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Abstract: Fibre inflation is a specific string theory construction based on the Large Vol-
ume Scenario that produces an inflationary plateau. We outline its relation to α-attractor
models for inflation, with the cosmological sector originating from certain string theory cor-
rections leading to α = 2 and α = 1/2. Above a certain field range, the steepening effect of
higher-order corrections leads first to the breakdown of single-field slow-roll and after that
to the onset of 2-field dynamics: the overall volume of the extra dimensions starts to par-
ticipate in the effective dynamics. Finally, we propose effective supergravity models of fibre
inflation based on an D3 uplift term with a nilpotent superfield. Specific moduli dependent
D3 induced geometries lead to cosmological fibre models but have in addition a de Sitter
minimum exit. These supergravity models motivated by fibre inflation are relatively simple,
stabilize the axions and disentangle the Hubble parameter from supersymmetry breaking.
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1 Introduction

Inflation has since long held the promise of providing an observational window on physics of
very high energy scales, and might even offer a glimpse of string theory. With the beautiful
CMB measurements of Planck in hand [1, 2], it is natural to wonder about the relation
between models compatible with the data and possible string inflationary set-ups.

Starting with the former, α-attractors are a rather minimal and elegant class of bottom-
up supergravity models, that match the current CMB data with ns = 1− 2/N and predict
r = 12α/N2 in terms of the number of e-folds N [3]. These models can be understood as
pole inflation models: as a single-field model, the kinetic function of the inflaton consists
of a second order pole whose location we can choose to be at φ = 0. At the same time, the
scalar potential in this non-canonical frame is an arbitrary but regular function, which is
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positive around the pole [4]. Canonical normalization of the inflaton then leads to infinite
stretching of the scalar potential near φ = 0 in an exponentially approached semi-infinite
plateau.

The only relevant parameter for this class of models is the curvature of the hyperbolic
moduli space, set by α [5]. While this is a tunable parameter in N = 1 supergravity, it is
generically not in string theory set-ups. Instead, one typically obtains a number of copies of
hyperbolic spaces. A natural question regards the possible values of α that can be obtained
by the interplay between the different moduli spaces.

This interplay is illustrated by the recent M-theory/string theory/maximal supergravity
inspired models based on seven hyperbolic disks geometries [6–8]. These correspond to
either a particular G2 compactification from 11D to 4D, or a toroidal reduction of string
theory, or on E7(7)(R) ⊃ [SL(2,R)]7symmetry of N = 8 4D supergravity. A subsequent
set of simple cosmological disk merger models was proposed in [7, 8] with some constraints
on the moduli of the seven unit-size-disks, which lead to α-attractor models with 3α =

1, 2, 3, 4, 5, 6, 7. Some of these constraints required that Ti = Tj .
A natural generalization involves more general identifications between tori. The first

example going beyond the simple identification above is Ti = T pj with p 6= 0, 1. In this paper
we will analyze the consequences of such an identification for the case of two moduli and
p = ±2 (both sign choices being related by moduli inversion). Moreover we point out that
this is equivalent to volume stabilization in Calabi-Yau compactifications of string theory,
as performed explicitly in e.g. the Large Volume Stabilization (LVS) scenario [9].

The model class of string inflation setup coming closest to this is “fibre inflation” [10] and
various followups, see e.g. [11]. Fibre inflation builds on LVS with a “fibre volume modulus”,
providing the inflationary direction. Various string corrections produce an effective 4D
kinetic term and scalar potential that shows at leading order the structure of pole inflation.
We will outline and explain the possible α-attractors that can arise in such a setting of a
fibred Calabi-Yau compactification.

However, fibre inflation can also come with corrections to the kinetic function and scalar
potential arising from string loop corrections [12–14] and/or higher superspace-derivative
corrections [15] (in the spirit of the generalized pole inflation paper [16]). Such corrections
might spoil the infinite plateau and instead could produce rising exponential corrections
after a finite O(10Mp) plateau. While the higher superspace-derivative corrections are
given in terms of a topological quantity of the underlying compactification [15], the string
loop corrections [12–14] produce two terms in the scalar potential arising from KK-modes
of the two 4-cycles of a fibred Calabi-Yau and a third term arising from winding modes of
strings wrapping the intersection between the two 4-cycles. We will discuss the argument
for the existence of singular terms in the scalar potential for non-canonically normalized
inflaton (from string loops and α′ corrections), and we will argue that the proposed singular
terms of [10, 11] are not necessarily present. Adressing the same issue in [17, 18] where the
extra (α′)3 corrections from [15] is interesting and requires an independent analysis.

Finally, a crucial ingredient of the large volume scenario, on which fibre inflation builds,
is the uplift from the non-SUSY AdS to a Minkowski or a de Sitter minimum. The intro-

– 2 –



duction of a nilpotent multiplet can easily accommodate this uplifting. When the choice of
the Kähler frame for the disk geometry is given in a form suggested in [5, 7] with an inflaton
shift symmetry, the superpotential or S-field metric break this symmetry. The inflationary
dynamics can be introduced either via a simple contribution to the superpotential [7] or to
the S-field metric [19]. We will use here the D3 induced geometric inflation construction
based on Kähler function as proposed in [8], where this method was shown to be efficient
in the context of the disk merger cosmological models.

We will provide here full supergravity effective descriptions of the interplay between the
nilpotent multiplet and the fibre modulus in a concrete supergravity model that captures
the essential ingredients of fibre inflation.

2 Fibre inflation

2.1 Volume stabilization

Fibre inflation comprises a class of possible string theory models that rely on the existence
of a fibre modulus in the Calabi-Yau compactification. In order to stabilize the overall
volume, they rely on the large volume stabilization (LVS) mechanism. This requires the
volume to be dominated by a single term, while also including at least one blow-up mode.
An explicit fibre example is provided by the case of CP 4

[1,1,2,2,6][12] model with

V = λ
(√

τ1τ2 − γτ3/2
3

)
, (2.1)

where τ1 is associated with the volume of the K3-fibre, τ2 controls the overall volume
and τ3 denotes the blow-up and β, γ are constants. Note that the Kähler potential is a
homogeneous function of weight 3/2, resulting in the absence of a scalar potential for V
at tree-level: this is the no-scale structure of Calabi-Yau compactifications. Therefore the
volume is a flat direction at tree-level.

