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Abstract

We study the pattern of oscillations in the primordial power spectrum in axion monodromy
inflation, accounting for drifts in the oscillation period that can be important for comparing
to cosmological data. In these models the potential energy has a monomial form over a
super-Planckian field range, with superimposed modulations whose size is model-dependent.
The amplitude and frequency of the modulations are set by the expectation values of moduli
fields. We show that during the course of inflation, the diminishing energy density can induce
slow adjustments of the moduli, changing the modulations. We provide templates capturing
the effects of drifting moduli, as well as drifts arising in effective field theory models based
on softly broken discrete shift symmetries, and we estimate the precision required to detect
a drifting period. A non-drifting template suffices over a wide range of parameters, but for
the highest frequencies of interest, or for sufficiently strong drift, it is necessary to include
parameters characterizing the change in frequency over the e-folds visible in the CMB. We
use these templates to perform a preliminary search for drifting oscillations in a part of the
parameter space in the Planck nominal mission data.
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1 Introduction: Phenomenology of Axion Monodromy

Cosmic microwave background (CMB) and large-scale structure (LSS) observations are be-
coming sensitive enough to constrain broad classes of inflationary models. Two important
signatures for this purpose are primordial gravitational waves, imprinted in B-mode polar-
ization, and the shapes of the power spectrum and non-Gaussian correlators. In this paper,
we will be concerned with the search for oscillatory features in the scalar power spectrum.

In axion monodromy scenarios [1, 2, 3, 4], a super-Planckian inflaton displacement results
from repeated circuits of a sub-Planckian fundamental period.! Gravitational waves are then
detectably large, while the tilt ng can take a range of values determined by the number of
fields [8] and the reheating scenario. Oscillatory contributions to the scalar power spectrum
arise as a direct consequence of the underlying periodicity. However, the oscillatory features
have a model-dependent amplitude, and may be undetectably small: in particular, the ampli-
tude is exponentially suppressed in regimes where the oscillations are generated by instanton
effects. Nonetheless, searching for oscillations is well-motivated, because a discovery would
imply a very interesting additional structure in the primordial perturbations, and conversely
a null result can constrain the parameter space in a useful way.

A featureless, nearly scale-invariant ACDM power spectrum provides a very good fit to
the data, with values of x?/d.o.f typically just a few percent above unity. However, given
the large number of degrees of freedom in datasets such as Planck, the total excess x? is
large enough that new physics in various forms could be hiding in the data, waiting to be
discovered. Oscillatory features in the power spectrum provide one example, and there may
also be more general theoretical sources of excess variance, as in the scenarios of [9].

Many searches for oscillations that are periodic in the canonical inflaton field have been
performed [10], with no unambiguous detection. The goal of this paper is to point out
that the symmetry structure and dynamics of axion monodromy allow for — and often
require — slow secular drift of the frequency of oscillations. One key source of this drift is
backreaction of the inflationary sector on other degrees of freedom, such as moduli scalars in
string compactifications. Drifting oscillations can also be motivated from low energy effective
field theory considerations [11], assuming a weakly broken discrete shift symmetry. We will
analyze the conditions under which the drift becomes large enough so that limits set with
a constant-frequency oscillatory template are inaccurate, finding that for sufficiently high
frequencies or for sufficiently strong evolution of the period, a drifting-frequency template is
required.

The mechanism underlying monodromy, involving a weakly broken shift symmetry, is

!This mechanism can be regarded as an ultraviolet completion of large-field chaotic inflation [5], with
additional dynamics including some aspects of natural inflation [6]. As in those scenarios, there are interesting
generalizations that involve multiple dynamical fields, with the possibility of distinct signatures [7, 8].



quite robust, and arises naturally in string theory from the couplings of gauge potential
fields to branes and to fluxes. This structure extends via string-theoretic duality relations to
certain other sectors of fields as well. However, as with all inflationary mechanisms in string
theory, a completely systematic exploration of axion monodromy remains a distant goal. A
more practical approach at present — which we will adopt in this paper — is to determine
the observational limits on phenomenological models whose parameter ranges are informed
by microphysical constraints that arise in string theory.?

The potential in single-field axion monodromy inflation takes the general form

V() = Vo + 106 + A(9) cos (70 + 9/ £(9) ) (1)

where Vj, i, 70, and p are constants, and we have focused on the large-field regime of the
potential. The variable coupling f, which we will refer to as the axion decay function, reduces
to the usual axion decay constant f when f is constant. Examples in the literature include
cases with p = 3,2,4/3,1,2/3.

In string theory realizations of axion monodromy, A and f are functions of the moduli
fields, which can shift over time as the inflationary energy decreases. As we will explain, this
effect is analogous to the flattening of the potential that arises as a result of shifts of moduli
vevs during inflation [12, 13]. Indeed, drift and flattening are two natural consequences of
the adiabatic evolution of massive moduli. However, it is interesting to note that flattening,
which determines the power p and the resulting slow-roll parameters, is generally independent
of the drift in f: different degrees of freedom may adjust in the two cases, and moreover the
final value of p depends on the fiducial value py, which is a separate parameter. So the drift
in frequency is not determined purely by an expansion in the slow roll parameters of the non-
oscillatory potential, even though the latter does make a model-independent contribution to
the drift that is calculable within effective field theory.

In this work we will present templates that parameterize key features of ultraviolet-
complete examples of axion monodromy inflation, without being so specific as to be tied
to a particular realization. We will provide one specialized template based on the pattern
of frequency drift deduced from simplified models of axion monodromy, along with a more
general Taylor series expansion that captures more general models, including [2, 3]. We
anticipate that these templates will have significant overlap with the predictions of a broad
range of models. This is similar in spirit to the use of simplified models of physics beyond
the standard model in the analysis of LHC data.

We will examine oscillations with a drifting frequency in a number of toy models in
order to illustrate the spectrum of possibilities. We will scan over a range of the parameters
entering the templates, including the parameter values exhibited by the models. For models

2Structural constraints analogous to those used in this work can be found in [15].



developed thus far in the literature, at most frequencies the drift is weak enough that a signal
would be caught by searching for a non-drifting template. However, we do not find firm
predictions of string theory for the parameter ranges, because the space of possible models
is just beginning to be explored (see [13, 14] for recent developments.) We therefore propose
significantly larger ranges for the drift parameters, in addition to scans over a wide range of
frequencies, including all values for which the low energy effective field theory is under control
and radiatively stable. In some of this range, we find that the drift cannot be fully captured
by a Taylor expansion of the axion period. Ultimately, the analysis presented here does not
lead to highly informative priors on the parameters involved in drifting oscillations. Rather,
it highlights the need to incorporate such parameters in searches for oscillatory features in
part of the parameter space. Since the number of additional parameters will not be large,
searches for oscillations in cosmological data can still yield useful constraints.

The organization of this paper is as follows. In §2 we discuss the causes of frequency
drift and the estimate the importance of this drift in analyses of cosmological data. In
83 we present a number of examples of axion monodromy inflation scenarios, determining
the drift in frequency and amplitude, and motivating classes of templates and parameter
ranges. We then pause to discuss the amplitude of oscillations, in §4, and the symmetry
structure of axion monodromy, in §5. In §6 we present the results of an initial search for
drifting-frequency oscillations in the Planck nominal mission data. Our conclusions appear
in §7.

2 Drifting Period: General Theory

In the single-field version of axion monodromy inflation — or any similar mechanism ex-
hibiting a softly broken discrete shift symmetry — one finds a potential for the canonically
normalized inflation field ¢ of the form

V(9) = Vo(¢) + A(¢)" cosla(9)] . (2.1)

Here a(¢) is the underlying periodic axion variable, which in general is a nonlinear function
of the canonical inflaton ¢. Nontrivial dependence a(¢) can have multiple underlying causes,
including backreaction of the inflationary energy on compactification moduli, as well as loop
effects derived from the weak explicit breaking of the discrete shift symmetry in V5(¢). In
(2.1) we have also allowed the amplitude A* to depend on ¢, but because amplitude drift
is generally less important than frequency drift in the search for oscillatory features, our
analysis will primarily focus on the drifting frequency encoded in a(¢).



2.1 Drift from backreaction on string moduli

In string-theoretic models of axion monodromy, the leading contribution to the drift in period
comes from the coupling of the axion to additional scalar fields o; known as moduli. The
moduli fields include the size and shape of the extra dimensions of string theory, as well
as the coupling ¢g;. Axion-moduli couplings can appear in both the kinetic and potential
terms, and their effect on the leading potential term Vj(¢) has been studied in [12, 13].
These effects can become very complicated in general, but much has been learned from the
basic structures involved in existing moduli stabilization proposals. (In fact, allowing the
inflationary potential to participate in moduli stabilization can simplify the latter [13, 15].)

The nontrivial dependence a(¢) in (2.1) arises from the moduli-dependence of the axion
decay function f (# constant) in the axion kinetic term. Because the moduli o; in general
adjust during inflation as a result of their couplings to the axion potential terms, we can

write
[ dev=aflorii = [ atev=g. (2.2
with ¢ the canonical field, given by the solution to % = f(a). The theory contains sectors

that are periodic in the axion a(¢), leading to the oscillatory term in (2.1).

The amplitude of these oscillations is highly model-dependent, and also in general de-
pends on the moduli fields and hence on ¢. Since there is a regime of parameters in which the
leading oscillations arise from instanton effects, these can easily be exponentially suppressed
as a function of the natural couplings of the theory. However, in high-scale inflation, there
are limits on how weak these couplings can be, leaving room for a detectable signal, as we
explore in more detail in §4.

2.2 Required precision

The comparison between models with oscillatory power spectra and data is commonly based
on a search for a given set of templates and constraints on their parameters [10]. To assess
the importance of the drifting period for comparison to cosmological data we must thus un-
derstand whether a model with drifting period would have led to a detection in these searches
or might have been missed. For simplicity we consider an ideal power spectrum measure-
ment for a Gaussian random variable such as the scalar perturbation ( or the temperature

anisotropies ag,. The likelihood for a theoretical power spectrum P, given a measurement
Pk is

A 1 P Np—2 =
L(P|P) o exp [—5 Z Ny, (FZ +In P, — ];\fk In Pk> : (2.3)
k




where N} is the number of modes contributing to P,. The theoretical spectra are typically
taken to be of the form P, = P} + AdPy, where P{ is a smooth spectrum, and 0P is an
oscillatory template that will depend on a number of parameters such as the frequency, the
phase of the oscillations, etc. We have explicitly introduced one of them, the amplitude A.
Oscillatory contributions to the angular power spectrum in the absence of a drift are typically
constrained at the few percent level, so we consider A < 1 for our present discussion. In
this limit, the amplitude that maximizes the likelihood becomes

A= Zk’wk’épk’(spk’ ’ (24)

where wy, = Ni/2(P2)?, so that the different contributions are inverse-variance weighted,
and the variance for small A is
1

AA? = .
Zk,wklépk/(SPk/

(2.5)

Let us now assume that the true power spectrum contains oscillations, but of a shape different
from the template d Py, so that

(P = P 4 o P (2.6)
For this power spectrum, the expected amplitude is
R 5Ptrue§P
(A) = LR LTOR (2.7
Zk/wk’(spk’épk’

Using equations (2.5) and (2.7), and introducing the notation 0P - 6P = > wrdP0 P/, we
k

can write the signal-to-noise ratio for our template as

. true . true
S _§P-gPme SP-§P s e i 2.8)
N V6P -6P  \§P P/ §Piue . §ptrue

Thus, the signal-to-noise ratio we expect for a given template is the product of the signal-to-

noise ratio for the correct template times the overlap, or cosine, between the two templates

(E) = cos(0 P, 6 P™°) x <§) with  cos(dP;,0P;) = 0% 0P, :
N template N true \/5P1 0Py \/5P2 ' 6P2
(2.9)
In the approximation in [3], the power spectrum for the potential (2.1) is
]{3 ng—1
P(k) = P(ky) (kj) (14 dns(@) cosla(or)]) , (2.10)

with ¢y the value of the scalar field at the time the mode with comoving momentum k exits
the horizon. For a CMB power spectrum measurement the number of modes contributing

6



to a given multipole is 2¢ 4+ 1. To define an inner product on primordial power spectra that
approximates the inner product on angular power spectra, we choose N, = k. For a power
spectrum of the form (2.10), and ignoring the slow variation of the amplitude, the inner
product is

kmax
OP; - 0P; / k dk cos[a;(¢r)] cos|a;(ér)], (2.11)
kmin
To estimate the level of precision we should require of our templates, let us write® a(¢) ~
¢/ f(¢) and perform a Taylor expansion of f about some point ¢ in field space.

