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Abstract

Because large-scale structure surveys may very well be the next leading sources of cosmological

information, it is important to have a precise understanding of the cosmological observables; for this

reason, the Effective Field Theory of Large-Scale Structure (EFTofLSS) was developed. So far, most

results in the EFTofLSS have used the so-called Einstein-de Sitter approximation, an approximation

of the time dependence which is known to be accurate to better than one percent. However, in

order to reach even higher accuracy, the full time dependence must be used. The computation with

exact time dependence is sensitive to both infrared (IR) and ultraviolet (UV) effects in the loop

integrands, and while these effects must cancel because of diffeomorphism invariance, they make

numerical computation much less efficient. We provide a formulation of the one-loop, equal-time

exact-time-dependence power spectrum of density perturbations which is manifestly free of these

spurious IR and UV divergences at the level of the integrand. We extend our results to the total

matter mode with clustering quintessence, show that IR and UV divergences cancel, and provide

the associated IR- and UV-safe integrand. This also establishes that the consistency conditions are

satisfied in this system. We then use our one-loop result to do an improved precision comparison of

the two-loop dark-matter power spectrum with the Dark Sky N -body simulation.
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1 Introduction

Large-scale structure surveys may potentially be our next leading source of cosmological

information because the amount of information in such surveys scales roughly like k3
max,

where kmax is the largest wavenumber under theoretical control. Thus, it is important to

have a precise understanding of large-scale structure (LSS) observables at the highest k (most

ultraviolet, or UV) possible. In order to address this concern, the Effective Field Theory of

Large-Scale Structure (EFTofLSS) was developed (there is by now a rather large literature,

see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]) to describe gravitational clustering in the mildly

non-linear regime through the correct treatment of the effects of UV modes on large-scale

observables. The main idea is that, in order to correct mistakes introduced in perturbation

theory from uncontrolled short-scale physics, one must include suitable counterterms in the

perturbative expansion. Once the coefficients, or coupling constants, of these counterterms

are fit to observation, they will correctly describe the effects of short-scale physics on the

large-scale modes that we directly observe in large-scale structure surveys. The result is a
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controlled expansion in k/kNL, where kNL is the scale at which the effective field theory can

no longer describe the dynamics (i.e. it is the strong coupling scale). For k . kNL, predictions

can be computed to arbitrary precision (up to non-perturbative effects) by including more

and more loops. So far, this research program has shown that large-scale structure clustering

can be accurately described for dark matter [22], galaxies [12, 17], including baryons [14], and

in redshift space [32, 28] up to relatively high wavenumbers. Codes used to produce some of

the results mentioned in the former references, as well as the one used to obtain the results

presented in this paper, are publicly available online.1

When constructing the perturbative solution, loop integrals need to be performed. For

IR-safe (IR stands for infrared) quantities, the loop integrals have spurious IR divergencies

that cancel in the final answer (this cancellation being guaranteed by diffeomorphism in-

variance [5]). As it was noted in [5], the numerical cost of the computation (as well as the

conceptual cleanliness of it) can be ameliorated by constructing an IR-safe integrand. Ref-

erence [5] constructed the IR-safe integrand in the Einstein-de Sitter (EdS) approximation,

where all loop contributions have the same time dependence (for example, all 1-loop contri-

butions are proportional to D+(a)4, where D+(a) is the linear growth factor). This treatment

made manifest the cancellation of large IR contributions in the loop expansion, which are

guaranteed to cancel by the equivalence principle in equal-time correlation functions of den-

sity perturbations, at the level of loop integrands ; practically, this means that the computer

does not waste time precisely computing very large numbers which will ultimately cancel each

other to give a much smaller result. These cancellations were originally studied in [34, 35],

and more recently in [36]. The IR properties of the loop expansion are related to the so-called

consistency conditions for dark matter [34, 36, 35, 37, 38, 39, 40], which [5, 41] pointed out

are also a result of the equivalence principle ([41] used an explicit construction of adiabatic

modes due to Weinberg [42]). The fact that there was only one mode (dark matter) present

in these discussions was important because it meant that there was a unique freely falling

observer to transform to and remove not only gradients of the gravitational potential (which

is always possible), but also the velocity of the species. The fact that large-scale velocity

effects do not cancel in equal-time correlations functions in the presence of multiple modes

was pointed out in [43, 39, 40].

A similar scenario exists for spurious UV contributions to loop integrals. The leading

behavior in the UV (k/q → 0) is fixed to be

PUV
13 (k) ∝ k2P11(k)

∫
d3q

(2π)3

1

q2
P11(q) , (1.1)

PUV
22 (k) ∝ k4

∫
d3q

(2π)3

1

q4
P11(q)P11(q) , (1.2)

which are indeed the kinds of terms which can be corrected by counterterms in the pertur-

bative expansion. When computing with exact time dependence, though, P13 and P22 are

each a sum of different terms with different time dependences. These terms happen to have

1http://web.stanford.edu/~senatore/
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individually spurious leading UV behavior, which must cancel separately in P13 and P22 (be-

cause they have different k dependences). For exactly the same reasons mentioned above for

the spurious IR terms, we would like to eliminate the spurious UV terms at the level of the

integrand. This is exactly what we do in this paper: we provide a manifestly IR- and UV-

safe (which we will abbreviate as IR&UV-safe for now on) integrand.