However, both the total volume as well as the blow-up mode can be stabilized by
the inclusion of perturbative α′-corrections to the Kähler potential, and non-perturbative
corrections to the superpotential:

K = −2 log(V + ξ) , W = W0 +A3 exp(−a3T3) , (2.2)

with Ti = τi + iχi the holomorphic versions of the four-cycle volumes τi. The resuling
potential reads

V =
8a2A2

3γ

(√
τ3

V

)
e−2aτ3 − 4W0aA

( τ3

V2

)
e−aτ3 +

3ξW 2
0

4V3
. (2.3)

This produces a minimum for τ3 and V at exponentially large values of the latter: in the
limit aτ3 � 1 an analytic approximation is

V =
3γ
√
τ3W0e

aτ3

4aA
, τ3 =

(
ξ

2γ

)2/3

, χ3 = 0 where : ξ ∼ −g−3/2
s χCY (2.4)

and χCY denotes the Euler characteristic of the Calabi-Yau manifold. This produces the
well-known non-SUSY anti-de Sitter minimum of the LVS scenario, which is stabilized by
a barrier that scales as V−3.
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2.2 Kinetic terms and pole inflation structure

Finding α-attractor-like regimes of pole inflation in a type IIB LVS compactification on a
fibred CY requires finding volume moduli with 2nd order poles in the kinetic terms without
corresponding poles in the scalar potential. In order to exhibit the pole structure of the
two volume moduli of a fibred CY with LVS stabilization we need to include the kinetic
terms of both moduli in (2.2)

Lkin. =
∑
i=1,2

−3αi
4

∂τi∂τi
τ2
i

= −1

4

∂τ1∂τ1

τ2
1

− 1

2

∂τ2∂τ2

τ2
2

. (2.5)

Here, we focus on the real parts and ignore axions for the moment. If we now impose
volume stabilization a la LVS enforcing V ' λ

√
τ1τ2 ≡ 〈V〉 = const. we are justified in

dropping derivatives of the volume when we replace either τ1 or τ2 in terms of the other
modulus. Hence, up to derivatives of the volume these two kinetic terms combine into

Lkin. ' −
3

8

∂τ1∂τ1

τ2
1

' −3

2

∂τ2∂τ2

τ2
2

. (2.6)

Thus, we get the relation

τ2 = e−ϕ/
√

3 (2.7)

for the effective canonically normalized inflaton field ϕ.

2.3 Loop corrections

In case the Calabi-Yau manifold is fibered, as in the example (2.1), the leading volume term
is a product. Stabilization of the overall volume therefore leaves a flat direction and hence
provides a possible avenue for inflation. To produce a scalar potential with a minimum
for the fibre modulus, one has to include further corrections. These can include a series of
conjectured loop corrections of the form:

δK =
CKK1

τ1
+
CKK2

τ2
+
CW12

τ1τ2
, (2.8)

where the first two arise from the exchange of Kaluza-Klein (KK) modes, for example, be-
tween D7-branes and D3-branes, which are usually needed for tadpole cancellation. These
corrections are suppressed by the volume of the 4-cycle wrapped by the D7-branes. In con-
trast, the third correction comes from the exchange of winding strings between intersecting
stacks of D7-branes. All these terms have been calculated to exist in toroidal compactifica-
tions [12, 13], and it has been argued that they should persist for Calabi-Yau generalizations
[10]. Moreover, the coefficients CKKi and CW12 are functions that depend on complex struc-
ture moduli U which are stabilized at tree-level by background fluxes. As a consequence,
the coefficients are assumed to be O(1) constants. An important point of this expansion
is that its consistency requires both τ1 and τ2 to be large. However, at fixed volume (2.1),
these two moduli are inversely proportional and hence this implies that there is a bound to
the regime where these can be trusted. We will get back to this point later.
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The above Kähler string loop corrections result in a scalar potential that is of the form

δV = gs
|W0|2

V2

(
(gsC

KK
1 )2

τ2
1

+ 2
(gsC

KK
2 )2

τ2
2

− 2CW12

λτ1τ2

)
+ δup .

(2.9)

Here, an explicit uplift term has also been included in order to have viable inflation. Upon
LVS volume stabilization on a fibred CY we need to impose V = λ

√
τ1τ2 = const. on the

previous expression. Then, we get

δV = gs
|W0|2

V2

(
(λ2gsC

KK
1 )2τ4

2

V4
+ 2

(gsC
KK
2 )2

τ2
2

− 2λCW12 τ2

V2

)
+ δup , (2.10)

Note that the KK corrections to the Kähler potential drop out at leading order: this has
been dubbed extended no-scale structure [20].

We will now review the generic properties of the string loop corrections.

• The string loop corrections to the Kähler potential of a fibred 2-moduli Calabi-Yau
manifold contain two contributions arising from KK-modes on 4-cycles wrapped by
D7-branes which only intersect themselves, and a third contribution arising from wind-
ing modes on a 1-cycle in the intersection of two 4-cycles which are both wrapped by
D7-branes (see the discussion in [14, 18]).

• In general, there will be other smooth and connected 4-cycles required to be present
due to D7-brane tadpole cancellation in a full CY orientifold model which intersect
either τ1 or τ2 or each of them. D7-branes wrapped on those 4-cycles wrap the
intersections with τ1 and/or τ2 as well. This will generate winding mode corrections
even we only wrap either τ1 or τ2 but not both. Therefore, generically the winding
mode corrections are expected to be present [21].

• Similarly, a full 4D N = 1 CY orientifold model will in general contain O7, and O3
planes, as well as D3-branes. Additional KK mode corrections may then arise from the
exchange of KK modes with these additional objects [21]. We should therefore expect
KK mode corrections of the form displayed in eq. (2.9) to be generically present.

• Finally, we note here that all the above conclusions about the generic presence of all
of the types of string loop corrections to K rest on the extrapolation of the explicit
toroidal orientifold calculations to the general CY case, which were performed in
absence of any moduli stabilization scheme imposing a constraint like τ1 ∼ 1/τ2

2 here.
Hence, the correction terms were originally functions of 1/τ1 and 1/τ2 separately. If
this form survives in presence of constraint relations between the moduli imposed by
moduli stabilization, then all of the above conclusions about the presence and form
of the string loop corrections follow. Therefore it would be important to check this
conjecture with explicit string loop computations for CY moduli in the presence of
volume stabilization mechanisms.
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2.4 Higher superspace-derivative corrections

In addition to loop corrections, higher derivative corrections will also induce a potential for
the initially flat fibre direction. These were calculated in [15] and subsequently employed
for inflation in [17]. They are proportional to integer numbers Πi encoding the topological
information of the second Chern class c2(M3). Choosing D̂i as a basis of harmonic (1, 1)-
forms on M3 one finds that

