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ABSTRACT: Fibre inflation is a specific string theory construction based on the Large Vol-
ume Scenario that produces an inflationary plateau. We outline its relation to a-attractor
models for inflation, with the cosmological sector originating from certain string theory cor-
rections leading to & = 2 and a = 1/2. Above a certain field range, the steepening effect of
higher-order corrections leads first to the breakdown of single-field slow-roll and after that
to the onset of 2-field dynamics: the overall volume of the extra dimensions starts to par-
ticipate in the effective dynamics. Finally, we propose effective supergravity models of fibre
inflation based on an D3 uplift term with a nilpotent superfield. Specific moduli dependent
D3 induced geometries lead to cosmological fibre models but have in addition a de Sitter
minimum exit. These supergravity models motivated by fibre inflation are relatively simple,
stabilize the axions and disentangle the Hubble parameter from supersymmetry breaking.
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1 Introduction

Inflation has since long held the promise of providing an observational window on physics of
very high energy scales, and might even offer a glimpse of string theory. With the beautiful
CMB measurements of Planck in hand [1, 2], it is natural to wonder about the relation
between models compatible with the data and possible string inflationary set-ups.

Starting with the former, a-attractors are a rather minimal and elegant class of bottom-
up supergravity models, that match the current CMB data with ny; =1 —2/N and predict
r = 12a/N? in terms of the number of e-folds N [3]. These models can be understood as
pole inflation models: as a single-field model, the kinetic function of the inflaton consists
of a second order pole whose location we can choose to be at ¢ = 0. At the same time, the
scalar potential in this non-canonical frame is an arbitrary but regular function, which is



positive around the pole [4]. Canonical normalization of the inflaton then leads to infinite
stretching of the scalar potential near ¢ = 0 in an exponentially approached semi-infinite
plateau.

The only relevant parameter for this class of models is the curvature of the hyperbolic
moduli space, set by a [5]. While this is a tunable parameter in N' = 1 supergravity, it is
generically not in string theory set-ups. Instead, one typically obtains a number of copies of
hyperbolic spaces. A natural question regards the possible values of « that can be obtained
by the interplay between the different moduli spaces.

This interplay is illustrated by the recent M-theory /string theory /maximal supergravity
inspired models based on seven hyperbolic disks geometries [6-8]. These correspond to
either a particular Go compactification from 11D to 4D, or a toroidal reduction of string
theory, or on E;y(R) D [SL(2,R)]"symmetry of N' = 8 4D supergravity. A subsequent
set of simple cosmological disk merger models was proposed in |7, 8] with some constraints
on the moduli of the seven unit-size-disks, which lead to a-attractor models with 3a =
1,2,3,4,5,6,7. Some of these constraints required that T; = T}.

A natural generalization involves more general identifications between tori. The first
example going beyond the simple identification above is T; = TJP with p # 0, 1. In this paper
we will analyze the consequences of such an identification for the case of two moduli and
p = £2 (both sign choices being related by moduli inversion). Moreover we point out that
this is equivalent to volume stabilization in Calabi-Yau compactifications of string theory,
as performed explicitly in e.g. the Large Volume Stabilization (LVS) scenario [9].

The model class of string inflation setup coming closest to this is “fibre inflation” [10] and
various followups, see e.g. [11]. Fibre inflation builds on LVS with a “fibre volume modulus”,
providing the inflationary direction. Various string corrections produce an effective 4D
kinetic term and scalar potential that shows at leading order the structure of pole inflation.
We will outline and explain the possible a-attractors that can arise in such a setting of a
fibred Calabi-Yau compactification.

However, fibre inflation can also come with corrections to the kinetic function and scalar
potential arising from string loop corrections [12-14] and/or higher superspace-derivative
corrections [15] (in the spirit of the generalized pole inflation paper [16]). Such corrections
might spoil the infinite plateau and instead could produce rising exponential corrections
after a finite O(10M,) plateau. While the higher superspace-derivative corrections are
given in terms of a topological quantity of the underlying compactification [15], the string
loop corrections [12-14] produce two terms in the scalar potential arising from KK-modes
of the two 4-cycles of a fibred Calabi-Yau and a third term arising from winding modes of
strings wrapping the intersection between the two 4-cycles. We will discuss the argument
for the existence of singular terms in the scalar potential for non-canonically normalized
inflaton (from string loops and o’ corrections), and we will argue that the proposed singular
terms of [10, 11] are not necessarily present. Adressing the same issue in [17, 18| where the
extra (a’)3 corrections from [15] is interesting and requires an independent analysis.

Finally, a crucial ingredient of the large volume scenario, on which fibre inflation builds,
is the uplift from the non-SUSY AdS to a Minkowski or a de Sitter minimum. The intro-



duction of a nilpotent multiplet can easily accommodate this uplifting. When the choice of
the Kahler frame for the disk geometry is given in a form suggested in [5, 7] with an inflaton
shift symmetry, the superpotential or S-field metric break this symmetry. The inflationary
dynamics can be introduced either via a simple contribution to the superpotential [7] or to
the S-field metric [19]. We will use here the D3 induced geometric inflation construction
based on Kéhler function as proposed in [8], where this method was shown to be efficient
in the context of the disk merger cosmological models.

We will provide here full supergravity effective descriptions of the interplay between the
nilpotent multiplet and the fibre modulus in a concrete supergravity model that captures
the essential ingredients of fibre inflation.

2 Fibre inflation

2.1 Volume stabilization

Fibre inflation comprises a class of possible string theory models that rely on the existence
of a fibre modulus in the Calabi-Yau compactification. In order to stabilize the overall
volume, they rely on the large volume stabilization (LVS) mechanism. This requires the
volume to be dominated by a single term, while also including at least one blow-up mode.
An explicit fibre example is provided by the case of (CPﬁ71,27276][12] model with

V:)\< 7'17'2—77'3?/2) , (2.1)

where 71 is associated with the volume of the K3-fibre, 7o controls the overall volume
and 73 denotes the blow-up and 3,7 are constants. Note that the Kéhler potential is a
homogeneous function of weight 3/2, resulting in the absence of a scalar potential for V
at tree-level: this is the no-scale structure of Calabi-Yau compactifications. Therefore the
volume is a flat direction at tree-level.

