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Abstract

We analyze the shape and amplitude of oscillatory features in the primordial power spectrum

and non-Gaussianity induced by periodic production of heavy degrees of freedom coupled

to the inflaton φ. We find that non-adiabatic production of particles can contribute effects

which are detectable or constrainable using cosmological data even if their time-dependent

masses are always heavier than the scale φ̇1/2, much larger than the Hubble scale. This

provides a new role for UV completion, consistent with the criteria from effective field theory

for when heavy fields cannot be integrated out. This analysis is motivated in part by the

structure of axion monodromy, and leads to an additional oscillatory signature in a subset of

its parameter space. At the level of a quantum field theory model that we analyze in detail,

the effect arises consistently with radiative stability for an interesting window of couplings up

to of order . 1. The amplitude of the bispectrum and higher-point functions can be larger

than that for Resonant Non-Gaussianity, and its signal/noise may be comparable to that of

the corresponding oscillations in the power spectrum (and even somewhat larger within a

controlled regime of parameters). Its shape is distinct from previously analyzed templates,

but was partly motivated by the oscillatory equilateral searches performed recently by the

Planck collaboration. We also make some general comments about the challenges involved

in making a systematic study of primordial non-Gaussianity.
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1 Introduction

The observation of the primordial seeds for structure provides a fertile testing ground for

theories of the dynamics that generates them. The theoretical and observational study of the

primordial power spectrum and non-Gaussianity is a mature field, with substantial progress

recently due to Planck [1] and future possibilities in large-scale structure. But even in the

CMB this study is not complete; in fact it is not known if there is a systematic way to

complete it.

In principle, there is an infinite space of possibilities, in practice the only useful searches

involve N -spectra which depend on a limited number of parameters. Such templates can

be derived from sufficiently well-defined theories of the primordial perturbations. Distinct

analyses are required in order to test shapes which do not overlap strongly, in the precise sense

developed in [2]. Moreover, a physical mechanism which generates large non-Gaussianity may

generically also affect the power spectrum, so such searches are only well-motivated if the

signal/noise in the higher-point functions is competitive with the leading corrections to the

power spectrum.

In this work, we will present a new class of shapes motivated by a very basic theoretical

possibility: non-derivative couplings of the inflaton to additional heavy fields. In the presence

of a discrete shift symmetry such couplings can be significant without spoiling inflation and,

as we will see, can lead to non-adiabatic production of very heavy fields, sourcing detectable

corrections to the scalar perturbations – including non-Gaussianity – in an interesting range

of parameters.

Such couplings occur in axion monodromy inflation [10, 11, 13, 12] at the single-light field

level, and were investigated in [5, 6] as a source of tensor emission during inflation (see e.g.

[7, 8] for another secondary source of tensor modes). The scalar contribution was a limiting

factor on this effect. Here we analyze this contribution in detail, focusing on the regime

where the scalar emission is subdominant to the nearly Gaussian vacuum fluctuations, but

can be detectable in the power spectrum and non-Gaussianity. In the regime we consider,

the particle production does not backreact on the inflationary dynamics, in contrast to [14],

where the perturbations were studied in a continuum approximation in the strongly back-

reacting regime.

In broader terms, we will show how microscopic subhorizon physics during inflation can

be relevant for the superhorizon predictions when the inflaton is coupled to additional fields,

even very heavy ones.

We will exhibit two novel effects:

• Even fields that are never lighter than the scale φ̇1/2 in slow-roll inflation1 can make

1more generally, the scale ṁ1/2 of the time dependence in the heavy particle masses.

2



a measurable difference to the primordial N -spectra. From the perspective of the effective

field theory of inflaton fluctuations [9, 23, 24], the dynamical scales that are visible are the

expansion rate H and the Fourier frequency of the time dependent mass and couplings. We

will see that fields comparable to these scales can modify the primordial N -spectra in such

a way that is not captured by any effective single field description. There has been much

interesting previous work on the potentially observable effects of thermally produced massive

particles in the expanding background, such as [16], and the effects of heavier fields on the

underlying inflationary dynamics (e.g. [17]). The latter explains inflationary plateaus,2 but

does not provide a distinctive signature. The former leads to effects suppressed exponentially

in m/H for mass m. As we will see, the present mechanism will generate a less suppressed

effect of heavy fields, with the number density of the of heavy particles and hence the

amplitude governed by the exponential factor

exp(−πµ̃2/gφ̇) (1.1)

where µ̃ is the lightest value of the time dependent mass in question, and g a coupling which

can be order 1. Since φ̇ ∼ 582H2 this has much greater amplitude for a given mass than

the effects arising purely from vacuum fluctuations. This result is pictorially represented in

Fig. 1.

• For most oscillation frequencies ω of interest, the amplitude of the resulting oscillatory

non-Gaussianity can be parametrically larger than that of previously studied resonant non-

Gaussianity [23][24], derived from a slow roll potential with a small sinusoidal term. In fact,

for rare events (when the factor (1.1) becomes small), in the regime where the coupling g

is not too small, the present mechanism produces highly non-Gaussian perturbations with

signal/noise easily competitive with that of the oscillatory features in the power spectrum.

This provides theoretical motivation for a joint analysis of such templates in the power

spectrum and bispectrum, analogous to [15]. The contrast between the present effect and

resonant non-Gaussianity is expressed in the simple formulas (4.11) and (4.12) below. In

fact, we find that the signal/noise in the primordial N point correlators can grow with N for

a range of N ; in this regime it would be interesting to determine the optimal search strategy.

In §2 we will review the setup and radiative stability of the model. In §3, we will calculate

the correlation functions of scalar perturbations that result from particle production. We

discuss the constraints on the model parameters enforced to stay within the regime of validity

of our approximations in §4. The phenomenology of the model and the templates for analysis

are laid out in §5. Finally, in §6 we will make some general remarks about how our results

compare to previous mechanisms generating significant non-Gaussianity, and comment on the

2and clarifies the continued viability of string-theoretic inflation mechanisms [18], given the presence of
heavy fields which adjust to suppress the inflationary potential energy.
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fast-time dependence of couplings

m ∼ H

Energy Energy

φ̇1/2 φ̇1/2

m ∼ φ̇1/2

Shift-symmetric situation:
no fast-time dependence of couplings

Non-Shift-symmetric situation:

HH

Figure 1: Pictorial representation of our findings: in an inflationary theory with an approx-
imate continuous shift symmetry for the inflaton, only particles that are not much heavier
than the Hubble scale H are relevant for the dynamics of the fluctuations. However, as
we will see, if the continuous shift symmetry is broken, e.g. to a discrete shift symmetry,
heavier particles can become relevant as depicted on the right. In the scenarios studied in
this work, the new scale is set by φ̇. The basic estimate exp(−πm2/φ̇) ∼ 1/

√
Nmodes suggests

observational sensitivity to these massive particles, which we confirm in a detailed analysis.

interplay between the time-dependent couplings in the EFT of perturbations, non-adiabatic

effects, and data searches before concluding in §7.

2 Setup and vacuum loop corrections

We will be interested in the coupling of one or more heavy fields χI to the inflaton φ, leading

to a field-dependent mass

V (χI , φ) '
∑
I

1

2
m2
χI

(φ)χ2
I + V0(φ) , (2.1)

which implies a time-dependent mass for χI as φ rolls during inflation. If this time-dependence

is sufficiently rapid, it leads to non-adiabatic production of χI particles. The produced parti-

cles then source inflaton fluctuations as their mass changes in time. We will find that even χ

fields which are never lighter than φ̇1/2 can contribute measurably to perturbations in some

regime of parameters and hence cannot be integrated out.

There are many ways such couplings can appear – in general for each such field there

could be an arbitrary mass function. We will develop this in some generality, but ultimately

focus on couplings respecting an approximate discrete shift symmetry, weakly broken by the

4



slow roll potential, as motivated by axions. Although that narrows down the possibilities,

postulating this symmetry does not suffice to determine the observables, as we will see

explicitly, and more theoretical input is required. A mass function that is disordered as

discussed recently in [28] is another interesting limit.

The structure of axion monodromy in string theory motivates the discrete shift symmetry,

and entails further sectors of fields and couplings. In that theory, there are two types of heavy

χ sectors with masses mχ(φ) that arise from the same basic structure and are specific enough

to derive concrete oscillatory N -spectrum shapes and amplitudes.

(a) particle sectors with monodromy structure

There is a part of the spectrum which undergoes monodromy in analogy to the potential

energy, with a different sector reaching a minimal mass or tension each time the field traverses

an underlying period in the axion field space. If these degrees of freedom are particles (as

opposed to strings), we have

m2
χn,(a) = µ2

a + µ̂2
a(a(φ)− 2πn)2 ' µ2

a + g2
a(φ− 2πnf)2 (2.2)

where a(φ) is the periodic axion field as a function of the canonically normalized inflaton

field φ. In the absence of drift [26], a(φ) = φ/f with an axion decay constant f , leading to

the last expression in (2.2) with ga = µ̂a/f .

As just mentioned, depending on the microphysical details the produced sources may be

extended strings rather than particles. Non-adiabatic production of strings has some very

interesting subtleties and potentially distinguishing features [5][27]. To be specific, we will

focus on the particle production case in this paper.

(b) sinusoidally modulated masses

Additional fields coupled to the inflaton generically have masses modulated by the pe-

riodic term in the potential. For example, as the axion traverses its underlying period,

massive fields, such as moduli or Kaluza-Klein modes, will undergo periodic modulation of

their masses. This motivates a χ mass-squared of the form

m2
χ = µ2 + 2g2f 2 cos

φ

f
(2.3)

and requires

gf <
µ√
2
. (2.4)

Near a point of minimal mass, where the argument of the cosine is π(2n + 1), this behaves

as

m2
χ,(b) = µ2 − 2g2f 2 + g2(φ− φn)2 + · · · ≡ µ2

b + g2(φ− φn)2 + . . . (2.5)

In the regime we will be interested in, the form (2.5) governs the physics near a particle

production point as we will explain shortly. Although this regime is similar to case (a), the
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sinusoidal behavior of the resulting source of δφ perturbations will lead to distinct results

for the scalar perturbations in case (b). In both cases the angular frequency of production

events is given by

ω =
φ̇

f
. (2.6)

2.1 EFT perspective and dependence on high energy scales

Before proceeding to analyze this mechanism in detail, let us address how the need to

incorporate the heavy fields arises in the effecitve field theory context [9]. One of the lessons

of the present work will be that the precision of current data can require inclusion of very

heavy fields which one cannot trivially integrate out. If the EFT Lagrangian has some time

dependent couplings M4
i (t) and H(t) in the action (see equation (6.1) below), and if their

Fourier transforms have support at frequency of order ω̂, any additional particles that exist

with mass m of order ω̂ will be produced.

Before moving to the present work, let us first note that this fact is already familiar in

standard inflationary scenarios where the time dependence induced by the Hubble scale in the

metric induces fluctuations in particles of mass m . O(H). As particles get parametrically

heavier than H, one might naively imagine reducing to a single-field EFT by integrating out

such particles. But the resulting EFT would only include all terms in an analytic expansion

in H2/m2; non-analytic effects in this parameter, for example those which scale as e−m/H ,

would be missed. Depending on the precision of the experiment, these non-perturbatively

small effects may not be negligible.

Exactly the same considerations apply to all time-dependent couplings in the Lagrangian

for the EFT of inflationary perturbations (6.1). If the EFT Lagrangian contains functions

of time with support at frequencies ω̂ of order the mass m, a naive single-clock theory would

miss effects that scale as e−m/ω̂.

It is very possible for the effective theory of perturbations to have functions of time that

have support at frequencies of order ω̂ ∼ φ̇: even in slow-roll inflation, time-translations are

broken at the scale φ̇2 ∼ ḢM2
Pl � H4. Let us apply this, for example, to slow roll inflation

in the presence of a particle whose mass depends on the inflaton as m(φ(t)) ∼
√
µ2 + φ̇2t2.

If we were to integrate out this particle, we would get contributions to the low energy

theory proportional to M4
i (t), H(t) ∝ 1/m(φ(t))2 ∼ 1

µ2+φ̇2t2
whose Fourier transform scales

as e−ω/
√
φ̇ (taking µ ∼

√
φ̇). This has support up to frequencies of order φ̇1/2.

As we will see in detail in this paper, this implies that particles with mass ∼ φ̇1/2, and

even slightly larger than this, can be produced at a detectable level. In fact, a cosmologi-

cal experiment that measures Nmodes cosmological modes, has a relative precision of about
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N
−1/2
modes; for an experiment such as Planck, this is about 10−3. This allows for the exponent

of the exponential suppression to be large (with the details depending on additional power

law factors as we will see in this work).