~Ie o0 df o-a\® .\
Cos[a(gb)]—cos[ X (1—}— <Z>o( 7 ) —|—> ] (2.12)

fo Jodo
In axion monodromy scenarios in which Vy(¢) is approximately monomial, Vo(¢) ~ u*=P¢?,
we find that ¢ is of order 100, when the modes observed in the CMB exit the horizon, and
the change in the field is Apcoyp ~ M, during this time.* The expansion (2.12) is therefore

(Cb— Cbo) +1¢i2)d2f
¢0 ®o 2 fo dop?

organized as a power series in |¢ — ¢o|/do S 1/10 with coefficients a,, = %qbgfo_l%wo. We
will find below that based on simple estimates of the effect of backreaction on moduli, the
coefficients a,, can easily be of order unity. For example, we will see that there are models

in which

ﬂ@—ﬁ(%)w, (2.13)

with a power py of order unity.

Under the assumptions made in [3], the oscillatory contribution to the power spectrum is
obtained from equation (2.12) by replacing ¢ by ¢ ~ \/2p(N, — Ink/k,). We will discuss in
§2.2.1 to what extent these approximations are valid, but for now we use them to illustrate the

comparison between drifting and non-drifting models using the inner product. One should
keep in mind that searches for oscillatory features in the data vary the phase and frequency
of the oscillations. To assess whether a signal with a drifting period might have been missed
in previous searches, we should thus maximize the overlap between the templates with fixed
and drifting frequency by allowing the parameters of the fixed-frequency template to vary.
Setting kmin = 107*Mpc™!, kpax = 107'Mpc™!, and k, = 0.05Mpc™ !, we find that for a
frequency close to the WMAPY best-fit value f/M, ~ 4 x 1074, overlaps as large as 80%
can be achieved between the template for constant axion decay function and the template
with the coefficient of the first correction being of order unity. However, the overlap drops

3This definition of f(¢) will be convenient, even though it differs from the definition obtained from the
kinetic term by solving fda = d¢.

4Although we will focus on the single-field version of axion monodromy for simplicity in the present work,
the multifield version of the mechanism [7, 8] involves smaller individual field ranges.
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rapidly as the frequency of the oscillations increases. For f/M, ~ 2 x 10~* we find overlaps
of around 50%, and for the lower end of the range of axion decay constants studied here,
f/M, ~ 107* the overlap is further reduced to only a few percent. We conclude that at
least two nontrivial terms in the Taylor expansion (2.12) of the axion decay function are
necessary to achieve an order unity overlap for frequencies f/M, < 2 x 10~*. Consequently,
previous searches do not cover the entire space of models with drifting frequencies.

We should note that there is not always a useful description in terms of a Taylor expan-
sion. For example, this expansion breaks down for large p;. This is another regime in which
one cannot rely on a non-drifting template. With such a strong drift in f, one would need
to estimate radiative corrections to the slow roll parameters, which we estimate in §2.3. For
a small enough amplitude of modulations, such corrections can be neglected as compared to
Vo(¢), but at some point the oscillations would then become too small to be detectable.

2.2.1 Slow roll corrections to the oscillatory power spectrum

The derivation in [3] used above is only accurate to leading order in the slow roll parameters.
Given the monomial large-field form of the leading potential Vy(¢) ~ u*~P¢?, the slow roll
parameters 7 and € are of order (M,/$)* ~ 1072. Let us estimate their importance in the
power spectrum by considering corrections to the argument a(¢) of the cosine of the form

cos l% (1 +) en (%>2n>] . (2.14)

Evaluating the overlaps between templates with coefficients ¢, of order unity suggests that
both the n = 1 and n = 2 terms in this expansion are important. This should not come as
a surprise. In order to obtain a good approximation to the oscillatory features in the power

2n
spectrum, one must keep correction terms in Aa ~ % > cn (%) that can be of order 2w
or bigger.

Extending the analytical derivation by two orders in the slow-roll expansion is beyond
the scope of this paper. For our numerical analyses, we will therefore check that a given
template agrees with a numerical calculation.

2.3 Radiative corrections and strong drift

To estimate whether the low-energy effective theory is radiatively stable even when the
Taylor expansion breaks down, let us consider the case (2.13) with |ps| ~ O(10). We
change variables back to the axion a = ag(¢/¢o) 77, with d¢ = f(a)da = f(ae) = fo =
¢o/ao(l + py). Starting from a typical axion monodromy potential Vy(¢) ~ u*"P¢P, we can



write

1 pytl
L= 5(09)° = p*F¢F — Agcos |0 + ¢>_2 (20) .
_ 1 a —2p;/(14pf) 2 _ pAgp/ep+l) _ A4
=3 (f(ap)da)* — ji*a Ay cosla] , (2.16)
Qo

where for simplicity we here neglect any drift in the amplitude A*.

Each form of the action makes manifest a different limiting symmetry. As g — 0 and
A§ — 0, the first form (2.15) exhibits a continuous shift symmetry in ¢. The second form
(2.16) makes clear that the oscillatory term by itself respects the discrete shift symmetry
a — a + 2mw. These symmetries constrain the form of the corrections.

One can estimate corrections using the first form of the action, starting from the one-loop
Coleman-Weinberg effective potential. Taking into account the leading contributions from
this, the essential effect of p; is to generalize the expansion in Ag/(47f) to an expansion in
(ps+1)Ao/(47 f). We will now explore this using the second form of the action (2.16).

Our basic question is whether the strong drift parameterized by p; ~ 10 generates cor-
rections that ruin slow roll inflation. To assess this, we can focus on the interactions coming
from the kinetic plus oscillatory terms, which we will now delineate.

In the expansion of the kinetic term, the Lagrangian (2.16) exhibits a sequence of higher
dimension operators, with coefficients that depend on our parameter of interest, py. Ex-
panding this (defining a = ag + da), we find

1 f a a 2 — f a a ! 2pf
5 (01f(a0)da]) (1 f(ao)o {ﬂao)% (pf+1)}+...> . (2.17)

The dimension-one fluctuating field in this Lagrangian is Y = f(ag)da. The higher-dimension

operators arising from this expansion of the kinetic term are suppressed by the mass scale

10

M = |f(ao)ao| = ¢o/|1 + py| ~ TET

M, . (2.18)
If for example p; ~ 10, then this suppression scale is still very high, M ~ M,. In particular,
it is much higher than the strong coupling scale ~ 471 fg of the low energy theory. We will
assume that the low energy theory is effectively cut off at a scale Ayy < f , and estimate the
radiative stability of slow roll inflation against the loop corrections generated by the inter-
actions in (2.15), with the loop momenta cut off at Ayy. It would be interesting to analyze
this in the context of field theoretic (as well as string-theoretic) ultraviolet completions that
describe the degrees of freedom at and above the scale 47 f )



This latter scale is evident if we expand the oscillatory term:

j
A cos(a) = Ag cos (ao + z) = A Z ¢ (g) : (2.19)
Jo Jo
However, note that the background solution for Y ranges over a distance in field space much
greater than the underlying period fy, so one cannot use the last form expanded about
Y = 0 for the whole process. In the original cosine form, it is clear that the magnitude of
the interaction term is bounded by Aj. (Consider the one-loop Coleman-Weinberg potential
Tr[log(9? + V" (o))] in scalar field theory: for our sinusoidal potential V, one has V" =
—(A%/ 1) cos(ag + Y/ fy), which gives smaller corrections than would be estimated from the
individual terms in the series (2.19).)

Let us first estimate an upper bound on the corrections to the potential term V' (a) and
their effect on the slow roll parameters, assuming for this discussion that the kinetic term
is not corrected in an important way. As we just noted, by symmetry the only potentially
relevant corrections must use a combination of the interaction vertices from the kinetic
term and the oscillatory term. Some corrections contribute to the oscillatory term in the
potential, proportional to cos(a) and sin(a) (with mildly drifting amplitude); we find these are
controllably small. Others are proportional to even powers of cos(a) and sin(a), and introduce
corrections to the non-oscillatory potential Vy(¢). The corresponding leading contribution
to the slow roll parameter e, = MTE(V’ /V)? arises from
AV fodV _ fo 1A

AV = — =2 —— <= —— 2.20

dp  fdY = f M f4 (2.20)
Here in the second and third factors we introduced a vertex from the kinetic term and
two from the cosine term, with the understanding that higher loop contributions will be
suppressed by additional powers of Ayy/f and Ayy /M. As discussed above, Ayy is the
scale at which the loop is effectively cut off. We write (2.20) as an inequality because there

may be additional cancellations that we are not working out explicitly. The inequality (2.20)

AVEAVAANE AL
sor< () (22) ) () 2

where we used the fact that d¢/da = f . To get the most conservative bound, we take f at its
minimum value, f:,, within the range of field visible in the CMB. The factor (M,/M)? is of
order 1. The last factor is < 1, as the series of higher order terms should resum into a cosine-
type dependence in each diagram. Using f o (¢/do) P, we find that the penultimate factor
is ~ (5/6)Pf < 6 (taking the range to be roughly between 50 and 60 e-folds). Altogether this
does not put a stringent bound on Ag/Vj.

translates into

10



Next, let us estimate the corrections to the kinetic term. Consider the 1PI 1-loop diagram
with a three-point vertex from the cosine term and a four-point vertex from the kinetic term.
This gives a correction to the (Y/M)(9Y)? term in the Lagrangian (with one 9Y leg from
the cosine-term vertex and the other Y (9Y') from the four-point vertex). This diagram is
of order (1/M?)(A4/f3). So using M ~ M,, it is down from the leading term of this form
~ (Y/M)(9Y)? from (2.17) by a factor of A3/M*(M,/f)*. Now since f/M, can range down
to 1074, this correction becomes important only if A3 > 10*12M§, which exceeds the existing
observational upper bound (4.9). Again, higher loops will have extra suppression by powers
of Ayv/ f and Ayy /M. Diagrams with more external legs from the vertices obtained from
the expansion of the cosine term (2.19) will only contribute terms ~ Y"(9Y)? over a small
range < f inY.