However, both the total volume as well as the blow-up mode can be stabilized by
the inclusion of perturbative o’-corrections to the Kiahler potential, and non-perturbative
corrections to the superpotential:

K =-2log(V+¢&), W =Wy+ Azexp(—asT3), (2.2)

with T; = 7; 4+ ix; the holomorphic versions of the four-cycle volumes 7;. The resuling
potential reads

3y \ Y V2 43

This produces a minimum for 73 and V at exponentially large values of the latter: in the
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limit a3 > 1 an analytic approximation is

3’)/ T3W0€aT3 2/3 —

and xcoy denotes the Euler characteristic of the Calabi-Yau manifold. This produces the
well-known non-SUSY anti-de Sitter minimum of the LVS scenario, which is stabilized by
a barrier that scales as V3.



2.2 Kinetic terms and pole inflation structure

Finding a-attractor-like regimes of pole inflation in a type IIB LVS compactification on a
fibred CY requires finding volume moduli with 2nd order poles in the kinetic terms without
corresponding poles in the scalar potential. In order to exhibit the pole structure of the
two volume moduli of a fibred CY with LVS stabilization we need to include the kinetic
terms of both moduli in (2.2)
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(2.5)
i=1,2

Here, we focus on the real parts and ignore axions for the moment. If we now impose
volume stabilization a la LVS enforcing V ~ X\\/Tims = (V) = const. we are justified in
dropping derivatives of the volume when we replace either 71 or 75 in terms of the other
modulus. Hence, up to derivatives of the volume these two kinetic terms combine into
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by (2.6)
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Thus, we get the relation
m=e¥/V3 (2.7)
for the effective canonically normalized inflaton field .

2.3 Loop corrections

In case the Calabi-Yau manifold is fibered, as in the example (2.1), the leading volume term
is a product. Stabilization of the overall volume therefore leaves a flat direction and hence
provides a possible avenue for inflation. To produce a scalar potential with a minimum
for the fibre modulus, one has to include further corrections. These can include a series of
conjectured loop corrections of the form:
_off o el
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(2.8)

where the first two arise from the exchange of Kaluza-Klein (KK) modes, for example, be-
tween D7-branes and D3-branes, which are usually needed for tadpole cancellation. These
corrections are suppressed by the volume of the 4-cycle wrapped by the D7-branes. In con-
trast, the third correction comes from the exchange of winding strings between intersecting
stacks of D7-branes. All these terms have been calculated to exist in toroidal compactifica-
tions [12, 13|, and it has been argued that they should persist for Calabi-Yau generalizations
[10]. Moreover, the coefficients C¥ and C}} are functions that depend on complex struc-
ture moduli U which are stabilized at tree-level by background fluxes. As a consequence,
the coefficients are assumed to be O(1) constants. An important point of this expansion
is that its consistency requires both 71 and 7 to be large. However, at fixed volume (2.1),
these two moduli are inversely proportional and hence this implies that there is a bound to
the regime where these can be trusted. We will get back to this point later.



The above Kahler string loop corrections result in a scalar potential that is of the form

Wol? [ (gsCF™)? (9sC5 %) 2C1)
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(2.9)

Here, an explicit uplift term has also been included in order to have viable inflation. Upon
LVS volume stabilization on a fibred CY we need to impose V = \/Ti7o = const. on the
previous expression. Then, we get

2 2 KK\2,_4 KK\2 w
Wl (()\ gsC1 ")y (9sC3° )" 2)‘6'127'2> + Oup » (2.10)

V=9 pi T2 V2
Note that the KK corrections to the Kahler potential drop out at leading order: this has
been dubbed extended no-scale structure [20].

We will now review the generic properties of the string loop corrections.

e The string loop corrections to the Kéhler potential of a fibred 2-moduli Calabi-Yau
manifold contain two contributions arising from KK-modes on 4-cycles wrapped by
D7-branes which only intersect themselves, and a third contribution arising from wind-
ing modes on a 1-cycle in the intersection of two 4-cycles which are both wrapped by
D7-branes (see the discussion in [14, 18]).

e In general, there will be other smooth and connected 4-cycles required to be present
due to D7-brane tadpole cancellation in a full CY orientifold model which intersect
either 71 or ™ or each of them. D7-branes wrapped on those 4-cycles wrap the
intersections with 71 and/or 75 as well. This will generate winding mode corrections
even we only wrap either 7 or 5 but not both. Therefore, generically the winding
mode corrections are expected to be present [21].

e Similarly, a full 4D N' =1 CY orientifold model will in general contain O7, and O3
planes, as well as D3-branes. Additional KK mode corrections may then arise from the
exchange of KK modes with these additional objects [21]. We should therefore expect
KK mode corrections of the form displayed in eq. (2.9) to be generically present.

e Finally, we note here that all the above conclusions about the generic presence of all
of the types of string loop corrections to K rest on the extrapolation of the explicit
toroidal orientifold calculations to the general CY case, which were performed in
absence of any moduli stabilization scheme imposing a constraint like 71 ~ 1/72 here.
Hence, the correction terms were originally functions of 1/7 and 1/7o separately. If
this form survives in presence of constraint relations between the moduli imposed by
moduli stabilization, then all of the above conclusions about the presence and form
of the string loop corrections follow. Therefore it would be important to check this
conjecture with explicit string loop computations for CY moduli in the presence of
volume stabilization mechanisms.



