all stages of the process the system is in a

state of maximal complexity; thus according to our earlier discussion, no useful directed

computational work can be done.

Now let’s consider the case |ψ0〉 = |ψ1〉. In this case, the extra qubit is not entangled

with the rest of the system, which we continue to assume is in complexity equilibrium,

|Ψ〉 =
|0〉+ |1〉√

2
⊗ |ψ0〉. (8.6)

This time the two auxiliary systems are in exactly the same state.

The initial complexity is 2K , but after turning on an interaction that depends on the

extra qubit and waiting for a long time, the final complexity is 2 × 2K , i.e. double the

initial complexity23. Is there a thermodynamic analog to this situation? Indeed there is.

Imagine creating the two gases in exactly the same micro-state. Such a distribution is

far from equilibrium: every particle of one gas is constrained to have exactly the same

position and momentum as the corresponding particle of the other gas. The total initial

entropy is the same as the entropy of one copy. However, perturbing one of the copies of

the system, and then letting the whole system interact and come to equilibrium will result

in a final entropy that is twice the initial. This is schematically illustrated in Fig. 4.

23This effect was the basis for the claim in [5] that dropping an additional thermal photon into a black
hole doubles the time that the horizon will be transparent (firewall-free).
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Figure 4: The left panel shows a gas of 2N classical particles created with the particles
paired. The entropy is the same as a gas of N particles. In the right panel the gas has
come to equilibrium and the particles become randomly distributed. The entropy in the
right panel is twice the entropy in the left panel. No work can be extracted from a gas in
equilibrium, but the gas of paired particles is far from equilibrium and so can be used to
do work.

For a genuine classical system it follows from the laws of thermodynamics that work

can be extracted from the initial out-of-equilibrium state. In the quantum-complexity case

this would correspond to a resource being available in a state of sub-maximal complexity.

This resource—uncomplexity—can be used to do computational work.

8.2 One Clean Qubit

In this subsection, we will give an example of how uncomplexity can be used to do ‘com-

putational work’. We will see that in the process, the uncomplexity is expended.

First consider a system that has no uncomplexity—a state of maximal complexity. A

maximally complex state is very much like a maximally mixed density matrix as long as

we restrict ourselves to reasonably simple experiments. If we act on such a state with a

polynomial size circuit the complexity can only be reduced by a negligible fraction. For any

measurement of a non-exponentially complex observable, the result will be Haar random,

so again no useful computation can result from an initial maximally complex state. A

quantum computer that runs for an exponential time and reaches maximal complexity

becomes useless for computation.

Now consider adding to this maximally complex state a single additional qubit in a

pure state. This doesn’t change the complexity, but the maximal complexity doubles,

so the complexity is now only half the maximal value. From the analogy with the two

component out-of-equilibrium gas in Fig. 4, we should expect that the additional qubit,
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which has replenished24 the uncomplexity resource, will allow us to once again perform

useful computational work.

Computation that makes use of either a maximally mixed state (or a maximally com-

plex state) plus just one additional unentangled qubit is called “One Clean Qubit” compu-

tation. Just how much power one clean qubit computation provides and how to quantify

it is not certain but it is known to be able to efficiently solve problems including some

classically hard problems [30]. Known examples include calculating the trace of a unitary

operator and estimating certain properties of Jones polynomials. We’ll review the illumi-

nating example of calculating the trace of a unitary operator, which was first worked out

in [30].

We suppose we have a unitary operator G in the space SU(2K). The operator G is

constructed as a known product of a polynomial number of gates G = gNgN−1....g1. The

goal is to approximate its trace. For simplicity let’s only worry about the real part of the

trace.

Begin with the space of states CP (2K − 1). We will try to construct a K qubit circuit

such that a measurement of σz1 will give some non-trivial information about the value of

TrG† + TrG. Assume the circuit is initialized to the simple state |00000...0〉.
Consider the neighborhood of all the states |ψ〉 for which

〈ψ|σz1|ψ〉 = TrG . (8.7)

Call that the target set. If by running the circuit we can navigate to one of these points,

then by a subsequent measurement of σz1 we learn something about TrG† + TrG. By

repeating the experiment we can improve our knowledge. Thus the goal of directed com-

putation is to decrease the relative complexity to zero between the initial state and some

state that’s in the target set. Figure 5 schematically illustrates the idea. The circles repre-

sent CP (2K − 1) in a way such that distance from the center represents state complexity.