As a result, there appears to be a regime of parameters in which the Taylor series tem-
plate fails, but the shift-symmetry breaking from the drift is not so large as to produce
substantial corrections to the underlying inflationary slow roll mechanism. This regime is
the most challenging one for the problem of searching for oscillations. It requires knowing the
functional form of the drift in period, without the benefit of a convergent Taylor expansion.
The example we just gave illustrates this possibility.

3 Drifting Period: Prototypes

In this section we explore the form of the function a(¢) in a few classes of prototypical
examples of moduli stabilization and axion monodromy inflation in string theory. In §3.1 we
examine ‘power-law’ models in which classical sources of stress-energy lead to polynomial
dependence on the moduli fields. Then, in §3.2 we turn to scenarios in which nonperturbative
quantum effects play a central role in stabilization.

Let us start by briefly reviewing the general structure of axions and their decay functions
f. Axions a; arise from higher dimensional analogues of electromagnetic potential fields A,

A= arwly. (3.1)

where the w(l g) are a basis for the cohomology H?(X) of the compactification manifold X.
There are various duals or analogues of axions under electromagnetic and target space string
dualities, in some of which the axion becomes a brane collective coordinate or a geometric
modulus. In fact, the possibility of monodromy inflation was discovered in the context of
such examples [1] (cf. [16]), and interesting mechanisms of that kind continue to appear [17].
These duals have similar drifts in their oscillatory periods, so for simplicity we will focus on
axions that descend directly from higher dimensional potential fields.

The kinetic term [ |dA|? for A descends to kinetic terms for a, which generally depend on

11



the moduli fields as indicated in (2.2). The potential descends from gauge-invariant terms
in the D-dimensional effective action of the schematic form

/de\/—GZ|Fq]2 = /de\/—GZ|Fq—C’q_g/\H3—|—~~+FqB/\-~~AB|2, (3.2)
q q

in terms of potential fields A = {C,,, By} and their field strengths dA = {F, 11, H3}. The
combinations Fq are known as generalized fluxes. The couplings in (3.2) generalize the
Stueckelberg term [ |96 — A|? in spontaneously broken electromagnetism. In the presence of
generic background fluxes, these terms contain direct dependence on A, which descends to
a monodromy-unwound potential for a;. Just as in the kinetic terms, these potential terms
generally depend on the moduli o;. Correspondingly, the potential energy V(a) of the axion
fields a; must be incorporated in a consistent way in the metastabilization of the moduli:
either V(a) must be subdominant to the remainder of the moduli potential V},,q, or else
the forces encoded in V' (a) must be balanced against additional contributions in V},,q. The
latter case — which may be more generic because it requires less of a hierarchy of scales in
the problem — leads to significant drift in the oscillation period f(¢), as well as flattening
of the potential [12, 13]. In this case the role of the axion potential energy in the overall
scalar potential is analogous to the contribution of an ordinary flux. These features have
been reviewed recently in [13, 18].

In some circumstances, such as in the early examples [2, 3|, the most direct description
of the monodromy is that it is induced by a brane’s DBI action. One can use the gravity
solution for the brane, as in AdS/CFT, to relate the brane and flux pictures [12]. We will
consider both cases in our explorations below.

3.1 Power law stabilization

We begin by discussing scenarios in which moduli such as the volume V), the string coupling
gs, and the axion decay function f are stabilized by power-law effects. By this we mean that
the forces fixing these fields are powers of V, g,, and f, such as those arising from classical
stress-energy sources (including curvature) in string compactifications.® This type of model
was studied recently in [13], and here we extract some lessons of that work for the question
of drifting oscillations. In other scenarios, such as [19] and [20], moduli stabilization results
from a competition between perturbative and nonperturbative effects. We explore that case
in §3.2 below.

One general feature of string compactifications is that the four-dimensional effective po-
tential vanishes in the limit of weak coupling and in the limit of infinite volume of the extra

5See [18] and references therein for pedagogical introductions to this approach to moduli stabilization.
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dimensions. In these directions in field space, metastabilizing moduli requires (at least) three
terms, with a structure like

V =ayx™ — bya™ + cya’e, (3.3)

with & ~ zoe®%/Mr where o, is the canonically normalized field and ¢, a constant. Metasta-
bility requires a sufficiently strong intermediate negative term; for example for the simple
case v, = 2,7 = 3,7. = 4 we require

dac 9

< = (3.4)

1< —
b2 8

for a metastable minimum.

In other directions, such as those describing flux-stabilization of the relative sizes of dual
cycles in the manifold, one finds a simpler two-term structure of the schematic form

V = AvySA + — (35)

ewoy/Mp  The prototype for this is a manifold with a product structure

with again y ~ ype
My x My with flux threading the two orthogonal directions M; and M,: in each direction,
the flux prevents collapse of the cycle, leading to a potential of the form (3.5) for the ratio

of the cycle sizes.

In general, the coefficients ay, ..., By can depend directly on axions, depending on the
details of the example. In particular, we can see immediately from the terms (3.2) that the
role of fluxes is more generally played by combinations of fluxes and axions. Since at large
field values (or with many axion fields [7]), the axion potential in itself satisfies the slow
roll conditions, it can be consistent for the axion-dominated terms to participate in moduli
stabilization [15, 13].

In three-term stabilization, however, there is a significant limitation on the contributions
of axions to the scalar potential. For a single axion that evolves over a range of order 10,
— implying many circuits of its underlying period — the condition (3.4) can easily fail by
virtue of too large a change in 4ac/b* over this large field range.® In two-term stabilization,
in contrast, it is straightforward for axions to participate much like fluxes.

3.1.1 Motivating examples

Let us next describe an illustrative pair of examples drawn from [13], before attempting to
draw some more general lessons that will motivate the oscillatory templates and parameter

6If many axions each move over a very small range, this problem can be ameliorated.
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ranges presented in this work. The drift in oscillations arises in these scenarios after sta-
bilizing one combination of the string coupling g, and internal volume V with a three-term
structure, and another combination with a leading contribution from the axion b driving in-
flation. Let us work from equation (4.8) of [13], giving the effective potential after three-term
stabilization of a combination z = g;/V*? (with V the volume in string units)

1
Uloms i ~ M, {Cinim + (a5 + g0 )V*° + Cilad + 200b° + qu“)} . (36)

where (', is a constant depending on the parameters of the underlying model, ns is a quantum
number corresponding to Hs flux, and the ¢; similarly correspond to Ramond-Ramond fluxes,
as described in [13]. This potential is valid as long as 2¢5q;0* + ¢3b* < O(g3).

The first two terms here stabilize the volume V. In the case where ¢7b*> > ¢3, we obtain
bo 1/V3 (3.7)

from this. The relation (3.7) has two effects: first, it introduces a linear term in b in the
potential, after substituting (3.7) in (3.6). Second, it changes the relation between b and the
canonically normalized inflaton field ¢, because of the V dependence in the b kinetic term:

»o
a7 & b’b = ¢y ox b2 (3.8)
This implies a drift in f given by
1
f o< S b2 o pl3. (3.9)

Therefore the oscillatory term in the potential takes the form

1+p
o+ 2 (i) f] , pr=-1/3. (3.10)

4
A(¢)" cos -\ %

where ¢ is the field value at a pivot scale, e.g. at the start of the observable stage of inflation.
In the framework [13] in which (3.6) applies, the leading term Vj(¢) is of the form

Volg) = u* 4P, p=4/3 or p=2/3, (3.11)

with p = 4/3 arising when the term ¢;¢5b* dominates in the potential, and p = 2/3 arising
when the term ¢26*V?/® dominates in the potential.

The amplitude of oscillations A(4)* is a very model-dependent quantity, one that as
emphasized above can easily be undetectably small. In the examples defined by (3.10),
(3.11), we can estimate their size as given by worldsheet instanton effects [21] derived from
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processes in which the string wraps a two-cycle of the internal manifold. Contributions to
the potential from worldsheet instantons are exponentially suppressed in V2, suggesting an
amplitude ,

Ay = At &) =13, (3.12)
where V) is the volume in string units evaluated at the pivot scale. The amplitude (3.12)
is exponentially suppressed in an internal two-cycle volume, something sufficiently model-
dependent that it prevents us from obtaining a model-independent signature from the oscil-
lations in axion monodromy. But for high-scale inflation, the size of the extra dimensions is
naturally at the inverse GUT scale or below, and the amplitude depends on details such as
flux quantum numbers and topology. There is a range of amplitudes of interest, including
both a regime where the effect is large enough to be detectable as well as a regime where it is
too suppressed to be seen. In section §4 below, we will discuss the amplitude in slightly more
detail, and also explore a scenario for initial conditions in which the amplitude is bounded
from below.

3.1.2 More general powers in single-scale models

The examples just discussed motivate a structure for the inflaton potential of the form

Yo + %o (3>pf+1] , (3.13)

—co ()™
Vot PeP + Age (%)™ cos
0 \ %o

with powers p,pa,ps that may take more general values than those found in the above
scenario. To search for drifting oscillations in cosmological data, we also require an under-
standing of the range over which these parameters can vary. The drift in frequency arising
from py is more important to keep track of than the amplitude (related to py,Cp here) or
the underlying slow-roll potential (related to p), and we will on a first pass set Cp = 0
and pp = 0. The allowed range of axion decay constants fy will be discussed in the next
subsection. To get an idea of the potential range of the parameter py, let us focus on the
example of an axion b descending from the Neveu-Schwarz two-form potential B that couples
to the fundamental string. In a simple model with one length scale L (in units of the string
tension), the kinetic term [ |dB|* descends to a kinetic term of the form (2.2) with

f

—_— Y

M

p

1
3 (3.14)

as is reviewed for example in [18].

As in the above examples, the axion potential energy may contribute to stabilization of
L. In a power-law mechanism for moduli stabilization based on the Stueckelberg-like terms
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(3.2), and/or on forces from branes affecting the size L, the result is a relation of the form
L = Lyb** . (3.15)

From this we derive the relation with the canonical field ¢
fdb=dp = b= (L3(1 — 2ps)p)"/1=%5) . (3.16)

This translates into
2pp

= 8 1
oy (3.17)

Dy

and we would like to understand the range of values this parameter might take in more
general models realizing axion monodromy inflation.

One basic question is whether only one sign of py is possible. We will show below that both
signs are possible, with simple mechanisms for each case. In what we will describe next, the
two signs arise in somewhat different versions of monodromy inflation. As discussed above,
although flux-axion couplings can be understood as the source of the monodromy effect for
axions descending from potential fields in string theory, in some cases the most effective
description is through a brane action, while in others the description in terms of fluxes is
simplest. In the following, we will find scenarios with py > 0 from the former, and p; < 0
from the latter (one example being the case with py = —1/3 just discussed in §3.1.1).

Brane-induced monodromy

Let us start by noting that power law stabilization with brane-induced monodromy im-
mediately gives py > 0. The simplest way to see this is to work in a duality frame in which we
have a pair of branes moving relative to each other with collective coordinate = L# around
a circle of size Lv/a/, with another brane stretched between them (for example, D4-branes
stretching between NS5-branes). This forms a configuration like a windup toy (see e.g. figure
1 in [2]). As the toy unwinds, going to smaller values of ¢, the circle grows larger because it
is less constricted by the brane, and hence the period f grows.” Thus f’ < 0, corresponding
to py > 0 upon matching to the template (3.13).