Notice that there are no surprises from the EFT point of view: in all EFT’s, the number

of relevant degrees of freedom should be declared a priori. If the time-dependent couplings

have a Fourier transform with support at frequencies of order ω̂, insisting on a single-clock

description of inflation amounts to assuming that no additional particles are present with

mass lighter than ω̂ (and even a bit larger than ω̂ because we can afford for some exponential

suppression). This depends on the full model of inflation. As such, this provides a new role

for UV completion that goes beyond simply deriving the light field spectrum from it and

controlling Planck-suppressed corrections to the inflationary dynamics.

One might wonder how effects that are exponentially suppressed as e−m
2/φ̇ can dominate

over the ones that come from integrating out these particles. As we will see in our detailed

analysis below, this can be understood as follows. Integrating out heavy particles in slow roll

inflation, for example, will induce operators such as (∂φ)4/m4 ∼ φ̇0(∂δφ)3/m4. This operator

induces a non-Gaussianity with signal to noise ratio S/N ∼ fNLζ ∼ (φ̇2
0/m

4)ζ (as can be read

off from the ratio of the three point interaction Lagrangian to the kinetic term, L3/L2) [19].

This is . ζ ∼ 10−4 if m & φ̇. The non-Gaussianity from particle production works differently.

As we will review in detail below (see e.g. [20, 22]), it induces a number of particles in an

Hubble patch, NH , (which is the relevant quantity) that scales as NH ∼ (φ̇1/2/H)3e−m
2/φ̇,

where we have just kept the most important parametric dependence. The non-Gaussianity

of this distribution is controlled by N
−1/2
H , which can be order one for NH ∼ 1. This non-

Gaussianity will then be transferred to the inflaton through the relevant couplings. The

prefactor (φ̇1/2/H)3 ∼ 106 is a very large number, allowing for some exponential suppression

to be present, while preserving the dominance of the effect.

In short, the observable fluctuations during inflation can be sensitive to scales that are

as much as a few orders of magnitude higher than H. If H happens to be sufficiently high,

this corresponds to scales close to the GUT scale or so, which makes the possibility even

more interesting.

2.2 Vacuum loop corrections

The coupling of the χ fields to the inflaton φ generates two types of corrections to the

dynamics of φ, which can roughly be characterized as those coming from χ loops (vacuum

fluctuations) and those coming from χ production; of course in general there is a combination

of the two. The latter effects are the main subject of this paper. The former must be taken

into account as well. Their size depends on microscopic details such as the level of broken

supersymmetry in the χ− φ sector. The contribution from χ vacuum fluctuations generates
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various periodic terms in the effective action. This may be the leading such contribution, or

it may be subdominant, depending on parameters.

In general, before computing the effects of particle production, we should ensure that

the system we are considering is controlled against radiative corrections. The condition

for radiative stability is important to our assessment of the non-Gaussianity: it restricts

the strength of the coupling constant in the theory, and hence leads to some constraint on

the strength of nonlinear interactions visible in the perturbations. In this regard, it is worth

emphasizing that with microscopic supersymmetry, the contributions of bosons and fermions

can (partially) cancel each other in the corrections to the effective action, whereas they arise

additively in the non-adiabatic effects that we are concerned with in this paper. Therefore,

we analyze radiative corrections in appendix A assuming some degree of supersymmetry. We

will find that for the corrections to the slow-roll potential to be subdominant we need

g � 4π, (2.7)

and for the higher derivative corrections not to induce large non-Gaussianity (as in DBI

inflation [37])

v2 =
g2

2
N3

(
gφ̇

πµ2

)2

� 1 with N3 = µ/(2πgf) . (2.8)

Another way to see the existence of a regime of sub-dominance of the non-Gaussianity

induced by power law corrections to effective action was described above in §2.1.

3 Power spectrum and non-Gaussianity from particle

production

In this section, we will derive the shape and amplitude of the contribution to the power spec-

trum and bispectrum (as well as higher-point correlators) from repeated particle production

events. We will first give a detailed description of the non-adiabatic production and evolu-

tion of the heavy particles (sources) in §3.1. In §3.2, we will derive the spectrum of classical

scalar emission by these sources.3 In §3.3, we include the effect of interaction with vacuum

scalar fluctuations. Finally, in §3.4 we consider interference terms between two branches of

the wave-function: one without particle production and one in which a pair of χ particles

are produced and subsequently annihilate into δφ quanta.

3This shape was partly computed in appendix B of [6], where it was a limiting factor for alternative
sources of tensor modes [5].
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3.1 Source dynamics

We will work in a regime where the timescale tpr associated with each production event is

shorter than half the time period ∼ 2π/ω separating the events. Each production event is

then well modeled by a time-dependent mass of the form

m2
χ(t)||t−tn|.tpr = µ̃2 + g2(φ− φn)2 ' µ̃2 + g2φ̇2(t− tn)2 (3.1)

where µ̃ = µa or µb in our two specific cases described above. Here n labels the event, and

in the regime µ̃2 > gφ̇ the timescale on which the production occurs is

tpr ∼
√

2µ̃

gφ̇
. (3.2)

This follows from maximizing ṁχ/m
2
χ as a function of |t− tn|, giving t− tn = ±µ̃/(

√
2gφ̇).

Particle production including cosmological applications has been discussed extensively in the

literature; see for example [20][21].

Before proceeding further, let us check that in case (b) we can indeed obtain an inequality

allowing us to model the production event using (3.1). This requires

tpr <
π

ω
⇒ gf >

√
2µ̃

π
, (3.3)

where we used equations (2.6) and (3.2). This is consistent with the basic requirement (2.4)

above in case (b), since there is a window

µ2
b

2

π2
= (µ2 − 2g2f 2)

2

π2
< g2f 2 <

µ2

2
. (3.4)

To fix our conventions and notation, the inflationary metric is approximately de Sitter

ds2 = −dt2 + a2(t)dx2 = a2(η)(−dη2 + dx2) , (3.5)

with conformal time coordinate η = −1/aH. Let us denote the comoving momenta by k

and physical momenta by p, which are given at the time of the n-th production event by

p =
k

an
. (3.6)

Starting from the vacuum, evolving through the window of times −tpr < t− tn < tpr where

the χ particles reach their minimal mass µ̃ generates a squeezed state

|Ψ〉 = N exp

(∫
d3k

(2π)3

βk
2α∗k

a†ka
†
−k

)
|0〉 , (3.7)
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where N is a normalization factor, and the Bogoliubov coefficients satisfy

|βk|2 = exp

(
−π(µ̃2 + p2)

gφ̇

)
, |αk|2 − |βk|2 = 1. (3.8)

This leads to a source for scalar (and tensor) perturbations which is essentially a step function

times a more slowly varying source

J =
1

2
χ2 δ

δφ
m2
χ ∼ nχ

δmχ

δφ
, (3.9)

where

〈nχ〉 ≡ n̄χ =

∫
d3k

(2π)3a3
n

|β(k)|2 ' (gφ̇)3/2 exp

(
−πµ̃

2

gφ̇

)
, (3.10)

is the average number density of χ particles produced in each event. This density dilutes

with the expansion of the universe, but every 2π/ω a new generation of sources is produced.

The physical momentum scale of the production events pmax can be seen to be of order

(gφ̇)1/2 from (3.8).

3.1.1 Bose enhancement and backreaction

In certain situations we should consider the effect of previously produced particles on a

given event. So far we discussed particle creation from the vacuum, but the calculation

easily generalizes. If there are many production events per Hubble time, i.e. ω/H � 1,

and if the massive particles of interest are bosons there will be an enhancement in their

production. To apply the flat space analysis we restrict attention to a subset of the events

occurring in one Hubble time. The number of produced particles in the presence of an

existing number n(k) excited is modified to

∆n(k) = (1 + n(k))|β(k)|2. (3.11)

Using a continuum approximation4 when there are many events with frequency ω and ignor-

ing the redshift of momenta we obtain

ṅ(k) = ω|β(k)|2(1 + n(k)). (3.12)

In one Hubble time this gives

n(k ∼ 0) = exp
( ω
H
|β(0)|2

)
− 1. (3.13)

4The continuum approximation is only for the purpose of estimating whether the effects of the previously
produced particles can be neglected; in our main calculations we will of course keep track of the oscillations.
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In order to match current limits on oscillatory features in the primordial power spectrum

[4], we will be interested in a regime with µ̃ sufficiently large that |β(0)|2 ∼ e−πµ̃
2/gφ̇ ∼

10−3 − 10−2, and ω/H ranging up to of order 102. The effect of the previously produced

particles therefore only becomes marginally important for the highest frequencies.

Before moving to the perturbations, we should note the conditions for our produced χ

particles not to strongly affect the background evolution of the inflaton φ. We can estimate

the back reaction of effective scalar potential contributed by the φ-dependent energy density

in χ as ρχ ∼
∑
g(φ− φn)nχ. First, we must keep its effect subdominant to the original slow

roll background evolution by imposing

gn̄χ � V ′(φ) ∼ 3Hφ̇ . (3.14)

In addition, we will impose

ρχ ∼ mχn̄χ �M2
P Ḣ ∼ φ̇2 , (3.15)

where in the last step we used that our background is slow-roll inflation. This prevents the

production of the χ particles from draining significant kinetic energy from the inflaton, i.e.

we are working far from the regime of [14]. We will verify that these conditions are satisfied

below in our parameter window of interest after deriving the perturbations.

3.1.2 Action for the fluctuations and their mode functions

We will be interested in repeated production events whose distribution in time will determine

the scale-dependence of our perturbations. A discrete shift symmetry, as arises in axion

monodromy inflation, will lead to shapes respecting a discrete version of scale-invariance,

i.e. a symmetry under log(k/H) → log(k/H) + 2πnH/ω for integer n. The shapes will

exhibit residual oscillatory features which we will compute in detail.

Working with the conformal time coordinate η = −1/aH, and decomposing φ(η,x) =

φ0(η) + δφ(η,x), the action is

S =

∫
d3xdη

{
a2(η)

1

2

[
(∂ηδφ)2 − (∂xδφ)2 + (∂ηχ)2 − (∂xχ)2 − a2(η)m2

χ(φ0(η))χ2
]

− a4(η) [δφJ + L4 + L5 + . . . ]

}
.

(3.16)

where

Lj =
1

2

1

(j − 2)!
χ2δφj−2 δ

j−2

δφj−2
m2
χ (3.17)

describes interactions higher order in δφ which descend from the φ-dependent mass term.
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The N -point functions can be computed by standard in-in perturbation theory

〈in|T
(
ei

∫ t
−∞(1+iε) dt1Hint

)
δφk1(t) . . . δφkN (t)T

(
e−i

∫ t
−∞(1−iε) dt2Hint

)
|in〉 , (3.18)

where the interaction picture fields χ and δφ are evolved with the quadratic Hamiltonian,

including the time-dependent mass-squared term for the χ particles, 1
2
χ2mχ(φ0(t)) obtained

from the background homogeneous evolution φ0(t) of the inflaton. To evaluate (3.18) we

need the mode functions for the scalar fluctuations and χ fields.

δφ mode function

We start by expanding the interaction picture field in terms of lowering and raising operators

ak and a†k

δφ(η,x) =

∫
k

akuk(η)eik·x + h.c. , (3.19)

which satisfy [ak, a
†
k′ ] = (2π)3δ3(k−k′), as well as ak|in〉 = 0, and we defined the shorthand

notation ∫
k

≡
∫

d3k

(2π)3
. (3.20)

Considering the leading de Sitter expansion with approximately constant H, the properly

normalized mode solution is

uk(η) =
H√
2k3

(i− kη)e−ikη . (3.21)

These mode functions satisfy

a(η)2(uk∂ηu
∗
k − u∗k∂ηuk) = i , (3.22)

ensuring canonical commutation relations for δφ and its canonical momentum Πδφ = a2(η)∂ηδφ.

At early times this becomes

u→ − Hη√
2k
e−ikη =

1

a3/2
√

2(k/a)
e−ikη . (3.23)

χ mode function

Similarly for a given sector of χ particles, we have the mode expansion

χ(η,x) =

∫
k

a
(in)
χ,k vk(η)eik·x + h.c. , (3.24)

where the mode function vk(η) is a solution of the free equation of motion including the

effects of the time-dependent mass, and a
(in)
χ,k |in〉 = 0. This encodes the evolution of the
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operator via the free Hamiltonian, appropriate for the interaction picture. In case (b), with

sinusoidal ω2
χ(t), inside the horizon this is a Mathieu function. But there is a simple WKB

approximation valid in our regime: between bursts of particle production, the solution is a

linear combination of adiabatic modes which we can write as

a3/2vk(t) = α
(n)
k

exp(−i
∫ t
tn
dt′ωχ(t′))√

2ωχ(t′)
+ β

(n)
k

∗ exp(i
∫ t
tn
dt′ωχ(t′))√

2ωχ(t′)
, tn + tpr < t < tn+1 − tpr

(3.25)

with normalization |α(n)
k |2 − |β

(n)
k |2 = 1, where tpr is the timescale of the production event

(3.2). We can consider a mode solution which is pure positive frequency initially, i.e. take

α
(0)
k = 1, β

(0)
k = 0. After the first event, a nontrivial β contribution is generated. The full

set of α
(n)
k , β

(n)
k within the Minkowski regime (when Hubble dilution is negligible) can be

understood in a simple way from the analogue Schrodinger problem solved by the mode

solution

− v̈ − ω2
χ(t)v = 0 (3.26)

with effective potential −ω2
χ(t).