Πi =

∫
M3

c2 ∧ D̂i . (2.11)

With respect to an arbitrary choice of two-cycles, the numbers Πi can have both signs,
and moreover they can vanish for some choices of moduli. For instance, the example of
K3-fibered threefold CP4

1,1,1,6,9[18] has

Π1 = 36, Π2 = 0, Π3 = 0, Π4 = 0, Π5 = 102. (2.12)

We conclude that this class of corrections appears flexible in terms of signs and zeroes.
For the particular case of fibred Calabi-Yaus with two moduli, the resulting contribu-

tions to the scalar potential take the form

δV = g2
s

W 4
0

V4

(
−C1
V
τ1
− C2
√
τ1

)
= V0

(
−λ

2C1τ
2
2

V
− C2V
λτ2

)
, (2.13)

with Ci ∼ Πi. One can consider the following possible interplays between such corrections
(or a subset of them) and loop corrections:

• Inflation to the right with

δV = V0

(
−C2V
τ2

+
V2

gsW 2
0

(CKK2 )2

τ2
2

)
. (2.14)

As before, this leads to an α = 2 attractor. Possible corrections proportional to
e.g. C1 or CKK1 , are either absent for topological reasons or due to the choice of
brane wrappings, or when present will modify the inflationary plateau similar to the
discussion for loop corrections.

• Inflation to the left with

δV = V0

(
−C1τ

2
2

V
+

(CKK1 )2τ4
2

gsW 2
0 V2

)
. (2.15)

In contrast to the general discussion of the previous section, this leads to an inflation-
ary attractor with α = 1/2. The reason is the absence of a linear term. In general,
with leading corrections of a higher n-th order, one obtains α = 2/n2. Again we are
ignoring other corrections, which if present would modify the single-field nature.

• Finally, we can balance the higher superspace-derivative corrections against the string
loop winding mode term [18]. In that case we get a potential

δV = V0

(
C1τ

2
2

V
− CW12

gsW 2
0

τ2

)
. (2.16)
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2.5 Scalar potential and dynamics from loop corrections: the generic case

In order to get an idea of where this happens for generic values, first assume that the
minimum after inflation is determined by the first and last terms of the scalar potential
(2.9), which fall off at infinity. The minimum is located at

τ3
2 =

CW12V2

2λ3(gsCKK1 )2
. (2.17)

At this minimum, the second term with opposite behavior has a relative size of order

(
λg2

sC
KK
1 CKK2

CW12

)2

, (2.18)

which is assumed to be subdominant when the minimum is determined by the first two
terms. However, it grows quadratically with decreasing with τ2. Therefore this ratio will
become order one when τ2 has decreased with the square root of the inverse of the above
ratio. It is there that the steepening of the potential becomes due to the CKK2 corrections
dominant. In terms of the canonical inflaton, this corresponds to a steepening field range
of

∆ϕsteep. '
√

3 log

(
CW12

λg2
sC

KK
1 CKK2

)
. (2.19)

Every order of magnitude in the argument of the logarithm leads to a field displacement of√
3 log 10 ≈ 4. This clearly shows that one needs a non-trivial hierarchy in order to have a

sufficiently long plateau to sustain inflation.
An appealing manner to obtain such a range would be to have a very weak string

coupling. However, this also leads to an exponentially large volume due to (2.4), which
is incompatible with CMB observations. In particular, the COBE normalization of CMB
temperature anisotropies requires the height of the scalar potential during inflation to be of
the order 10−10. Note that this height scales as V−10/3, given by the difference of the loop
correction terms in (2.9) at the minimum (2.17) and during inflation, where they vanish.
Therefore natural values of the volume are around 103 or 104.

The above discussion also indicates what happens when the correction become impor-
tant. The volume stabilization takes place at V−3 and the inflationary dynamics just a
factor V−1/3 below this1. Due to the limited range for the volume, it is hard to separate
these scales parametrically. One would therefore expect that at latest at the moment when
the CKK2 corrections reach the volume modulus scalar potential scale, the volume stabiliza-
tion also ceases to be effective and the volume becomes a dynamical variable as well (see
also [10]).

1Note that this crucially relies on the extended no-scale structure: with linear instead of quadratic
corrections to δV , the inflationary dynamics would instead be a factor V1/3 above the scale of volume
stabilization.
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Figure 1. The scalar potential V of the Fibre inflation. For ϕ > 15, the potential in this model begins to
rise, whereas at large χ the potential falls down.

Therefore, beyond

∆ϕ2−field '
√

3 log

(
CW12

λg2
sC

KK
1 CKK2

V1/6

)
= ∆ϕsteep. +

1

2
√

3
log V ' ∆ϕsteep. +O(1) ,

(2.20)

one should not trust the picture with a scalar potential that bends upwards solely as a
function of τ1; instead, the actual dynamics is determined by a two-dimensional field space,
see Fig. 1. We note, however, in concordance with [10] that already for field values ϕ
between the onset of steepening and the onset of 2-field dynamics, the slow-roll parameters
increase so drastically due to steepening that slow-roll breaks down there. Hence, the whole
slow-roll region inside the scalar potential valley proceeds approximately with single-field
dynamics. Thus the process of inflation in the fibre inflation model occurs only in the
certain range of the variables ϕ and χ, along the inflationary valley shown in Fig. 2 and
Fig. 1. In particular, for sufficiently large values of χ, the potential bends down, and the
field χ starts to grow.

2.6 The speculative case with fewer corrections: recovering the infinite α-
attractor plateau

We do expect that at higher order in the α′- and string loop gs-expansion singular terms
might eventually arise in the scalar potential even if we were able to find setups where a
part of the leading corrections is absent. This is because there is no manifest microscopic
symmetry protecting the Kähler potential from Kähler moduli string loop corrections at any
loop order. The infinite plateau ϕ → ∞ corresponds to a 4-cycle τ2 ∼ exp(−ϕ/

√
3) → 0

shrinking to zero whereas the volume of the K3-fibre τ1 ∼ exp(2ϕ/
√

3) → ∞ blows up.
No information is available about string corrections at all higher orders in this regime. We

– 8 –



may speculate that such corrections will make the exponential plateau of fibre type to be
of finite length, or we may speculate that under certain specific conditions, these unknown
corrections will not affect the potential.

Either way, if we speculate about particular setups where a part of the leading order
α′- and gs-corrections is absent, then for such setups the plateau length can turn out to
be much larger than inferred from the leading order α′- and gs-corrections. We will now
sketch the vanishing requirements of such infinite plateau setups, bearing in mind that we
do not have explicit setups exhibiting the non-generic partial vanishing of the loop and/or
higher superspace-derivative corrections.