In this paper, we extend the results of [5] to provide the one-loop IR&UV-safe integrand

with exact time dependence, i.e. when the time dependence is computed with the exact

Green’s functions. To date, most of the computations in the EFTofLSS have been done in the

EdS approximation, and because we ultimately want the most precise computation possible,

it may soon become necessary to use the exact time dependence. It was shown [44] (see also

[45, 46, 47, 2] for related discussions) that the difference between the EdS approximation and

exact time dependence in ΛCDM at z = 0 for the total power spectrum up to one loop is

about 0.5%. A potential problem with using the exact time dependence, though, is that the

more complex expressions in terms of Green’s functions obscure the cancellation of IR and UV

divergences, which nevertheless must happen because of diffeomorphism invariance. In this

paper, we explicitly show how these cancellations come about and then construct a one-loop

integrand which is manifestly free of these large spurious IR and UV terms. While the two

different loop contributions, P22(a, k) and P13(a, k), have different time dependences, we show

that the leading IR and UV terms in fact do have the same time dependence, thus allowing

the spurious IR and UV terms to cancel. Because of the delicate cancellation of terms which

generally have different time dependences, a numerical computation of the loops with exact

time dependence is more sensitive to the precision with which the time-dependent factors

are computed; a small error in the relative value of the time-dependent coefficients means

that numerically the spurious IR and UV terms will not exactly cancel, and because they are

proportional to large factors (this is indeed what it means to be IR or UV divergent) the overall

numerical error can be high.2 Said another way, the IR and UV divergent terms are only

guaranteed to cancel if the numerical coefficients are computed with infinite precision. This

situation could be counterproductive. The reason that we are interested in computing with

exact time dependence is because we want to compute observables with the most precision

possible, so the precision lost due to IR and UV effects better not outweigh the precision gained

in using the exact time dependence. In this paper, we provide an expression for the one-loop

power spectrum with exact time dependence which is immune to these concerns by writing

it in terms of a manifestly IR&UV-safe integrand, where there are no spurious IR or UV

divergences to be cancelled numerically. Then, we use our results to do an improved precision

comparison of the two-loop dark-matter power spectrum (now with exact time dependence,

and IR&UV-safe integrand used for P1−loop) with the Dark Sky N -body simulation [48].

It is interesting to note (as we will show later) that our results here can be easily extended

2In practice, because the real universe has a natural IR cutoff around the matter-radiation equality scale,

keq ∼ 0.01hMpc−1, these IR terms are not too large in the one-loop computation that we present here. In

fact, as we will see below, it is more important to remove spurious UV terms. However, the IR terms are

expected to be much more of a nuisance in a two-loop or higher order computation than in our one-loop study.
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to another system of interest: dark matter coupled to quintessence with zero speed of sound

(also called clustering quintessence), which was a main example used in [33] to describe how

to include dark energy (in the so-called Effective Field Theory of Dark Energy formalism)

in the EFTofLSS, and had been previously studied outside of the context of the EFTofLSS

in [49, 50, 51]. There, the equations of motion for the adiabatic mode (called δA) are the same

as those in ΛCDM apart from a different time dependent factor in the continuity equation

(see Eq. (A.1) and Eq. (A.2)). In this paper we also show that for equal-time correlation

functions of the adiabatic mode in the dark matter and clustering quintessence system, the

individual IR and UV divergent terms of the one-loop contribution cancel, and we provide

the IR&UV-safe integrand for that system. Indeed, it is not surprising that this is the case.

When the quintessence has a small speed of sound, i.e. c2
s → 0, the system reduces to a single

mode δA (the isocurvature mode is proportional to c2
s, and thus is absent when c2

s → 0), and

because the equivalence principle is not violated, the arguments of [5] apply. In particular,

the fact that the spurious IR terms cancel also means that the consistency conditions are still

satisfied for correlation functions of δA. However, when c2
s 6= 0 but |c2

s| � 1, an isocurvature

mode proportional to c2
s is generated [33], and we expect the loop integrals to have a strong

IR dependence proportional to c2
s, and the consistency conditions to be violated by terms

proportional to c2
s.

This paper is organized as follows. In the beginning of Section 2 we review the construction

of the IR-safe integrand with approximate time dependence presented in [5]. In Section 3.1, we

present the loop contributions with exact time dependence, P13(a, k) and P22(a, k), in a way

to prepare us for the computation, and in Section 3.2 we find the IR limit of our expressions.

Then, in Section 3.3 we first show how the leading IR terms cancel, and then we construct

the IR-safe integrand, which gives an expression for the integrand which is manifestly free of

IR divergences at every step of the numerical computation. In Section 3.4, we do the same,

but for the spurious UV terms. In Section 4 we present some numerical results of our study,

and in Section 5 we present our results of the improved precision comparison. Finally, in

Section 6, we conclude.

2 Review of IR-safe integrand with EdS approximation

Let us first look at the case previously studied in [5] (see also [52]), which uses the EdS

approximation for the loop integrals. In that case, we have

P1−loop(a, k) = P22(a, k) + P13(a, k) , (2.1)

where the respective integrands are defined as

P22(a, k) =
D(a)4

D(ai)4

∫
d3q

(2π)3
p22(~k, ~q) and P13(a, k) =

D(a)4

D(ai)4

∫
d3q

(2π)3
p13(~k, ~q) , (2.2)

so that for equal time power spectra, we only need to consider the momentum dependence in

the functions p22(~k, ~q) and p13(~k, ~q) to examine the IR properties. While the explicit forms of
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p22(~k, ~q) and p13(~k, ~q) can be found in [5], we will only need the forms in the IR limits q/k → 0

and ~q → ~k. In the q/k → 0 limit, and taking the initial power spectrum to be P11(k) ∝ kn,

we have

p13(~k, ~q) ∼
q/k→0

−kn+2µ2qn−2 +O(qn) , (2.3)

p22(~k, ~q) ∼
q/k→0

1

2
kn+2µ2qn−2 +O(qn−1) , (2.4)

where µ ≡ ~k · ~q/(k q). The equivalence principle ensures that the effect of the loop from the

IR must start like
∫
d3q P11(q), but looking at Eq. (2.3) and Eq. (2.4), there seem to be terms

which go like
∫
d3q (k/q)2P11(q) and

∫
d3q (k/q)P11(q) (which we will generically refer to as

divergent terms), so the cancellation is not manifest. Being more careful though, one notices

that there is another IR-divergence in p22 which comes from the limit ~q → ~k (i.e. sending the

other leg of the loop momentum to zero), which goes like

p22(~k, ~q) ∼
~q→~k

1

2
kn

(~k · [~k − ~q])2

q2|~k − ~q|2
|~k − ~q|n . (2.5)

Summing the above IR divergences, it was found that the leading divergence which goes

like d3q (k/q)2P11(q) cancels (as it should), but that the divergences come from two different

regions within the integration limits. Additionally, the divergence in Eq. (2.4) proportional to

d3q (k/q)P11(q) is also proportional to µ, and so indeed cancels in the final integration over d3q.