In our specific case (a), at each time tn, there is a different χ sector that reaches its

minimal mass, so we have one production event per χ sector. In case (b), we have a single χ

sector with an oscillating mass leading to repeated particle production events for this sector.

The analysis leading to (3.13) suggests that for our purposes, even in this latter case we can

treat the events as independent, with the correlator being a sum over their contributions. In

our case (a), for each sector of χ particles this is simply scattering off of an inverse Harmonic

oscillator potential, with the reflection coefficient of order |β|2 (see for example the appendix

of [5] for a derivation). In our case (b), this is scattering off a sinusoidal potential, which

behaves as a sequence of inverse Harmonic oscillators near its maxima. As mentioned above,

the full solution for this is given by Mathieu functions (one-dimensional Bloch waves in a

sinusoidal potential).

The effect can be shuffled between the mode solution v and the basis of creation and

annihilation operators, via the Bogoliubov transformation a
(n+1)
χ = αa

(n)
χ +βa

(n)
χ

†
. The state

|(n)〉 satisfying a
(n)
χ |(n)〉 = 0 is a squeezed state ∝ exp

(∫
k

β
2α∗
a

(n+1)
χk

†
a

(n+1)
χ−k

†) |(n + 1)〉 in

terms of the a
(n+1)
χ Fock space with a

(n+1)
χ |(n+ 1)〉 = 0.

For a given particle production event at time tn, we generate a squeezed state excited

above the |(n+ 1)〉 vacuum. To compute the contributions to the correlation functions from

this event we can work with the Fock space built from a
(n+1)
χ

†
. (We will suppress the (n + 1)

label in subsequent expressions.) The formula corresponding to (3.18) is given by writing

13



the state |in〉 in this basis,

|N |2〈(n+ 1)|e
∫
q

β∗q
2αq

aχ,qaχ,−qT
(
ei

∫ t
−∞(1+iε) dt1Hint

)
×

δφk1(t) . . . δφkN (t)
(
Te−i

∫ t
−∞(1−iε) dt2Hint

)
e
∫
k

βk
2α∗
k
a†χ,ka

†
χ,−k |(n+ 1)〉 (3.27)

with the normalization N = 1 + O(|β|2). In our calculations below, we will find that

the leading effects come from saddle points ti∗ in the integrals over ti in the interaction

Hamiltonian, and that these saddles are at or after the production event, ti∗ ≥ tn. As a

result, we can replace the lower limits of integration with tn to good approximation. The

expansion of χ in this basis is then simply of the form

χ(t,k) =
(Hη)3/2aχ,ke

−i
∫ t
tn
dt′ωχ(t′)√

2ωχ(t)
+ h.c. . (3.28)

The Bogoliubov coefficients describing the particle production now appear in the the state

rather than the mode functions. We have included the prefactor (Hη)3/2 appropriate for the

de Sitter background. We have written this in a WKB form, as is justified by the massiveness

of the χ particles which leads to small variation ω̇/ω2 � 1.

As we will see, different classes of diagrams dominate in different regimes of parameters.

We will first consider the contributions generated by the 3-point vertex L3 = δφ(η,x)J(η),

focusing on those which do not involve annihilations of χ particles. This will generate effects

similar to those predicted by the classical model described in the appendix of [6]. The

leading such contributions scale like the density of produced particles |β|2 ∼ n̄χ times other

factors determined by a simple stationary phase approximation to the time integrals.5 In

the following section, we will consider other diagrams which encode quantum interference

and annihilation effects. These include contributions scaling like β ∼ n̄
1/2
χ , but with more

rapidly oscillating integrands and hence different prefactors. The two classes of diagrams

dominate in different regimes of parameters which we will spell out below. The shape of

the non-Gaussianity in the first class we will consider is novel, whereas the second class of

diagrams has more similarity to resonant non-Gaussianity [23].

3.2 Sourced contributions at order |β|2

We will begin by computing contributions that are similar to those that would arise from a

classical source created by the production event. These contributions to the correlators of

the scalar fluctuations will be given as in [6] by correlators of the source convolved with the

retarded Green’s function. The retarded Green’s function derived from (3.21) is

G(η, η′) = iθ(η − η′)[uk(η)u∗k(η
′)− u∗k(η)uk(η

′)] , (3.29)

5In our templates for analysis we leave these in terms of the original time integrals.
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so that

δφk(η) =

∫
dη′Gk(η, η

′)a4(η′)Jk(η
′) . (3.30)

Here the factor of a4 comes from the source term. (As above, we defined J itself in proper

units.) We will be interested in late-time observations, related to

G(0, η′) = −H
2

k3
(sin(kη′)− kη′ cos(kη′)) ≡ −H

2

k3
ĝ(kη′). (3.31)

Let us unpack the source (3.9) a bit more. We have

J(x, t) =
1

2
χ2(x, t)

δ

δφ
m2
χ(φ)|φ=φ(t) (3.32)

where for now we are approximating φ by its background evolution. Close enough to the

event, this is of the form J(x, t) = g2φ(t)χ2(x, t) for both cases (a) and (b), but we will

require the later evolution of the source. This leads to

Jk ∼
∫
k′

a†χk′aχ,k−k′

mχ(φ)

δ

δφ
m2
χ(φ)|φ=φ(t)(Hη)3

+ {(a†χ)2 + (a2
χ)} terms (3.33)

where we replaced the 1/ωχ from the product of χ mode functions with 1/mχ. This is often a

good approximation, for the following reason. In both of our cases (a) and (b), the frequency

can be written as

ωχ =
√
µ̃2 + ∆m2(t) + (k/a)2 (3.34)

where as above µ̃ denotes the minimal χ mass, either µa or µb, and ∆m(t)2 ≥ 0. The (k/a)2

term dilutes exponentially, and its initial value is the dominant momentum squared in our

particle production process, p2
max ∼ gφ̇/π. This is smaller than µ̃2 in our regime of interest,

for which the exponential Bogoliubov coefficient (1.1) is � 1.

The second line in (3.33) indicates the rest of the terms quadratic in raising and lowering

operators.6 These terms will lead to interesting interference effects we will include below,

in fact starting at order β (rather than order |β|2 as we have here). These contributions

have a net oscillation with time ' exp(±2iµ(t− tn). At a given order in β, this causes some

suppression relative to effects we will find here which in our case (b) will resonate at the

scale k/a ∼ ω = φ̇/f . For the present section, we will therefore focus on the contributions

that arise from the a†a terms. The last factor captures the Hubble dilution of the source

particles after their creation.

6Here we note that the a†a term is equivalent to an aa† term away from zero momentum; this is automatic
if we define χχ by normal-ordering.
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The next step is to derive the correlators of (3.33), from which using (3.30) we will

obtain the desired contribution to the correlators of δφk. These are expectation values in

the squeezed state

|Ψ〉 = N exp

(∫
k

βk
2α∗k

a†χ,ka
†
χ,−k

)
|0〉 , (3.35)

where N is a normalization factor, and

βk ' exp

(
−π(k2/a2

n + µ2)

2gφ̇

)
θ̃((t− tn)/tpr) . (3.36)

Here θ̃ is a step function smoothed out over the non-adiabaticity timescale (3.2). For the

two point function we find the behavior

〈Ψ|Jk1(η
′
1)Jk2(η

′
2)|Ψ〉 ∼ (2π)3δ(k1 + k2)n̄χ

2∏
j=1

θ̃((t′j − tn)/tpr)2
δ

δφ
mχ(φ(η′j))(Hη

′
j)

3 . (3.37)

Finally we can plug the above into (3.30) to estimate the Gaussian scalar perturbations. In

this step, we treat the θ̃ functions as simply step functions θ(η′ − ηn), since the production

timescale is much shorter than that of the oscillatory features we are considering. We can

view this as a test of the UV sensitivity of this part of the calculation – if the result does not

blow up, then evidently the high energy scale 1/tpr scale is not cutting off any divergence.

Defining

ĥ(kηn) =

∫ 0

ηn

dη′

η′
(sin kη′ − kη′ cos(kη′))

δ

δφ
mχ(φ0(η′)) , (3.38)

and using (3.30) and (3.37) we find the power spectrum

〈δφk1δφk2〉pp ∼
(2π)3δ(k1 + k2)

k3
1

( n̄χ
H3

)
H2
∑
n

ĥ(k1ηn)2

(−kηn)3
. (3.39)

Translating to ζ using ζ ' −H
φ̇
δφ (plus slow-roll suppressed higher order corrections), and

using the standard result

〈ζvac,k1ζvac,k2〉 ∼
H4

φ̇2
δ(k1 + k2) , (3.40)

we find

〈
ζ2
〉
pp
∼
〈
ζ2
〉
vac
× n̄χ
H3

∑
n

ĥ(k1ηn)2

(−k1ηn)3
. (3.41)

The subscript pp refers to the particle production contribution. The truly oscillatory contri-

bution is a piece of this as we will describe below.
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For the N point function, following similar steps, we find a connected contribution

〈δφk1 . . . δφkN 〉 ∼ (2π)3δ
(∑

ki

) n̄χ
H3

HN+3
∑
n

(Hηn)−3

N∏
i=1

ĥ(kiηn)

k3
i

, (3.42)

which can similarly be traded for 〈ζN〉.
In the regime where these contributions dominate, these formulas directly lead to tem-

plates for analysis, collected below in section 5. Let us examine their amplitude and shape.

One important quantity is the ratio of signal/noise in the three and two point functions,

which in the cosmic variance dominated Gaussian approximation is given by

(S/N)3

(S/N)2

∼
〈ζ3〉′pp /(〈ζ2〉′vac)3/2

〈ζ2〉′pp / 〈ζ2〉′vac
∼
∑

n(kηn)−3ĥ(kηn)3∑
n′(kηn′)

−3ĥ(kηn′)2
, (3.43)

where the prime on expectation values denotes dropping (2π)3δ3(
∑

i ki) and we evaluated

the numerator and denominator at ki = k to get a sense of the relative amplitudes; we will

discuss the shape in momentum space (including the scale dependence) further below.

To proceed, let us apply this result to a situation with an approximate discrete shift

symmetry, with events evenly spaced in proper time t, corresponding to conformal times

ηn = − 1

H
e2πH

ω
(n+ γ

2π
). (3.44)

where ω = φ̇
f

depends inversely on the underlying field period 2πf . In our case (b), this

frequency appears in the cosine term in the potential. In both cases (a) and (b) it describes

the frequency of particle production events: ω/2πH events per Hubble time.

The behavior of these N -spectra, and their ratios, is somewhat different in our two cases

(a) and (b). Case (a) will prove to overlap strongly with existing templates for ω/H ≥ 1,

whereas case (b) has additional resonances in the time integrals as a result of the oscillating

mass and has small overlap with existing templates for ω/H ≥ 1. So in much of this work

we will focus on the behavior of case (b). But let us evaluate them in turn.

3.2.1 Estimates for the integrals in case (a)

In this case, from (2.2) we have approximately a step function source since

δmχ

δφ
→ g (3.45)

for t− tn > tpp, equivalently φ− φn >
√

2µ/g. Thus the integral we need is

ĥ(kηn) = g

∫ 0

ηn

dη′

η′
(sin kη′ − kη′ cos kη′). (3.46)
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The sum in (3.39) and (3.42) is dominated at the horizon crossing time because the summand

becomes small if for any of the momenta −kiηn is much different from 1. When −kiηn � 1

the Green’s function is suppressed as (kiη)3. When −kiηn � 1 we have

ĥ(kiηn)/g ' 1

2
Im Pr.

∫ ∞
−∞

dη′

η′
eikiη

′ − ki
∫ 0

ηn

dη′ cos kiη
′ =

π

2
+ sin kiηn = O(1). (3.47)

This justifies glossing over the short scale details of the production event and approximating

the source by a step function. Incorporating this, we estimate the relevant ratio for S/N in

the N -point function (3.42) as 〈
ζN
〉
pp

ζNvac

∼ NXg
N . (3.48)

where

NX =
n̄χ
H3

ω

H
(3.49)

is the number of events per Hubble time and Hubble volume.