In order to have a high probability of success it is important that each step increases the

complexity.

24This exponential rejuvenation may have a remarkable consequence for black holes. In [5] it is argued
that black hole event horizons are only transparent if complexity is increasing, and so a black hole in
complexity equilibrium would not have a transparent horizon. But as pointed out in that paper, throwing
a single qubit in a pure state into an old maximally complex black hole rejuvenates the horizon for an
additional exponential time.
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Figure 5: The interior of the circles represent the space CP (2K − 1) with the center point
being the state |0000〉. The blue regions are the target set. The left panel shows the
evolution of a circuit programmed to get to a point on the target set. The trajectory is
built from gates and each step increases the complexity.

Now let’s suppose that instead of starting with the minimally complex state |000..00〉
we start with a state in the darker pink outer region where the complexity is maximal

∼ 2K . There are no blue points in this region since the expectation value of any observable

is Haar random. With overwhelming probability any gate that acts on a state in the dark

pink region will leave the point in that region. This shows that directed computation is

not possible starting with a state of maximal complexity, i.e., ∆C = 0.

But now let us add one clean qubit τ , thereby doubling the maximal complexity. The

larger circles in Fig. 6 represent CP (2K+1−1), the space of K+1 qubit states. The darker

pink still shows states of complexity 2K , but the region beyond it goes out to twice that

complexity.
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Figure 6: Left: adding an extra qubit doubles the maximum complexity (adding an annulus
to the space of possible states) and replenishes the uncomplexity resource. Right: given
the additional resource, what was previously a state of maximal complexity now has some
uncomplexity and can be used to further computation; this is illustrated by showing how
a target state can be reached from the original maximally complex configuration.

Note that the initial state for the one-clean-qubit calculation is in the dark pink region,

but now we can reach blue dots by moving outward towards increased complexity; we don’t

have to fight against the second law.

The actual algorithm is simple [30] and we will describe it now.

|maxi

|0i

G

H H

{K qubits

one clean

qubit {

Figure 7: Circuit for using a clean qubit to compute Tr[G]. The input state has a total of
K + 1 qubits—the one clean qubit (top) and the K maximally complex qubits (bottom).
The symbol H represents a Hadamard gate acting on the clean qubit. The clean qubit
acts as a control for the circuit G: the circuit applies G to the other K qubits if the clean
qubit is |1〉, and does nothing if the clean qubit is |0〉.

Consider the quantum circuit shown in Fig. 7. The initial state is

|0〉 ⊗ |max〉, (8.8)

where |max〉 is any state of the K qubit system with maximal complexity. We act with
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the first Hadamard gate25 to give

|0〉+ |1〉√
2
⊗ |max〉. (8.9)

Next apply the controlled G operation Gc = |1〉〈1|G + |0〉〈0|1, where G = gNgN−1....g1;

this circuit applies G to |max〉 if the control qubit is |1〉, and otherwise leaves it unchanged.

This gives

|1〉 ⊗G|max〉+ |0〉 ⊗ |max〉√
2

. (8.10)

Now acting with the second Hadamard yields

|0〉 ⊗ 1 +G√
2
|max〉+ |1〉 ⊗ 1−G√

2
|max〉. (8.11)

This completes the computation. To make use of it we note that the expectation value of

τ z is given by

〈τ z〉 = 〈max|G† +G|max〉. (8.12)

This in itself is not useful for our purpose—determining TrG—but because |max〉 is a

maximally complex K qubit state, with overwhelming likelihood

〈max|G|max〉 = TrG. (8.13)

Thus by applying the circuit HGcH we have set up a state in which we can learn something

about TrG by making a measurement of τ z.

The measurement itself cannot be represented as an operation in the classical auxiliary

system. As we said earlier it should not be considered as part of the computational work.

The computational work is associated with the process that went into setting up the

state, i.e., acting with the circuit HGcH, and only then at the very end do we allow a

measurement. By repeating this experiment, including the measurement, over again with

fresh clean qubits we can get an arbitrarily accurate estimate for TrG.

In classical thermodynamics we can repeat an operation designed to raise a weight one

25The Hadamard gate is defined by the matrix (τ z + τx)/
√

2.
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meter and thereby raise it two meters, three meters, four meters, and so on until we run

out of resource. The same is true of computational work. For example by repeating the

circuit of Eq. 8.14 in the form (
HGcH

)n
|0〉 ⊗ |max〉 (8.14)

one can determine information about the trace of Gn. (As before we only make a measure-

ment at the end.) For obvious reasons the problem of determining the trace of a higher

power of G becomes more difficult as the power increases. It is also clear that the repeated

action of the circuit depletes the resource, roughly by the complexity of G each time it is

repeated.