2.4 Higher superspace-derivative corrections

In addition to loop corrections, higher derivative corrections will also induce a potential for
the initially flat fibre direction. These were calculated in [15] and subsequently employed
for inflation in [17|. They are proportional to integer numbers II; encoding the topological
information of the second Chern class ¢3(M3). Choosing D; as a basis of harmonic (1,1)-
forms on M3 one finds that

IT; —/ co N\ bz . (211)
M3

With respect to an arbitrary choice of two-cycles, the numbers II; can have both signs,
and moreover they can vanish for some choices of moduli. For instance, the example of
K 3-fibered threefold CP] | | ¢ 9[18] has

I, =36, I=0  I3=0 Iy=0, II5=102. (2.12)

We conclude that this class of corrections appears flexible in terms of signs and zeroes.

For the particular case of fibred Calabi-Yaus with two moduli, the resulting contribu-
tions to the scalar potential take the form

W v NCitg3 GV
oV = ggv—g <—C17_1 - C2\/ﬁ> =W <— v 2 — )\7_2> ) (2.13)

with C; ~ II;. One can consider the following possible interplays between such corrections
(or a subset of them) and loop corrections:

e Inflation to the right with

. (2.14)

CyV V2 (C’QKK)Q
+ 5 .
T 9sW; 75

As before, this leads to an « = 2 attractor. Possible corrections proportional to
e.g. C; or CEE | are either absent for topological reasons or due to the choice of
brane wrappings, or when present will modify the inflationary plateau similar to the

discussion for loop corrections.

e Inflation to the left with

2 KK\2 .4
5V =V, <_C”2 i T2> . (2.15)

Y gsWEV?

In contrast to the general discussion of the previous section, this leads to an inflation-
ary attractor with o = 1/2. The reason is the absence of a linear term. In general,
with leading corrections of a higher n-th order, one obtains a = 2/n2. Again we are
ignoring other corrections, which if present would modify the single-field nature.

e Finally, we can balance the higher superspace-derivative corrections against the string
loop winding mode term [18]. In that case we get a potential
C1T 22 0{42/ )

oV =V, [ 222 _
0( v gsVVOQT2

(2.16)



2.5 Scalar potential and dynamics from loop corrections: the generic case

In order to get an idea of where this happens for generic values, first assume that the
minimum after inflation is determined by the first and last terms of the scalar potential
(2.9), which fall off at infinity. The minimum is located at

3 CiyV?

=127 2.17
E 2>‘3(98C1KK)2 ( )

At this minimum, the second term with opposite behavior has a relative size of order

(ctrcsry’ s

w
C112

which is assumed to be subdominant when the minimum is determined by the first two
terms. However, it grows quadratically with decreasing with 7o. Therefore this ratio will
become order one when 7o has decreased with the square root of the inverse of the above
ratio. It is there that the steepening of the potential becomes due to the C&¥ corrections
dominant. In terms of the canonical inflaton, this corresponds to a steepening field range
of

Cly
A<:Osteep. = \/glog <W> . (219)

Every order of magnitude in the argument of the logarithm leads to a field displacement of
v/3log 10 ~ 4. This clearly shows that one needs a non-trivial hierarchy in order to have a
sufficiently long plateau to sustain inflation.

An appealing manner to obtain such a range would be to have a very weak string
coupling. However, this also leads to an exponentially large volume due to (2.4), which
is incompatible with CMB observations. In particular, the COBE normalization of CMB
temperature anisotropies requires the height of the scalar potential during inflation to be of
the order 10710, Note that this height scales as V193, given by the difference of the loop
correction terms in (2.9) at the minimum (2.17) and during inflation, where they vanish.
Therefore natural values of the volume are around 103 or 10%.

The above discussion also indicates what happens when the correction become impor-
tant. The volume stabilization takes place at V™3 and the inflationary dynamics just a
factor V~1/3 below this!. Due to the limited range for the volume, it is hard to separate
these scales parametrically. One would therefore expect that at latest at the moment when
the CIE corrections reach the volume modulus scalar potential scale, the volume stabiliza-
tion also ceases to be effective and the volume becomes a dynamical variable as well (see
also [10]).

!Note that this crucially relies on the extended no-scale structure: with linear instead of quadratic
corrections to §V, the inflationary dynamics would instead be a factor V'/3 above the scale of volume
stabilization.



Figure 1. The scalar potential V of the Fibre inflation. For ¢ > 15, the potential in this model begins to
rise, whereas at large x the potential falls down.

Therefore, beyond
1

CW
Apa_field ~ V3log <#V1/6> = A@steep. + 23

)\Q?C{(ch(K log V = ASosteep. + O(l) 9

(2.20)

one should not trust the picture with a scalar potential that bends upwards solely as a
function of 7; instead, the actual dynamics is determined by a two-dimensional field space,
see Fig. 1. We note, however, in concordance with [10] that already for field values ¢
between the onset of steepening and the onset of 2-field dynamics, the slow-roll parameters
increase so drastically due to steepening that slow-roll breaks down there. Hence, the whole
slow-roll region inside the scalar potential valley proceeds approximately with single-field
dynamics. Thus the process of inflation in the fibre inflation model occurs only in the
certain range of the variables ¢ and x, along the inflationary valley shown in Fig. 2 and
Fig. 1. In particular, for sufficiently large values of x, the potential bends down, and the
field x starts to grow.

2.6 The speculative case with fewer corrections: recovering the infinite «-
attractor plateau

We do expect that at higher order in the /- and string loop gs-expansion singular terms
might eventually arise in the scalar potential even if we were able to find setups where a
part of the leading corrections is absent. This is because there is no manifest microscopic
symmetry protecting the Kéhler potential from Kéhler moduli string loop corrections at any
loop order. The infinite plateau ¢ — oo corresponds to a 4-cycle 19 ~ exp(—¢p/ \/3) — 0
shrinking to zero whereas the volume of the K3-fibre 71 ~ exp(2¢/v/3) — oo blows up.
No information is available about string corrections at all higher orders in this regime. We



may speculate that such corrections will make the exponential plateau of fibre type to be
of finite length, or we may speculate that under certain specific conditions, these unknown
corrections will not affect the potential.