We can see this more specifically as follows. The kinetic term from the NS5-brane action
is proportional to Mgfﬂ?, and the potential term is of the form §LCy + Co/L7, where we
hypothesize a second term that stabilizes L in combination with the brane system. This
gives an axion decay function f o L2, We have L o« §~%/7*'. Changing to canonical

variables we find
Vo oxx ¢/ FD) 0 f o 72/ 2D (3.18)

In other words, this type of toy example gives py =2/(2y + 1) > 0.

"We will likewise find a growing period in the example of axion monodromy inflation induced by an
NS5-brane pair in a nonperturbatively stabilized compactification: see §3.2.1.
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Flux-induced monodromy

Next, let us explore the behavior of p; in more general models in which fluxes induce
monodromy. A reader interested only in a broad view could skip this discussion, as it
mainly serves to motivate a range of values of py in a way that generalizes the example with
Pr = -1 / 3.

The case ps = 1/2 would correspond to b ~ e?Mr (up to factors of order unity), and
does not give rise to an inflationary model of interest for the present discussion. Excluding
this case, there are three possible regimes:

(1) ps<0 —1<pr<0 Kkinetic flattening

(2) pg=0 pr=0 constant f

(3) ps>0 kinetic steepening
(Ba) 0<ps<1/2 O0<pr<oo p>0

(3b) ps >1/2 pr<—1 p<0 Vocl/gl

Here ‘kinetic flattening’ and ‘kinetic steepening’ refer to the effect of the transformation
(3.16) on the power p in Vy(¢) = u*=PeP.

The examples in the previous section had py = —1/3, falling into class (1). More gen-
erally, as explained in §3.2 of [12], for axions on small localized cycles — i.e. in examples
going beyond a single scale — one also finds kinetic flattening. Class (2) arises in the case
of sufficiently rigid moduli stabilization.

Note that case (3b) implies an inverse relation between ¢ and b (3.16). This would lead
to p < 0, making the potential proportional to a negative power of the inflaton field. We
will call this possibility ‘kinetic inversion’. This is not viable phenomenologically® according
to current constraints on the tensor to scalar ratio r and the tilt n, of the scalar power
spectrum. This provides another illustration of the importance of taking into account the
backreaction on moduli as a function of the inflaton vev.

From the relation (3.15) one might think that kinetic inversion or steepening (i.e., ps >
0, regardless of whether pg < 1/2 or pg > 1/2) might readily arise in some classes of
perturbative stabilization, based on the idea that a larger inflationary energy creates a larger
decompactification tadpole. However, there are two problems with this argument. First, as
we saw in the example (3.6) (3.7), after stabilizing an appropriate combination

_ Y
r= LK/2

(3.19)

8 Although it is not viable for early universe inflation, this case may be interesting if it can provide a novel
mechanism for generating accelerated expansion in string theory.
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via other sources in the moduli potential, it is not the case that the inflationary energy from
the axion term must push toward decompactification. In fact, in the above examples we saw
that the axion energy can push the volume V ~ LP~* toward smaller values once z = g,/L*
is stabilized in its minimum. In addition, the relation between b and L is not pure monomial
when b is a subleading effect in the stabilization, which is an important distinction. In
particular, in three-term stabilization mechanisms (at least without large relative powers in
the three terms), a single large-field axion cannot dominate, as we explained above.

The remaining possibility for phenomenologically viable inflation with kinetic steepening
is case (3a). However, in the single-scale scenarios described here, known mechanisms for
perturbative stabilization do not appear to generate case (3a). Recall, as briefly reviewed
above, that fluxes — and their generalizations F, depending directly on axion fields (3.2)
— can stabilize pairs of dual cycles. However, if we were to balance Ramond-Ramond
generalized flux terms in stabilizing L, there is a simple restriction. Within a generalized
flux, the two-form potential field B acts as a flux of rank 2 on the two-cycle ¥, that it
threads. To balance this against some other generalized RR flux term, the latter has to be
of lower rank on ¥,. Balancing the two terms then gives b” ~ L?>"~2 with A > 0. Turning

this around, we can write L oc b/ (2n—2)

, implying that ps as defined above in (3.15) satisfies
pp > 1/2. As aresult, stabilization based on balancing the energies in generalized fluxes does
not populate the range 0 < pg < 1/2, but could in principle give an example of the sort (3b),

i.e. with p < 0, which would be excluded by constraints on the primordial perturbations.

Alternatively, let us consider the possibility that the RR generalized flux instead balances
against another type of term, for example the term descending from the magnetic flux of
the internal B field |[dB|?> = H2, or the potential energy descending from the curvature of
the extra dimensions. With some combination (3.19) stabilized in a three-term structure,
we would have the scaling

Q11 1
L T erm PP S T en K)o

(3.20)

Here we have used the fact that the Ramond-Ramond terms come with a relative factor
of g compared to the Hi and curvature terms. We know that 7 > 0 (this is the usual
statement that sources dilute at large radius in string theory), and we are not aware of
complete scenarios for perturbative moduli stabilization with K < 0. Thus, presently known
constructions of this sort of flux stabilization do not populate the range 0 < ps < 1/2 (or
equivalently py > 0). Instead, for sufficiently large positive 27 + K we have pg < 0 here,
leading to case (1). This is what happened in the above example with py = —1/3 [13]. On
the other hand, as we have noted, the case py > 0 immediately arises in other versions of
monodromy inflation, such as the brane-induced case described above.
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Another relation giving potential bounds on py is

p=(1+ps)pv, (3.21)

where py is the power computed by incorporating the backreaction of the inflationary en-
ergy on the moduli potential, and the corresponding flattening, before taking into account
a nontrivial power from the kinetic term (3.16). In other words, py is the power that incor-
porates flattening from the potential, and p is the final power that also incorporates kinetic
flattening. If py is a fixed positive number, then through (3.21), observational limits on the
primordial perturbations imply an upper limit on p;. However, strong potential-flattening
effects are a logical possibility: py could in principle be very small to compensate a large
value of py. That is, one could have strong potential flattening combined with strong kinetic
steepening. It would be interesting to analyze more general axion monodromy scenarios in
order to characterize this possibility. In extreme limits — such as large total dimensionality
D — one can obtain large fiducial powers in the higher-dimensional Lagrangian, and it would
be worthwhile to characterize the ensuing powers p, ps, pa in those cases [15].

Let us recap the pattern we have discerned from this exploration. The ‘kinetic inversion’
case (3b), pg > 1/2, which leads to a monomial with a negative power, is observationally
unviable. The marginal case pg = 1/2, which leads to an exponential potential, is also
unviable. The kinetic steepening case 0 < pg < 1/2 could lead to viable or unviable examples,
depending on the power py (3.21) appearing in the potential expressed in terms of the basic
variable 0. In other words, viability depends on how steep the potential starts out, and how
much further it gets steepened. However, as just explained, at present we have no examples of
mechanisms that would produce examples with 0 < ps < 1/2. Next, examples with pg < 0,
corresponding to py < 0, arise quite readily in power-law stabilization scenarios, e.g. in the
example of §3.1.1. Finally, examples with p; > 0 can arise from brane-induced monodromy.
It would be interesting to understand whether the sign of p; could be used to distinguish
the two classes of constructions described above, or if instead our current exploration is too
simplistic for such distinctions.

3.1.3 Range of frequencies for power-law stabilization

In this section we will provide simple estimates of the range of frequencies of interest in simple
power law scenarios. At sufficiently high values of f/M,, oscillations become degenerate with
parameters determining the overall amplitude and tilt of the power spectrum. From this,
one might find interesting effects related to the low-¢ behavior of the power spectrum as
studied previously [10]; however, the statistical significance at this point is low. For string
compactifications involving single axions, one typically finds f < M,, with theoretically
controlled examples satisfying f/M, < 107!, In the case of multi-axion mechanisms, such
as [7], larger values of f/M, are possible.
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The lower end of the range of f/M, is of particular interest. One threshold that arises is
the value of f at which a single-field effective field theory description breaks down. Imposing
that the frequency in time of oscillations be less than the unitarity scale ~ 47 f leads to a
lower bound on f/M, of order 10~*. The full theory may continue to produce oscillatory
features beyond this scale, but their functional form becomes more difficult to calculate. A
practical threshold arises from the resolution available in the data.

Here we will make a similar rough estimate of the lower end of the range of f/M, from
the string-theoretic point of view. We will start with the case of single-scale power law sta-
bilization, with the axion b derived from the Neveu-Schwarz two-form potential B discussed
above. After making that estimate, we will generalize to scenarios in which the axion might
arise from higher-rank gauge potentials.

For large-field axion monodromy inflation we have (cf. eqn (1.38) of [22])

H
H=3x10"7/—M - (3.22)
01" M,

In string compactifications from D to 4 dimensions, the four-dimensional Planck mass is
given by
(2w Lo/ )P~

2
M~ 2,2
Js

(3.23)
where L is the size of the extra dimensions in string units, 1/a’ is the scale of the string
tension, and g2x? is the higher-dimensional Newton’s constant. For example in D = 10, to
which we will specialize, 2x2 = (27)7a".

If we go to the boundary of control, imposing only that Hv/a/ < 1/L we can write

T s B~ I(H/M,) X (1/5)). (3.24)

p

Again we may go to the marginal case of g, — 1 to get a conservative’ bound. Also taking
H ~ 107°M,, (3.24) gives roughly L® <1010 = f > 1075/*M,,.

However, we find a larger window if we allow for the possibility of axions from higher-rank
gauge potentials. In that case, we have f/M, ~ L~"+ where r, is the rank of the potential
field. The most extreme case would be a potential of rank D — 4. In this case, for D = 10
the inequality (3.24) gives f/M, = 1075.

Altogether, our top-down theoretical priors are not very informative about the lower end
of the range of f/M,. As such, it is well motivated to scan down at least to the unitarity
scale, based on EFT reasoning, or even more agnostically to scan down to the resolution
available in the data.

9By conservative here we mean avoiding imposing potentially overly strong theoretical priors that are
consequences of our computational limitations.
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3.2 Nonperturbative stabilization

In some cases, the moduli whose adjustments during inflation cause drift in the period may
be stabilized via a balance of nonperturbative and perturbative terms in the potential. In
this section, we will explore a few such scenarios. They produce a more general functional
form of the drift f(¢) than that obtained in (3.13); as such, these scenarios require use of
the broader template (2.12), keeping more parameters in the Taylor expansion.

3.2.1 Oscillations in NS5-brane axion monodromy

We will begin by examining a specific realization of axion monodromy in a nonperturbatively-
stabilized compactification of type IIB string theory [2]. In this scenario the dimensionless
axion corresponding to the inflaton is given by

0= / Cy., (3.25)
e

where (5 is the Ramond-Ramond two-form potential, and .. is a homology class correspond-
ing to a family of two-cycles. Situating the family . in a warped region and wrapping an
NS5-brane and an anti-NS5-brane on well-separated representatives of X, introduces a mon-
odromy that weakly breaks the shift symmetry of a. The resulting potential is asymptotically
linear, V = p3¢, with ¢ = af, where f is given by

f2 _ Js Caccva
M2 8w2 Y

(3.26)

Here v, o =1,... hi’l, are the volumes of two-cycles in the compactification; V is the total
six-volume; and c,.. are triple intersection numbers. See [3], whose conventions we adopt
here, for more detailed background.