3.2.2 Estimates for the integrals for case (b)

We would like to estimate the dominant contributions to the integral over η′:

ĥb(kηn) = cb

∫ 0

ηn

dη′

η′
ĝ(kη′)

δmχ

δφ

∣∣∣∣
φ=fωt=f ω

H
log η′H

. (3.50)

From (2.3) we have

δmχ

δφ
= −

(g2f/µ) sin φ
f√

1 + 2g2f2

µ2
cos φ

f

. (3.51)

For sufficiently small g2f 2/µ2, this reduces to the simpler form g2 f
µ

sin φ
f
, giving the integral

ĥb(kηn) = cb

∫ 0

ηn

dη′

η′
sin(

ω

H
log

η′

ηn
) ĝ(kη′) , (3.52)

with coefficient

cb ∼ g2f

µ
(3.53)

from (2.3).

We will present our final analysis of the parameter windows for our template based on

the approximation (3.52) below in §4. We will find there that for the lower end of frequencies

ω of interest, the ratio 2g2f 2/µ2 is not hierarchically suppressed. We should therefore either

include the full form (3.62) (along with an extra parameter 2g2f 2/µ2 varying over a small
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range of values), or determine that the overlap between the two templates is strong enough

to justify the simplification to the pure sinusoidal function. To begin, we will analyze the

pure sinusoidal form in case (b), and then return to this point. By calculating the Fourier

coefficients of the full expression, we find that even for 2g2f 2/µ2 . 1, the simpler expression

gives very similar results for the leading Fourier mode contributing to the resonant integral.

Let us now estimate the size of this effect by approximating the integral over η′ and

sum over n. First, note that the Green’s function ĝ(kη′) (3.31) is of order (kη′)3 as kη′ →
0, suppressing any contributions outside the horizon. For −kη′ > 1, the second term in

ĝ(kη′) dominates over the first. The dominant contribution to the integral in (3.38) is easily

estimated by a stationary phase approximation, taking into account the two sources of

oscillation in the integrand in case (b). That is, for kη′ > 1 the integrand has two oscillating

functions: g(kη′) ∼ kη′ cos kη′ and sin ω
H

log(η′/ηn), which resonate at −kη′ = ω
H

. Explicitly,

ĥb(kηn) = − i
4
kcb

∫ 0

ηn

dηeikη+i ω
H

log(η/ηn) + c.c. + non-resonant. (3.54)

A saddle point integration with kηsaddle = −α leads to

ĥb(kηn) ∼ cb

√
ω

H
cos
( ω
H

log(−kηn) + γ
)
. (3.55)

valid for −kηn � ω
H

(so that the saddle point is well separated from the endpoint of the

integral). The leading contributions to the sum in both numerator and denominator of

(3.43) then come from the smallest value of −kηn which is consistent with picking up this

saddle, i.e. −kηn ∼ α. From (3.44) we note that of order α ≡ ω/H terms in the sum over

n contribute with approximately the same value of ηn (there are ω/2πH events within a

Hubble time H−1). Altogether this leads to a ratio (3.43) of order

(S/N)3

(S/N)2

∼ cb
√
α = cb

√
ω

H
. (3.56)

This behavior can be checked numerically. This result also controls (S/N)N+1/(S/N)N at

tree level, within a finite range of N for which the cosmic variance limited Gaussian approx-

imation applies. We will find in §4 that (3.56) can be somewhat larger than 1 consistently

with our conditions for control of the model.

Let us also separately record the amplitude of the correction to the power spectrum and

bispectrum. For the power spectrum, from (3.39) we obtain

(S/N)2 ∼
〈ζ2〉pp
ζ2
vac

∼ n̄χ
H3

c2
b

α
. (3.57)

Here the last factor comes from a product α × 1/α3 × (cb
√
α)2, which arises respectively

from the presence of of order α terms contributing to the leading terms of the sum with
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−kηn ∼ α, a factor of 1/α3 from the 1/(kηn)3, and finally a factor c2
b(
√
α)2 from the above

saddle point estimate for ĥ, appearing quadratically in the two-point function.

The sensitivity is bounded by 1/
√
Nmodes ∼ 10−3, and in practice the data constrains this

ratio in a frequency-dependent manner, ranging from ∼ 0.2 at the highest frequency within

the controlled effective field theory regime, ω ∼ f to of order 10−2 at lower frequencies (see

e.g. figures 37-38 of [4]).

Expressed in terms of an fNL parameter, the amplitude of this contribution to the bis-

pectrum is

f
(b)
NL ≡ k6B(k, k, k)

4P 2
ζ

∼ n̄χ
H3

1

2

φ̇

H2

∑
n

ĥ(kηn)3

(kηn)3
∼
√

1

Pζ
c3
b

n̄χ
H3
×
√
H

ω
, (3.58)

where

〈ζk1ζk2ζk3〉 = (2π)3δ3(k1 + k2 + k3)B(k1, k2, k3) , (3.59)

and Pζ ≡ H4/(2φ̇2). In the last step, we estimate the size of the sum as described above,

∑
n

ĥ(kηn)3

(kηn)3
∼ α× 1

α3
× (
√
α)3 × c3

b = c3
bα
−1/2. (3.60)

3.2.3 Fourier coefficients of full mass formula

We will describe the controlled parameter windows in which this result pertains in the next

section §4, after treating other contributions to our correlators. Now let us return to the

question raised above regarding the validity of simplifying the mass formula (3.62) neglecting

the second term in the denominator. This is clear for small

κ ≡ 2g2f 2

µ2
. (3.61)

For κ . O(1), the Fourier transform of the full expression will have potentially significant

contributions from higher harmonics as well as additional contributions to the original e±iωt

terms.

δ

δφ
mχ = − (g2f/µ) sinωt√

1 + 2g2f2

µ2
cosωt

= −g
2f

µ

(
F1e

iωt + F−1e
−iωt + F2e

2iωt + F−2e
−2iωt + . . .

)
(3.62)

where the Fourier coefficients Fj depend on κ. The higher harmonics have a larger effective

frequency, ωeff/H ∼ Nω/H. This will be suppressed when integrated against our Green’s

function and summed over events, since as we have seen, the net results (3.57) and (3.60)

are proportional to a negative power of ωeff/H.
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Numerically computing the Fourier coefficients even for κ close to 1 leads to similar results

to those we obtain from the truncated expression without the square root denominator. For

κ = 0.999 for example, the coefficient of the e±iωt term in sin(ωt)/
√

1 + 0.999 cos(ωt) is

∼ ±0.6i, which is close to the original coefficient ±0.5i without the square root factor.

The coefficient of the constant term is zero. The higher Fourier coefficients e±iNωt are

∼ 0.2, 0.15, 0.11 for N = 2, 3, 4 respectively. As mentioned above, when included in our

full calculation, these are also somewhat further suppressed by our resonant integral and

sum, as can be seen directly from our previous results with the replacement ω/H → Nω/H.

Although they are somewhat suppressed, it may be worthwhile to include a small number of

the additional harmonics in comparing the theory to data. We will comment on this further

in laying out the templates for analysis below in section §5.

3.3 Contributions from higher point vertices at order |β|2

Let us next consider the contributions from higher point vertices in the interaction La-

grangian.

3.3.1 Case (a)

At two points, we can have one of the members of a pair of produced particles emit a pair

of δφ perturbations via an insertion of
∫
a4L4 with L4 ∼ g2χ2δφ2 (whereas two insertions of

the time-dependent three-point interaction L3 ∼ g2(φ(t) − φn)χ2δφ entered into the above

contribution). We find the ratio of this contribution to the one we computed in the previous

subsection can be estimated as follows. First note that when considering two L3 there is an

extra pair of χ fields which lead to a factor of 1/mχ(t) from their mode functions. We saw

that in case (a) the leading effect comes from emission of soft quanta with frequency of order

H, so we can take the production event to be instantaneous. For t � tpr given in (3.2) we

can approximate mχ = g(φ− φn). Thus the new contribution compared to the old one is

H

g(φ− φn)
≤ H

gφ̇tpr
∼ H

µa
� 1 (3.63)

3.3.2 Case (b)

Similarly for case (b), at two points we can have one of the members of a pair of pro-

duced particles emit a pair of δφ perturbations via an insertion of
∫
a4L4. The ratio of this

contribution to the one we computed in the previous subsection is of order

µH

g2f 2

√
ω

πH
=

µ2

g2f 2
× H

µ
×
√

ω

πH
>
H

µ

√
ω

πH
(3.64)
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The first factor here follows from the fact that each additional χχ from an interaction

introduces a factor of H/µ, and the factor of
√
ω/πH arises from the structure of the power

law contributions to the resonant time integrals: at a resonance, each measure factor dη gives√
π(ω/H)/k, while each factor of η evaluated on the saddle gives a factor of −(ω/H)/k. For

higher point vertices, there are fewer dη measure factors; the same scaling with k arises from

a compensating number of factors of η. The last inequality follows simply from the fact

that gf < µ in order for the χ mass-squared to remain positive throughout the process.

Altogether, since H/µ� 1, there is a window in which the previous contribution dominates,

including a range with ω > H. Similar comments apply to the higher N -point functions, for

which diagrams with higher point vertices (up to an N + 2 point vertex) contribute.

The shapes depend on the diagram topology in the following way. The diagram generated

by the highest point vertex has a shape similar to resonant non-Gaussianity [23], with the

sinusoidal part of its scale-dependence entering as a function of the total momentum k1 +

k2 + . . . kN . This is in contrast to the product structure we found in §3.2, from the diagrams

with only 3-point vertices.

Let us spell this out a little more explicitly for the bispectrum, which is schematically of

the form

A

k2
1k

2
2k

2
3

∞∑
n=nmin

(
3∏

J=1

1

−ηnkJ

){
3∏
I=1

cos
(
γ̃I +

ω

H
log(−kIηn)

)
+C34

k2k3

(k2 + k3)2
cos
(
γ34 +

ω

H
log(−(k2 + k3)ηn)

)
cos
(
γ̃34 +

ω

H
log(−k1ηn)

)
+ permutations

+C5
k1k2k3

k3
T

cos
(
γ5 +

ω

H
log(−(k1 + k2 + k3)ηn)

)}
. (3.65)

The top line is what we computed above, the contribution from three insertions of the 3-

point interaction L3; its amplitude A is given above in (3.74). The next line contains the

contribution from one insertion of L3 and one of L4. The last line contains the contribution

from a single insertion of L5 and kT ≡ k1 + k2 + k3. Again, there are regimes where either

the first line or the last dominates, and an intermediate regime where they all contribute.

3.4 Interference terms at order β

Wherever a part of society possesses a monopoly of the means of production, the worker, free

or unfree, must add to the labor necessary for his own maintenance an extra quality of labor

in order to produce the means of subsistence for the owner of the means of production.

–Karl Marx

The interaction vertices LN (3.17) contain the operator χ2(t′), whose oscillator expansion

includes terms quadratic in raising operators ∼ a†2χ e
2i

∫ t
tn
dt′ωχ(t′) or in lowering operators
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∼ a2
χe
−2i

∫ t
tn
dt′ωχ(t′) in addition to the a†χaχ terms discussed above. This leads to additional

contributions, including processes in which the produced χ particles annihilate.

This leads to two qualitative effects on the resulting correlators:

• The leading contribution arises at order β, since the net number of creation or annihi-

lation operators can annihilate against a term βa†2χ |0〉 from the squeezed state. This leads

to an enhancement factor ∼ eπµ̃
2/2gφ̇ in the amplitude relative to the contributions of order

|β|2.

• These terms come with an extra oscillation in the integrand. In case (a), this leads to

suppression factors. In case (b), the oscillation is ' e∓2iµ(t′−tn)+.... For µ > ω this dominates

over the oscillation from the cos(φ/f)→ e±iω(t−tn), and in that regime it also leads to some

power law suppression factors.

It is a detailed question whether these contributions dominate over the order |β|2 con-

tributions computed above, given the numerical values of our parameters. In the regime

relevant to oscillatory feature searches, the exponential exp(πµ̃2/2gφ̇) can compete against

power law factors. We find a regime of parameters where the power law suppression factors

overcome the exponential enhancement, and others that go the other way.

The detailed shape again depends on the distribution of n-point vertices in the diagram.

Starting from the general expression (3.27), we can write the correlator at order β as

〈0|T
(
ei

∫ t
−∞(1+iε) dt1Hint

)
δφk1(t) . . . δφkN (t)T

(
e−i

∫ t
−∞(1−iε) dt2Hint

)∫
k

βk
2α∗k

a†ka
†
−k|0〉+ c.c.