‘One clean qubit’ computation is an example of using uncomplexity to do computational

work. It exhibits all three of the criteria that we listed at the start of Sec. 8.

1. First, it implements a transition that is directed towards a goal—the goal of calcu-

lating the trace of G.

2. Second, it uses up a resource—at the end of the computation, the additional qubit

is no longer clean, and the complexity of the K + 1 qubit state has increased by

approximately the complexity of G. Or to put it another way the uncomplexity

resource has diminished by that amount.

3. Third, the process involves a transition from one macroscopic state to another by a

procedure that does not depend on the microscopic state—we extracted information

about TrG without knowing precisely which state we started or ended in. (Thus no

Maxwell’s Demons were involved. Instead we did something analogous to doing work

by expanding the volume of a gas using a procedure that does not require knowledge

of the starting microstate.)

It would be very interesting to know how the power of one clean qubit is connected to

the doubling of the maximum complexity, and whether it is similar to the ability to do

work with a system of identical gases in which the molecules are paired in a non-thermal

distribution.

8.3 Kolmogorov Uncomplexity as a Resource

We have argued that computational ‘uncomplexity’ is a resource that can be used to do

directed quantum computation. But computational complexity is not the only kind of
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complexity that has arisen in this paper. In Sec. 6.4 we argued that while the positional

entropy of A corresponds to the computational complexity of Q, the kinetic entropy of A
corresponds to the Kolmogorov complexity. This therefore raises the question of whether

Kolmogorov uncomplexity is also a resource.

The answer is yes, but we will see that the resource is useful for a rather different

purpose than computational uncomplexity. This means that from the point of view of

the Q-A correspondence this subsection is something of an aside, but it is well worth

explaining. In this subsection we will explain that Kolmogorov uncomplexity is a resource

that is useful for doing erasure.

This is beautifully illustrated by an example in an old paper of Bennett, Gacs, Li,

Vitanyi, and Zurek [31], which examines apparent violations of Landauer’s Principle [32].

Landauer’s Principle says that, while reversible transformations can be performed without

free-energy cost, to erase a bit (to reset it to zero no matter whether it starts at one or

at zero) requires a free energy of kBT log 2. However, there are some examples where bits

can seemingly be reset much more cheaply than this.

What Bennett et al. show is that these apparent violations occur precisely in cases that

have Kolmogorov uncomplexity, since in those cases the states can be compressed before

being erased. (For example, it requires less free energy to erase the first million digits

of π than to erase a million random digits. This is because it is possible to reversibly

transform the first million digits of π to the much shorter computer program that outputs

them. Since this compressed description has much less Kolmogorov uncomplexity than

the original description, performing the compression expends uncomplexity.) Specifically,

they show that the free energy cost of deleting a bit string is not given by the total number

of bits, but by the Kolmogorov complexity of the bit string. For generic bit strings these

two coincide, but for special low complexity strings the Kolmogorov complexity is less.

The total saving compared to a naive application of Landauer’s principle is given exactly

by the uncomplexity,

∆F
∣∣∣
saved

= kBT log 2 ∆Cκ. (8.15)

The Kolmogorov uncomplexity of one bit string can be used to erase another bit string;

in the process, the resource is expended.

We thus see that both computational uncomplexity and Kolmogorov uncomplexity can be

used to carry out information theoretic tasks.
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9 Uncomplexity as Spacetime

Our original interest in complexity theory began with the question: How does one describe

the interior of a black hole in holographic terms? In this section we would like to come back

to that question in light of the conjecture that uncomplexity is a resource. We will see that

the black-hole/complexity-connection provides a new way to think about uncomplexity as

a spacetime resource26 based on classical general relativity (GR). In particular classical

GR provides another way to think about the rejuvenating power of one clean qubit.

To understand the uncomplexity resource in GR terms let’s suppose Alice is a black

hole explorer stationed just outside a one-sided AdS black hole at boundary time t. She

intends to jump from the AdS boundary into the black hole. The resource that she cares

about is spacetime volume—without which she will perish at the horizon.