The structures required for NS5-brane monodromy are compatible with moduli stabiliza-
tion in the KKLT [19] scenario, in which Ké&hler moduli are stabilized by nonperturbative
superpotential terms from Euclidean D3-branes and/or from gaugino condensation on D7-
branes. The decay constant is determined by a specific combination of two-cycle volumes
CaccV®, and by the overall volume V. The inflaton potential depends on V via

©® = const. x V72, (3.27)

This is an example of the universal decompactification instability caused by positive energy
sources in four dimensions. As a result, V couples strongly to the changing inflationary
energy, diminishing as inflation proceeds, and we can estimate the shift in f by examining
the shift in V.
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We will consider a toy model that is a variant of the two-modulus example given in [2].
To capture the shift of V, it suffices to work in a simplified model with a single Kahler
modulus 7.1 We take

W=Wy+Ae ' K= -3log(T+T), (3.28)

with Wy =3 x 1072, a = 22, A = —1, as in [2]. This theory has a supersymmetric AdS,
minimum at ¢ = Re(7") ~ 21, and can be uplifted to a metastable de Sitter vacuum through
the addition of supersymmetry-breaking vacuum energy, e.g. from an anti-D3-brane. Upon
further including!'! a sufficiently warped NS5-brane/anti-NS5-brane pair, axion monodromy
inflation can occur without causing decompactification. However, for sufficiently large in-
flationary energy p¢ = V.., as will arise if the warp factor approaches unity, the quasi-de
Sitter minimum disappears and decompactification ensues. The maximum drift of the fre-
quency of oscillations occurs in a model that is almost unstable to decompactification at the
start of inflation: the shift of V is then the largest possible change compatible with Kahler

moduli stabilization.

The location o, of the minimum, as a function of ¢, is accurately captured by a second-
order Taylor expansion around a point ¢ in field space,

:(¢) & Tmin(0) + 0”[4, (¢ — P0) + %U"wo(cb — 0)*. (3.29)

If the volume V is taken to be almost unstable at the start of inflation, and ¢ is taken to be
near the point where the pivot scale exits the horizon, then for the model parameters quoted
above, one finds o'|4, < 0.5 and 0”],, < 0.1. These are (approximate) upper limits: if the
relative sizes of the moduli potential and the inflationary energy are such that ) is robustly
stabilized at the start of inflation, considerably smaller shifts are possible. Next, expanding

f asin (2.12),

1 df 1 d2f )
Rl4 | (b= o) + =] (d— o), 3.30
and using (3.26), we find that for the same assumptions made above, %j—{;]% ~ 1072 and

id{z—ﬂ ~ 1073. One can then check that for the parameters of this toy model, Af/f < 0.03
2fo dg? 190 ~
over the range of inflation visible in the CMB. Even though the fractional change in the

frequency is small, for sufficiently small f this effect may be observable.

We conclude that in realizations of NS5-brane axion monodromy in KKLT compactifi-
cations with realistic parameter values, the shifts of the nonperturbatively-stabilized Kéahler

0The shift of the two-cycle whose volume is denoted v, in [2] induces a subleading correction to the shift
in f, for the parameter values we will consider.

A Kihler moduli space of dimension > 1 is required for this purpose, as explained in [2], but this does
not preclude making an accurate estimate for hil =1, as we do here.
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moduli, while small, can in some cases lead to detectable changes in frequency over the
observed CMB. The drifting frequency in this model is directly captured by (3.30).

3.2.2 Logarithmic drift from nonperturbative stabilization

We now point out that in some classes of nonperturbatively-stabilized compactifications,
there is a logarithmic correction to the drift in frequency. Very schematically, in terms of
one relevant modulus L, nonperturbative stabilization can lead to a relation of the form

4 —L" 4 a7
e ~ Ha gy s (3.31)

with pl/(ul, L7) = €,L™7 < 1 small so that the two terms can compete.'? This translates
into
L™ ~ —log(e,a? /L7) ~ —log(ea™) . (3.32)

Combining (3.32) with f = M,L~"/, we find that the sinusoidal dependence is of the form

cOS [bo o (—1og(ea) — Po log(gb/gbo))nf/n] , (3.33)

where by is a dimensionful constant. Here we have used the fact that at least in a simple
situation with a single overall scale, we have a?° /LY ~ (¢/M,)P°.

In (3.33) the exponent ny;/n is positive, and might be expected to range over a few
discrete rational values, roughly of order unity.'®> The presence of the log factor inside the
cosine changes the template considerably, leading to a qualitatively different /-dependence
of the oscillations.

3.2.3 A supergravity toy example

To explore possible relations among the parameters appearing in the oscillatory templates,
it will be instructive to consider additional examples. We will therefore examine oscillations
in a simple N’ = 1 supergravity theory inspired by those that arise in nonperturbatively-
stabilized string compactifications.!* In this example the moduli-dependence of the axion
decay constant (setting the period of a modulation) will be related to the moduli-dependence
of a dynamically-generated scale (setting the amplitude of the modulation).

12For example, in KKLT constructions this small parameter is the fine-tuned small value of the classical
flux superpotential Wj.

13In supercritical theories one could have large ny and small n for some axions.

4\Whether the moduli potential arises from perturbative or nonperturbative effects will turn out to be of
little importance in this example, but the fact that the Lagrangian is supersymmetric will be central.
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Consider an N = 1 supergravity theory with a single chiral superfield T = 7 + 6
and Kéahler potential K. First we will discuss the case in which the modulations come
from a superpotential term, and periodic terms in the Kahler potential can be neglected.
Modulations in K will be treated below. Taking 6 to be the candidate axion-inflaton, we

suppose that
K(T,T)=K(1). (3.34)

We take the modulation to arise from a superpotential coupling,
W =Wy + Wye ", (3.35)

where Wy, Wi are constants independent of the modulus 7', and @ € R. To be concrete,

suppose that in Planck units,
Kpp =72, (3.36)

with § € R, up to an overall constant that we will not retain. For § = 1 this supergravity
theory captures key structures arising in flux compactifications of type IIB string theory
on Calabi-Yau orientifolds, with T corresponding to a Kéhler modulus. The canonically-
normalized field is (neglecting 7 — 6 kinetic mixing)

p=01". (3.37)

If the nonperturbative term is subleading overall, i.e. if Wie T < W, then the leading
modulated term is
Vise = WoWie % cos(af) = AY(7) cos(at?¢), (3.38)

up to a phase that we omit. So in full we have

Viwe = A*([6]) cos (a(rl6])’0) = Af 9= cos(a(rlg] - m)%0) . (339)

where we allow the saxion 7 to depend on the axion vev, ¢. Notice that the scale and
amplitude of the modulations are linked, both depending on 7[¢|, because the amplitude
determined by the real part of an instanton action, while the period is determined by the
imaginary part of the same action (and, at the same time, by the kinetic term). Linearizing
in small shifts of 7,

T[¢] =10+ 79, (3.40)

with v a dimensionful constant, we find
Vise = A7 cos 079", .41

Comparing to the template (3.13), we have py = 1, py = .

24



Next, we turn to modulations arising from instanton corrections to K (this is, for example,
a leading source of modulations in the NS5-brane construction of axion monodromy inflation
in [2, 3].) Taking as a concrete example (cf. [2])

K=-3log(T+T+eT+e™, (3.42)

and neglecting nonperturbative terms in the superpotential, one finds a structure of the

schematic form
e

; cos (%ﬁ — 62; sin(¢/f)> , (3.43)
or more generally

eax;<?-—esnm¢/f)) . (3.44)

We learn that deviations from a pure sinusoidal form can arise if the oscillations in A and in f
are correlated, e.g. if both originate from a single correction to the Kéhler potential. However,
significant deviations from the sinusoidal template occur only when the modulations are large
(e ~ 1) and a number of our approximations are breaking down.

3.2.4 Enhanced drift from nonperturbative potentials

To understand whether the relative rigidity of moduli stabilization in the example of §3.2.1,
and the correspondingly small drift, are general consequences of nonperturbative stabiliza-
tion, it is useful to examine the dependence on canonically-normalized fields. From the
Kéhler potential (3.28), the canonically-normalized field o corresponding to Re(T') is

3 _
Q—nggT+TH%%, (3.45)

with C, an integration constant. Comparing to (3.26), we see that f has an exponential de-
pendence on p. This finding is fairly general: the axion kinetic term typically has exponential
dependence on the canonically-normalized fields that parameterize ‘universal’ fluctuations,
such as the overall volume V and the string coupling gs. In supersymmetric compactifi-
cations, this is a straightforward consequence of the logarithmic Kéhler potentials of these
fluctuations, as in (3.28).

However, it is worth asking, still in the context of nonperturbative stabilization, whether
f could have power-law dependence on a more general modulus v that does not parameterize
a universal fluctuation. As an example motivated by the Large Volume Scenario [20], consider
a relative Kahler modulus in an example where the Kahler potential for two Kahler moduli

Ty, Ts takes the form
K = —2log(V) = —2log(rs/* — 13/?) . (3.46)
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In the regime 7, > 7,, 7, is to good approximation proportional to a power of a canonical
field: one can expand the logarithmic Kahler potential.

In nonperturbatively-stabilized compactifications, it is often the case that leading terms
in the scalar potential have steep dependence on 75, so that we have schematically

f~7d V~e ™, (3.47)

for a a constant. It follows that the relative shift of f can be large when 7, < 1,

ﬁ a‘rsf aﬂ'svtmfl g‘/mfl
f f 872-5 Vmod Ts Vmod ’

(3.48)

where Vi, 5; and V.4 denote the inflaton potential and the moduli potential, respectively.

We conclude that a shift in 7, that is modest in Planck units can be a large shift relative
to the initial vev, and give rise to a large relative change in f. The dynamics set by the
inflationary and moduli potentials can be thought of as determining the shift measured in
Planck units, while the functional form f(7;) (e.g., exponential or power law) determines
whether such a shift leads to a small or large multiplicative change in f. It would be
interesting to identify examples in which the large frequency shifts (3.48) lead to distinctive
signatures.

4 The Amplitude of Oscillations

In this section, we will comment on the amplitude A*(¢) of oscillations in the potential (2.1).
There is a wide range of possibilities for contributions to the part of the potential periodic in
a(¢). These contributions are generally exponentially suppressed as a function of the internal
length scales in the extra dimensions, so it is important to emphasize that the amplitude of
the effect is quite possibly unobservably small.

4.1 The amplitude and the scale of inflation

In high scale inflation there are significant upper bounds on the sizes of the extra dimensions,
leading to reasonable regimes of parameters for which oscillations could be detectable. We
will now make some simple estimates, in the spirit of the preceding discussion, to illustrate
the relation between the amplitude of oscillations and the geometry. As well as helping
to frame our understanding of the motivation for the search for oscillatory features, these
estimates may provide some utility in interpreting the implications of a null result for axion
monodromy and related scenarios.
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As reviewed above, axions can arise from potential fields integrated over topologically
nontrivial submanifolds (‘cycles’) ¥ in the extra dimensions. The spectrum of branes wrap-
ping these cycles is periodic under a; — a; + 27. The brane masses depend on a; as well as
on the volumes v; of the cycles. If a cycle size is relatively small, then as the axion rolls along
its trajectory, new sectors of wrapped branes become light. This can lead to particle/defect
production, or to radiative corrections, which produce periodic modulations, reflected in the
oscillatory term in V' (¢) (2.1). Similarly, instanton effects generically contribute oscillatory
terms to the potential.