Thus, if one were to simply add p22(~k, ~q)+p13(~k, ~q) and then integrate over d3q numerically, the

numerical integration would be computing very large numbers near ~q → 0 and ~q → ~k which

when summed give a result which is much smaller than the individual numbers computed.

This was known to happen [34, 35], although it was sometimes incorrectly attributed to the

Galilean invariance of the Newtonian equations (it is actually guaranteed by diffeomorphism

invariance). All in all, [5] found that the way to write the one-loop power spectrum in a

manifestly IR-safe way is

P IR-safe
1−loop (a, k) =

D(a)4

D(ai)4

∫
d3q

(2π)3

[
p13(~k, ~q) + p22(~k, ~q)ΘH(|~k − ~q| − q)

+ p22(~k,−~q)ΘH(|~k + ~q| − q)
]
, (2.6)

where ΘH is the Heaviside step function. Notice that now the only IR divergence is for q/k → 0

since p22 is not integrated near ~q ≈ ~k any longer (the divergence at ~q → ~k has been mapped to

q/k → 0), and that the p22 term is symmetrized in ~q ↔ −~q, so that the terms proportional to

an odd power of µ explicitly cancel. Thus, the integrand in Eq. (2.6) is manifestly IR-safe, in

the sense that as q/k → 0, both the d3q (k/q)2P11(q) and d3q (k/q)P11(q) divergences cancel

at the level of the integrand.
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3 IR- and UV-safe integrand with exact time dependence

In the first part of this section, we would like to find an IR-safe analog of Eq. (2.6) for ΛCDM

with exact time dependence.3 We will then construct the IR&UV-safe integrand in Section 3.4,

which will be an analgous construction to the one that we present for IR modes. In doing this,

our results can be extended trivially to the adiabatic mode in clustering quintessence described

in [33, 51] by restoring the time-dependent function C(a), which is defined in Eq. (A.3) (in

Appendix A we summarize the results and notation of the clustering quintessence computation

in [33] for convenience), and is equal to unity for ΛCDM. In this paper, our explicit formulae

will include the factors of C(a) for completion. In this paper, we are only interested in the

one-loop terms, so we will ignore EFT counterterms (which are trivially IR-safe because they

are tree level).

As a side note, we would like to point out that it is only possible to write the IR-safe

integrand in clustering quintessence because in the c2
s → 0 limit, quintessence traces dark

matter so that the system has only one mode. In this case, one can always go to the unique

freely falling frame of the region to eliminate gradients of the metric and any velocity, thus

ensuring IR-safety. If c2
s 6= 0, an isocurvature mode is generated, and so we expect the IR

cancellation to be spoiled by terms proportional to c2
s.

3 As discussed in the Introduction, the EdS approximation is known to be correct to better than percent

level in ΛCDM. Thus, instead of using the exact time dependence, as we do in this paper, one could also

expand the time dependence around EdS. This should be a very good expansion in ΛCDM, with an expansion

parameter of order 1/100. Considering the equations of motion Eq. (A.1) with C(a) = 1, one could do this

expansion by setting

δ(n)(a,~k) = D+(a)n
(
δ̄(n)(~k) + ε δ̃(n)(a,~k)

)
(3.1)

Θ(n)(a,~k) = D+(a)n
(

Θ̄(n)(~k) + ε Θ̃(n)(a,~k)
)
, (3.2)

where ε ∼ O(1/100), δ̄(n)(~k) and Θ̄(n)(~k) are the time-independent EdS fields, and δ̃(n)(a,~k) and Θ̃(n)(a,~k)

give the deviations from EdS time dependence. Plugging this into the equations of motion Eq. (A.1), one can

then expand to the desired order in ε (although first order should be sufficient for most purposes). The result

will be differential equations for δ̃(n)(a,~k) and Θ̃(n)(a,~k) which are sourced by δ̄(n)(~k) and Θ̄(n)(~k). One can

then use the Green’s functions of this system to solve for δ̃(n)(a,~k) and Θ̃(n)(a,~k). The advantage of this

approach is that one will in general have less diagrams, because of the linear expansion in ε, and there will

be less nested time integrals. Thus, the computation should be much faster.

However, we choose not to pursue this course of action for the following reasons. First of all, we would like

to establish our results with exact time dependence as a matter of principle, and because at one loop it is not

too difficult, we choose this path. Second of all, in this work, in addition to ΛCDM, we are also interested

in the clustering quintessence system for which there is no known analogue of the EdS approximation. Thus,

we leave this expansion for future work.
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3.1 Expressions for one-loop kernels

Below, first we will verify that the leading IR terms of each separate loop cancel, and then

we will provide the IR-safe version of the loop integral. In order to continue, let us write

Eq. (A.22) and Eq. (A.23) (the expressions for P22 and P13 found in [33], which use exact

time dependence) in a more useful form:

P22(a, k) =

∫
d3q

(2π)3

∫ a

0

da2

∫ a2

0

da1 p22(a, a1, a2;~k, ~q) , (3.3)

P13(a, k) =

∫
d3q

(2π)3

∫ a

0

da2

∫ a2

0

da1 p13(a, a1, a2;~k, ~q) , (3.4)

where

p22(a, a1, a2;~k, ~q) =
4∑
i=1

T
(22)
i (a, a1, a2)F

(22)
i (~k, ~q) , (3.5)

p13(a, a1, a2;~k, ~q) =
6∑
i=1

T
(13)
i (a, a1, a2)F

(13)
i (~k, ~q) . (3.6)

We will define the various quantities that enter above momentarily. First, however, let us

comment on the computational strategy. Each function p22 and p13 is a sum over terms which

are products of a function of time and a function of momentum. Thus, in order to compute the

loop, we must numerically compute the integrals over the functions of time
∫
da2

∫
da1 T

(σ)
i

(where σ ∈ {13, 22}) separately from the functions of momentum
∫
d3q F

(σ)
i , multiply them,

and then add them together. In order for this approach to be the most numerically efficient, we

want each of the F
(σ)
i (~k, ~q) functions to be IR-safe separately. That way, numerical uncertainty

in the time integrals will not spoil any cancellations that are supposed to happen in the

momentum integrals. Our IR-safe integrand will have this property.