Recall that the quantum state of the black hole interior has a growing complexity (for

t > 0) that is dual to the growing spacetime volume behind the horizon. At any instant the

complexity is given by the Einstein-Hilbert action of the Wheeler-DeWitt (WDW) patch

anchored at time t on the boundary [19][20]. The part of the WDW patch outside the

horizon has a time-independent divergence, which after initial transients can be regulated

by considering only the portion of the space behind the horizon, as shown in Fig. 8. The

action of the dark yellow region behind the horizon is of order its spacetime volume.

26We would like to thank Douglas Stanford for a critical remark that led to this section.
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Figure 8: The Penrose diagram for a one-sided black hole in AdS. The WDW patch
anchored at a boundary time t is shaded yellow; the part of it behind the event horizon is
dark yellow. The blue line in the top right is a null geodesic emanating from the point at
which the boundary state complexity becomes maximal.

Slightly simplifying the discussion, we can say that the complexity is given by the

spacetime volume V4 of the dark yellow region, multiplied by some numerical factors that

depend on the gravitational constant G and the AdS radius of curvature `AdS,

C(t) ∼ V4

G`2
AdS

. (9.16)

A straightforward GR calculation shows that the action increases linearly with time,

with a coefficient equal to the mass of the black hole. This is consistent with the early

growth of complexity in Fig. 1. It is believed that the classical description of the black

hole breaks down when the complexity stops increasing, once C = Cmax. This occurs at

tmax = eS at which time the horizon becomes opaque by developing a firewall [5, 6]. In

Fig. 8 the cutoff at tmax is shown as a blue diagonal slash in the upper right corner of the

diagram. Time does not literally run out at the cutoff, but because complexity is bounded

by Cmax the classical growth of the black hole interior must break down.

Let us consider in more detail the maximum complexity. Figure 9 shows the WDW

patch pushed up to the cutoff time. The maximum complexity Cmax is the action of this
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new WDW patch. Classically the action (4-volume) in the upper corners would grow

indefinitely, but the cutoff at tmax ∼ eS keeps it finite.

Figure 9: The WDW patch for maximum complexity.

The uncomplexity ∆C(t) ≡ Cmax−C(t) is given by the action of the dark yellow region

of Fig. 9 minus the action of the dark yellow region of Fig. 8. This difference is shown in

blue in Fig. 10.
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Figure 10: The uncomplexity is proportional to the spacetime volume of the blue region.

The uncomplexity is proportional to the 4-volume of the blue triangular region, which is

cutoff at tmax ∼ eS. This 4-volume is finite, and goes to zero as t→ eS.

We see something interesting from the figure. The blue region may be identified with

the union of all interior locations behind the horizon that Alice can visit if she enters

the black hole at any time after t. The uncomplexity therefore represents the spacetime

resource available to an observer who intends to enter the horizon.

Suppose Alice wishes to jump in after the black hole has become maximally complex.

According to [5] she will run into an obstruction at the horizon. The situation is analogous

to attempting to compute with a computer that has reached maximal complexity; the

resource will have been exhausted. Can Alice do anything to renew the resource?

As explained in [5], all Alice has to do is to throw in one thermal photon and wait

a scrambling time. This will restore the transparency of the horizon for an additional

exponential time, in the same way that the computing power of a maximally complex

computer can be restored by adding a single clean qubit. This phenomenon is essentially

a classical GR effect, which we illustrate in Figure 11.

56



Figure 11: The first panel shows the upper-right corner of the black hole Penrose diagram
with the red line representing an opaque horizon that would be expected for a black hole
of maximal complexity. The opaque horizon can be modeled by an infinitely thin Shenker-
Stanford gravitational shockwave. The blue line in the second panel is a thermal quantum
injected from the boundary. Such a quantum increases the entropy of the black hole by one
bit. The effect of the low energy quantum is to shift the shockwave up and to the left thus
separating it from the horizon. In a scrambling time it will be lost into the singularity. The
right panel which was taken from [5] shows the process in more detail. The upshot is that
within a scrambling time the horizon has become transparent; this newfound transparency
lasts for an exponential time.

The conclusion drawn in [5] is that the obstruction at the horizon due to maximal

complexity will be removed by adding to the black hole one clean qubit in the form of

a thermal quantum. The rejuvenating effect of the added qubit parallels the effect in a

quantum computer that has reached maximal complexity.