Each of these effects is exponentially suppressed as a function of the size of the cycle
contributing the axion. A large oscillatory contribution can arise if the corresponding cycle
is stabilized at a small value — even a vanishing value is tractable theoretically under
some circumstances. For a small or vanishing cycle size, one finds a value of f/M, that
is independent of v;. It is therefore well motivated to search for oscillations over the whole
range of values of f/M, for which the data has sufficient resolution.

However, the signal may even be detectable for relatively large cycles, given the con-
straints on internal dimensions required for large-field inflation. Let us make some estimates
for the case studied above in §3.1, with one scale Lv/a/ = v/ve/ in the internal geometry. In
this case, for example for an axion from the Neveu-Schwarz two-form potential field B, we
have worldsheet instanton effects that contribute

AY(@) ~ Ade™ (4.1)

where for power law stabilization of moduli in a product structure, we can estimate the

prefactor as
g 1
tot s

In this prefactor, the first factor is the conversion to Einstein frame, the second the standard

1/g? scaling of a classical effect in spacetime, and the factor of L* represents the integral
over the bosonic zero modes (transverse position) of the worldsheet instanton in the case of
a simple product structure. We should stress that the estimates we are doing here are meant
to give a rough idea of the possible scale of the effect, rather than specific predictions of
explicit models. Here V,,,4 refers to a typical term in the moduli-stabilizing potential, such
as the contribution Vz obtained by dimensionally reducing the internal curvature.

In this type of scenario, we may also trade v for f/M, via

f 1 1
M, @rL)2 " v, (43)

This exhibits a simple relation py = pys, but this relation is not general.
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Next, we note from previous work [10] that an analysis using current CMB data is
sensitive to an oscillatory piece roughly of size A*(¢) ~ 1074Vy(¢). Putting this together
with the previous estimates, we have detectability for

AS
V(@)

where Vj is the scale of the inflationary potential energy. Since A can be of order the moduli-

Me/f <104 (4.4)

stabilizing potential barriers, it is at least as large as the inflationary potential V;(¢). Even
in the marginal case, where they are equal, we see from (4.4) that one requires f/M, > 1/9,
meaning that the cycle size v is of order 10 in string units. For high-scale inflation, this is a
reasonable number. And again, given a hierarchy between the inflationary and moduli-barrier
scales, the amplitude would be detectable for even larger cycle size despite the exponential
suppression.

Turning this around, a null result at this level would exclude an interesting regime of
model parameters, given the bounds on the size of internal cycles arising from the high scale
of inflation. However, it would be difficult to falsify the scenario based on these constraints.
In any case, the estimates here provide ample motivation to pursue a search for drifting
oscillations over a broad range of parameters.

4.2 Creation myth: tunneling initial conditions and thresholds for

A(e)!

In this section, we will make a slight detour to explain a relation between drifting oscillations
and an interesting scenario for the initial conditions (somewhat similar to those explored in
[17]) in axion monodromy inflation. An appealing possibility for the precursor to the ~ 60 e-
folds of phenomenological inflation is tunneling from some earlier metastable minimum in the
effective potential. This can be motivated by the structure of the string landscape, although
despite interesting efforts there is not anything close to a well-understood framework for
computing and interpreting physical observables in eternal inflation.

With the oscillations studied here, there are regimes of parameters and field values for
which the oscillations produce local minima in the potential. In order for phenomenological
slow-roll inflation to proceed, we require that the potential be monotonic during the last 60
e-folds. That is, we require Vj(¢) to dominate at late times. But if the derivative of the

oscillatory term in the potential, V

" (¢), dominates at earlier times, i.e. further out in ¢,

tunneling out of a resulting metastable minimum could provide initial conditions for slow
roll inflation. Since the field range of ¢ is bounded by ultraviolet physics, extending only
over the range ¢ < ¢yy where the inflationary potential remains consistent with moduli
stabilization [1, 2, 3, 13], the condition that V! (¢) dominates at large ¢ leads to a lower
bound on the amplitude of oscillations. This bound depends on the parameters p, ps, pa.
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4.2.1 Rigid case

As an initial illustration, consider py = py = 0 (no drift in amplitude or phase), and
Vo(puv) ~ 102V (o).

A convenient parameterization is

A4
V' =putPer? [1 — by sin (? + VO)} . by (4.5)

f putrgr-tfe
Having a tunneling ‘creation myth’ induced by oscillations requires that the secular term
ptP@P~! dominates V' for ¢ < ¢ for slow-roll to work, while at some value ¢, > ¢ the
oscillatory contribution to V' must begin to dominate and create local minima to tunnel
from. That is, we need

b,>1 for ¢>¢, and b, <1 for ¢ <. (4.6)

Here ¢, denotes the point of the (last) tunneling exit, which is in the region where b, crosses
from b, > 1 to b, < 1 with decreasing ¢. That is, b, must grow monotonically with increasing
¢, increasing beyond unity around ¢ ~ ¢ > ¢¢. From the form of b, this immediately
requires p < 1 for the rigid case we are discussing right now.

Furthermore, there is a finite range of control ¢y < co above which the energy density
grows too large. Hence we need to require ¢y < ¢y < ¢pyy < oo for a tunneling based creation
myth to work. This fact that ¢, < ¢y < oo immediately enforces a lower bound on A.

We can analyze this more closely by rewriting the above conditions b,(¢;) > 1 and
¢r < ¢yy explicitly as a lower bound on A

p—1 1%’
A >N =pfut Py <¢U—V> _p ( i ) f

=p— | —
Po oo \Vuv

(4.7)

o\ 7 f

=3x107°M) p?? () .
8 PP\ Vv ) M,
Here we used ¢ ~ 10,/p M), and the power spectrum normalization
1 Vi 1 Vog? 1

Ps 0 %01 o0n10 = Vy~3x 10~%. (4.8)

2472 M}eo 1272 MS p?

Observationally, oscillations are bounded in amplitude, giving a constraint

4 4 —13 4 / f
A < Aexp ~ 10 Mp ﬁp . (49)
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We now require

4 4 4
AD <A <AL, (4.10)
for a model to provide a creation myth consistent with experimental data. This rearranges
into -~
Vo \ » M,
3/2 0 ) P
P —_— <3 x10 — 4.11
(VUV> f (4.11)

In turn, this provides an upper bound on p which leads to a constraint on r = 4p/N,. To get
a sense of the numbers in this case, let us allow f/M, to range down to 10™* and estimate
from the high scale of inflation that V5/Vyy 2 0.01. This leads to an upper bound r < 0.04.

4.2.2 Relaxing rigidity

More generally, however, the additional parameters ps, and especially pa, in our drifting
templates relax this condition. For each value of these parameters that is consistent with a
tunneling initial condition, there is a lower bound on the amplitude A(¢g)?, but it will vary
significantly over the range of interest. The power p, enters exponentially in (3.13). Over
the range ¢y < ¢ < ¢yv, this can lead to a large hierarchy between A(¢py)* and A(gg)?,
allowing for tunneling initial conditions.

We start from the expression for V' descending from (3.13), which we write as

B 1+py B 1+py
Vi =pputreprt [1 — b;l) sin <% (%) + ’yo> — b](f) oS (% (%) + ’ya)

Y

(4.12)
where
- A2 Df
i = 20 e (2) (413)
B A4 pa—1
B = szgfi)‘lﬁ)pA%% (%) : (4.14)

Already at this level, we see that py > 0 strongly disfavors having a creation myth, as in this
case l;;(,l), l;éz) — 0 exponentially quickly with increasing ¢ > ¢y. So we look at the parameter
ranges py 7 0, pp < 0.

If we work in a regime where py ~ p without a strong hierarchy between them (which
the power-law cases above seem to support), then l;,(f) < B,(gl) due to the extra power of ¢g/¢

and the factor fy/¢o < 1.
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The parameter ranges py # 0, px < 0 (neglecting Z)éz) as argued above) provide two

possibilities.

5

e case a: py = 0, i.e. only phase drift. In this case the creation myth conditions 51(,1)(@) >

1 together with ¢; < ¢y boil down to a modification of the rigid case condition

4ps—p
Vi \% P
A > A= P ¥ ( 0 )
© 1+4préo \Vov Jo
(4.15)
379 I+ps—p
:3><10*10M4L ﬁ ! ﬁ.
P + Dy Vv Mp

Consequently, in comparing with the results from the rigid case, py < 0 strengthens
this upper bound, while p; > 0 weakens it. Again, we can get a feeling for numbers by
taking the same numerical estimates as before, f = 10*4Mp and Vy/Vyy = 0.01. Then
we get 7 < 0.04 (14 py) up to terms logarithmic in 1 + p; with small prefactor.

case b: ppy < 0, i.e. both amplitude and phase drift. In this case the exponential
dependence in A*(¢) quickly dominates once |pa| > O(0.1).

As an example, the model discussed above with py = pn = —1/3, p = 4/3 has a

Alguv)* My |0 [ ¢ e
Aoy ~ exp (E [1 (¢UV> ]) ) (4.16)

Since fo/M, ~ 1/L? can be small, e.g. of order 1072 — 10~!, this can easily exceed the
ratio

hierarchy

Vo(duv) J

Vi) gl

(4.17)

leading to a monotonic behavior during inflation and a tunneling initial condition.
Similar results hold for a significant range of these parameters.

The drift in A described by pa has a limited effect on oscillations in the CMB, because
of the small range of ¢ during the observable window. However, we have just seen that
this drift can have significant impact on tunneling initial condition.

Symmetry Structure of Axion Monodromy

Now that we have explored the pattern of drifting oscillations, exploiting the backreaction

of the inflationary potential on moduli degrees of freedom, it is worthwhile to summarize
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the symmetry structure of axion monodromy inflation. The comments in this section can be
found in the existing literature, but we collect them here for completeness, and because of
the close connection between the discrete shift symmetry, its soft breaking, and the drifting
oscillatory features in the resulting power spectrum.

There are several ways symmetries come into the physics. First, there are the underlying
gauge symmetries respected by the generalized fluxes F appearing in the Stueckelberg-like
terms (3.2). As always, a gauge symmetry is a redundancy of description. Nonetheless, the
gauge symmetry constrains the form of the action for the fluxes and their couplings to the
gauge potential fields A that descend to the axions a; ~ le A via integration over cycles
5, 15

In the presence of generic fluxes and/or branes, there is direct dependence on the axions
in the four-dimensional effective potential. A shift of a(¢) by 27 can be undone by a shift
of flux quanta, giving an equivalent configuration. But in a given sector of flux quanta
— quantum numbers which are locally stable, decaying via nonperturbative effects — the
potential is unwound to a kinematically unbounded field range.

If the system is displaced from the minimum of the resulting axion potential, other scalar
fields, including moduli corresponding to the volume of the extra dimensions and to the
string coupling g, feel forces as a result. These tadpoles are not periodic under the shift
a — a+2m. The sourced fields adjust in an energetically favorable way, either by flattening or
destabilizing the potential, as explained for the case of power-law stabilization in §3.1. Their
couplings in the axion kinetic term are also crucial, leading to kinetic steepening or flattening
depending on the example. In appropriate cases leading to viable phenomenology, the moduli
remain metastable, with the adjustment leading to a flattened potential Vi(¢) ~ put=P¢P.