Next, we will comment on the limits of integration of the time integrals. Notice that

in Eq. (A.22) for P22, the limits are
∫ a

0
da2

∫ a
0
da1, while in Eq. (A.23) for P13 they are∫ a

0
da2

∫ a2
0
da1. In order to compare the P13 and P22 integrands directly, we want them to

have the same limits, so we use the following fact, valid for any function f(a1, a2),∫ a

0

da2

∫ a

0

da1 f(a1, a2) =

(∫ a

0

da2

∫ a2

0

da1 +

∫ a

0

da1

∫ a1

0

da2

)
f(a1, a2) (3.7)

=

∫ a

0

da2

∫ a2

0

da1 (f(a1, a2) + f(a2, a1)) , (3.8)

where in the first passage we re-parametrize the square region 0 ≤ a1 ≤ a and 0 ≤ a2 ≤ a,

and in the second passage we redefined the variables of integration in the second term. This

allows us to write Eq. (3.3) and Eq. (3.4), in a way in which P22 and P13 have the same limits

for the time integrals.

Let us now go back to defining the terms that appear in Eq. (3.5) and Eq. (3.6). In order

to write the time dependent coefficients T
(22)
i and T

(13)
i , we first define various Ḡ, the part of
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the Green’s functions Eq. (A.10) - Eq. (A.13) that do not contain the Heaviside function, as

Gδ,Θ
1,2 (a1, a2) ≡ Ḡδ,Θ

1,2 (a1, a2) ΘH(a1 − a2) . (3.9)

Using Eq. (A.31) - Eq. (A.32) and Eq. (A.33) - Eq. (A.36), this leads us to write the time

dependent coefficients T
(13)
i as (first making the replacement f+(a) = aD′+(a)/D+(a) every-

where, where D′+(a) ≡ ∂aD+(a))

T
(13)
1 (a, a1, a2) = K(a, a1, a2) Ḡδ

1(a, a2)Ḡδ
1(a2, a1) , (3.10)

T
(13)
2 (a, a1, a2) = K(a, a1, a2) Ḡδ

1(a, a2)Ḡδ
2(a2, a1) , (3.11)

T
(13)
3 (a, a1, a2) = K(a, a1, a2) Ḡδ

1(a, a2)ḠΘ
1 (a2, a1) , (3.12)

T
(13)
4 (a, a1, a2) = K(a, a1, a2) Ḡδ

1(a, a2)ḠΘ
2 (a2, a1) , (3.13)

T
(13)
5 (a, a1, a2) = K(a, a1, a2) Ḡδ

2(a, a2)ḠΘ
1 (a2, a1) , (3.14)

T
(13)
6 (a, a1, a2) = K(a, a1, a2) Ḡδ

2(a, a2)ḠΘ
2 (a2, a1) , (3.15)

where the common factor K is given by

K(a, a1, a2) =
a1a2D+(a)D+(a1)D′+(a1)D′+(a2)

C(a1)C(a2)D+(ai)4
. (3.16)

The other time-dependent coefficients T
(22)
i are given by

T
(22)
1 (a, a1, a2) = K(a2, a1, a2) 2 Ḡδ

1(a, a1)Ḡδ
1(a, a2) , (3.17)

T
(22)
2 (a, a1, a2) = K(a2, a1, a2)

(
Ḡδ

1(a, a1)Ḡδ
2(a, a2) + Ḡδ

2(a, a1)Ḡδ
1(a, a2)

)
, (3.18)

T
(22)
3 (a, a1, a2) = T

(22)
2 (a, a1, a2) , (3.19)

T
(22)
4 (a, a1, a2) = K(a2, a1, a2) 2 Ḡδ

2(a, a1)Ḡδ
2(a, a2) . (3.20)

With the above definition of the time dependent T
(σ)
i functions, we have the following

momentum dependent functions:

F
(13)
1 (~k, ~q) = 4αs(~k, ~q)α(−~q,~k + ~q)P in

~k
P in
~q , (3.21)

F
(13)
2 (~k, ~q) = 4 β(~k, ~q)α(−~q,~k + ~q)P in

~k
P in
~q , (3.22)

F
(13)
3 (~k, ~q) = 4αs(~k, ~q)α(~k + ~q,−~q)P in

~k
P in
~q , (3.23)

F
(13)
4 (~k, ~q) = 4 β(~k, ~q)α(~k + ~q,−~q)P in

~k
P in
~q , (3.24)

F
(13)
5 (~k, ~q) = 4× 2αs(~k, ~q) β(−~q,~k + ~q)P in

~k
P in
~q , (3.25)

F
(13)
6 (~k, ~q) = 4× 2 β(~k, ~q) β(−~q,~k + ~q)P in

~k
P in
~q , (3.26)

and

F
(22)
1 (~k, ~q) = 2αs(~k − ~q, ~q)2 P in

~k−~q P
in
~q , (3.27)

F
(22)
2 (~k, ~q) = 2αs(~k − ~q, ~q) β(~k − ~q, ~q)P in

~k−~q P
in
~q , (3.28)