2.6.1 Loop corrections – the idealized case: infinite plateau

Let us look at the most simple case of a fibred CY with just 3 volume moduli at all, of which
the first 2 comprise the fibred ‘LARGE’ part of the volume λ

√
τ1τ2, and the 3rd must be

a true del Pezzo blowup supporting the ED3 instanton necessary for LVS stabilization.
In this simplest case, the fibration structure ensures that the 4-cycles of the two Kähler

moduli determining the product structure of the CY volume V = λ
√
τ1τ2 necessarily inter-

sect with each other. Hence, if we tried to forbid the winding mode string loop corrections
in τ1 and τ2 entirely, in this most simple case we might be able to do so by wrapping only
one of the 4-cycles corresponding to τ1, τ2 with D7-branes.

So for the simplest class of fibred CYs, if we find a model where CW12 = 0 then we might
expect that either CKK1 = 0 or CKK2 = 0, as far as the exchange of KK modes among the
D7-branes wrapping τ1 and τ2 is concerned. Conversely, if we found a setup where CW12 6= 0

then this entails CKK1 = CKK2 = 0, as now the τ1- and τ2-4-cycles intersect each other,
forcing the KK-mode corrections from both cycles to vanish. However, note that successful
LVS stabilization requires even for the simplest fibred CY a 3rd pure del Pezzo blow-up
modulus, which intersects only with itself, so it can carry an ED3 instanton. While this
blow-up does not carry a D7-brane, it is parallel to the two divisors τ1 and τ2 and thus
shares the same orthogonal two real dimensions as the two fibration 4-cycles. Hence, we
would generically expect this to give rise to additional KK-mode corrections of the type
CKK1 and CKK2 .

Finally, we can discuss what happens in the absence of such corrections, at least in
the observable window up to 60 e-folds. Ignoring CKK2 for the moment, upon including an
uplift term leads to an inflationary potential with an infinite plateau at large ϕ, see Fig. 2.
The leading deviation from this is given by the third term in (2.9) and therefore of the form
exp(−ϕ/

√
3). If such setups can be found then they would lead to the robust inflationary

predictions of α-attractors [3] with the specific value α = 2, as discussed in [11].

2.6.2 F 4 corrections – the idealized case: infinite plateau

We now see that once we grant the assumed particular minimal CY setups with or without
the winding correction discussed in the previous subsection, we find no singular terms in
both inflation to the left and to the right arising from the string loop corrections. The
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Figure 2. The scalar potential V of the fibre inflation with a particular set of parameters; χ is defined by
χ = logV.

only corrections able to spoil the plateau with singular behaviour at small τ2 are the higher
superspace-derivative corrections C1 or C2, respectively.

The vanishing of either C1 or C2 is a well defined model selection question. This is,
because the higher superspace-derivative terms depend explicitly on the topological data
of the second Chern class of the CY as well as the choice of Kähler cone. Hence, we see
that if there existed fibred CYs conforming to the speculations of the previous subsection
where in addition either Π1 or Π2 and consequently either C1 or C2 vanish, we can ensure
the absence of rising singular terms which limit the plateau potential at the level of the
leading α′ and string loop corrections.

2.7 General relation to α-attractors

Above we have seen that the general framework of fibre inflation shares many features with
α-attractors: in the absence of corrections that destroy the inflationary plateau, they are
identical with specific values of α, while corrections that grow in importance at large field
values give rise to a multi-field generalization of α-attractors. Let us outline the origin of
this correspondence.

In the case of a product of hyperbolic manifolds, the general structure of α-attractors
can be defined by the Kähler and superpotential

K =− log(T1 + T 1)− 2 log(T2 + T 2) + SS , W = Sf(T1, T2) . (2.21)

Moreover, we assume that the volume stabilization condition τ1τ
2
2 = 1

λ2
〈V2

0 〉 is already
imposed by the previous stage of the theory. At this point we study only inflation and will
not specify the exit now, where S-independent terms in the superpotential and the question
of taking S nilpotent or just heavy become relevant.

The discussion now splits in two separate cases, depending on the functional dependence
of f . First of all, one can assume that this function only depends on T2, and is regular near
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ReT2 → 0. Restricting to vanishing axions2, this model has a kinetic and potential energy
given by

−3

2

∂τ2∂τ2

τ2
2

− f2(τ2) , (2.22)

where f is a regular function at the pole around τ2 → 0 (in fibre inflation this is achieved by
a constant Kähler potential due to volume stabilization). The generic example of a regular
function at is 1 − cτ2 + . . . , yielding an E-model of the α = 2 attractor. All predictions
are c-independent and follow from the leading term that breaks the non-compact symmetry
(see [22] for a discussion of the analogy to the compact symmetry of natural inflation).
Examples of the above behaviour are provided by string loops (2.9) as well as the right
model with higher derivatives. These differ from the general structure (2.22) by having an
expansion around τ2 → ∞ rather than around zero; however, the above Kähler potential
has an inversion symmetry T1 → 1/T1 and T2 → T2 which leaves the Kähler potential up
to a volume-dependent shift, which we assume to be constant. Thefore the difference in
expansion is immaterial for the predictions.

Alternatively, the function f can give rise to a regular expansion in T1 around the point
T1 = 0. This yields the different behaviour

−3

8

∂τ1∂τ1

τ2
1

− f2(τ1). (2.23)

Again, a generic regular function now at τ1 → 0 is 1 − cτ1 + . . . , and we get an E-model
of the α = 1

2 attractor, where c again drops out. An example of this behaviour is the left
model with higher derivatives. When phrased in terms of T1, this exactly corresponds to a
regular expansion, again in 1/T1 rather than T1, which is not relevant due to the inversion
symmetry.

The general case in which the function f has a regular expansion in both T1 and T2

is fundamentally different. An expansion in both moduli is imcompatible with volume
stabilization; when T1 is small, T2 blows up at fixed volume and vice versa. Therefore one
has to include the dynamics of both moduli in such an expansion; the resulting inflationary
scenario is multi-field in general.