Given that, there is a sector of particles and defects — those arising from branes wrap-
ping the cycle ¥, — that respects a weakly broken discrete shift symmetry. Much like the
spacefilling branes that can contribute to the potential as in [2, 3], branes of higher codi-
mension also have tensions that depend on the axion a, and that undergo monodromy when
a — a-+2m. However, the full spectrum of such branes comes back to itself under a — a2,
up to small corrections inherited from the (generically flattened) potential Vj(¢). Similarly,
Euclidean brane configurations, which produce instanton effects, are periodic. These sectors
of the theory are important in the present work, as they generate the oscillatory features.

Finally, at low energies there is an effective approximate discrete shift symmetry. This
symmetry protects against substantial radiative corrections to the potential, as in standard
large-field inflationary models such as [5]. This structure descends from gauge symmetries
in the underlying string theory, and because of the sub-Planckian underlying periodicities, it

15As noted above, there are various string-dual fields, including examples from brane motion modes as
in [1] or the T-dual ‘windup toy’ picture of [2, 3], which can behave similarly; another interesting class of
examples can be found in [17].
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is consistent with the expectation that exact continuous global symmetries should be absent
in quantum gravity.

6 Data Analysis

We now turn to a search for the models we have discussed in the Planck nominal mission
data. Our analysis is preliminary and should largely be thought of as a proof of principle,
establishing that what we propose is numerically feasible.

The analysis divides into two parts: the computation of the primordial power spectrum,
and a search for this power spectrum in the data. As we have argued in §2.2, an analytic
derivation of the primordial power spectrum will involve extending the derivation given
in [3] to higher orders in the slow-roll expansion. This is beyond the scope of the current
work, but there are at least three routes to avoid this tedious task. The first is a numerical
computation of the primordial power spectrum, starting from the inflaton potential, at every
point in parameter space. We will not pursue this option because it is very time consuming.
The second approach is to start from an analytic template based on the derivation in [3],
making use of a careful comparison of the template with a full numerical calculation for the
interesting range of parameters to ensure that the two can be brought into agreement after
small adjustments of existing parameters in the template. The third approach is a purely
phenomenological template that captures the relevant physics. In this case the hard work is
to relate the parameters of the phenomenological template to those in the microscopic theory.
We will present examples of both the second and third approaches, and give a dictionary
between the parameters in the two approaches, in §6.1.

Once an accurate analytic template has been found, we can search for it in the data.
The dimension of the parameter space to be searched is relatively high. There are the
parameters of ACDM, additional parameters in the primordial power spectrum, and also
nuisance parameters for foregrounds, relative calibration between frequencies, and beams.
As a function of the nuisance parameters and the parameters of ACDM, the likelihood is
typically smooth and not too far from Gaussian, and several techniques exist that allow
for an efficient analysis. However, the likelihood typically depends very strongly on certain
parameters of the oscillatory power spectrum, such as the frequency, and can have hundreds
of local maxima, providing a numerical challenge. In particular, the standard Metropolis-
Hastings algorithm fails and alternatives are needed. Early searches fixed the cosmological
parameters and evaluated the likelihood function on a very fine grid in the frequency, in the
remaining power spectrum parameters, and in the ACDM parameters that are degenerate
with these. The advantage of this approach is that the entire parameter space is searched, and
the grid spacing can be chosen fine enough so that no features are missed. The disadvantage is
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that searching the entire parameter space is inefficient because most regions are uninteresting.
As a consequence it is not feasible to vary the cosmological and nuisance parameters. In
models with linear or logarithmic oscillations, or the oscillations predicted by the linear axion
monodromy model [2, 3], the frequency of the oscillations is the only challenging parameter.
So an alternative that allows varying all cosmological parameters is to use a Metropolis-
Hastings sampler on many narrow slices in frequency. In §6.3, we present the results of a
search based on nested sampling as implemented by MultiNest [23], which is designed to
sample functions with many maxima. We demonstrate that this method would recover a
signal using simulations based on an oscillatory power spectrum in §6.2. To understand
the improvement in the fit that we should expect in the absence of a signal, we also show
simulations based on a smooth ACDM power spectrum.

6.1 Templates and parameter ranges

Throughout this work, we focus on single-field axion monodromy. We will now specialize
further to the inflaton potential (3.13) motivated by power-law moduli stabilization. Using

) e

where the amplitude dn; and the phase Ay are calculable using the techniques in [3]; ¢o is

the same approximations as in [3], the power spectrum is

ns—1 PA prt+l
A%(l{:) = A?z (kﬁ) (1 + 5nsefo°<%§> cos [% (%) ' + Agp
* 0

some fiducial value for the scalar field to be specified later; and ¢;, is the value of the scalar
field at the time when the mode with comoving momentum £ exits the horizon. At leading
order in the slow-roll expansion we have

;Z—'; = /2p(No — n(k/ky)) (6.2)

where Ny = ]\f*—l—(gbend/Mp)2 /2p, and @e,q is the value of the scalar field at the end of inflation.
In the spirit of our earlier discussions, we will for now neglect the drift in amplitude, setting
Cy = 0. Comparison with a numerical evaluation of the power spectrum shows that the
analytic template (6.1) gives an excellent approximation to the exact power spectrum, after
a small adjustment of the frequency. In other words, an accurate template for the power

ns—1 pr+1
AL (k) = A% (%) (1 + dng cos [% (%> ' + Ay ) , (6.3)

Po
with f higher than the underlying axion decay constant by up to a few percent. This is the

spectrum is

first template for which we will present results in §6.3. The relation between the amplitude
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ons and the parameters in the potential is well approximated by

o ( 2pNo>”pf
2fNo \ 6o ’

9\ 1/2
ons = 3b (—) with a=(1+py)
a

(6.4)

and monotonicity parameter b = 51(,1)(%) given by (4.13).

Figure 6.1 shows the comparison between the numerical and analytic power spectra for
two representative choices of parameters. For both we set p = 4/3 and py = —1/3. For the
first example, we set f =4 x 107* M,, and b = 0.01. In this case we find f=416x10"* M,.
For the second example, we set f = 1073 M, and b = 0.05 and find f = 1.03 x 1073 M,,.

Since f and f are so close, we will omit the tilde in what follows.

It is instructive to expand the argument of the trigonometric function in In(k/k,). One
finds

pr+l
cos [@ (ﬁ) f + Ap

= COoS [a (ln(k/k*) + Lopr In*(k/k,)

f \ o 4N,
+(1—§;§!(;g—pf) In®(k/k.) + (1—pf)(2i’>315]1\?[§)(5—pf) 1n4(/<;/k*)+,_,) L AG. (65)

Even for the highest frequencies of interest, the term proportional to the fourth power of
the logarithm does not significantly modify the phase over the observed seven e-folds, and
can be neglected. However, we should in general keep the terms up to and including the
third power of the logarithm to accurately model the power spectrum. This is consistent
with our findings in §2.2, where we showed that we must retain terms quadratic in ¢ — ¢q
in the Taylor expansion of the axion decay function.

We see that the potential (3.13) with ps of order unity leads to an argument of the
trigonometric function that is a rapidly converging series in In(k/k,). This suggests a natural
phenomenological template of the form

k’ ns—1
A% (k) = A% (k:_) <1 + 0ng cos

Ay + o <1n(k/k*) +y % ln"“(k/k*)>] ) .

n=1
(6.6)
This is the second template for which we will present results in §6.3. For a microphysical
model yielding a primordial power spectrum that is well described by (6.6), the ¢, will be
related to the parameters of the model. These relations can be used to convert bounds on
¢, into bounds on microphysical parameters.

Modulations in the inflaton potential also lead to oscillatory contributions in the power
spectrum of tensor perturbations. However, for f < M, the amplitude of these oscillations
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Figure 1: Comparison of a numerical power spectrum and an analytic template after a small
shift in f in the analytic template to maximize the overlap. Top row: Cy = 0, py = —%,
f=4x10"*M,, and b = 0.01. Bottom row: Cy =0, p; = —%, f=1073M,, and b = 0.05.
The top row is best viewed after zooming in.

is suppressed compared to the amplitude of the oscillations in the scalar power spectrum, by
a factor (f/M,)*a < 1 [3, 24]. So for practical purposes we can approximate the spectrum
of tensor perturbations by the spectrum obtained in the absence of oscillations
k nt
AF (k) =~ A2 (k_*) with A} =rA% and ny, = —r/8. (6.7)
To perform a search, we must specify priors for the various parameters in these templates.
The parameters in our first template are ng (or p), the amplitude dng, py, f, and the phase
Ayp. Concrete models with p € {3,2,4/3,1,2/3} have been explored in the literature, but
more general powers are plausibly realizable. As can be seen from (6.5), there is a degeneracy
between p and the axion decay constant, so that changes in p can be compensated for by
changes in f. So p is only directly constrained by the spectral index and the tensor-to-scalar
ratio. With current data, the variation in n, and r induced by changes in p only leads to
improvements of the fit of a few. Thus, in an exploratory search for oscillatory patterns in the
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power spectrum, p can be fixed; we will set p = 4/3. We will assume instantaneous reheating.
For p = 4/3 this corresponds to N, ~ 57.5 for k, = 0.05 Mpc~'. We set ¢y = 12.38 M, and
find @ena = 0.59 M,. The best-fit amplitude in the WMAP9 data was large, dns ~ 0.5.
We should choose a prior that includes this best-fit point; we will use 0 < dny < 0.7. For
this initial analysis, we consider —3/4 < py < 1/2, but because we do not know of sharp
theoretical bounds on the parameters p, py, we plan to perform scans over a wider range in
the future.’® For the axion decay constant we scan over 107*M, < f < 107*M,, and finally
we take 0 < Ay < 27w. For the second template, we assume that the parameters ¢, are of
order unity and use —2 < ¢, < 2, 1 < a < 1000, and 0 < Ay < 27. It should be kept
in mind that the single-field effective field theory becomes strongly coupled when o 2 200.
So a detection of a signal above this value would necessitate a better understanding of the
microscopic model.

6.2 Consistency tests with simulated data

Before we present the results of our search in the Planck nominal mission data, we will test
our methods on simulated data.

The introduction of additional parameters into a model is expected to improve the fit.
Parameters that enter the model linearly, such as dn, in our case, are expected to improve the
fit by Ax? = 1 per parameter. Parameters such as the axion decay constant are not of this
type, and the expected improvement is harder to predict. Roughly speaking, for amplitudes
like dngs we only have one trial, and increasing the amplitude too far will lead to a bad fit.
For parameters like f, however, an increase will not necessarily eventually lead to a bad fit.
Some frequency may fit well, and then as we increase the frequency the fit may become worse,
but it may eventually become better again. In other words, we have several independent
trials and should include a trials factor for the look-elsewhere effect. While progress can be
made analytically toward understanding the expected improvements for such parameters, we
will resort to simulations based on a featureless power spectrum to assess the improvements
we should expect for our templates in the absence of a signal. Our simulations include
correlations between multipoles introduced by the sky masks used for the measurement of
the spectra in the CAMspec likelihood code. In addition, the simulations include foregrounds
consistent with the foreground model used in the CAMspec likelihood code presented in [25].
They do not include instrumental effects, but we assume that instrumental effects are well
enough controlled to be unimportant for the statistical question we are interested in. We
have performed searches in five simulations for the template (6.3), varying only the power
spectrum parameters. The largest improvements found in the five runs range from Ay? ~ 14

16Ongoing work to analyze the powers arising in axion monodromy inflation more systematically may yield
more interesting bounds on, or relations among, the parameters.
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to Ax? ~ 19. If these were drawn from a Gaussian distribution, we would be led to expect
an improvement of Ay? = 16.5 with a standard deviation of ~ 3.5. We know from the first
reference in [10] that the distribution is not quite Gaussian, and more substantial simulations
are required in the event of a potential detection to assess the significance. However, these
numbers do provide a useful guide, and improvements of this magnitude should not be
considered significant.