10 Summary

Let us summarize the material in this paper:

• Section 2 introduced the class of quantum systems Q that we study, namely k-local

systems composed of K qubits interacting through a Hamiltonian which is a sum of

terms, each containing no more than k qubits. Alternatively the qubits may interact

in a k-local quantum circuit built of gates with no more than k qubits. Such systems

are typically fast scramblers.
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We explained that the evolution of complexity for a k-local system of K qubits closely

resembles the classical evolution of entropy for a system of exp[K ] classical degrees

of freedom and raised the question of the source of this similarity.

We also explained the SYK strategy of averaging over randomly chosen time-independent

Hamiltonians. This sometimes allows us to determine the average behaviors for prob-

lems which are too difficult to solve in individual instances.

• In Sec. 3 we formulated the evolution of the time-development operator e−iHt as a

classical mechanics problem of an “auxiliary” system A. The system A consists of

a non-relativistic particle moving on the space SU(2K). The auxiliary system for a

system of K qubits has a number of classical degrees of freedom exponential in K.

The first-order Schrodinger equation of Q is replaced by a second-order equation of

motion for A, in which the Hamiltonian is eliminated altogether, in favor of initial

conditions on the velocity of the particle. Averaging over a Maxwell-Boltzmann

ensemble of initial velocities is equivalent to averaging over quantum Hamiltonians

as in SYK.

• The usual inner-product metric on either the space of states or the space of unitary

operators is poorly suited to studies of quantum chaos. Section 4 is devoted to the

concept of relative complexity: a metric which represents the degree of difficulty in

making a transition between two states, and also of doing an interference experiment

that measures the relative phase between states. Relative complexity can also be

defined for unitary operators and has a similar meaning.

The “complexity metric” defined by relative complexity is much better suited to

measuring the difference between states of a chaotic system than the standard inner

product metric. Inspired by the work of Nielsen and collaborators [8, 9], Sec. 4 works

out the basic mathematical properties of complexity metrics and shows that they are

closely related to the negatively curved geometry of the toy model. In particular we

calculated sectional curvatures and showed behavior consistent with the toy model.

• Section 5 introduces the A system as a classical nonrelativistic particle moving on

this complexity geometry. The relative complexity of two unitary operators is the

minimal action required to go from one to the other subject to a constraint on the

auxiliary energy of the particle.
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• Section 6 introduces our basic conjecture relating classical entropy to quantum com-

plexity. We argued that after averaging over Hamiltonians (as in SYK) the ensemble-

average of quantum complexity is equal to the classical entropy of the auxiliary

system A. In order to make this identification complete we must include not just

the circuit complexity—the number of gates in the circuit—but also the Kolmogorov

complexity of the algorithm that the circuit implements. In the case of a Hamiltonian

quantum system the Kolmogorov complexity is the length of the shortest program

needed to specify the Hamiltonian. Unlike the gate complexity, it does not grow

linearly with time and so soon becomes negligible compared to the gate complexity.

The connection between quantum complexity and classical entropy is the link that

suggests a thermodynamic description of complexity. In Sec. 7 we used this connec-

tion in order to formulate a Second Law of Complexity which is really just the second

law of thermodynamics for the auxiliary classical system A. This line of reasoning

explains the observation in Sec. 1 that the evolution of complexity for a K qubit

system behaves like the evolution of entropy for a system with a number of classical

degrees of freedom exponential in K.

• In Sec. 8 we discuss the concept of uncomplexity—the gap between the complexity

of a state and the maximum possible complexity—and give evidence that it is a

resource useful for doing computational work. An important component of resource

theory [29] is combining systems into bigger systems. In the present framework this

means combining auxiliary systems. Surprisingly, combining two auxiliary systems

has nothing to do with combining the corresponding quantum systems. To double

the size of an auxiliary system one only needs to add a single qubit to the quantum

system. We illustrate the idea of uncomplexity as a resource with the example of

“one clean qubit” computation.

• Finally, in Sec. 9, we look at the holographic dual to the uncomplexity of a boundary

state. We show that when a black hole is present the resource—uncomplexity—is

the total spacetime volume accessible to an observer who plans to cross the horizon.

11 Questions

The strategy of averaging over an ensemble of Hamiltonians (in computer science this

would amount to averaging over algorithms) may allow one to solve problems about aver-

age behaviors that would be much too hard for individual instances. We are raising the
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possibility that very difficult problems of complexity theory may be solved on average by

classical statistical mechanics and thermodynamics. As an example we point to the corre-

spondence between the evolution of quantum complexity—an extremely difficult problem

for specific Hamiltonians—and the classical evolution of entropy—a merely hard problem.