In summary, the merger of two α-attractors with αi = (1/3, 2/3) gives rise to a com-
bined one with α = 2 or α = 1/2, assuming volume stabilization. The choice between both
α’s is determined by the superpotential. More generally, the condition τp11 τp22 fixed leads
to a combined attractor with (more details can be found in appendix A)

α =
(p2

p1

)2
α1 + α2 , (2.24)

when expanding in τ2, or its inverse when expanding in τ1 (where we have assumed α1+α2 =

1 in order to have a no-scale structure for the volume at lowest order). The values of
2In examples one can check that the axions may need stabilization. In such case the extra geometric

term in the Kähler potential, associated with the bisectional curvature, will do the job [5]. We can add the
following type of terms SS̄(Ti − T̄i)2F (τj).
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α = 2 and α = 1
2 in these models have a clear origin in the kinetic term structure of the

CP 4
[1,1,2,2,6][12] model.
More generally, the dimensional reduction of type IIB string theory on a Calabi-Yau

manifold dictates the tree level Kähler potential of the 2-cycle volume moduli to be given
by a third-order homogeneous polynomial of the 2-cycle volumes vi

KK = −2 ln V , V =
1

6
κijkv

ivjvk . (2.25)

The 4-cycle volumes τi are related to the 2-cycle volumes as

τi =
∂V
vi

=
1

2
κijkv

jvk . (2.26)

Hence, for a fibred Calabi-Yau the dominant part of the volume will always take the form

V =
1

6
κ122v

1(v2)2 + . . . or V =
1

6
κ123v

1v2v3 + . . . . (2.27)

Looking then at the relation between 2-cycle and 4-cycle volumes above, we see that the
only possible values for τi powers in the fibration (product) part of the CY volume are
pi = (1/2, 1) implying αi = (1/3, 2/3). Hence, the limiting values α = (1/2, 2) seem to
be rather universal for the landscape of fibre inflation on CY compactifications of type IIB
string theory. For the case of a general fibred Calabi-Yau with two volume moduli [11] we
get pi = (1/2, 1), hence α = (1/2, 2) are the only unique possibilities (see Appendix B for
a detailed argument).

3 D3 induced geometric fibre model

The effective supergravity model of fibre inflation can be given in the form suggested in [8].
The potential depends on the Kähler function G which, in general is of the form

G ≡ K + logW + log W̄ , V = eG(GIJ̄GIGJ̄ − 3). (3.1)

In our case the index I includes the directions S and Ti = (T1, T2). We take

G(Ti, T̄i;S, S̄) = G0(Ti, T̄i) + S + S̄ + GSS̄(Ti, T̄i)SS̄ , (3.2)

and suggest the following Kähler function for the fibre inflation:

G = log |W0|2 −
1

2
log

(T1 + T 1)2

4T1T 1

− log
(T2 + T 2)2

4T2T 2

+ S + S + GSS̄(Ti, T̄i)SS. (3.3)

Here the S-field metric depends on a potential as follows

GSS̄(Ti, T̄i) =
m2

3/2

3m2
3/2 + V(T1, T 1, T2, T 2)

(3.4)

where m3/2 is the gravitino mass. The potential consists of three terms

V(T1, T 1, T2, T 2) = Λ + Vstab + Vinfl. (3.5)

– 12 –



The cosmological constant at the exit at the minimum of the potential is

Λ = F 2
S − 3m2

3/2 (3.6)

where
|FS |2 ≡ |GS |2 ≡ eG0GSGSS̄GS̄ . (3.7)

We can now determine Vstab to lowest order by expanding out the LVS volume stabilization
scalar potential in a quadratic neighborhood of the volume minimum 〈V〉 ≡ V0. If we denote
the volume modulus mass as M , then

VV = M2(V − 〈V〉)2 = M2(λ
√
τ1τ2 − V0)2 . (3.8)

Hence, we will choose the form

Vstab = M2

(
λ

8
(T1 + T̄1)(T2 + T̄2)2 − V2

0

)2

(3.9)

for the volume stabilization potential, since this clearly reproduces VV in it own quadratic
neighborhood. The mass parameter M is assumed to be significantly larger than the scale
of a cosmological term Vinfl, and from now on we put λ/8 = 1 for simplicity. This would
correspond to a spirit of the original fibre inflation model with a strong stabilization of the
large volume of compactification, such that stringy corrections responsible for a cosmological
evolution do not affect stabilization of the total volume.

We can now incorporate the scalar potential for τ1 and τ2 using a similar comparison
with the actual fibre models we did above for the overall volume stabilization. In a quadratic
neighborhood of the full fibre inflation scalar potential the scalar potential for τ1 and τ2

will read
Vτ1 = m2 (〈τ1〉 − τ1)2 (3.10)

and
Vτ2 = m2 (〈τ2〉 − τ2)2 , (3.11)

respectively. If we now, for simplicity, rescale their minima 〈τi〉 to unity, then we can clearly
take the cosmological part of the potential in the simplest interesting cases with α = 2 and
α = 1/2, respectively, as follows

V α=2
infl = m2

(
1− 1

2
(T2 + T 2)

)2

, (3.12)

V
α=1/2

infl = m2

(
1− 1

2
(T1 + T 1)

)2

. (3.13)

We discuss the stability of non-inflaton directions during inflation. In the following
discussion, we will use V α=2

infl as the inflaton potential. Because of the stabilizing term in
the scalar potential, we introduce the following new basis,

ϕ = − 1√
3

(
√

2u1 − u2), χ =
1√
3

(u1 +
√

2u2), θ =
1√
3

(
√

2a1 − a2), ψ =
1√
3

(a1 +
√

2a2),

(3.14)
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where ui and ai are defined by Ti = e

√
2

3αi
ui

(1 + i
√

2
3αi
ai), and 3αi = i for i = 1, 2. Both

(ϕ, χ, θ, ψ) and (ui, ai) are canonical on inflationary trajectory ai = 0(= θ = ψ). In the limit
m→ 0, we find ϕ is a flat direction, and the minimum is given by χ = χ0 = 1√

6
log

V2
0
8 and

θ = ψ = 0. At χ = χ0, the inflaton potential becomes the E-model α-attractor potential

Vinfl|χ=χ0 = Veff = m2

(
1− V

2/3
0

2
e
− 2ϕ√

3

)2

. (3.15)

Figure 3. E-model version of the fibre inflation potential.