(3.66)

Each interaction vertex has the operator χ2. The only non-vanishing contributions we can

get come from terms in which at least one of these contains two lowering operators to absorb

the created pair from the squeezed state. The rest must have the same net number of creation

and annihilation operators. However, if we consider a contribution with some interaction

vertices introducing a2
χe
−2iµt and others a†2χ e

2iµt, they do not both resonate.7

So we can focus on the a†χaχ contributions from the remaining χ2 operators. For these

contributions, note that we could get resonant contributions from both time-evolution oper-

ators, since the sinusoidal time-dependent background (∂n/∂φn)m2
χ contains both types of

terms e±iωt.

Now let us consider the distribution of interaction vertices. One extreme case is where

we bring down a single (N + 2)-point interaction vertex∫
a4χ2δφN(∂n/∂φn)m2

χ, (3.67)

7This is true regardless of which exponential exp(±i
∫
Hint) each vertex comes from. If it comes from the

anti-time ordered exponential, it must contain a2χe
−2iµt and also the lowering operator for the δφ perturba-

tion, so altogether exp(+2i(µ/H) log(η)− ikη) which does not resonate.
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whose δφN contracts with the δφ’s in our N -point function. In fact we find that for µ > ω

there is no other contribution for which all of the time integrals extend through their resonant

saddle points. This can be seen as follows. First, we note that the interaction term we bring

down that contains the a2
χe
−2iµt must be to the left of all the others in order to generate

a connected contribution. We can write the correlator as a commutator of a2
χ with the

operators to its right, and this generates a separate delta function constraint on the sum

of δφ momenta in those operators. If this interaction comes from the anti-time ordered

evolution operator on the left, it multiplies the term in δφ with an annihilation operator,

∝ e−ikη and there is no resonance. On the other hand, if this interaction comes from the

time-ordered evolution operator on the right, its time integral ranges over later times than

those of the operators to its right. Those operators resonate at the frequency kη∗ ∼ −ω/H,

which is a later time than the resonance at kη∗ ∼ −2µ/H. So we cannot obtain both

resonances within our integral.

Let us therefore consider the single insertion of LN+2. For case (a), the only such vertex

arises for N = 2, and hence in that case these resonant contributions can only arise for the

power spectrum. For this reason, we will focus first on case (b) and then comment about

the power spectrum contribution in case (a). The a2
χe
−2iµt factor contracts with the pair

of particles in our expansion of the squeezed state, with the corresponding momentum k

integrated against the Bogoliubov coefficient β, which is Gaussian. There is momentum

dependence in the full mode functions for χ (3.28). We will need to include the first sub-

leading piece in the expansion

ωχ = µ+
k2

2µa2
+ . . . (3.68)

so the mode solution for χ becomes

χ(kη) ' (Hη)3/2

(2
√
k2/a2 + µ2)1/2

e−i
∫ t√k2/a2+µ2dt̃ (3.69)

For particles that are produced at tn this becomes

χ(kη) ' (Hη)3/2

(2
√
µ2)1/2

e−iµ(t−tn)e
−i k2

4µHa2
((a/an)2−1)

. (3.70)

Then the integral over k is approximately

∫
k

β(k)e
−i k2

4µHa2
((a/an)2−1) ' 23/2eπµ

2/2gφ̇a3
nn̄χ

(
1− i gφ̇

πµH

(
(a/an)2 − 1

))−3/2

(3.71)

which can give us an additional suppression for times such that the second term in the

parentheses dominates. This depends on the dominant (resonant) contribution to the integral

24



over time, which as we will describe shortly is given by kη∗ ∼ −2µ/H, and we get the

dominant terms in the sum to be at kηn of this order. As a result (a∗/an)2 − 1 = O(1).

The significance of this correction thus depends on the size of gφ̇/πµH, which can indeed be

larger than one in part of our parameter space.

Putting this together, we can write the time integral going into this correlator as

∫ 0

ηn

dη1

η1

N∏
I=1

(−ikIη1e
ikIη1)e−i

2µ±ω
H

log(
η1
ηn

)

(
1− i gφ̇

πµH

[
η2
n

η2
1

− 1

])−3/2

+ c.c. (3.72)

The resonance is at

kTη1∗ = −2µ± ω
H

, kT = k1 + k2 + . . . kN . (3.73)

This contribution to 〈δφk1 . . . δφkN 〉 generated by the N + 2-point vertex is therefore approx-

imately given by

π1/22−3HN n̄χ
H3

e
πµ2

2gφ̇
(2µ± ω)N−1/2

HN−1/2
(
g2f 2

2µH
)
HN

fN

(
1− i gφ̇

πµH

[
η2
nmin

η2
1∗
− 1

])−3/2

× 1

kN−3
T

N∏
I=1

1

k2
I

∞∑
n=nmin

(−kTηn)−3 cos

(
γN +

2µ± ω
H

log(−kTηn)

)
, (3.74)

where the sum on n starts at the minimal n such that −kTηnmin > −kTηI∗. This term

dominates in the sum, and introduces a suppression factor of order (H/[2µ ± ω])3.

Again, here we are considering the regime ω < µ. In the opposite case, the resonances

are all at ω and the situation is similar to the order |β|2 contributions discussed above. In

that case, the contribution generated by the N + 2-point vertex is similar to the resonant

shape, oscillating like cos(γ + ω
H

log(kT )).

Finally, let us return to case (a), where as mentioned above this correction only affects

the power spectrum (N = 2). In this case, the resonant integral is of the schematic form∫
dη′eikT η

′
e−i(t

′−tn)2gφ̇ =

∫
dη′eikT η

′− gφ̇

H2 (log η′
ηn

)2 , (3.75)

giving a saddle point equation

kTη
′
∗ ∼ 2

gφ̇

H2
log

(
kTη

′
∗

kTηn

)
. (3.76)

Defining z = η∗/ηn < 1, this is

z = −2
gφ̇

H2(−kTηn)
log(z) . (3.77)
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When the coefficient on the right hand side is large in magnitude, as it is for −kTηn of order

1, the solution is z ' 1, i.e. kTη∗ ≈ kTηn. For larger −kTηn the solution for z decreases. In

the latter regime, the (kTη)−3
n in the analogue of (3.74) for case (a) will suppress the integral.

So we can focus on the former case. In that case, we have a dominant contribution to the

integral over η′ and sum over n with kTη
′
∗ ∼ kTηn of order 1.

Given this, the factors from the resonant integral are all of order one. We then get an

estimate for the size of this order β contribution to the power spectrum in case (a) to be

〈ζζ〉pp
ζ2
vac

∼ g2 n̄χ
H3

ω

H
e
πµ2

2gφ̇
H

g(φ− φn)|t∗
, (3.78)

with the last two factors giving the ratio between this and the order |β|2 contribution above

in (3.48). These factors arise as follows. The exponential enhancement is due to the fact

that this is of order β not β2. The power law suppression in the last term arises from a

combination of the ratio of couplings (four point versus three point) and the 1/mχ that

comes with each vertex from its χ2 factor.

3.5 Fermion production

We have analyzed in detail the perturbations generated by the interaction between χ and the

scalar δφ. In this section, let us briefly comment on the contribution of fermion production

to the scalar perturbations. This is interesting as a general possibility, and more specifically

is relevant to our effect since the radiative stability under loop corrections was guaranteed

above by microscopic supersymmetry.

Fermion particle production was studied in detail in the second reference in [21], leading

to results similar to the bosonic case for the Bogoliubov coefficients and average number

density (cf equations (28)-(29) there). To compare to our current analysis, consider the form

of the interaction Hamiltonian descending from the fermion action, which, inside the horizon,

reads ∫
dηd3xa(η)4

{
iψ̄χ∂µγµψχ − ψ̄χψχ

√
µ2 + g2f 2 cos

φ

f

}
(3.79)

This leads to similar j-point interactions as we had for the bosons χ in (3.16) and (3.17),

Lj =
1

(j − 2)!
ψ̄χψχδφ

j−2 δ
j−2

δφj−2
mχ (3.80)

Noting that 〈ψ̄ψ〉 ∼ n̄ ∼ 〈χ2〉µ, we see that the parametric scaling of the fermionic and

bosonic diagrams will be similar. There will be some differences in detail in the function

of sinωt and cosωt that appears at each order, depending on the ratio gf/µ . 1. But

these coefficients remain approximately sinusoidal with frequency ω, resonating at the same
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scale. Their amplitude and shape – including the interpolation between a product structure

and the resonant shape – is similar to that of the bosons. We therefore do not expect the

fermion contribution to significantly change the pattern of perturbations. However, it would

be interesting to investigate this further and determine whether ultimately fermions and

bosons could be distinguished in the event of a detection of this general class of shapes.

4 Parameter windows and amplitude comparisons

Next let us compare the amplitudes of the different classes of contributions worked out in

the previous section. We need to make two types of comparisons. We must determine when

different contributions to a given N -point function dominate, and in a given regime we would

then like to determine the relative signal/noise in the non-Gaussianity as compared to that

of the oscillatory features in the power spectrum.

The diagrams with a single higher-point vertex are similar to the resonant shape. Such

searches are not new, being motivated by the dynamics [10][24]. But the amplitude and the

corresponding ratio (S/N)3/(S/N)2 is of interest in determining the level of motivation for

joint power and bispectrum analyses for this shape. This ratio is less than unity for resonant

non-Gaussianity [24].

The diagrams generated from the 3-point vertices lead to the novel shape derived above.

In this case, we need to know the regime in which it dominates in order to prescribe parameter

ranges for data searches motivated by this mechanism.

The hybrid case, where insertions of all possible j-point vertices (up to j = N + 2)

compete, gives a rich shape with some overlap with the resonant shape, but extra structure

in the additional terms. In this case, the coefficients must be of the same order, which implies

a restricted (and hence more predictive) regime of parameters for this mixed shape.

4.1 Controlled parameter window with leading contribution from
O(|β|2) sourced product shape

Let us first assess the parameter window in which the order |β|2 contributions computed

in §3.2 dominate, with the theory satisfying all our conditions for self-consistency of the

calculation.

In case (a), we will focus on the regime ω/H ≤ O(1) where the shape requires a new

search according to appropriate overlap calculations, as discussed in the next section. We

found in §A.1.1 that the radiative corrections to the effective action can easily be negligible.

To see this in the case of (2.8), we note that N3 ∼ 1 since µa/(2πgf) ∼ (ω/µa)(µ
2
a/(gφ̇))� 1

will hold in the regime of frequencies ω/H < 1 that we prescribe below. Given that, veff � 1
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follows from the fact that gφ̇/πµ2
a < 1. The contributions of other diagrams are given by

(3.63) which is manifestly subdominant, and (3.78). As noted below (3.78), the relevant

ratio is less than

e
πµ2a
2gφ̇

H

µa
∼ e

πµ2a
2gφ̇

H

φ̇1/2

φ̇1/2

µa

1

g1/2
(4.1)

where we conservatively put in the minimal χ mass in the denominator of the second factor

on the LHS. To check if this may be small, we can proceed as follows. We first impose that

the particle production contribution to the power spectrum is in a viable and detectable

regime, say setting

g2 n̄χ
H3

ω

H
∼ ω

H
g7/2583e−πµ

2
a/gφ̇ ≡ 10−2 (4.2)

where we have substituted φ̇1/2 ∼ 58H from the normalization of the power spectrum.

Having done so, we then evaluate the ratio (4.1) as a function of g. Implementing this, we

find a regime of couplings where the ratio is ≤ 1, so the novel shape we have calculated is a

dominant effect.

Let us next focus on case (b), where the additional structure of the oscillating mass led to

a more subtle analysis. It is useful to collect estimates for the sizes of several quantities we

have computed above. First, let us denote the exponent suppressing the particle production

by

Z =
πµ2

b

gφ̇
> 1 (4.3)

where we will explain the required inequality shortly. We can reduce the parameter space to

the three directions Z, g, ω/H using the relations

µ2 = µ2
b + 2g2f 2, f =

φ̇

ω
, φ̇ = π

µ2
b

gZ
,

φ̇

H2
' 582 (4.4)

(the last one following from the normalization of the power spectrum).

First, the relative modification of the power spectrum is

δ 〈ζ2〉
〈ζ2〉 ∼ π

n̄χ
H3

g4f
2

µ2

H

ω
. 10−2

(4.5)

where in the last step we enforce that this is within observational bounds. Next we write

the scaling of the N = 3 point correlator at order |β|2 generated by 3-point vertices L3 as

derived in §3.2 (dropping the (2π)3δ(
∑

k))

δφ3
|β|2k

6 ∼ π3/2

(
H

ω

)1/2

c3
b n̄χ .
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The ratio of the contributions from higher point vertices to this contribution is (a power of)

the quantity (3.64), which must be less than 1 in order for our new shape to be relevant.