This paper raises many questions, a few of which we will mention here.

• Definition of Complexity

We have assumed that there is a robust concept of complexity, but in fact there

is a large family of complexity measures. It is important to understand how they

are related and whether a preferred measure of complexity can be identified. In

the context of the complexity geometry the different measures are encoded in the

moment of inertia tensor IIJ .We showed that the sectional curvatures will generically

be negative and order 1/K (in agreement with the toy model) as long as the penalty

factors are not too small. What are the rules governing the choice of I, how should its

elements grow with increasing weight, and is the curvature approximately constant

as predicted by the toy model of [4]?

• Counting

The conjecture that average complexity and classical entropy are the same rests on

the assumption that the number of unitary operators with complexity less than or

equal to C grows like eC for sub-maximal C. We were able to give arguments in

the stochastic context and for state-complexity, but the arguments are far from a

proof. Proving the conjecture requires counting the unitaries on 2K-dimensional tori

in SU(2K).

• Local vs Global Chaos

The motion of the A-system with a time-independent Hamiltonian is generically

ergodic. Whether or not it is chaotic seems to depend on what metric we attach to

SU(2K). According to the bi-invariant metric all sectional curvatures are positive

which implies that geodesics converge.

On the other hand, as we emphasized in Sec. 4.1, conventional inner-product metrics

do not capture an important concept of distance between states, or for that matter,

between unitary operators. Distances in the bi-invariant metric are bounded by π/2

but complexity distances can grow to enormously large values. Evidently complexity
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distances between neighboring trajectories can grow exponentially with time whereas

the inner product distances do not, although in both metrics the system is ergodic.

The question is whether the motion in complexity geometry is genuinely chaotic, and

does it matter? True classical chaos is often diagnosed by the spectrum of Lyapunov

exponents, with a single positive Lyapunov exponent indicating chaos. The concept

of a Lyapunov exponent is a global one, defined by the infinite time average of tra-

jectory deviation. By contrast there is also a concept of local Lyapunov exponents,

which diagnoses local deviation, and local unpredictability. Local Lyapunov expo-

nents are positive in regions of negative curvature. When local Lyapunov exponents

are positive the system will behave chaotically for a length of time, but over suffi-

ciently long times it may only be ergodic. Of course if this time is long enough—say

for example exponential in K, the distinction between global and local chaos may

be unimportant.

Our guess is that the A-system (with the complexity metric) is locally chaotic over

an exponentially long time, but that it is not truly chaotic. But by then it hardly

matters.

• Classical Complexity

In this paper we have been concerned with the thermodynamics of quantum com-

putational complexity. However, many of the arguments would apply to classical

computational complexity. Can we also define a thermodynamics of classical com-

putational complexity?

• Least Action and Least Computation

We can ask about the action-complexity connection. By now we have several ver-

sions of Action Equals Complexity. In [20] it was conjectured that the principle of

least action for a gravitational system might ultimately become a principle of least

computation. In this paper we have proposed another least action principle for the

auxiliary system A, which would also describe the evolution of the state of a black

hole. The question is: what is the relation between these apparently different but

similar principles of least action/computation? More specifically, are they somehow

the same? A similar suggestion in a slightly different context was recently proposed

in [33].

• Uncomplexity as a Resource
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One of the most interesting questions raised by this paper is whether there is a sense

in which the gap between quantum complexity and maximal quantum complexity—

the uncomplexity—is a quantitive measure of a resource useful for quantum com-

putation. Can we precisely characterize the resource and does it fit into standard

resource theory [29]?

Can we understand the interplay between computational uncomplexity and Kol-

mogorov uncomplexity?

• First Law of Complexity

In this paper we have argued for the existence of a second law of complexity. Iden-

tifying a first law of complexity is left for future investigation.

The conventional theory of thermodynamics was developed through a sequence of

thought experiments involving adiabatic compression, heat engines, refrigerators,

and the vanquishing of Maxwell’s demon. Can we come up with a set of parallel

thought experiments involving quantum complexity? What will be the steam engine

of quantum computation?
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A Some Terminology

For easy referencing, we list here some terminology and notations.

1) The two-dimensional model of [4] will be referred to as the toy model. The toy model rep-

resents quantum evolution as the motion of a non-relativistic particle on a two-dimensional

hyperbolic space with a curvature of order 1/K.