Either way, if we speculate about particular setups where a part of the leading order
o/- and gs-corrections is absent, then for such setups the plateau length can turn out to
be much larger than inferred from the leading order - and gs-corrections. We will now
sketch the vanishing requirements of such infinite plateau setups, bearing in mind that we
do not have explicit setups exhibiting the non-generic partial vanishing of the loop and/or
higher superspace-derivative corrections.

2.6.1 Loop corrections — the idealized case: infinite plateau

Let us look at the most simple case of a fibred CY with just 3 volume moduli at all, of which
the first 2 comprise the fibred ‘LARGE’ part of the volume Ay/7;72, and the 3rd must be
a true del Pezzo blowup supporting the ED3 instanton necessary for LVS stabilization.

In this simplest case, the fibration structure ensures that the 4-cycles of the two Kéhler
moduli determining the product structure of the CY volume V = \,/7172 necessarily inter-
sect with each other. Hence, if we tried to forbid the winding mode string loop corrections
in 71 and 75 entirely, in this most simple case we might be able to do so by wrapping only
one of the 4-cycles corresponding to 71, 7o with D7-branes.

So for the simplest class of fibred CYs, if we find a model where C}% = 0 then we might
expect that either CX% = 0 or CIK = 0, as far as the exchange of KK modes among the
D7-branes wrapping 71 and 73 is concerned. Conversely, if we found a setup where C}y # 0
then this entails CKX = CEXK = 0, as now the 7- and Te-4-cycles intersect each other,
forcing the KK-mode corrections from both cycles to vanish. However, note that successful
LVS stabilization requires even for the simplest fibred CY a 3rd pure del Pezzo blow-up
modulus, which intersects only with itself, so it can carry an ED3 instanton. While this
blow-up does not carry a D7-brane, it is parallel to the two divisors 7 and 75 and thus
shares the same orthogonal two real dimensions as the two fibration 4-cycles. Hence, we
would generically expect this to give rise to additional KK-mode corrections of the type
CEE and CEK.

Finally, we can discuss what happens in the absence of such corrections, at least in
the observable window up to 60 e-folds. Ignoring C&¥ for the moment, upon including an
uplift term leads to an inflationary potential with an infinite plateau at large ¢, see Fig. 2.
The leading deviation from this is given by the third term in (2.9) and therefore of the form
exp(—@/+/3). If such setups can be found then they would lead to the robust inflationary
predictions of a-attractors 3] with the specific value a = 2, as discussed in [11].

2.6.2 F* corrections — the idealized case: infinite plateau

We now see that once we grant the assumed particular minimal CY setups with or without
the winding correction discussed in the previous subsection, we find no singular terms in
both inflation to the left and to the right arising from the string loop corrections. The



Figure 2. The scalar potential V of the fibre inflation with a particular set of parameters; x is defined by
x = log V.

only corrections able to spoil the plateau with singular behaviour at small 75 are the higher
superspace-derivative corrections Cy or Co, respectively.

The vanishing of either C; or Csy is a well defined model selection question. This is,
because the higher superspace-derivative terms depend explicitly on the topological data
of the second Chern class of the CY as well as the choice of Kéhler cone. Hence, we see
that if there existed fibred CYs conforming to the speculations of the previous subsection
where in addition either Iy or IIs and consequently either C; or Co vanish, we can ensure
the absence of rising singular terms which limit the plateau potential at the level of the
leading o and string loop corrections.

2.7 General relation to a-attractors

Above we have seen that the general framework of fibre inflation shares many features with
a-attractors: in the absence of corrections that destroy the inflationary plateau, they are
identical with specific values of «;, while corrections that grow in importance at large field
values give rise to a multi-field generalization of a-attractors. Let us outline the origin of
this correspondence.

In the case of a product of hyperbolic manifolds, the general structure of a-attractors
can be defined by the Kéhler and superpotential

K=-— IOg(Tl + Tl) — 210g(T2 + TQ) + S?, W = Sf(Tl, Tg) . (221)
Moreover, we assume that the volume stabilization condition 775 = %(Vg) is already

imposed by the previous stage of the theory. At this point we study only inflation and will
not specify the exit now, where S-independent terms in the superpotential and the question
of taking S nilpotent or just heavy become relevant.

The discussion now splits in two separate cases, depending on the functional dependence
of f. First of all, one can assume that this function only depends on 75, and is regular near

~10 -



ReTh — 0. Restricting to vanishing axions?, this model has a kinetic and potential energy

given by
3 00T
5 22 2 _f2(7—2)7 (222)
2 7

where f is a regular function at the pole around 75 — 0 (in fibre inflation this is achieved by
a constant Kéhler potential due to volume stabilization). The generic example of a regular
function at is 1 — ¢ + ..., yielding an E-model of the o« = 2 attractor. All predictions
are c-independent and follow from the leading term that breaks the non-compact symmetry
(see [22] for a discussion of the analogy to the compact symmetry of natural inflation).
Examples of the above behaviour are provided by string loops (2.9) as well as the right
model with higher derivatives. These differ from the general structure (2.22) by having an
expansion around 75 — oo rather than around zero; however, the above Kéhler potential
has an inversion symmetry 77 — 1/T} and To — T» which leaves the K&hler potential up
to a volume-dependent shift, which we assume to be constant. Thefore the difference in
expansion is immaterial for the predictions.

Alternatively, the function f can give rise to a regular expansion in 7} around the point
Ty = 0. This yields the different behaviour

3 87’167’1
5 (). (2.23)
i
Again, a generic regular function now at 71 — 01is 1 — ¢ + ..., and we get an E-model

of the a = % attractor, where ¢ again drops out. An example of this behaviour is the left
model with higher derivatives. When phrased in terms of 77, this exactly corresponds to a
regular expansion, again in 1/7} rather than 77, which is not relevant due to the inversion
symmetry.