Next, we record the leading contribution at order β, which is dominated by the contribution

of a single insertion of the L5 vertex (3.74):

δφ3
βk

6 ∼ π1/2

23
H3
( n̄χ
H3

)
eZ/2

[
2µ± ω
H

]5/2(
g2f 2

2µH

)(
H6

(2µ± ω)3f 3

)
1(

1 + gφ̇
πµbH

)3/2

ω

H

(4.6)

where we have conservatively taken kηn ∼ kη∗, and include a factor of ω/H for the number

of terms contributing at the same level to the sum in (3.74). The ratio of this to (4.6) must

satisfy
O(β)

O(|β|2)
< 1 (4.7)

again from the requirement that the novel shape we have computed contributes a leading

effect.

In order to replace the post-production value of ωχ(φ) by mχ(φ) in our calculations

above, neglecting the momentum squared of the produced particles ∼ gφ̇/π relative to m2
χ,

we should impose µ2
b > gφ̇/π, or equivalently Z > 1. Given this, we automatically satisfy

the condition µ2
b > 0 from (2.4-2.5). We also impose

gf

µb
>

√
2

π
(4.8)

(for convenience) so that the particle production timescale be less than half a period of our

shift symmetry along the φ direction.

We should also comment on the ratio 2g2f 2/µ2 appearing in the mass formula (2.3) and

(3.62). As discussed above, when this ratio is small, the source is a pure sinusoidal function.

However, for the lower end of our frequency range of interest, we find that once we impose that

(4.5) is in the viable and detectable range, this ratio has a minimal value not hierarchically

smaller than 1 (e.g. ∼ .9 for ω/H ∼ 10, and even larger for lower frequencies). However,

as discussed above, the leading Fourier coefficient in (3.62) is similar to that for the pure

sin(ωt). Again, one might expect higher harmonics to be suppressed in their contribution,

as they oscillate more rapidly and lead to greater suppression from the 1/(kηn)3 factor, but

it may be worthwhile to include a small number of additional terms in the Fourier series.

We also have the condition (3.14), which reduces to

ρ′χ
V ′
∼ gn̄χ

3Hφ̇
� 1 (4.9)
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which is easily subdominant, as well as (3.15). We must also satisfy the condition (2.8),

which reduces to
g2N3

2Z2
� 1 (4.10)

By reducing the parameter space as in (4.4) and evaluating these quantities numerically,

we find that these conditions can all be satisfied in an interesting window of parameters,

ranging over all ω/H of interest, i.e. O(0.1) < ω/H < O(100), with marginal solutions to

some of the conditions at higher frequencies.

In the space of solutions to these conditions, the ratio (S/N)3/(S/N)2 can easily be order

1 (or larger in some regimes). In the next subsection, we will discuss the parametric reason

for the greater strength of non-Gaussianity derived from our particle production effect as

compared to that in [23, 24]. It would be interesting to understand if there is a more subtle

breakdown of the theory that limits the strength of non-Gaussianities.

4.2 Amplitude of bispectrum versus power spectrum

At this point it is interesting to compare the strength of our signal with those coming purely

from a sinusoidal term in the inflaton potential. The latter leads to oscillatory contributions

to the power spectrum and resonant non-Gaussianity [23][10][24]. In an effective field theory

treatment, the ratio of signal to noise in the bispectrum to that in the power spectrum scales

like ω2/M2
∗ , with M∗ the strong coupling scale of the EFT [24]. If one started with a purely

non-Gaussian oscillatory interaction at the level of the effective theory of the perturbations,

it generates a generically larger signal in the power spectrum via a loop correction [24].

Starting from the canonical example of an oscillatory term of the form Λ4 cos(φ
f
) in a slow-

roll potential, we obtain the simple estimate

(S/N)3

(S/N)2

∣∣∣∣
resonant

∼ L3

L2

∼ δφ

f
∼ ω

f
∼ ω2

φ̇
∼
( ω
H

)2 H2

φ̇
∼ 10−5

( ω
H

)2

, (4.11)

where we used the fact that the modes are created at the time when their energy is ω, rather

than H as for vacuum fluctuations. This ratio is less than 1 when the low energy theory

is weakly coupled. For generic ω/H below this, the signal/noise in the power spectrum is

greater than that in the bispectrum. As noted in [4], a coincidence of such frequencies in

the two, at a similar signal/noise, could not be explained by this theory.

In contrast, in the present analysis, as just explained (3.56), we obtain (for case (b))

(S/N)3

(S/N)2

∣∣∣∣
(b)

∼ cb

√
ω

H
∼
(
g4f 2ω

µ2H

)1/2

, (4.12)

with cb defined above in (3.53).
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This ratio is very interesting as it determines the relevance of non-Gaussianity searches

and joint analysis with searches for related structure in the power spectrum. Since it grows

with the coupling, we might expect it to be constrained by radiative stability. It is straight-

forward to check, however, that the conditions we developed in section 2 do not require the

ratio (4.12) to be parametrically < 1. For example, the conditions (2.4) and (2.7) just require

this ratio to be <
√
ω/H. Plugging in the numbers and imposing all our control conditions,

and the conditions for dominance of the new shapes, we find a viable range with (4.12) of

order 1 or somewhat greater (as well as other regimes where it is < 1).

One intriguing result of our analysis is that the S/N in the tree-level N -spectra increases

with N for a range of model parameters. This result is perhaps surprising from the point

of view that intuitively, a weakly coupled theory should not develop large non-linearities.

However, it is important to note that this growth does not persist for arbitrarily large N ,

since the signal to noise

N
−1/2
modes(S/N)N ∼

〈ζN〉√
〈ζNζN〉

(4.13)

saturates at order 1 when the denominator is dominated by the non-Gaussian 2N -point

function. (Before that, the denominator is approximated by 〈ζ2〉N/2 as in (3.56).)

It will be very interesting to develop further theoretical and data analysis techniques

for the regime with increasing S/N [39], perhaps using the Poisson statistics and real space

distribution of the underlying production events [6].

5 Templates for the power spectrum and bispectrum

and parameter ranges

Having calculated the correlators above and their regime of validity, we are finally in a po-

sition to lay out templates for data analysis, assess their overlap with previously searched

shapes, and specify parameter ranges. We will prescribe this in the general case as well as

our specific examples (a) and (b). In these specific cases, we have developed the theoretical

consistency conditions in detail in this work, and can prescribe parameter ranges by combin-

ing these with the overlap of the new shapes with previously constrained templates. In case

(a), the latter is highly constraining: it overlaps strongly with equilateral non-Gaussianity

except at the lowest frequencies. In case (b), we find that both the theory and the (weak)

overlaps with other templates motivate a search over a broad range of frequencies.
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5.1 General case

In terms of the definitions (3.31), (3.38)

ĝ(y) = sin(y)− y cos(y) ,

ĥa(kηn) =

∫ 0

ηn

dη′

η′
ĝ(kη′)

δmχ

δφ
|φ=φ0(t) ,

(5.1)

and the conformal times of the production events

ηn = − 1

H
e

2πH
ω

(n+ γ
2π

) , (5.2)

where we include a phase parameter γ ∈ (0, 2π), the power spectrum can be approximated

by the shape

〈ζkζk〉′ ' 〈ζζ〉′|vac +
A2

k3

n̂max∑
n=n̂min

ĥ(kηn)2

−k3η3
n

. (5.3)

The prime denotes dropping the (2π)3δ(k + k′), and the first term on the RHS is the usual

vacuum contribution. The bispectrum can be approximated by the shape

〈ζk1ζk2ζk3〉′ '
A3

k2
1k

2
2k

2
3

n̂max∑
n=n̂min

3∏
i=1

ĥ(kiηn)

−ηnki
, (5.4)

where again we drop (2π)3δ(k1 + k2 + k3).

As we explained, the dominant contributions for a mode arises when it crosses the horizon

so that only a finite number of terms contribute. We will work with fixed endpoints of the

sum. The k-independent integers n̂min and n̂max should satisfy

n̂min �
ω

2πH
log

H

kmax
, (5.5)

n̂max &
ω

2πH
log

pmax
kmin

,

(5.6)

with
pmax
H
∼ ζ−1/2 ∼ 105/2 . (5.7)

They are chosen so that they cover the needed range for the whole range of k considered

in the analysis. In the shape functions given above, the summand automatically shuts off

the sum at the required, k-dependent values at both ends. For each k, a total number of
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terms at most of order ∆n ∼ ω
2πH

log(pmax
H

) contributes to the sum, reflecting the overall

scale invariance of the setup. But the 1/η3
n suppresses the early values of ηn, so in fact

the dominant contributions come from the smallest values of kiηn such that the integral in

(5.1) gets its dominant contribution (including its resonance in cases with oscillation in the

δφmχ(φ0(t)) factor).

5.1.1 Case (a)

In case (a), δmχ
δφ

is a step function. Hence the source integrated against the Green’s function

(5.1) becomes

ĥa(kηn) =

∫ 0

ηn

dη′

η′
ĝ(kη′) (5.8)

By evaluating the appropriate overlap [2], we find that unless ω/H . O(1), shape (a) is

essentially equilateral with tiny oscillations. We show the the shape along k1 = k2 = k3 = k

in figure 2. The parameters and ranges for this case (a) are therefore:

phase : 0 ≤ γ < 2π (5.9)

input frequencies :
1

10
<

ω

2πH
< 1 (5.10)

UV scale :
pmax
H
' ζ1/2 (5.11)

and we should again note that a multifrequency analysis as in [1] would also be appropriate.

5.1.2 Case (b)

In this case we have sinusoidal oscillations in δmχ
δφ

(3.62), so

ĥb(kηn) =

∫ 0

ηn

dη′

η′
sin
( ω
H

log(η′/ηn)
)
ĝ(kη′) + higher Fourier modes (5.12)

The integral can be performed exactly or in a saddle point approximation (3.52) which is a

good approximation at sufficiently high frequencies.

As discussed below (3.62), one or more of the higher Fourier modes may be interesting to

include, although they are somewhat suppressed within the resonant integral. This entails

a set of frequencies with a specific relation between them: ωN = Nω where N = 1, 2, . . . .

Such modes would arise in a more general study of periodic mass functions [39].

In this case, the theoretical parameter space includes a viable window satisfying the

consistency conditions delineated above, for the full range of ω/H that can be described

in effective field theory. This includes a regime with competitive signal to noise in the

bispectrum as compared to the power spectrum. Moreover, the overlap between the shape
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generated by (5.12) and the equilateral shape is small (percent level). Hence the parameter

window we propose for this search is

phase : 0 ≤ γ < 2π (5.13)

input frequencies :
1

10
<

ω

H
< 200 (5.14)

UV scale :
pmax
H
' ζ1/2 (5.15)

In this case as well, a multifrequency analysis would be well motivated. A specific example

of that would be to include more Fourier modes in (5.12), which involves frequencies that

are multiples of the lowest frequency. More generally, multifield versions of the dynamics we

studied in this paper could generate a similar pattern with additional frequencies.

5.2 Shapes and overlaps

Let us also briefly illustrate the shapes and their comparison to previous templates. For

the latter, we implement the prescription the overlap of signal to noise in different tem-

plates developed in [2], applied to our situation which is not scale invariant (since there are

oscillations as a function of the overall k scale).8

5.2.1 Plots for case (a)

In figure 2, we show the shape S(k1, k2, k3) = k2
1k

2
2k

2
3B(k1, k2, k3) for equilateral triangles

and a range of frequencies ω/H.

As the frequency ω/H increases the shape in this direction consists of oscillations on top

of a plateau. If we multiply the curve in these figures by k2, we obtain a shape of the signal

that takes into account of the signal-to-noise ratio.9 As one might expect from figure 2,

overlap calculations confirm that this shape becomes similar to equilateral at ω/H > O(1).

This is shown in figure 3

5.2.2 Plots for case (b)

Figure 4 shows the shape of the bispectrum for case (b) over a range of frequencies for

equilateral triangles. In this case, the shape oscillates around zero. As a consequence, the

overlap with the equilateral shape is low for a wide frequency range. This is shown in figure

5.

8We thank M. Munchmeyer for sharing his independent analysis of this, as well as an additional check
that the shape is also orthogonal to the resonant shape.

9This is different than for a 3d survey, where the signal to noise grows at high k’s as k3.
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Figure 2: Bispectrum shape (a) plotted along the equilateral axis for a range of frequencies.
As the frequency increases a plateau develops and the amplitude of the oscillations decreases.
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Figure 3: Overlap of shape (a) for γ = 0 with the equilateral template using the prescription
developed in [2]. As the frequency increases the shape approaches the equilateral shape.
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Figure 4: Shape for case (b) plotted along the equilateral axis for a range of frequencies.
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Figure 5: Overlap of shape (b) with the equilateral template using the prescription developed
in [2]
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6 General lessons

Having developed this mechanism in detail, let us put it in context of the broader study of pri-

mordial non-Gaussianity and power spectrum features. A variety of examples demonstrated

that the dynamic range of inflation and its signatures extends well beyond the single-field

slow roll case (see for example [35, 36, 37, 14, 38]). Further progress was made by system-

atically characterizing the observables from an effective field theory perspective [9]. In this

section, we will explore a potentially more systematic approach to the subject.