2) The space of special unitary operators acting on K qubits (or 2K real fermion operators)

is SU(2K). Elements of SU(2K) are denoted U, V, W, .... The Pauli basis for the generators
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of SU(2K) consist of: the Pauli operators σai , where a labels the three axes x, y, z and i

labels the K qubits; and all products of Pauli operators for multiple qubits. In all there

are (4K − 1) such generators. They will be labeled σI where I runs over (4K − 1) values.

The weight of a σI is the number of single qubit Pauli operators that it contains. Thus

for example the weight of σx1 is 1, and the weight of σx1σ
y
3σ

y
4 is 3.

3) JI is a coefficient or coupling constant in the quantum Hamiltonian of the Q-system.

4) The conventional bi-invariant metric on SU(2K) is called the standard metric. (This is

different than Nielsen’s usage.) Bi-invariant means that the metric is invariant under left

and right-multiplication by unitary operators. The standard metric can be written,

dl2 = Tr[dU † dU ]. (A.1)

(The Tr notation denotes normalized trace, i.e., Tr1 = 1.)

5) The complexity metric [8][9] is right-invariant but not left-invariant. The precise form

of the metric is given in Eqs. 4.8 & 4.9.

6) The complexity metric is written

dl2 = GMNdX
MdXN , (A.2)

where the X ′s are coordinates on SU(2K).

7) The classical auxiliary system defined in Sec. 3 is denoted A. The original quantum

system of K qubits with Hamiltonian given by Eq. 2.1 is denoted Q.

8) A subscript a indicates that a quantity refers to the auxiliary system, not the quantum

system. Thus Va represents the magnitude of the velocity of the particle in the auxiliary

system. Ea indicates the energy of the A system, etc.

9) The time t is measured in dimensionless units. For an uncharged neutral black hole the

time t differs from the asymptotic Schwarzschild time tschw by a factor β/2π,

t =
2π

β
tschw, (A.3)
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where β is the inverse temperature of the black hole. The time t is the Rindler boost-angle

time. The corresponding energy is also dimensionless and is equal to the entropy, which

in the qubit model is equal to the number of qubits K.

For quantum circuits with parallel Hayden-Preskill architecture, t also has special sig-

nificance. In that case t has the significance of the clock time which ticks off one unit

for every step in which there are of order K gates. For sub-exponential times the rate of

complexity growth in these units is ∼ K.

10) The circuit complexity is denoted by C. The Kolmogorov complexity of a string s is

denoted Cκ(s).

11) Ba is the coefficient in the gaussian probability distribution of the coupling constants

J . It is also the inverse temperature of the A-model. Ta = 1/Ba is the temperature of the

A-model.

12) IIJ is a symmetric matrix in the adjoint representation of SU(2K). It is called the

moment of inertia tensor.

13) Gates are denoted g. A sequence of n gates forming a circuit is denoted gngn−1....g1.

14) eΛ denotes a Loschmidt-echo operator defined by eΛ = e−iHtei(H+∆)t.

15) By a Hayden-Preskill circuit we mean a circuit of K qubits such that in each time-step

the qubits are paired and interact through K/2 gates [16]. (This is the version with 2-local

gates; it can be generalized to a version with k-local gates in which at each time-step the

qubits are sorted into groups of k and interact through K/k gates.)

16) The ‘uncomplexity’ is the amount ∆C by which the computational complexity C of a

state is less than the maximum possible complexity for that state, as in Eq. 8.2

∆C = Cmax − C. (A.4)

B Some Clarifications

After we initially circulated this paper some questions came up from colleagues that we

find worth discussing.
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1. The first concerns Eq. 2.1 and the definition of k-local. The expression in Eq. 2.1

contains only terms of weight k whereas the standard definition of k-local allows all

terms of weight up to and including k. In several places throughout the paper the

equations refer to the more restricted version of ‘exact’ k locality—only operators of

weight k in the Hamiltonian—but they can be easily generalized to accommodate

the more general case.

2. The choice of time units that we use throughout is motivated by black hole physics,

where the dimensionless Rindler time t is defined in terms of the Schwarzschild time

tschw by

t =
tschw
2πβ

, (B.5)

as in Eq. A.3; here β is the inverse Hawking temperature of the black hole. We

may also think of t as measuring the number of time steps in a Hayden-Preskill

circuit. With such a choice of units the Hamiltonian and the J coefficients are also

dimensionless.