The general case in which the function f has a regular expansion in both 77 and 75
is fundamentally different. An expansion in both moduli is imcompatible with volume
stabilization; when T3 is small, T5 blows up at fixed volume and vice versa. Therefore one
has to include the dynamics of both moduli in such an expansion; the resulting inflationary
scenario is multi-field in general.

In summary, the merger of two a-attractors with a; = (1/3,2/3) gives rise to a com-
bined one with a = 2 or & = 1/2, assuming volume stabilization. The choice between both
a’s is determined by the superpotential. More generally, the condition 71'75? fixed leads
to a combined attractor with (more details can be found in appendix A)

2
a= (@) a1 + ag, (2.24)
b1

when expanding in 72, or its inverse when expanding in 71 (where we have assumed a4 =
1 in order to have a no-scale structure for the volume at lowest order). The values of

2In examples one can check that the axions may need stabilization. In such case the extra geometric
term in the Kéahler potential, associated with the bisectional curvature, will do the job [5]. We can add the
following type of terms SS(T; — T;)*>F(r;).

— 11 —



a =2 and o = } in these models have a clear origin in the kinetic term structure of the

2
CP[%,1,2,2,6] [12] model.
More generally, the dimensional reduction of type IIB string theory on a Calabi-Yau
manifold dictates the tree level Kéhler potential of the 2-cycle volume moduli to be given

by a third-order homogeneous polynomial of the 2-cycle volumes v’

1 o
Kg=-2lhV , K6 V= gfﬁijkvzvjvk . (2.25)
The 4-cycle volumes 7; are related to the 2-cycle volumes as
av 1 -
== Qﬁijkvﬂvk . (2.26)

Hence, for a fibred Calabi-Yau the dominant part of the volume will always take the form

1 1
V= "kt ()2 +... or V= 6,%1231)11)2@3 +... . (2.27)

6

Looking then at the relation between 2-cycle and 4-cycle volumes above, we see that the
only possible values for 7; powers in the fibration (product) part of the CY volume are
pi = (1/2,1) implying o; = (1/3,2/3). Hence, the limiting values a = (1/2,2) seem to
be rather universal for the landscape of fibre inflation on CY compactifications of type 1B
string theory. For the case of a general fibred Calabi-Yau with two volume moduli [11] we
get p; = (1/2,1), hence o = (1/2,2) are the only unique possibilities (see Appendix B for
a detailed argument).

3 D3 induced geometric fibre model

The effective supergravity model of fibre inflation can be given in the form suggested in [§].
The potential depends on the Kéhler function G which, in general is of the form

G=K +logW +logW, V:eg(gljg]gj—3). (3.1)
In our case the index I includes the directions S and T; = (11, T>). We take

G(T;,T;; S, 8) = Go(T3, To) + S + S + G (T, T))SS (3:2)
and suggest the following Kéhler function for the fibre inflation:

1. (Th+Ty)? (T + Ts)? .- -
G =log [Wo| 5108 AT, T, 0g ATy T Gss( ) (3.3)

Here the S-field metric depends on a potential as follows

2
Gss5(Ti, Th) = = gz = (3.4)
3m3/2 + V(T1, Tl, TQ, T2)
where mj3/; is the gravitino mass. The potential consists of three terms
V(T17T17T2572) = A+‘/Stab +‘/inﬂ- (35)
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The cosmological constant at the exit at the minimum of the potential is
2 2
A=Fg—3m3, (3.6)

where _
|Fs|? = |Gs]* = €9 G5G5°G5 . (3.7)

We can now determine V.1, to lowest order by expanding out the LVS volume stabilization
scalar potential in a quadratic neighborhood of the volume minimum (V) = V. If we denote
the volume modulus mass as M, then

Vo = M2V — (V)2 = M?*(\/Time — Vo)? . (3.8)

Hence, we will choose the form

\ ) ) 2
Vitab = M? (S(Tl +T0)(Ty + To)? — V&) (3.9)

for the volume stabilization potential, since this clearly reproduces V3, in it own quadratic
neighborhood. The mass parameter M is assumed to be significantly larger than the scale
of a cosmological term Vi, and from now on we put A\/8 = 1 for simplicity. This would
correspond to a spirit of the original fibre inflation model with a strong stabilization of the
large volume of compactification, such that stringy corrections responsible for a cosmological
evolution do not affect stabilization of the total volume.

We can now incorporate the scalar potential for 71 and 7 using a similar comparison
with the actual fibre models we did above for the overall volume stabilization. In a quadratic
neighborhood of the full fibre inflation scalar potential the scalar potential for m and 7
will read

Ve, =m?((n) —7)? (3.10)
and
Vo, =m? (1) = m2)? (3.11)

respectively. If we now, for simplicity, rescale their minima (7;) to unity, then we can clearly
take the cosmological part of the potential in the simplest interesting cases with a = 2 and
a = 1/2, respectively, as follows

_ 1 —\°
Vit = (1- 30+ 7)) (3.12)

_ 1 _\?
ATREE (1 — 5T+ T1)> . (3.13)

We discuss the stability of non-inflaton directions during inflation. In the following
discussion, we will use Vifl‘ﬂZQ as the inflaton potential. Because of the stabilizing term in
the scalar potential, we introduce the following new basis,

1 1 1
= —— X = —F= e —
RV V3 V3

1

(\/iul —U2), = %

(u1 + V2u2), 0 (V2a1 —az), 1 (a1 + V2a3),

(3.14)
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/2 .
where u; and a; are defined by T; = e 3“iul(1 + i,/%ai), and 3a; = i for ¢ = 1,2. Both
(p, x,0,v) and (u;, a;) are canonical on inflationary trajectory a; = 0(= 6 = v). In the limit
. . . .. . . V2
m — 0, we find ¢ is a flat direction, and the minimum is given by x = xo = % log -¢ and
0 =1 =0. At x = xo, the inflaton potential becomes the E-model a-attractor potential

2/3 2
Vintily=xo = Vet = m? (1 — OTe «é) : (3.15)

Figure 3. E-model version of the fibre inflation potential.