F
(22)
3 (~k, ~q) = 2αs(~k − ~q, ~q) β(~k − ~q, ~q)P in

~k−~q P
in
~q , (3.29)

F
(22)
4 (~k, ~q) = 2 β(~k − ~q, ~q) β(~k − ~q, ~q)P in

~k−~q P
in
~q , (3.30)
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where in the above α and β are the standard interaction functions from dark-matter pertur-

bation theory

α(~q1, ~q2) = 1 +
~q1 · ~q2

q2
1

, (3.31)

β(~q1, ~q2) =
|~q1 + ~q2|2~q1 · ~q2

2q2
1q

2
2

, (3.32)

and αs(~q1, ~q2) = 1
2
(α(~q1, ~q2) + α(~q2, ~q1)). To get the compact forms in Eq. (3.21) - Eq. (3.30),

we have used the properties that αs and β are symmetric, that α(~q1,−~q2) = α(−~q1, ~q2) and

β(~q1,−~q2) = β(−~q1, ~q2), and switched the variable of integration from ~q to −~q in some terms.

3.2 IR-limit

In this section, we will examine the IR properties of the integrands p22 and p13 and show

that both the leading and subleading IR divergences must cancel when the full one-loop

contribution is computed. In the next section we will use the IR limits found here to write

the manifestly IR-safe integrand. In p13, the only IR divergence is for q/k → 0, for which we

have the following limits:

F
(13)
1 (~k, ~q) = −2µ2

(
k2

q2
+ 1

)
P in
~k
P in
~q , (3.33)

F
(13)
2 (~k, ~q) = −2µ2

(
k2

q2
+ 1

)
P in
~k
P in
~q , (3.34)

F
(13)
3 (~k, ~q)→ −2

(
−2 + µ2 +O

(
q2

k2

))
P in
~k
P in
~q , (3.35)

F
(13)
4 (~k, ~q) = 2µ2P in

~k
P in
~q , (3.36)

F
(13)
5 (~k, ~q)→ −2

(
µ2k

2

q2
+ 2− 6µ2 + 4µ4 +O

(
q2

k2

))
P in
~k
P in
~q , (3.37)

F
(13)
6 (~k, ~q) = −2µ2k

2

q2
P in
~k
P in
~q , (3.38)

where in the above, relations with an “ = ” sign are exact relations, independent from the

limit q/k → 0, and relations with a “ → ” sign are only valid in the limit q/k → 0. We are

concerned with the IR terms that we know must cancel because of the equivalence principle,

i.e. the ones proportional to k2/q2 and k/q, so we define

F
(13)
1,IR(~k, ~q) = F

(13)
2,IR(~k, ~q) = F

(13)
5,IR(~k, ~q) = F

(13)
6,IR(~k, ~q) = −2µ2k

2

q2
P in
~k
P in
~q (3.39)

F
(13)
3,IR(~k, ~q) = F

(13)
4,IR(~k, ~q) = 0 (3.40)

so that F
(13)
i,IR (~k, ~q) = limq/k→0 F

(13)
i (~k, ~q) to order k/q.

The analysis of the p22 integrand is slightly more complicated because there are two IR

divergences: one for q/k → 0, and one for ~q → ~k. However, these divergences are really the

10



same, since p22(a, a1, a2;~k, ~q) = p22(a, a1, a2;~k,~k − ~q), as can be seen directly in Eq. (3.27) -

Eq. (3.30). In the next section, we will see that this allows us to write the IR-safe integrand

such that the only IR divergence is for q/k → 0, so we will provide that limit here. Thus, for

q/k → 0, we have

F
(22)
1 (~k, ~q)→

(
µ2

2

k2

q2
+
k

q

[
µ− µ3

2

∂ logP in
~k

∂ log k

]
+O

(
k0

q0

))
P in
~k
P in
~q , (3.41)

F
(22)
2 (~k, ~q)→

(
µ2

2

k2

q2
+
k

q

[
µ3 − µ3

2

∂ logP in
~k

∂ log k

]
+O

(
k0

q0

))
P in
~k
P in
~q , (3.42)

F
(22)
3 (~k, ~q)→

(
µ2

2

k2

q2
+
k

q

[
µ3 − µ3

2

∂ logP in
~k

∂ log k

]
+O

(
k0

q0

))
P in
~k
P in
~q , (3.43)

F
(22)
4 (~k, ~q)→

(
µ2

2

k2

q2
+
k

q

[
−µ+ 2µ3 − µ3

2

∂ logP in
~k

∂ log k

]
+O

(
k0

q0

))
P in
~k
P in
~q . (3.44)

From this, we see that the only divergences proportional to k/q comes from p22, but that

all of those terms are proportional to an odd power of µ. Thus, we can eliminate them at

the level of the integrand by using a quantity that is manifestly even for ~q → −~q, which we

do below in Eq. (3.49). For now, similar to Eq. (3.39) and Eq. (3.40), we can define the IR

divergent terms of p22 as

F
(22)
1,IR(~k, ~q) =

(
µ2

2

k2

q2
+
k

q

[
µ− µ3

2

∂ logP in
~k

∂ log k

])
P in
~k
P in
~q , (3.45)

F
(22)
2,IR(~k, ~q) =

(
µ2

2

k2

q2
+
k

q

[
µ3 − µ3

2

∂ logP in
~k

∂ log k

])
P in
~k
P in
~q , (3.46)

F
(22)
3,IR(~k, ~q) =

(
µ2

2

k2

q2
+
k

q

[
µ3 − µ3

2

∂ logP in
~k

∂ log k

])
P in
~k
P in
~q , (3.47)

F
(22)
4,IR(~k, ~q) =

(
µ2

2

k2

q2
+
k

q

[
−µ+ 2µ3 − µ3

2

∂ logP in
~k

∂ log k

])
P in
~k
P in
~q , (3.48)

so that F
(22)
i,IR (~k, ~q) = limq/k→0 F

(22)
i (~k, ~q) to order k/q.