Due to the inflationary potential, however, the minimum of χ is slightly shifted from
χ = χ0. The scalar potential at θ = ψ = 0 is shown in Fig. 3. The deviation gives extra
contribution to the scalar potential as

δV =
ε2

36V8/3
0

Veff , (3.16)

at the leading order of the ε expansion, where ε = m
M . This contribution is negligible for

ε� 1, and we will neglect it in the following discussion.
The mass of the axionic directions θ and ψ are given by

m2
θ = m2

ψ = 4W 2
0 + 2Veff , (3.17)

which are positive definite during inflation. The heavy modulus χ has the mass

m2
χ = 12M2V4

0 . (3.18)

Note that all the masses are the leading part of the ε-expansion. The minimum of the

potential is given by ϕ =
√

3
2 log

V2/3
0
2 , and the masses are given by

m2
ϕ = 2m2, m2

χ = 12M2V4
0 , m2

θ = m2
ψ = 4W 2

0 . (3.19)
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Thus, we can conclude that this system is stable during and after inflation.
Note the similarity of the inflaton potential in the α-attractor model considered in this

section and shown in Fig. 3 to the potential of fibre inflation shown in Fig. 2. This is
in accord with our expectations that our supergravity model correctly captures essential
features of fibre inflation in the vicinity of the inflationary trajectory.

4 Discussion

The increasingly precise data from the cosmic microwave background (CMB) during recent
years provide very strong observational support for an early phase of cosmological inflation.
At the same time the data starts to put relevant upper bounds on the tensor-to-scalar ratio
r < 0.07 (95 %).

Given this situation, it is interesting to study bottom-up inflation models which are
both simple and at the same time cover a wide class of potentials, while providing suppressed
levels of tensor modes in the regime 10−3 < r < 10−2 and maintaining a good fit to the
observed value of spectral tilt ns ' 0.97. Since these levels of r imply a very high scale
of inflation, we should at the same time aim for bottom-up inflation models which have a
possible UV completion in models of string inflation.

α-attractors [3] are a very general class of such inflation models constructed bottom-
up in 4D N = 1 supergravity. They produce exponential plateau potentials controlled
by a single parameter α labeling the residue of a second-order pole of the kinetic term
of the inflaton. Due to the presence of this pole, α-attractor models are ‘pole inflation’
models [4, 16] which shift the question of quantum corrections affecting the inflationary
dynamics from the scalar potential to the kinetic function. As long as the kinetic function
is dominated by a second-order pole, an arbitrary analytic scalar potential will flatten out
to yield an exponential plateau inflation with a universal prediction ns = 1 − 2/N and
r = 12α/N2 at N e-folds before the end of inflation.

However, despite their simplicity and generality α-attractors so far had no clear link
to a UV completion in string theory. One of the main problems has been, that those string
moduli fields, which acquire a second order pole in their kinetic function, often appear with
pole at the same position in the scalar potential due to Weyl rescaling of the sources of the
moduli potential into 4D Einstein frame. In such cases, pole inflation looses its flat plateau;
for certain combinations of the orders of the poles in the kinetic function and the scalar
potential this can even render inflation impossible.

Yet, there are models of inflation in type IIB string theory compactified on Calabi-Yau
manifolds, which combine polynomial potentials for certain volume moduli with a second-
order pole in the kinetic term of these moduli. These ‘fibre inflation models’ [10, 11] produce
an exponentially flat plateau with a field range of O(5 . . . 10MP) in the extant semi-explicit
toy model constructions.

In this work we demonstrated that the low-energy effective description of the string
models of ‘fibre inflation’ are a class of α-attractors. Moreover, we showed how the recently
developed method of geometrizing α-attractors using nilpotent superfields in supergrav-
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ity [7, 8] allows us to write a simple and explicit 4D supergravity realization of the core
dynamics of moduli stabilization and inflation in fibre inflation.

Our supergravity realization of fibre inflation as an α-attractor makes it clear, how a
stringy realization of pole inflation can work: Namely, the LVS scenario inspired volume
stabilization on a fibered Calabi-Yau manifold stabilizes the whole Calabi-Yau volume,
which is a product of two volume moduli. This product-type of constraint from moduli
stabilization allows for second-order poles in the kinetic functions of the individual moduli
while keeping the Kähler potential constant along the inflaton direction given by one of the
two volume moduli. This way, fibre inflation is a stringy α-attractor model which avoids
the pole in the scalar potential from Weyl rescaling proportional to eK .

As long as the total volume remains stabilized, each of the two volume moduli comprises
an α-attractor direction. Applying the fusion rules for α-attractors with several fields
studied in [7, 8], and applying the general structure of the Calabi-Yau volume expressed in
4-cycle moduli τi, we find that fibre inflation realizes α-attractors with only two discrete
values α = 1/2 or α = 2.

This is valid, as long as the inflationary dynamics is effectively single-field keeping the
total Calabi-Yau volume stabilized. We analyze the effect which the presence of higher-
order corrections such as those conjectured to arise from string loops has on the exponential
plateau. If they are present, then they lead to steepening of the potential after some
finitely long exponential plateau. This steepening region very quickly increases the inflation
potential to scale of the total volume stabilization. Beyond this point the dynamics becomes
a 2-field model involving one of the two chosen α-attractor directions and the volume
modulus which becomes dynamical. We leave a study of this 2-field dynamics and its effect
on the effective range of values of α as a very interesting subject for the future.

Finally, we also note that in some cases the dominant higher-order corrections may be
absent. This may lead to the existence of very long inflationary flat directions.

Acknowledgments: We are grateful to C. Burgess, M. Cicoli, S. Parameswaran, F.
Quevedo, and I. Zavala for stimulating discussions. The work of RK, AL and YY is sup-
ported by SITP and by the US National Science Foundation grant PHY-1316699. The
work of AW is supported by the ERC Consolidator Grant STRINGFLATION under the
HORIZON 2020 grant agreement no. 647995. The work of AL is also supported by the
Templeton foundation grant “Inflation, the Multiverse, and Holography”. AW and DR are
grateful to SITP for the hospitality when this work was initiated. All authors are grateful
to the Lorentz center in Leiden, where the final part of this work was performed during the
Lorentz workshop ‘Theoretical Approaches to Cosmic Acceleration’.