Due to the inflationary potential, however, the minimum of x is slightly shifted from
X = Xo- The scalar potential at § = ¢ = 0 is shown in Fig. 3. The deviation gives extra

contribution to the scalar potential as
2

8/3

5V =
36V,

Vet (3.16)

at the leading order of the € expansion, where e = §;. This contribution is negligible for

€ < 1, and we will neglect it in the following discussion.

The mass of the axionic directions € and v are given by
mg = my, = AW§ + 2Veg, (3.17)
which are positive definite during inflation. The heavy modulus x has the mass
m? = 12M>V;. (3.18)

Note that all the masses are the leading part of the e-expansion. The minimum of the

e NCET e .
potential is given by ¢ = 5> log =%—, and the masses are given by

m?o =2m? mi =12M3V;, m}= qup = 4W¢. (3.19)

— 14 —



Thus, we can conclude that this system is stable during and after inflation.

Note the similarity of the inflaton potential in the a-attractor model considered in this
section and shown in Fig. 3 to the potential of fibre inflation shown in Fig. 2. This is
in accord with our expectations that our supergravity model correctly captures essential
features of fibre inflation in the vicinity of the inflationary trajectory.

4 Discussion

The increasingly precise data from the cosmic microwave background (CMB) during recent
years provide very strong observational support for an early phase of cosmological inflation.
At the same time the data starts to put relevant upper bounds on the tensor-to-scalar ratio
r < 0.07(95%).

Given this situation, it is interesting to study bottom-up inflation models which are
both simple and at the same time cover a wide class of potentials, while providing suppressed
levels of tensor modes in the regime 1072 < r < 1072 and maintaining a good fit to the
observed value of spectral tilt ns ~ 0.97. Since these levels of r imply a very high scale
of inflation, we should at the same time aim for bottom-up inflation models which have a
possible UV completion in models of string inflation.

a-attractors [3| are a very general class of such inflation models constructed bottom-
up in 4D N = 1 supergravity. They produce exponential plateau potentials controlled
by a single parameter « labeling the residue of a second-order pole of the kinetic term
of the inflaton. Due to the presence of this pole, a-attractor models are ‘pole inflation’
models [4, 16] which shift the question of quantum corrections affecting the inflationary
dynamics from the scalar potential to the kinetic function. As long as the kinetic function
is dominated by a second-order pole, an arbitrary analytic scalar potential will flatten out
to yield an exponential plateau inflation with a universal prediction ng = 1 — 2/N and
r = 12a/N? at N e-folds before the end of inflation.

However, despite their simplicity and generality a-attractors so far had no clear link
to a UV completion in string theory. One of the main problems has been, that those string
moduli fields, which acquire a second order pole in their kinetic function, often appear with
pole at the same position in the scalar potential due to Weyl rescaling of the sources of the
moduli potential into 4D Einstein frame. In such cases, pole inflation looses its flat plateau;
for certain combinations of the orders of the poles in the kinetic function and the scalar
potential this can even render inflation impossible.

Yet, there are models of inflation in type IIB string theory compactified on Calabi-Yau
manifolds, which combine polynomial potentials for certain volume moduli with a second-
order pole in the kinetic term of these moduli. These ‘fibre inflation models’ [10, 11] produce
an exponentially flat plateau with a field range of O(5...10 Mp) in the extant semi-explicit
toy model constructions.

In this work we demonstrated that the low-energy effective description of the string
models of ‘fibre inflation’ are a class of a-attractors. Moreover, we showed how the recently
developed method of geometrizing a-attractors using nilpotent superfields in supergrav-
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ity |7, 8] allows us to write a simple and explicit 4D supergravity realization of the core
dynamics of moduli stabilization and inflation in fibre inflation.

Our supergravity realization of fibre inflation as an a-attractor makes it clear, how a
stringy realization of pole inflation can work: Namely, the LVS scenario inspired volume
stabilization on a fibered Calabi-Yau manifold stabilizes the whole Calabi-Yau volume,
which is a product of two volume moduli. This product-type of constraint from moduli
stabilization allows for second-order poles in the kinetic functions of the individual moduli
while keeping the Kdhler potential constant along the inflaton direction given by one of the
two volume moduli. This way, fibre inflation is a stringy a-attractor model which avoids

the pole in the scalar potential from Weyl rescaling proportional to .

As long as the total volume remains stabilized, each of the two volume moduli comprises
an ca-attractor direction. Applying the fusion rules for a-attractors with several fields
studied in |7, 8|, and applying the general structure of the Calabi-Yau volume expressed in
4-cycle moduli 7;, we find that fibre inflation realizes a-attractors with only two discrete
values a = 1/2 or a = 2.

This is valid, as long as the inflationary dynamics is effectively single-field keeping the
total Calabi-Yau volume stabilized. We analyze the effect which the presence of higher-
order corrections such as those conjectured to arise from string loops has on the exponential
plateau. If they are present, then they lead to steepening of the potential after some
finitely long exponential plateau. This steepening region very quickly increases the inflation
potential to scale of the total volume stabilization. Beyond this point the dynamics becomes
a 2-field model involving one of the two chosen a-attractor directions and the volume
modulus which becomes dynamical. We leave a study of this 2-field dynamics and its effect
on the effective range of values of a as a very interesting subject for the future.