3.3 IR-safe integrand

In this section, we write the manifestly IR-safe version of P1−loop, in such a way that the

leading IR divergences in Eq. (3.3) and Eq. (3.4), proportional to k2/q2 and k/q, which must

cancel, are absent at the level of the integrand. First, we verify that the leading IR terms

indeed cancel (this exercise will also be useful in defining the IR-safe integrand anyway). To
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start, we can manipulate P22 analogously to [5] to get

P22(a, k) =

∫
d3q

(2π)3

∫ a

0

da2

∫ a2

0

da1

(
p22(a, a1, a2;~k, ~q) ΘH(|~k − ~q| − q)

+ p22(a, a1, a2;~k,−~q) ΘH(|~k + ~q| − q)
)

(3.49)

where we have used the fact that p22(a, a1, a2;~k, ~q) = p22(a, a1, a2;~k,~k − ~q), as discussed

above. This expression has two advantages. First, the subleading divergence proportional to

k/q manifestly cancels, because all of those terms were odd in ~q as discussed above. Second,

the divergence in p22 for ~q → ~k has been mapped to q/k → 0, and the integral no longer

involves the region ~q ≈ ~k. Then, we can write the full one-loop contribution as

P1−loop(a, k) =

∫
d3q

(2π)3

∫ a

0

da2

∫ a2

0

da1

(
p13(a, a1, a2;~k, ~q) + p22(a, a1, a2;~k, ~q) ΘH(|~k − ~q| − q)

+ p22(a, a1, a2;~k,−~q) ΘH(|~k + ~q| − q)
)
. (3.50)

We already know that the term proportional to k/q cancels, so we would like to verify now

that the leading IR parts (which only come from q/k → 0 now because p22 is not integrated

near ~q ≈ ~k any longer) of the integrand in Eq. (3.50) cancel.

The equation Eq. (3.50) is the start to finding the IR-safe integrand, but it will also help

us explicitly verify that the IR divergences cancel. In order to check the cancellation, we

consider the integrand as q/k → 0. In that limit, both of the Heaviside functions can be

taken to be unity, so we need to consider the k2/q2 terms of (as we said, the k/q terms cancel

already)

p13(a, a1, a2;~k, ~q) + 2 p22(a, a1, a2;~k, ~q) . (3.51)

These are

p13(a, a1, a2;~k, ~q)

P in
~k
P in
~q

→ −2µ2k
2

q2
K(a, a1, a2)

(
Ḡδ

1(a, a2)Ḡδ
1(a2, a1) + Ḡδ

1(a, a2)Ḡδ
2(a2, a1)

+ Ḡδ
2(a, a2)ḠΘ

1 (a2, a1) + Ḡδ
2(a, a2)ḠΘ

2 (a2, a1)
)

(3.52)

and

2 p22(a, a1, a2;~k, ~q)

P in
~k
P in
~q

→ 2µ2k
2

q2
K(a2, a1, a2)

(
Ḡδ

1(a, a1)Ḡδ
1(a, a2) + Ḡδ

1(a, a1)Ḡδ
2(a, a2)

+ Ḡδ
2(a, a1)Ḡδ

1(a, a2) + Ḡδ
2(a, a1)Ḡδ

2(a, a2)
)
. (3.53)

Thus, these two will cancel if

D+(a)
(
Ḡδ

1(a, a2)Ḡδ
1(a2, a1) + Ḡδ

1(a, a2)Ḡδ
2(a2, a1) + Ḡδ

2(a, a2)ḠΘ
1 (a2, a1) + Ḡδ

2(a, a2)ḠΘ
2 (a2, a1)

)
+D+(a2)

(
Ḡδ

1(a, a1)Ḡδ
1(a, a2) + Ḡδ

1(a, a1)Ḡδ
2(a, a2) + Ḡδ

2(a, a1)Ḡδ
1(a, a2) + Ḡδ

2(a, a1)Ḡδ
2(a, a2)

)
= 0 (3.54)

12



and indeed, one can check that this is the case by using the explicit expressions Eq. (A.10) -

Eq. (A.13). Thus, we have successfully shown that the IR divergences in P1−loop (proportional

to k2/q2 and k/q respectively) cancel. In particular, while P13 and P22 have different time

dependences, this shows that the leading IR terms in fact have the same time dependence,

and that this allows these terms to cancel.

Now, we notice that at finite q each diagram has a different time dependence, which

becomes the same only in the limit q/k → 0. This has the unfortunate consequence that the

cancellation in the IR will happen only if the time integrals are computed very accurately.

This inconvenience can be avoided by doing the following procedure. We can first add and

subtract out of each diagram the IR divergent part. The sum of all the divergences of a single

diagram combine themselves into a term that has some given time dependence times a common

momentum dependent factor. This time dependence is the same as the one associated to the

sum of the IR divergencies of the other diagram, with the same momentum dependent factor.

A relative minus sign ensures the cancellation. This manipulation guarantees that the IR

divergent terms never enter the computation at all, thus making each separate contribution

IR-safe. This is necessary, contrary to the case studied in [5], because we are summing together

many different contributions which are products of integrals over time and integrals over

momentum. Thus, in order for the final answer to be the most computationally efficient, each

of the contributions must be manifestly IR-safe. Concretely, our procedure is the following.