A Fusion rule of α

In this section we will generalize the analysis of possible α’s for generic two-moduli α-
attractors; see Appendix B for the restrictions in actual Calabi-Yau compactifications.
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Suppose we have two chiral superfields T1 and T2 with the Kähler potential given by

−3α1 log(T1 + T 1)− 3α2 log(T2 + T 2). (A.1)

In this case, the ‘volume’ τ3α1
1 τ3α2

2 is invariant under the dilatation transformation

T1 → λα2T1, T2 → λ−α1T2. (A.2)

In terms of the canonical real variables (ui, ai), defined as

Ti = e
−
√

2
3αi

ui
(1 + i

√
2

3αi
ai) , (A.3)

it is useful to perform the following field basis change:

χ =
1√

α1 + α2
(
√
α1u1 +

√
α2u2) , φ =

1√
α1 + α2

(−
√
α2u1 +

√
α1u2), (A.4)

where χ is the invariant field under the dilatation, corresponding to the “volume” and φ

is the orthogonal direction corresponding to the “fibre”. In terms of the latter, which will
provide the inflaton direction, the scalar potential reads

V = V (T1, T2) = V

(
e
−
√

2
3α̃1

φ
, e

√
2

3α̃2
φ
)
, (A.5)

where

α̃1 =
α1

α2
(α1 + α2) , α̃2 =

α2

α1
(α1 + α2) . (A.6)

If the potential is effectively given by a polynomial of Ti, the model effectively becomes an
attractor with α = α̃i. For example, α1 = 1/3, α2 = 2/3 yield α̃1 = 1/2 and α̃2 = 2, which
corresponds to the fibre inflation setups. Moreover, note that when the volume modulus
has a no-scale structure, implying α1 + α2 = 1, then both resulting values of α are always
inversely related.

Finally, one can consider a further generalization, which we will discuss in a simplified
toy model without SUSY. We consider the Lagrangian

−3α1
∂τ1∂τ1

4τ2
1

− 3α2
∂τ2∂τ2

4τ2
2

− Vinf(τ1, τ2)− Vfix(τ1, τ2). (A.7)

Vfix gives a constraint on τ1 and τ2, which we will assume to take the form τ1 = cτp2 where p
and c are constants. In the fibre inflation case, this corresponds to the volume stabilization

τ1 = V2
0τ
−2
2 . In terms of canonical variables ui defined by τi = e

−
√

2
3αi

ui , the constraint
reads

u1 −
√
α1

α2
pu2 = const . (A.8)

Again we can decompose ui into the fixed mode χ and the flat mode φ as

χ =

√
α2√

α2 + p2α1

(
u1 −

√
α1

α2
pu2

)
, φ =

√
α2√

α2 + p2α1

(√
α1

α2
pu1 + u2

)
. (A.9)
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The inverse relations read

u1 =
1√

α2 + α1p2
(
√
α1pφ+

√
α2χ) , u2 =

1√
α2 + α1p2

(
√
α2φ−

√
α1pχ) . (A.10)

Since χ is already fixed by Vfix, φ is the inflaton mode and its potential becomes

Vinf(τ1, τ2) = V

(
e
−
√

2
3α̃1

φ
, e
−
√

2
3α̃2

φ
)
, α̃1 =α1 + p−2α2 , α̃2 = α2 + α1p

2 . (A.11)

Note that p = 1 was the focus of [7] while in this paper we have investigated p = −2.

B Volume moduli dependence of fibre inflation with two moduli

The classical Calabi-Yau volume is a cubic polynomical in the 2-cycle volumes

V =
1

6
κijkv

ivjvk (B.1)

with κijk being the intersection numbers, topological numbers determined by the given CY.
For the case of a CY with two moduli the volume takes the most general form

V =
1

6
κ112(v1)2v2 +

1

6
κ122v

1(v2)2 +
1

6
κ222(v2)3 (B.2)

where we have absorbed the (v1)3 piece into a shift of v2 → v2 + cv1, allowing us to set
κ111 = 0. The purest form of fibration clearly would have only κ122 non-vanishing.

The relation between the 4-cycles τi and 2-cycles vi is given by

τi =
∂V
∂vi

=
1

2
κijkv

jvk . (B.3)

For our two-moduli case this system of coupled quadratic equations in the vi reads

τ1 =
1

3
κ112v

1v2 +
1

6
κ122(v2)2 , τ2 =

1

6
κ112(v1)2 +

1

3
κ122v

1v2 +
1

2
κ222(v2)2 . (B.4)

We wish to express V in terms of the 4-cycle volumes, so we need to invert this system,
solving for the vi as functions of the τi. This can be done analytically, but the expressions
are lengthy. Our interest is in the behavior solutions in the two fibre inflation asymptotic
regimes τ1 → ∞ , τ2 → 0 and τ1 → 0 , τ2 → ∞ keeping V constant, while we do not
assume a particular relation between τ1 and τ2 at this point. We can then asymptotically
expand the solutions vi(τj) to the quadratic equations in τ1 and τ2 in these two regimes,
and expand the solutions in κ112 and κ222 treated as perturbations to the pure fibration
case where only κ122 6= 0. We do this ony to analyze the scaling structure of the solutions,
while it is clear that in reality intersection numbers given by topological data can never be
an arbitrarily small continuous quantity.

In the regime τ1 → 0 , τ2 →∞ the solutions to the quadratic system are

v1 =
κ112

4κ122

√
3

2κ122

τ2
2

τ
3/2
1

+

√
3

2κ122

τ2√
τ1

+ . . . ,

v2 =
κ112

κ122

√
3

2κ122

τ2√
τ1

+

√
6

κ122

√
τ1 + . . . , (B.5)
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where the dots represent higher-order terms. We see that κ112 entails, that in the asymptotic
limit τ1 → 0 both v1 and v2 would blow up and thus violate the constraint V = const. From
this perspective alone, a viable fibre inflation behavior would require κ112 to be of very small
magnitude.

Fortunately, the analysis of [11] already argues that the most general two-moduli
Calabi-Yau with a fibration structure has κ112 = 0. From this we conclude that for the
general case of fibred CY we have

v1 =

√
3

2κ122

τ2√
τ1

+ . . . , v2 =

√
6

κ122

√
τ1 + . . . (B.6)

in the limit τ1 → 0, τ2 → ∞. This immediately implies V ∼ √τ1τ2 in this limit which in
turn dictates α = 1/2 for τ1 → 0, τ2 →∞.

In the opposite regime τ1 →∞ , τ2 → 0 the solutions to the quadratic system are

v1 =

√
3

2κ122

τ2√
τ1
− 3

√
3

2κ122
κ222
√
τ1 + . . . , v2 =

√
6

κ122

√
τ1 + . . . , (B.7)

where again the dots represent the higher-order terms. Here we see that for growing τ1 a
non-vanishing κ222 implies that there is maximum value of τ1 beyond which v1 < 0. This
violates the Kähler cone conditions for the given CY, which at minimum dictate that vi > 0

for all 2-cycle volumes vi simultaneously, see e.g. [23]. Therefore, a fibred CY must have
κ222 = 0 in order to be ‘Kähler cone viable ’ for fibre inflation. However, again, in that case
our solutions become

v1 =

√
3

2κ122

τ2√
τ1

+ . . . , v2 =

√
6

κ122

√
τ1 + . . . , (B.8)

and we have V ∼ √τ1τ2 asymptotically. For the current regime τ1 → ∞ , τ2 → 0 this
implies α = 2.