Finally, we also note that in some cases the dominant higher-order corrections may be
absent. This may lead to the existence of very long inflationary flat directions.
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A Fusion rule of «

In this section we will generalize the analysis of possible a’s for generic two-moduli a-
attractors; see Appendix B for the restrictions in actual Calabi-Yau compactifications.
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Suppose we have two chiral superfields 77 and T with the Kéahler potential given by
—3aq 10g(T1 + Tl) — 3o log(Tg + TQ) (Al)
In this case, the ‘volume’ 7'13‘“7'230‘2 is invariant under the dilatation transformation

T — )\aQTl, T — )\_a1T2. (AQ)

In terms of the canonical real variables (u;,a;), defined as

S Ew, [ 2
T,=e S (1 +1 3 ) ) (A3)

a;
Q;
it is useful to perform the following field basis change:
1 1
= ——(Varug + Jagus), = —
X \/m( 1u1 2 2) ¢ \/m

where y is the invariant field under the dilatation, corresponding to the “volume” and ¢

(—Vagur + aqua), (A.4)

is the orthogonal direction corresponding to the “fibre”. In terms of the latter, which will
provide the inflaton direction, the scalar potential reads

— /20 2
V=V(MN,T)=V (6 dar” eV 342 > , (A.5)
where
N « - o
d1=— (a1 +as), do=— (o +a). (A.6)
a9 aq

If the potential is effectively given by a polynomial of T;, the model effectively becomes an
attractor with a@ = &;. For example, a1 = 1/3, ag = 2/3 yield a3 = 1/2 and ay = 2, which
corresponds to the fibre inflation setups. Moreover, note that when the volume modulus
has a no-scale structure, implying a; + as = 1, then both resulting values of a are always
inversely related.

Finally, one can consider a further generalization, which we will discuss in a simplified
toy model without SUSY. We consider the Lagrangian
or107; 3 01207

—30(1 — 9(Q9
47‘12 47'22

— Vint(71, 72) — Vax (71, 72). (A7)

Vix gives a constraint on 71 and 72, which we will assume to take the form 7 = 075’ where p
and ¢ are constants. In the fibre inflation case, this corresponds to the volume stabilization

2

2
- i i 1/ 3a; Wi .
71 = V37, °. In terms of canonical variables u; defined by 7; = e V3% " the constraint

up — ,/%pm = const . (A.8)
a2

Again we can decompose u; into the fixed mode y and the flat mode ¢ as

A/ \/
X = v <ul — a1PU2) , ¢ = . vTe2 ( ilpul —+ U2> . (Ag)
Vas + pla; V a2 Vaz +par \V @2

reads
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The inverse relations read
1 1

m(ﬁpéﬂ-\/@x) , U= m(\/@d’— Vvaipx) .

Since  is already fixed by Vjy, ¢ is the inflaton mode and its potential becomes

uy = (A.lO)

Vinf(Tl,T2)=V<€ 3°‘1¢ - 3O‘2¢>, a1 =a1 +p lag, ay=ag+ap?.  (A.ll)

Note that p = 1 was the focus of [7] while in this paper we have investigated p = —2.

B Volume moduli dependence of fibre inflation with two moduli

The classical Calabi-Yau volume is a cubic polynomical in the 2-cycle volumes
1 o
Y = gﬁiijZ’U‘]’Uk (B1>

with k;;; being the intersection numbers, topological numbers determined by the given CY.
For the case of a CY with two moduli the volume takes the most general form

1 1 1
V= 6%112(121)2’02 + 6/@122’01(’02)2 + 6/6222(’[12)3 (B.2)

where we have absorbed the (v!)? piece into a shift of v?> — v? + cv!, allowing us to set
k111 = 0. The purest form of fibration clearly would have only k199 non—vanlshlng.

The relation between the 4-cycles 7; and 2-cycles v* is given by

oy 1 ;
57 = ifiijkvjvk . (B.3)

For our two-moduli case this system of coupled quadratic equations in the v’ reads

T =

1 1 1 1 1
T = §m12v1v2 + 6!@122(7)2)2, Ty = 6&112(1)1)2 + §H12271102 + 5@22(”2)2. (B.4)

We wish to express V in terms of the 4-cycle volumes, so we need to invert this system,
solving for the v’ as functions of the 7;. This can be done analytically, but the expressions
are lengthy. Our interest is in the behavior solutions in the two fibre inflation asymptotic
regimes 77, — o0 , 79 — 0 and 71 — 0, 7@ — oo keeping V constant, while we do not
assume a particular relation between 7 and 79 at this point. We can then asymptotically
expand the solutions Q}i(Tj) to the quadratic equations in 7; and 7» in these two regimes,
and expand the solutions in k112 and k999 treated as perturbations to the pure fibration
case where only k199 # 0. We do this ony to analyze the scaling structure of the solutions,
while it is clear that in reality intersection numbers given by topological data can never be
an arbitrarily small continuous quantity.

In the regime 71 — 0, 79 — oo the solutions to the quadratic system are

K112 T2
K199 2/<6122 7—3/2 2H122 V1

2 K112 3 T2 6
ve = +4/ VTt B.5
K122 V 2K122 \/T1 k122 ¥V (B-5)
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where the dots represent higher-order terms. We see that k112 entails, that in the asymptotic
limit 71 — 0 both v! and v? would blow up and thus violate the constraint V = const. From
this perspective alone, a viable fibre inflation behavior would require k112 to be of very small
magnitude.

Fortunately, the analysis of [11] already argues that the most general two-moduli
Calabi-Yau with a fibration structure has x119 = 0. From this we conclude that for the
general case of fibred CY we have

3 m 6

1 / 2 /

Vo= —— 4 ..., v = —T1+ ... B.6
2Kr122 /T1 K122V (B6)

in the limit 71 — 0, 72 — oo. This immediately implies V ~ /7172 in this limit which in
turn dictates a = 1/2 for 71 — 0, 72 — oc.