We start with the integrand of P1−loop in Eq. (3.50):

p1−loop(a, a1, a2;~k, ~q) ≡ p13(a, a1, a2;~k, ~q) + p22(a, a1, a2;~k, ~q) ΘH(|~k − ~q| − q)

+ p22(a, a1, a2;~k,−~q) ΘH(|~k + ~q| − q) . (3.55)

To this, we will momentarily add and subtract the IR terms through the function

pIR
1−loop(a, a1, a2;~k, ~q) ≡ pIR

13(a, a1, a2;~k, ~q) + pIR
22(a, a1, a2;~k, ~q)

+ pIR
22(a, a1, a2;~k,−~q) (3.56)

where

pIR
13(a, a1, a2;~k, ~q) =

6∑
i=1

T
(13)
i (a, a1, a2)F

(13)
i,IR (~k, ~q)ΘH(k − q) , (3.57)

pIR
22(a, a1, a2;~k, ~q) =

4∑
i=1

T
(22)
i (a, a1, a2)F

(22)
i,IR (~k, ~q)ΘH(k − q) . (3.58)

The functions pIR
13 and pIR

22 are nothing but the original expressions for p13 and p22 from Eq. (3.6)

and Eq. (3.5), but with F
(σ)
i replaced by F

(σ)
i,IR and multiplied by a Heaviside function ΘH(k−q)

so that the UV is unchanged. This means that we can express the integrand of P1−loop as

p1−loop(a, a1, a2;~k, ~q) =
(
p1−loop(a, a1, a2;~k, ~q)− pIR

1−loop(a, a1, a2;~k, ~q)
)

+ pIR
1−loop(a, a1, a2;~k, ~q) (3.59)
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by simply adding and subtracting the IR parts, so that overall the integrand is unchanged.

Let us now examine separately the terms inside and outside of the parentheses on the

right-hand side of Eq. (3.59). We start with the terms inside of the parentheses and rearrange

them so that we subtract the IR terms from each contribution to p1−loop individually to get

p1−loop(a, a1, a2;~k, ~q)− pIR
1−loop(a, a1, a2;~k, ~q) =

pIR-safe
13 (a, a1, a2;~k, ~q) + pIR-safe

22 (a, a1, a2;~k, ~q) , (3.60)

where

pIR-safe
13 (a, a1, a2;~k, ~q) =

6∑
i=1

T
(13)
i (a, a1, a2)F

(13)
i,IR-safe(

~k, ~q) , (3.61)

pIR-safe
22 (a, a1, a2;~k, ~q) =

4∑
i=1

T
(22)
i (a, a1, a2)

(
F

(22)
i,IR-safe(

~k, ~q) + F
(22)
i,IR-safe(

~k,−~q)
)
, (3.62)

and

F
(13)
i,IR-safe(

~k, ~q) = F
(13)
i (~k, ~q)− F (13)

i,IR (~k, ~q) ΘH(k − q) , (3.63)

F
(22)
i,IR-safe(

~k, ~q) = F
(22)
i (~k, ~q) ΘH(|~k − ~q| − q)− F (22)

i,IR (~k, ~q) ΘH(k − q) . (3.64)

By definition, each of the F
(22)
i,IR-safe and F

(13)
i,IR-safe integrands are IR-safe because we have sub-

tracted the IR divergences explicitly.

Now let us look at the other term on the right-hand side of Eq. (3.59) which is

pIR
1−loop(a, a1, a2;~k, ~q) =

6∑
i=1

T
(13)
i (a, a1, a2)F

(13)
i,IR (~k, ~q) ΘH(k − q) (3.65)

+
4∑
i=1

T
(22)
i (a, a1, a2)

(
F

(22)
i,IR (~k, ~q) + F

(22)
i,IR (~k,−~q)

)
ΘH(k − q) = 0 ,

and is zero simply because the IR divergences cancel (as we have already shown), i.e. it

follows from Eq. (3.52), Eq. (3.53), and Eq. (3.54). Thus, this term does not contribute at all

to the one-loop integral, and we are finally left with4

P IR-safe
1−loop (a, k) =

∫
d3q

(2π)3

∫ a

0

da2

∫ a2

0

da1

(
pIR-safe

13 (a, a1, a2;~k, ~q) + pIR-safe
22 (a, a1, a2;~k, ~q)

)
,

(3.66)

4 We would like to comment that instead of doing the manipulation that maps the IR divergence in P22

from ~q → ~k to q/k → 0, one could directly subtract out the divergence at ~q → ~k at the level of the integrand.

This more straightforward approach could be advantageous for computations higher than one loop because

the momentum dependence of the integrands becomes more complicated as one integrates over more and more

loop momenta.
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with pIR-safe
13 and pIR-safe

22 given in Eq. (3.61) and Eq. (3.62). Of course, P IR-safe
1−loop (a, k) =

P1−loop(a, k) because we have simply added zero to P1−loop, but we put the extra label “IR-

safe” to denote that it is computed with the IR-safe integrand. Thus, we have arrived at

our final expressions Eq. (3.66), Eq. (3.61) and Eq. (3.62). We have shown that the IR di-

vergences (proportional to k2/q2 and k/q) in the one-loop, equal-time power spectrum with

exact time dependence in ΛCDM cancel (as was required by the equivalence principle), and

we have provided integrands which are IR-safe during every step of the numerical integration.

By keeping the factor of C(a) in the various time-dependent coefficients, our results trivially

extend to the adiabatic mode in clustering quintessence.

Before we end this discussion of IR effects, let us briefly comment on the very important

task of correctly describing the baryon acoustic oscillations (BAO). The IR-resummation is

a way to controllably include the effects of long-wavelength displacements on the BAO peak.

The relevant formulae for the various systems (dark matter, galaxies, and redshift space) were

developed in [4, 10, 13, 28, 32]. Ref. [21] provided a simplification (with approximations) of

the same formulas applied to dark matter in real space. The IR-resummation can be applied

directly to the exact time-dependence power spectra presented in this paper, using the stan-

dard formulae presented in previous works for the resummation. This is because the difference

between the exact time-dependence displacements and the EdS approximated displacements

is very small (indeed it is zero in the limit that we treat the displacements as linear). More-

over, this difference can be recovered order by order in the perturbative expansion of the

resummation formula. In other words, one can use the approximate resummation matrix

which uses EdS displacements (call it MEdS), and the formulae will automatically recover the

correct resummation as a Taylor expansion in Mtrue −MEdS. This is a remarkable property

of the formula developed in [4].