3. We have been asked why the draconian choice of penalty factors in [9] is inconsistent

with the switchback effect. To understand this we remind the reader how the circuit

complexity of precursors evolves for times earlier than the scrambling time (for a

review see [4]). The complexity of precursors grows very slowly until the scrambling

time, and then suddenly begins to increase linearly. (The same is true for Loschmidt

echo operators.) Before the scrambling time the growth rate is not zero but is

negligible. However, draconian penalty factors of order 4K would punish shortcuts

exponentially harshly. With shortcuts effectively forbidden, the complexity would

grow linearly almost immediately. In order to agree with the complexity growth for

discrete quantum circuits we need the penalty factors in the continuous Hamiltonian

theory to turn on much more smoothly. We will come back to this point in [18].

4. Another question that came up is why, in Sec. 8.2, we do not consider the mea-

surement at the end of a computation as part of computational work. For example

why do we not allow a complete measurement that re-initializes the computer to

a random simple state? The answer is that measurement is not something that is

part of the auxiliary description of the quantum evolution. But more important,

from the global point of view the measurement is equivalent to the development of
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entanglement of Q with the rest of the world. To follow the resource we would have

to consider the changes in the complexity of everything, including the observer. We

believe that if we did so the overall complexity would increase when a measurement

is done, and that would cause a decrease in the global version of the resource.

5. The circuit depicted in Fig. 7 does not obviously look like a k-local circuit. However

let us define the (k + 1)-local gate

g̃n = HgncH, (B.6)

where H is the Hadamard gate and gnc is the k-local gate gn controlled by τ. Then

if the operator G is a product of k-local gates

G = ...g5g4g3g2g1,

the circuit in Fig. 7 is equivalent to the (k + 1)-local circuit

...g̃5g̃4g̃3g̃2g̃1. (B.7)

We may therefore think of the computational work as being done in small (k+1)-local

steps, each using a small amount of the resource.

It is interesting to view the computation from the point of view of the 2-gas model

in Fig. 4. The effect of the operations in Eq. B.7 is to evolve one of the component

gases according to the circuit ...g5g4g3g2g1 while leaving the other component fixed.

Since the initial state |max〉 is maximally complex the fixed gas is already in equi-

librium. The effect of the circuit Eq. B.7 is to break the correlation between the two

components, and if it goes on long enough, to bring the whole system to equilibrium.

C Action vs. Distance in the Toy Model

(Note about conventions: In [4] the time variable was called τ while in this paper the same

variable is called t.)

In the original version of complexity geometry, complexity was identified with geodesic

distance from the identity. In [4] we remarked that there is an alternative formulation

in which complexity is identified with the action along a geodesic. However the analysis

was carried out with the earlier formulation. Since this paper uses the action formulation,
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there is a minor difference of conventions between [4] and the present paper. The difference

between the two formulations can be absorbed into a re-definition of the scale of the metric.

In the toy model the complexity geometry is simplified to a two-dimensional geometry

with uniform negative curvature. The metric has the form

dl2 = F 2(dr2 + sinh2 r dθ2). (C.8)

Consider two neighboring geodesics passing through r = 0. The distance between them

grows like er which can be written as

d(t) = eṙt. (C.9)

This identifies ṙ as the Lyapunov exponent controlling scrambling. With our choice of

dimensionless time (Rindler time ) the Lyapunov exponent is 1 which constrains the motion

to satisfy

ṙ = 1. (C.10)

The two formulations can be expressed as follows:

Distance formulation:

C = F

∫ √
(ṙ2 + θ̇2 sinh2 r) dt. (C.11)

Action formulation:

C =
1

2
F 2

∫
(ṙ2 + θ̇2 sinh2 r) dt. (C.12)

In both cases the complexity should grow like Kt. In the distance formulation this

requires F = K. This is equivalent to the curvature being ∼ −1/K2.

In the action formulation the growth of complexity requires

F 2

2
= K (C.13)

and the curvature is ∼ −1/K in agreement with the calculation in Sec. 4.4.

There is no inconsistency between the two formulations. The difference can be absorbed

67



into the normalization of the metric Eq. 3.12. If we wish to use distance rather than action

we would need to modify Eq. 3.12 to

dl2 = K Tr[dU †dU ].

Such a change would have no effect on the agreement between the curvature and the

calculation in Sec. 4.4.
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