In the opposite regime 71 — 0o, 79 — 0 the solutions to the quadratic system are

3 T 3 6

1 2 / 2 /

v = — =3 Ko22/T1 + ..., Vi =/ —/T1+ ..., B.7
2K122 1/T1 Qiqgg 2V kg2 ¥ (B-1)

where again the dots represent the higher-order terms. Here we see that for growing 7 a

non-vanishing ko990 implies that there is maximum value of 71 beyond which v* < 0. This
violates the Kihler cone conditions for the given CY, which at minimum dictate that v* > 0
for all 2-cycle volumes v’ simultaneously, see e.g. [23]. Therefore, a fibred CY must have
Ko2o = 0 in order to be ‘Kdhler cone viable’ for fibre inflation. However, again, in that case
our solutions become

3 m 6

1 2 /

Vo= —— 4 ..., V= —/11+ ..., B.8
2Kr122 \/T1 Kz VT (B8

and we have V ~ /711 asymptotically. For the current regime 7 — oo , 79 — 0 this

implies a = 2.

Taken together, these two arguments imply that a two-volume-moduli CY which is
‘Kdhler cone viable’ for fibre inflation, will always have a volume expression which asymp-
totically scales as V ~ /7172. Any such two-moduli CY with is ‘Kdhler cone viable’ for
fibre inflation should have k990 = 0, which thus forms a condition for the search for explicit
CY examples of fibre inflation. Hence, for fibre inflation with two volume moduli there is
a unique prediction of two discrete possibilities for a, namely a = (1/2, 2).

C T-model

The string theory fibre inflation model discussed above is formulated in half-plane variables,
suitable for the description of E-model a-attractors. However, in terms of our effective
supergravity approach, one can easily generalize this model, formulate it in disk variables,
and find its version with the T-model potential:

1=z 2log 1—|Z5)?
1 — 23] 11— Z3]

g 1
SS 2
= — (|Fg|*+ V). C.2
g IVOQ (| S| ) ( )

G =logW¢ — log + S+ 5+9555S , (C.1)
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Figure 4. Inflaton potential of the T-model version of the fibre inflation potential for a particular case
M=m=0.1,V =2V2.

As an example, one may consider the scalar potential

2
__ — m
V(Z21,7Z1, Za, Zo) =A+7!Z2|2+Vm, (C.3)

where we will use the same stabilization potential Vi, as in the E-model (3.9), but we

represent it in terms of the disk variables, T; — 1+Z"

1—12:%)(1 - |25

Vieay = 8342

(C.4)

Here Z; = tanh 451;\/%917 Zy = tanh q&gj;z‘@z'

It is convenient to express these fields in terms of their combination suitable for de-
scribing inflation in this model:

V20 + x V2X—e . _
V3 Vi T B

The total potential in terms of these fields, for A =0, is

— M 0y = m (C.5)

¢1 = 7

¢2 =

m <smh2 e=V2x + sin? V20— w)

V20 — ¢ \/5 /3 V3
V =sec? “ " secy/ = (V2 + 0
& V) i),

+M? <V02 — 2¢V6X cos % — 46V ¢cog % — 2¢VY6X ¢og \/619)

We will concentrate now on the inflaton potential with 9 =1 = 0, which is given by a
much simpler equation:

5 2
V = m?tanh? <<’02—\/\/§—X> + M? <V02 - 86\/6X> . (C.7)
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Figure 5. Fibre inflation cascades. Inflation begins at a high dS plateau with the height M?Vy*. Then the

2 2
fields fall to the narrow valley at xy = % log V?O to its minimum at ¢ = % log V?O. In order to simultaneously
show the upper plateau, as well as the minimum of the potential shown in Fig. 4, instead of V' we plot here
log(100V + 1) for a particular case M =m = 0.1, Vo = 2v/2.

Let us now explore the general properties of this potential. First of all, in the limit M Vg >
m, the field y tends to fall down to y = \/lg log %. Then the potential of the field ¢ is
given by the first term of (C.7), which describes T-model a-attractor shown in Fig. 4. An
evaluation of the kinetic term of the field ¢ implies that it is an a-attractor with o = 2.

Now let us look at the same potential in the limit y — —oo, which brings us far away
from the inflationary valley we just discussed. In this limit the potential becomes

—V2x
V =m2tanh? [ 22X ) 4 a2yt Cs8
m- tan ( 2\/5 + 0 ( )

The minimal value of this potential on the upper plateau is M 2V§. It is achieved for
¢ = v/2x, which corresponds to ¢ = 0. This direction is shown as a shallow blue valley
on top of an infinite dS plateau in Fig. 5, which gives some idea of the general structure of
the potential in this model.

The early stages of inflation in this model are described by the cascade inflation scenario
described in [8]. Inflation may begin at the upper plateau. Depending on the position on
the plateau, the fields either directly moves to smaller values of y, or first moves towards
the blue valley at ¢ = v/2x (i.e, at ¢ = 0), and then moves down along this valley. The
process finishes by the second stage of inflation along the deep valley with y = \/lg log %
shown in Fig. 4, corresponding to the T-model with o = 2.

For completeness, one should check whether the inflationary potential is stable with
respect to the fields ¥ and ¥ at ¥ = ¥ = 0. The calculation is especially simple at the

upper plateau shown in Fig. 5. Indeed, in the limit y — —oo the potential of the fields ¥
and v is

V20 — 2
V(9,9) = (m® + M?Vy) sec? —F sec \/; (\/ﬁw + 19) . (C.9)
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By analyzing this expression one finds that the fields ¥ and ¥ on the upper plateau have
superheavy masses m129 = mfp = 2(m? + M?V§) = 6H?, so they are firmly stabilized at
¥ =1 =0.

An investigation of the axion masses along the fibre inflation valley y = % log % is
more involved, but it also shows that the fields ¥ and v are stabilized at ¢ = = 0.

Finally, we show that the masses of scalars at the minimum of the potential are given
by

2 2 2 1, 2 , _ m? 2 2,2 M
my = AWy, mzﬁzi( + 8Wy), My = my, = 12M V0+?, (C.10)

where 9 = %(19 +V/2i), ) = %(\/519 — 1)) are canonical axions at the minimum.

The potential of this T-model differs from the potential of the original string theory
fibre inflation. However, we decided to discuss it there because it has interesting features
and it leads to nearly identical observational consequences.
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