Taken together, these two arguments imply that a two-volume-moduli CY which is
‘Kähler cone viable’ for fibre inflation, will always have a volume expression which asymp-
totically scales as V ∼ √τ1τ2. Any such two-moduli CY with is ‘Kähler cone viable ’ for
fibre inflation should have κ222 = 0, which thus forms a condition for the search for explicit
CY examples of fibre inflation. Hence, for fibre inflation with two volume moduli there is
a unique prediction of two discrete possibilities for α, namely α = (1/2 , 2).

C T-model

The string theory fibre inflation model discussed above is formulated in half-plane variables,
suitable for the description of E-model α-attractors. However, in terms of our effective
supergravity approach, one can easily generalize this model, formulate it in disk variables,
and find its version with the T-model potential:

G = logW 2
0 − log

1− |Z1|2

|1− Z2
1 |
− 2 log

1− |Z2|2

|1− Z2
2 |

+ S + S + gSS̄SS , (C.1)

gSS̄ =
1

W 2
0

(
|FS |2 + V

)
. (C.2)
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Figure 4. Inflaton potential of the T-model version of the fibre inflation potential for a particular case
M = m = 0.1, V0 = 2

√
2.

As an example, one may consider the scalar potential

V(Z1, Z1, Z2, Z2) = Λ +
m2

2
|Z2|2 + Vstab , (C.3)

where we will use the same stabilization potential Vstab as in the E-model (3.9), but we
represent it in terms of the disk variables, Ti → 1+Zi

1−Zi :

Vstab = 8M2 (1− |Z1|2)(1− |Z2|2)2

|1− Z1|2|1− Z2|4
. (C.4)

Here Z1 = tanh φ1+iθ1√
2

, Z2 = tanh φ2+iθ2
2 .

It is convenient to express these fields in terms of their combination suitable for de-
scribing inflation in this model:

φ1 =

√
2ϕ+ χ√

3
, φ2 =

√
2χ− ϕ√

3
, θ1 =

ϑ+
√

2ψ√
3

, θ2 =

√
2ϑ− ψ√

3
. (C.5)

The total potential in terms of these fields, for Λ = 0, is

V = sec2

√
2ϑ− ψ√

3
sec

√
2

3

(√
2ψ + ϑ

)m2
(

sinh2 ϕ−
√

2χ√
3

+ sin2
√

2ϑ−ψ√
3

)
(

cosh ϕ−
√

2χ√
3

+ cos
√

2ϑ−ψ√
3

)2

+M2

(
V0

2 − 2e
√

6χ cos

√
2ϑ− 4ψ√

3
− 4e

√
6χ cos

2ψ +
√

2ϑ√
3

− 2e
√

6χ cos
√

6ϑ

)2
 .

(C.6)

We will concentrate now on the inflaton potential with ϑ = ψ = 0, which is given by a
much simpler equation:

V = m2 tanh2

(
ϕ−
√

2χ

2
√

3

)
+M2

(
V2

0 − 8e
√

6χ
)2

. (C.7)
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Figure 5. Fibre inflation cascades. Inflation begins at a high dS plateau with the height M2V04. Then the
fields fall to the narrow valley at χ = 1√

6
log

V2
0
8

to its minimum at ϕ = 1√
3

log
V2
0
8
. In order to simultaneously

show the upper plateau, as well as the minimum of the potential shown in Fig. 4, instead of V we plot here
log(100V + 1) for a particular case M = m = 0.1, V0 = 2

√
2.

Let us now explore the general properties of this potential. First of all, in the limit MV2
0 �

m, the field χ tends to fall down to χ = 2√
6

log V08 . Then the potential of the field ϕ is
given by the first term of (C.7), which describes T-model α-attractor shown in Fig. 4. An
evaluation of the kinetic term of the field ϕ implies that it is an α-attractor with α = 2.

Now let us look at the same potential in the limit χ→ −∞, which brings us far away
from the inflationary valley we just discussed. In this limit the potential becomes

V = m2 tanh2

(
ϕ−
√

2χ

2
√

3

)
+M2V4

0 . (C.8)

The minimal value of this potential on the upper plateau is M2V4
0 . It is achieved for

ϕ =
√

2χ, which corresponds to φ2 = 0. This direction is shown as a shallow blue valley
on top of an infinite dS plateau in Fig. 5, which gives some idea of the general structure of
the potential in this model.

The early stages of inflation in this model are described by the cascade inflation scenario
described in [8]. Inflation may begin at the upper plateau. Depending on the position on
the plateau, the fields either directly moves to smaller values of χ, or first moves towards
the blue valley at ϕ =

√
2χ (i.e, at φ2 = 0), and then moves down along this valley. The

process finishes by the second stage of inflation along the deep valley with χ = 2√
6

log V08
shown in Fig. 4, corresponding to the T-model with α = 2.

For completeness, one should check whether the inflationary potential is stable with
respect to the fields ϑ and ψ at ϑ = ψ = 0. The calculation is especially simple at the
upper plateau shown in Fig. 5. Indeed, in the limit χ → −∞ the potential of the fields ϑ
and ψ is

V (ϑ, ψ) =
(
m2 +M2V4

0

)
sec2

√
2ϑ− ψ√

3
sec

√
2

3

(√
2ψ + ϑ

)
. (C.9)
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By analyzing this expression one finds that the fields ϑ and ψ on the upper plateau have
superheavy masses m2

ϑ = m2
ψ = 2(m2 + M2V4

0 ) = 6H2, so they are firmly stabilized at
ϑ = ψ = 0.

An investigation of the axion masses along the fibre inflation valley χ = 2√
6

log V08 is
more involved, but it also shows that the fields ϑ and ψ are stabilized at ϑ = ψ = 0.

Finally, we show that the masses of scalars at the minimum of the potential are given
by

m2
ϑ̃

= 4W 2
0 , m2

ψ̃
=

1

2
(m2 + 8W 2

0 ), m2
ϕ =

m2

6
, m2

χ = 12M2V2
0 +

m2

3
, (C.10)

where ϑ̃ = 1√
3
(ϑ+

√
2ψ), ψ̃ = 1√

3
(
√

2ϑ− ψ) are canonical axions at the minimum.
The potential of this T-model differs from the potential of the original string theory

fibre inflation. However, we decided to discuss it there because it has interesting features
and it leads to nearly identical observational consequences.
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