We now demonstrate that our methods allow recovering a signal from simulated data
based on an oscillatory power spectrum. As before, the simulations include effects of sky
masks and foregrounds, but do not include any instrumental effects. We have performed
simulations for a signal of the form of template (6.3) with py = —1/3 and amplitudes
ranging from ons = 0.02 to dns = 0.2 for three representative frequencies, f =2 x 107* M,
f=4x10""M,, and f = 1073 M,. We find that the signal is recovered in all simulations
that lead to an improvement larger than that expected in the absence of a signal, but with an
amplitude dng that is slightly biased towards larger values. For our preliminary search this
is of no concern, but would have to be addressed in the event of a detection. The results are
shown in Figure 2 for the simulations with amplitudes on, = 0.02, dn, = 0.03, dn, = 0.04,
and dng = 0.05 for axion decay constant f = 107% M, and p; = —1/3. The four simulations
are based on the same random seed, so the only difference is the amplitude of the signal. The
size and color of the circles represents the improvement. Larger circles represent larger values
of Ax?. For dng, = 0.02 the improvement corresponding to the input parameters is smaller
than for other parameter choices that fit random scatter in the data. As the amplitude is
increased to dn, = 0.05 the improvement grows to Ay? ~ 25 and becomes significantly larger
than the improvement expected in the absence of a signal. As expected from our discussion
of overlaps, py is not well constrained and Ax? is approximately constant along the line of
constant a« = w/H as defined in equation (6.4).

6.3 Preliminary results

We now turn to the results of a preliminary search for oscillatory contributions to the power
spectrum with drifting periods in the Planck nominal mission data using the data set re-
ferred to as Planck+WP [25]. In previous searches for logarithmic oscillations or oscillations
motivated by the linear axion monodromy model, with negligible drift of the axion decay
constant, in the Planck nominal mission data using the public likelihood code, the improve-
ment in fit was exactly as expected statistically (see figure 6 of the first reference in [10]).
That is, the fit improved by Ax? ~ 10 over the best-fit featureless power spectrum, just
as expected based on simulations that include the look-elsewhere effect. In this work, we
add parameters characterizing the drift in frequency, and would like to understand if they
improve the fit in a significant way.
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Figure 2: Results for a search for oscillations in simulated data. The simulations are based
on the template (6.3) with p; = —1/3, f = 107°M,, and amplitudes dns ranging from
ong = 0.02 to dng, = 0.05, as indicated by the labels. Points included in the plot lead to
an improvement over the best-fit with dny = 0 of Ax? > 4. The sizes of the dots and their
color indicate the amount of improvement. The orange cross indicates the input values of
f and py, and the red line represents the corresponding value of & = w/H as defined in
equation (6.4). As the amplitude dng increases the significance of the improvements grows.
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In summary, we find that the fit improves by Ax? a 18 for both templates (6.3) and (6.5).
Based on the simulations discussed in section §6.2, this is comparable to the improvement
expected in the absence of a signal. However, it should be kept in mind that we have studied
a limited range of parameters and that a more thorough search is needed. For now, we
present these preliminary results as part of our proof of principle for the feasibility of this
data analysis rather than as a comprehensive search for models with drifting frequency.

Let us now describe the analysis in detail. For our first template (6.3) we have performed
three different types of runs, varying only the power spectrum parameters, varying the power
spectrum and ACDM parameters, and varying the power spectrum and nuisance parameters
in the CAMspec likelihood. If only the power spectrum parameters are varied, we find an
improvement of Ax? & 18. At the best-fit point, the axion decay constant is f = 107 M),
pr = 0.2, and the amplitude is dns ~ 0.27. As expected, the improvement compared to
ACDM is better when the ACDM or nuisance parameters are varied, but only slightly.
Points that lead to an improvement of Ay? > 4 are shown in the left panel of Figure 3.
We show the results for the run in which only power spectrum parameters are varied, as
varying the cosmology or foregrounds tends to smear out the frequency. The red solid line
along which the fit is improved by Ax? = 10 corresponds to a frequency w/H = 28.8.
This frequency was the best-fit identified by the Planck collaboration [26]. As was pointed
out in the first reference of [10], some of the improvement can be attributed to a range of
multipoles around ¢ = 800 and is seen in all frequencies. However, a significant contribution
to the improvement originates from the 217 GHz data in the region around ¢ = 1800. This
range of multipoles of the 217 GHz data is known to be affected by interference between the
4K cooler and the read-out electronics [27, 25]. This disfavors a cosmological interpretation,
but the agreement between analyses provides a consistency check for our search. The fact
that the improvement is nearly constant along the line of constant w/H shows that the data
is not sensitive to the In?(k/k,) term for this relatively low frequency. At smaller f or larger
w/H the improvement is no longer uniform along a line of constant w/H, so that the data
prefers a certain amount of drift.

In addition, we have performed a search based on the likelihood described in [27]. This is
based on survey cross-spectra and as a consequence is essentially insensitive to the cooler line
but may be subject to other systematics such as changes over the course of six months. In
this case, we find an improvement of Ay? ~ 14 relative to the unmodulated power spectrum.
The fraction of sky is slightly different between the two analyses and we have not performed
simulations for our search tailored to this likelihood, but we expect improvements comparable
to those seen in the simulations for the CAMspec likelihood. The best-fit frequency in this
case is f = 2.3 x 107*M,, with p; = 0.05 and an amplitude of dn, = 0.15. The results
are shown in the right panel of Figure 3. The solid lines shown in the figure indicate the
values of w/H that led to improvements in the search based on the CAMspec likelihood.
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Figure 3: Points that lead to an improvement over ACDM of Ax? > 4 for the first template,
(6.3). The left panel shows the results for the public Planck likelihood [25], and the right
panel shows the results for the likelihood discussed in [27]. The sizes of the dots and their
color indicate the amount of improvement. Larger blue points represent larger values of
Ax?. The solid lines indicate constant o = w/H. The red solid line represents w/H = 28.8,
the best-fit frequency found by the Planck collaboration [26]. A significant contribution to
the improvement derives from the region around ¢ = 1800 in the 217 GHz data. This range
of multipoles of the 217 GHz data is known to be affected by interference between the 4K
cooler and the read-out electronics [27, 25].

As expected, the improvement at w/H = 28.8 is absent, but there are some frequencies
that lead to improvements in both likelihoods, such as w/H ~ 60 and w/H =~ 210. For
the linear axion monodromy model, the latter corresponds to an axion decay constant of
f = 4.37 x 107*M,, and is the frequency that led to the improvement of Ax? ~ 20 in the
WMAP9 data. The improvement seen in both likelihoods is Ayx? < 10.

We can also use our searches to derive constraints on the amplitude of oscillations allowed
by the data. The results are shown in Figure 4 for both likelihoods. When interpreting them,
it should be kept in mind both that we restricted to —3/4 < py < 1/2 in our search, and
that the limits are approximate given the limited number of simulations we have performed.

The results for our second template (6.6) are shown in Figure 5 for both likelihoods. As
before, no improvement is observed for w/H = 28.8 for the likelihood described in [27], and
improvements at w/H ~ 60 and w/H ~ 210 are seen in both likelihoods, but with Ax? < 10.
While the plots show a dependence on ¢; for the frequencies that lead to the most notable
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improvements to the fit, there is no dependence on the parameter ¢y for w/H < 1000.

The improvement in the fit caused by instrumental effects such as the cooler line highlights
that the search for oscillatory features in the power spectrum is subtle. Further evidence in
this direction comes from the apparent discrepancy between the improvement seen in the
Planck nominal mission data at w/H ~ 210 (Ax? = 10) and the WMAP9 data (Ax? = 20)
in searches for oscillations with constant frequency. Since the two experiments have very
different resolution, a natural guess might be that one will recover the larger improvement in
the Planck nominal mission data once the multipoles included in the analysis are restricted
to the range in which both experiments are cosmic variance limited. While the best-fit
parameters in this case approach each other, the improvement in the analysis based on the
CAMspec likelihood remains Ayx? ~ 10. A preliminary analysis [28] based on WMAP9 W-
band data as well as Planck nominal mission 100 GHz survey spectra performed with the
same masks and approximations to the covariance matrix led to an improvement Ax? ~ 10
for the masks used in the Planck analysis in both datasets. As the sky fraction is increased,
the improvement increases and approaches Ax? ~ 20 for both the W-band and 100 GHz data.
This indicates that a more thorough analysis is needed. Finally, the range of parameters
searched here was limited and a careful search should be carried out for a wider range of
parameters and including the drift in the amplitude.

CAMspec CrossSpec Hybrid

025 0.25
0.20 0.20
£ 0.15 £ 0.15
0.10 0.10

0.05 0.05

-35 -30 -25 -20 -15 -35 -30 -25 -20 -15

Figure 4: Marginalized posterior in the dng — f plane for the template (6.3), for the run
in which only the power spectrum parameters are varied. The left panel shows the results
for the public Planck likelihood, and the right panel shows the results for the likelihood
described in [27].
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Figure 5: Results for the second template, (6.6). As before, points included in the plot lead
to an improvement over ACDM of Ayx? > 4, and the sizes of the dots and their color indicate
the amount of improvement. The orange dot indicates the best-fit point. The top panels
shows the results for the public Planck likelihood, and the bottom panels show the results for
the likelihood described in [27]. While especially for higher frequency there is a dependence
on ¢y, indicating that a drift in frequency leads to a better fit, the dependence on ¢, is weak.
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7 Conclusions

We have shown that the symmetry structure of axion monodromy inflation allows oscillatory
terms in the scalar potential whose amplitude and frequency can drift over the course of in-
flation, as a consequence of moduli vevs that shift in response to the diminishing inflationary
energy. Incorporating the drifts in frequency can be critical in searching for oscillatory signa-
tures in the scalar power spectrum. We presented templates that encode the drifts that occur
in a broad range of axion monodromy scenarios in string theory and in effective field theory.
The parameter ranges we propose for these templates include the values found in models
such as [2, 3, 13| but extend well beyond this regime, including ranges in which the drift
is strong enough to preclude a useful Taylor series expansion of the axion decay function,
but weak enough for radiative stability. The range of frequencies and drift parameters con-
sistent with an effective field theory description includes regions where the drift parameters
are essential in comparison to cosmological data, although for a wide range of parameters
previous analyses without drift parameters suffice. It would be interesting to pursue the
theory of oscillations at higher frequencies, beyond the scale at which effective field theory
breaks down, and to characterize the full range of parameters realized in string-theoretic
axion monodromy.

Using the templates proposed here, we performed a preliminary search for drifting-
frequency oscillations in the Planck nominal mission data, in order to demonstrate that such
an analysis is numerically feasible. A complete analysis that explores the full parameter
space is an important problem for the future.
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