6.1 Dynamics

Intuitively, in single-field slow roll inflation, the flatness of the potential translates into small

interactions and hence Gaussian perturbations. Non-Gaussianity can be relatively large in

many circumstances that are also straightforward to understand. Dynamical mechanisms

for non-Gaussianity can be broadly classified as follows.10

(1) Interactions slow the evolution of the inflaton down its potential, which can be steep.

These interactions can naturally lead to detectably large non-Gaussian perturbations.

(2) Even in slow-roll inflation, multiple light fields can fluctuate significantly during inflation,

with those transverse to the inflationary trajectory having stronger self-interactions since

they are unconstrained by the flatness of the potential along the inflaton direction.

(3) Various features in the potential and kinetic terms may lead to modulations of the power

spectrum and non-Gaussian correlators. If the S/N in the non-Gaussianity is sufficiently

competitive with that in the power spectrum, this can lead to distinctive non-Gaussian

signatures.

In this work we have developed another mechanism:

(4) Non-adiabatic effects arising from the coupling of the inflaton to even very heavy fields

can generate detectable non-Gaussianity (including in slow roll inflation with a single lighter-

than-Hubble field).

6.2 Effective field theory treatment

Let us make some further comments on the effective field theory (EFT) approach to the

systematic study of non-Gaussianity. This is important for two almost contrary reasons: (i) it

determines how symmetry constrains observables and (ii) it clarifies what is left undetermined

by EFT considerations. The EFT of single and multifield inflationary perturbations [9, 29,

10Combinations of these are of course also possible and arguably more generic; see [28] for interesting
proposals for testing a random set of effects using ideas from disorder and localization theory.
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30] was constructed by noticing that the epoch of inflation can be thought of as a period

where time-translations are spontaneously broken and there is therefore a Goldstone boson,

i.e. a light degree of freedom that non-linearly realizes this symmetry, usually denoted π.

The Lagrangian for the fluctuations can therefore be constructed without knowledge of the

symmetry breaking mechanism. Additional fluctuating degrees of freedom, if relevant, can

be consistently coupled to this Goldstone boson [29, 30]. In the case that only the Goldstone

boson is relevant, and in the so-called decoupling limit where metric fluctuations can be

neglected, the EFT Lagrangian takes the schematic form [9]

S =

∫
d4x
√−g

[
M2

PlḢ(t+ π)

(
π̇2 − (∂iπ)2

a2

)
+ (6.1)

+M4
1 (t+ π)

(
π̇2 + π̇3 + . . .

)
+M4

2 (t+ π)
(
π̇3 + . . .

)
+M4

3 (t+ π)
(
π̇4 + . . .

)]
.

Here we have neglected operators that are higher order in derivatives and the number of the

fluctuations, which are irrelevant for the discussion11. M1,2,3,... are free functions of time that

are not constrained by the symmetry of the problem, in addition to H and Ḣ, which have

to obey only the mild constraint that the spacetime must be inflationary. This implies that

there are infinite series of operators in π that are unspecified.

Symmetries: One can classify the results in terms of the level of symmetry, which

when present can constrain the behavior of these functions. A natural case to consider

is a continuous shift symmetry for π, which requires the unspecified functions of time to

simply be constant [9]. Another possibility is a discrete shift symmetry, e.g. a sinusoidal

time-dependence [24], as it already appeared in axion models [10]. In these cases, there is a

limited number of operators that contribute at a given order in the fluctuations. This has

led to a classifications of the possible shapes generated in such symmetric classes of single

field inflation, which has been looked for at various stages in the CMB data along with

certain multifield shapes (see for example [1, 31, 32]). In general, for multifield inflationary

perturbations the possibilities proliferate.

General Shapes: In general, the minimal set of symmetries in single-clock inflation

allow for the unspecified functions of time that are present in the above Lagrangian (6.1) to

be indeed unconstrained. As mentioned, this leaves an infinite set of operators unspecified

that, naively, makes a systematic exploration of the signatures of inflation, even in the

purely single field case, hopeless. However, the situation is not as bad as it appears for

two reasons. First, primordial fluctuations are small and quite Gaussian, which means that

we can restrict to operators with a limited number of fluctuations. This means that we

can restrict our analysis to a finite set of functions, of which we care of the value of a finite

11See for example [31] for a detailed list of operators in the case of single field, and [29, 30] for multifield
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number of time derivatives (for example, M4
1 (t),M 4

1
′(t),M 4

1
′′(t), . . .) 12. Second, the duration

of inflation is finite, and experiments have a finite volume coverage. This implies that each

function can be expressed as a finite superposition of plane waves. For example:

M4
I (t) =

∫
dω ei ω t M̃4

I (ω) '
Jmax∑

J=−Jmax

ei∆ω J t M̃4
I,J (6.2)

The smallest step in frequency is determined by the duration of inflation ∼ NeH
−1, with

H & 10−12GeV and Ne ∼ 60 being the number of e-foldings. That is, ∆ω ∼ H/Ne. The

largest frequency is limited by the experiment volume coverage ωmax ∼ ∆ω Jmax ∼ HLkmax,

where H is the Hubble rate during inflation, and L is the length (shorter or equal to our

current Hubble length) extension of the experiment 13. This arises as follows.

Given an experiment of size L, the minimum change in momentum k/a is 1/L. For our

purposes, we need that two modes differing by ∆k/a = 1/L exit the horizon with a difference

in time small enough that the oscillatory piece we are interested in capturing did not complete

an oscillation. Since in a resonant situation the modes are created at ηk ∼ ω/H, we have

η1/η2 ' 1 + ∆k/k for the times η1 and η2 at which the two modes are created. This implies

that the change in phase in this time period is

∆ωj

H
log[η1/η2] ∼ ∆ωj/H

∆k/a

k/a
< 1, (6.3)

for all j’s. This implies ∆ωjmax < HLk
a
< HLkmax/a.

So even though general functions of time are allowed in the EFT Lagrangian even at the

single-field level, we find that apart for a marginal exception described in footnote 12, only

12A potential exception to this statement is the following. One could imagine that there is a set of
operators of the Goldstone Lagrangian for which the perturbative expansion in the number of fluctuations is
not applicable. If these operators are all small, then the theory would be still approximately Gaussian, but
if at the same time there is no relative hierarchy between the operators, one cannot truncate the expansion.
Something of this sort happens in the EFT of a particle that is obtained after integrating out a weakly
coupled heavy particle: as we push the EFT up to the energy of the particle having been integrated out,

the derivative expansion of the EFT breaks down (schematically: g2 1
2+m2 ∼ g2

m2

(
1− 2

m2 +
(

2
m2

)2
+ · · ·

)
).

This can be detected in the EFT by noticing that the theory is non-perturbative and higher derivative
operators are important, signaling the presence of additional degrees of freedom. In the EFT of single-clock
inflation, the same phenomenon can appear in two ways: either the derivative expansion breaks down (in
which case the theory cannot be regarded as single field), or the expansion of the functions M4

i (t+π) breaks
down. In this second case, there is not much we can do at the level of the EFT: the operator is strongly
coupled and we are unaware of techniques of how to compute it (it is unclear if performing the calculation
in unitary gauge would help; we are also unsure if this can ever happen by preserving in the Lagrangian
only one degree of freedom. If instead there were to emerge additional degrees of freedom, we could use the
techniques developed in [33, 34]).

13There are additional factors that might limit the actual ωmax of an experiment. For example, in the case
of the CMB, the finite width of the visibility function is expected to induce a wash out of the high frequency
oscillations.
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a finite, though potentially large, set of operators needs to be included to fully describe the

space of possibilities. However, as we pointed out in detail in sec. 2.1, relying on a single field

description amounts to assuming that there are no particles with mass comparable to the

highest frequency at which the EFT coefficients have support. If there were to be additional

fields at these scales, they would not be describable with just a single degree of freedom,

and the possibilities would proliferate (see [33] for some first steps to classify these effects as

dissipative effects in a single field Lagrangian).

Data analysis: What is the way to analyze this space of possible signals, even at the

purely single-field level? Since non-Gaussianities are observationally bound to be small, it is

possible to consider the signal as the superposition of the signal induced by each operator

taken with the others set to zero. Since each operator has a sinusoidal time dependence, the

signal is the sum, with arbitrary coefficients and with the frequencies as described above, of

the effects that were for example studied in the case of resonant non-Gaussianities [23, 24].

The latest Planck analysis [1] has analyzed the resonant shapes, but only for the three point

function and for a few frequencies. At least naively, an analyses where templates of multiple

frequencies are used should be doable and would offer a more general coverage of the signals

captured by the EFT of single field inflation.

However, the large number of parameters may well dilute away some specific signals, a

problem which gets exacerbated with multiple fields, including very heavy ones as studied

in this work. Therefore, insight from UV completions remains important for deriving well-

motivated searches for particular signatures.

Technical Naturalness: If we allow for generic functions of time in the coefficients

of the EFT Lagrangian, the shift symmetry of π gets violently broken. It is expected that

large radiative corrections will modify these coefficients, but so far as we do not rely on any

specific functional form and instead explore a general form for the functions M4
i (t), technical

naturalness does not seem an issue.

Additional degrees of freedom and dependence on high energy scales:

As we explained above in §2.1, and worked out in detail in the bulk of this paper, the

precision of current data requires including very heavy fields as when their non-adiabatic

effects are suppressed by ∼ 1/
√
Nmodes. In that context, it would be worthwhile to under-

take a more systematic study of mχ(t), expanding it in Fourier components and imposing

consistency criteria [39].

7 Summary and future directions

We have seen that for a well-defined window of parameters, current CMB data is sensitive to

non-adiabatic production of particles with time-dependent mass, even if the minimal mass
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µ̃ & φ̇1/2 is much larger than the scale ∼ H of the vacuum fluctuations. The basic reason

for this is that the exponential exp(−πµ̃2/gφ̇) (1.1) can compete with 1/
√
Nmodes ∼ 10−3 for

a range of µ̃2 > gφ̇.

This general expectation survives a detailed derivation of the N -point in-in correlation

functions in the quantum field theory describing the coupling of the heavy fields to the in-

flaton, including quantum interference effects going beyond the classical production scenario

outlined in the appendix of [6]. Motivated in part by axion monodromy, we focused on

sectors of heavy fields whose production events respect a discrete shift symmetry along the

inflaton direction. For a range of parameters, the resulting contribution to the scalar pertur-

bations yields novel shapes of non-Gaussianity, with an amplitude that can be competitive

with or somewhat greater than the corresponding contributions to the power spectrum. This

contrasts with resonant non-Gaussianity [23].14 (There is another range of parameters for

which the effect is still visible at least in the power spectrum and the shape is more similar

to the resonant shape, in addition to regimes where it would be too small to observe.)

There is a range of parameters where the signal/noise in the primordial N -spectra grows

somewhat with N . It would be very interesting to formulate an optimal search strategy for

this regime [39], although the bispectrum analysis can always be done. To our knowledge,

this is the first case of such growth, and deserves further investigation.

Particularly for high-scale inflation, in which there are few orders of magnitude between

H and the Planck scale, such massive fields are expected in many extensions of the Standard

model, including grand unified theories and string theory; moreover, the novel regime of

shapes and amplitudes we have derived applies for couplings not tuned to be smaller than

needed for control of radiative corrections. However, it should be emphasized that the effect

can be easily suppressed by considering sufficiently weak coupling; since it is exponentially

suppressed, the regime where it is not visible can arise without substantial tuning of parame-

ters. Nonetheless, the theoretical genericity of heavy fields coupling to the inflaton combined

with the precision of modern cosmological data motivates carrying out a search to determine

the empirical constraints on the amplitude of this effect. We have provided templates for

analysis including parameter ranges determined by theoretical consistency and the level of

overlap with existing templates.

In general, we find remarkable the sensitivity of the data to microphysical details, albeit

limited by the finite number of modes; this remains worth exploiting to the full extent

possible. One generalization of this work would be to check more explicitly the effects of

fermion production [39], particularly since some level of micoscopic supersymmetry helps

control radiative corrections generated by vacuum fluctuations of the heavy fields.

A very interesting but more difficult generalization would be to string (as opposed to

14But see the second reference in [24] for an interesting exception.
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particle) production. This is also motivated in part by axion monodromy, in which discrete

parameters determine whether particle or string production would arise in the sectors de-

scribed by our case (a). Theoretically, this has several novel features [27], so we could not

immediately apply our current results to this case. It would be very interesting to see if

the string production process can be analyzed with sufficient theoretical precision to derive

specific predictions and templates, and if so, whether these overlap substantially with those

we have computed here.
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A Radiative corrections

As discussed in the main text, we must ensure radiative stability of our mechanism and its

predictions. The details of this depends on additional microphysical specifications, such as

the effective cutoff on loop momenta and the level of microscopic supersymmetry. Without

formulating a specific model, in this appendix we will check basic criteria for radiative

stability, making sure to capture the leading contributions which descend irreducibly from

the time-dependence of the χ (and possible superpartner) masses, since that is intrinsic to

our mechanism.

We will first review the 1-loop effective action in a minimal extension to a supersymmetric

model with (complex) boson χ and superpartner fermion ψ, with φ-dependent mass-squared

given by m2
χ = |m(φ)|2 with m(φ) the complex mass appearing in the superpotential. We

focus on the contributions to supersymmetry breaking from the time dependence, leaving out

other contributions to spontaneous supersymmetry breaking that would involve additional

sectors. In this calculation, supersymmetry ensures that all corrections are derivative terms.

We will determine the conditions for radiative stability that descend from this irrreducible

contribution to SUSY breaking from the time dependence. Next we will derive the Coleman-

Weinberg potential in case (a) and in the presence of hard SUSY breaking mass splittings,

to show how type (b) couplings can be radiatively generated.

A.1 1-loop effective action with microscopic N = 1 supersymme-
try

At one loop, we can compute the effective action for φ in components using heat kernel

techniques. The one loop contribution can be written as

∆Seff = −i lim
y→x

∫
d4x[

1

4
tr ln(−∂2

x − i(/∂m1) + γ5(/∂m2) + |m|2)δ(x− y)− ln(−∂2
x + |m|2)δ(x− y)

]
, (A.1)

where the trace runs over spinor indices, m1 and m2 are the real and imaginary parts of m,

respectively, ∂2
x should be thought of as an operator whereas the derivative in /∂mi only acts

on the masses. We can formally write this as

∆Seff = −i lim
y→x

∫
d4x

∞∫
0

dt

t[
1

4
tre−t(∂

2−i(/∂m1)+γ5(/∂m2)+|m|2)δ(x− y)− e−t(∂2+|m|2)δ(x− y)

]
. (A.2)
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The mass-squared |m|2 cuts off the integral exponentially at for large proper times t, but

the integral diverges as t approaches 0 and has to be regulated. We can use proper time

regularization and replace the lower limit by ε or use dimensional regularization. Let us

make use of the momentum space representation of the δ-function to rewrite the integrand

∆Seff = −i
∫
d4x

∫
ddp

(2π)d

∞∫
0

dt

t[
1

4
tr e−t(−(∂−ip)2−i(/∂m1)+γ5(/∂m2)+|m|2) − e−t(−(∂−ip)2+|m|2)

]
. (A.3)

Here derivatives acting on the right are set to zero but derivatives acting on the masses are

kept. The momentum p appears from the action of the derivative on the exponential in

the momentum space representation of the delta function, more specifically, as an operator

∂ exp(−ipx) = exp(−ipx)(∂− ip). It is convenient to rescale the momenta p = k/
√
t so that

∆Seff = −i
∫
d4x

∫
ddk

(2π)d
e−k

2

∞∫
0

dt

t
d
2

+1[
1

4
tre−t(−∂

2+2ik·∂/
√
t−i(/∂m1)+γ5(/∂m2)+|m|2) − e−t(−∂2+2ik·∂/

√
t+|m|2)

]
. (A.4)

Expanding up to second order in derivatives of the background field φ we see that the

Coleman-Weinberg contribution (zeroth order in derivatives) cancels because of SUSY and

the two derivative contribution is

∆Seff = −
∫
d4x

1

2(4π)d/2

∞∫
0

dt

t
d
2
−1
e−t|m|

2

∂µm
∗∂µm. (A.5)

After expanding d = 4− 2ε in ε, we find

∆Seff =

∫
d4x

1

32π2

(
−1

ε̄
+ ln

|m|2
µ2

)
∂µm

∗∂µm. (A.6)

Higher order corrections are also readily obtained by expanding to higher order in ∂. Alter-

natively, we can derive the two-derivative contribution in the superspace formalism [25]. If

we use a momentum space cut-off Λ to regulate divergences instead, and add the tree-level

contribution the bosonic part takes the compact form

Seff =

∫
d4x

1

2
f 2(φ)(∂φ)2 − V (φ), (A.7)

where

f 2(φ) = 1 +
1

16π2
log

e|m|2
Λ2

∂φm∂φm
∗. (A.8)
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Next we make the kinetic term standard by using the canonically normalized field

φc ≡ F (φ), F (φ) =

∫
f(φ)dφ. (A.9)

This results in the following leading order correction to the potential

δV = (φ− F (φ))V ′, (A.10)

which we will demand to have a subleading effect on the slow-roll solutions. Let us focus on

some concrete models for m(φ). In case (a), we can consider m1 = µa, m2 = ga(φ− 2πnf).

Taking log(|m|2/Λ2) ∼ 1, the condition for radiative stability of the slow-roll solution then

becomes
g2
a

16π2
� 1. (A.11)

One way to realize scenario (b) is to consider m = µ0 + µ1eiφ/f with µ0 and µ1 related to µ

and gf according to µ2 = µ2
0 + µ2

1 and g2
bf

2 = µ0µ1. In this case, we need

µ2
1

16π2f 2
� 1. (A.12)

However, the phenomenologically interesting case is when µ0 ∼ µ1 in which case we recover

(A.11) with ga → gb. Imposing also that the radiative corrections not introduce appreciable

resonant corrections to the primordial power spectrum leads to weaker conditions.

A.1.1 Higher derivative corrections

So far, We focused on the 2-derivative effective action in this calculation. Higher derivative

corrections will also be generated, but will be further suppressed. For instance, at fourth

order in derivative we get
1

16π2

(∂m)4

m4
∼ g4

16π2µ4
(∂φ)4, (A.13)

where we used ∂µm(φ) ∼ g∂µφ.

At strong coupling, such corrections can generate large non-Gaussianity [37]. In general,

since these loop effects are power law rather than exponentially suppressed in the minimal

χ mass µ, we should analyze whether they can dominate over our non-adiabatic effects. The

term (A.13) appears as the first nontrivial correction in a series of higher dimension operators

that are generated. With extended supersymmetry, it is not renormalized, and also appears

as the leading correction in a series of corrections tractable at strong coupling. That is, in the

absence of strong accelerations, and with sufficient microscopic supersymmetry, we can read
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off the kinetic corrections induced by χ conveniently from the string-theoretic Born-Infeld

action for N3 D3-branes, with the field φ related to the position r of the brane

S = − 1

g2(2πα′)

∫
d4x

r4

R4

√
1− R4ṙ2

r4
(A.14)

'
∫
d4x

{
1

2
φ̇2 + g4 N3φ̇

4

4π2m4
χ

+ . . .

}
. (A.15)

This action is generated by loop corrections in the low energy quantum field theory on the

D3-branes.15 In case (a), we should take the effective N3 ∼ µ/g(2πf) if this ratio is > 1, in

order to keep all contributions with a mass of order µ. In case (b), we have only one sector

of χ fields, so N3 ∼ 1 in that case.

What we will want to do is impose the requirement we get on Z ≡ πµ̃2/gφ̇ from the

power spectrum (4.5), and see what it implies for the contribution of the kinetic corrections

to the background evolution, perturbations and non-Gaussianity.

This can all be assessed by noting that the DBI corrections are controlled by

cs =
1

γ
, γ =

1√
1− g4N3φ̇2

2π2µ4

≡ 1√
1− v2

, (A.16)

with

v2 =
g2

2
N3

(
gφ̇

πµ2

)2

� 1 , (A.17)

where the last inequality is the condition for these corrections to be neglected. We will

find that this is indeed small in our parameter window, so that these kinetic corrections are

negligible as a contribution to the evolution and perturbations.

A.2 Effective Potential from χ vacuum fluctuations in case (a)

In string theory, one has both types of χ sectors, those of cases (a) and (b) above16 Let us

next discuss the periodic potential term generated by integrating out χ particles of type (a),

including the leading effect of a bose-fermi mass splittings. This in itself could provide the

leading sinusoidal potential term entering into case (b): for couplings which are VEVS of

fields, as in string theory, this periodic term then implies periodically varying masses of type

15Including all the factors in the D-brane action gives the following identifications: {Yang-Mills coupling
g2YM ≡ g2 = 2πgs, R

4 = 2g2N3α
′2, mχ = r/(2πα′) = gφc ≡ gφ}. Note that we will call the canonical field

φc = φ, although in the DBI literature this was not always the case (off by a factor of the string coupling
gs).

16Although as mentioned there, sector (a) sometimes consists of strings rather than low energy fields.
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(b). This interplay between the vacuum and non-adiabatic effects of the χ sectors deserves

more systematic study.

For now, let us explore the structure of the effective action that we obtain from the

vacuum fluctuations of the χn fields (2.2) in sector (a) above to see how these effects may

generate the sinusoidal correction in a self-contained way. To analyze this, let us work at

a point in φ and work out the Coleman-Weinberg potential from each χn sector, and sum

them up.

Let us put in a fermion partner ψ for χ, with mass splittings given by

m2
χn = m2

n + ∆m2
χ, m2

ψn = m2
n + ∆m2

ψ (A.18)

with

m2
n = µ2

a + g2(φ− φn)2 = µ2
a + g2(φ− 2πnf)2 (A.19)

much greater than the squared mass splittings. That is, we work in a regime where µ is much

greater than the supersymmetry breaking scale; a stronger periodic contribution would arise

otherwise which is a little more complicated to compute. From these fields we get a one-loop

Coleman-Weinberg potential

∞∑
n=−∞

∫ M∗ d4kE
(2π)4

log

(
k2
E +m2

n + ∆m2
χ

k2
E +m2

n + ∆m2
ψ

)
(A.20)

Expanding this in the small ratios ∆m2/(m2
n + k2

E) gives us a leading contribution17

(∆m2
χ −∆m2

ψ)

∫
k3
EdkE
8π2

∞∑
n=−∞

1

µ2
a + k2

E + g2(φ− 2πnf)2
(A.21)

We can evaluate this sum over n, giving us

(∆m2
χ−∆m2

ψ)

∫
k3
EdkE(if)

16π
√
k2
E + µ2

a

(
cot

(
1

2gf
[gφ− i

√
µ2
a + k2

E]

)
− cot

(
1

2gf
[gφ+ i

√
µ2
a + k2

E]

))
(A.22)

For sufficiently large µa/gf we can simplify this using

cot(u+ iv)− cot(u− iv) ∼ −2i
(
1 + e−2v cos(2u)

)
+O(e−4v) (A.23)

to get a constant piece (subtracted as part of the cosmological constant tune) plus18

(∆m2
χ−∆m2

ψ) cos

(
φ

f

)∫
k3
EdkE(gf)

8π
√
k2
E + µ2

a

e−
√
k2E+µ2a/gf = (∆m2

χ−∆m2
ψ) cos

(
φ

f

)
gfµa
4π

K1

(
µa
gf

)
(A.24)

17If we had prescribed extended supersymmetry microscopically, with more bosonic and fermionic partners
for χ, the analogous formula would be of order (∆m2)2 or smaller, with more inverse powers of the χ mass-
squared. That case could be analyzed similarly.

18performing the last integral by changing integration variable to
√
k2E + µ2

a).
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with K1 a Bessel function which behaves as

K1

(
µa
gf

)
∼
√
gfπ

2µa
e−µa/gf (A.25)

at large argument. The more general integral expression (A.22) must be used (along with

an appropriate subtraction for the cosmological constant) when µa/gf is not large.

This result is interesting in that it provides a simple mechanism for generating the sinu-

soidal term in the potential, with an amplitude that depends on the same parameters that

will appear in some of the particle production effects. Its size and its detailed dependence

on the parameters can be compared and contrasted with the case where the leading such

term is generated by instanton effects. In some simple situations, such as string-theoretic

axions in a single-scale compactification manifold, the instanton effects scale like e−MP /f as

reviewed in [26]. The present calculation is more relevant in a different regime, where the

χn sectors run in loops in perturbative Feynman diagrams.

To summarize, we have generated a cosine term from vacuum loops of the χn sectors of

type (a) defined above. In a string-theoretic context, the parameters in the result (∆m,µa, f)

depend in general on additional fields, some of which may play the role of the χ particles of

type (b) above. In such a situation, the (a) sector would generate oscillating masses for the

(b) sector.
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