3.4 UV-safe integrand

In addition to the spurious IR terms which we have shown must cancel in the final expression

for P1−loop, there are also spurious UV contributions to the individual momentum-dependent

functions F
(σ)
i that must cancel in the full one-loop result. These spurious UV divergences

are not present with the approximate time dependence, because in that case each diagram

has a common time factor, and the structure of the UV divergences (which are different for

each diagram) forces them to cancel automatically.

The same reasoning applies to the UV terms as to the IR terms: full cancellation only

happens when the time dependent coefficients are determined with infinite precision, so a

mistake in the time integrals can cause the large UV terms to not cancel completely. This

means that one has to run the integrals with much more precision than the precision desired

in the final answer. To address this, in this section we will provide a manifestly UV-safe

integrand using a procedure directly analogous to the one we used for the IR terms: we

will subtract out the spurious UV terms at the level of the integrand so that they never

enter the computation at all. As in the presentation of the IR-safe integrand, the exact
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time dependence makes the cancellation more opaque, but we show how it happens below.

Additionally, one could subtract the UV terms of the loop integrals which are degenerate with

the counterterms (discussed more below). As noted in [22] this has the advantage that one

does not waste computational time computing a (large) part of the loop which will ultimately

be adjusted by the counterterms, and so less numerical precision can be used on the loop

computation to obtain a desired final precision.

First, let us consider, in general, the UV dependence of the individual loop terms. There

can be no terms at lower order in k/q for k/q → 0 than

PUV
13 (k) ∝ k2P11(k)

∫
d3q

(2π)3

1

q2
P11(q) , (3.67)

PUV
22 (k) ∝ k4

∫
d3q

(2π)3

1

q4
P11(q)P11(q) . (3.68)

Notice that these are just the terms of the power spectrum that can be adjusted by coun-

terterms: the k2P11(k) counterterm comes from the ∂2δ term in the stress tensor, and the

k4 term comes from the stochastic counterterm [2]. In principle, one does not even need to

compute these terms in the loop, since they are degenerate with the counterterms [22]. For

simplicity, in this paper, we choose not to cancel at the integrand level the pieces that are de-

generate with counterterms, although the procedure to do this is a straightforward extension

of what we present below, where we focus on cancelling only the UV divergences that cannot

be cancelled by a counterterm and so must cancel at the level of the integrand.

Let us now find the UV terms in our integrands in Eq. (3.21) - Eq. (3.26) and Eq. (3.27) -

Eq. (3.30). For k/q → 0, we have

F
(13)
1 (~k, ~q) = −2µ2

(
1 +

k2

q2

)
P in
~k
P in
~q , (3.69)

F
(13)
2 (~k, ~q) = −2µ2

(
1 +

k2

q2

)
P in
~k
P in
~q , (3.70)

F
(13)
3 (~k, ~q)→ 2

(
µ2 +

k2

q2

(
2− 6µ2 + 4µ4

)
+O

(
k4

q4

))
P in
~k
P in
~q , (3.71)

F
(13)
4 (~k, ~q) = 2µ2P in

~k
P in
~q , (3.72)

F
(13)
5 (~k, ~q)→

(
k2

q2

(
−4 + 2µ2

)
+O

(
k4

q4

))
P in
~k
P in
~q , (3.73)

F
(13)
6 (~k, ~q) = −2µ2k

2

q2
P in
~k
P in
~q , (3.74)

where in the above, relations with an “ = ” sign are exact relations, independent from the

limit k/q → 0, and relations with a “ → ” sign are only valid in the limit k/q → 0. We are

concerned with the UV terms that we know must cancel, i.e. the ones proportional to k0/q0.

so we define

F
(13)
1,UV(~k, ~q) = F

(13)
2,UV(~k, ~q) = −F (13)

3,UV(~k, ~q) = −F (13)
4,UV(~k, ~q) = −2µ2P in

~k
P in
~q , (3.75)

F
(13)
5,UV(~k, ~q) = F

(13)
6,UV(~k, ~q) = 0 , (3.76)
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so that F
(13)
i,UV(~k, ~q) = limk/q→0 F

(13)
i (~k, ~q) to order k0/q0. As we discussed above, one could

also include the terms proportional to k2/q2, which are degenerate with the counterterms, in

the above definitions. This would mean that the loop could be reliably computed using less

precision because the overall size of the integrals is smaller.

The terms in P22 are

F
(22)
1 (~k, ~q)→ 1

2

(
k4

q4
(1− 2µ2)2 +O

(
k5

q5

))
P in
~q P

in
~q , (3.77)

F
(22)
2 (~k, ~q)→ −1

2

(
k4

q4
(1− 2µ2) +O

(
k5

q5

))
P in
~q P

in
~q , (3.78)

F
(22)
3 (~k, ~q)→ −1

2

(
k4

q4
(1− 2µ2) +O

(
k5

q5

))
P in
~q P

in
~q , (3.79)

F
(22)
4 (~k, ~q)→ 1

2

(
k4

q4
+O

(
k5

q5

))
P in
~q P

in
~q . (3.80)

All of these terms start proportional to k4/q4, and so are degenerate with the stochastic

counterterm. As we mentioned above, we will not explicitly remove these terms from the

integrand, although it is straightforward to do so. These terms are typically small for a one-

loop computation, so we do not expect them to have a large contribution anyway. The terms

proportional to k5/q5 are also proportional to an odd power of µ, so we can eliminate them

at the level of the integrand by using a quantity that is manifestly even for ~q → −~q. With

this in mind, we define the UV terms as

F
(22)
1,UV(~k, ~q) = F

(22)
2,UV(~k, ~q) = F

(22)
3,UV(~k, ~q) = F

(22)
4,UV(~k, ~q) = 0 , (3.81)

so that F
(22)
i,UV(~k, ~q) = limk/q→0 F

(22)
i (~k, ~q) to order k3/q3.

Before defining the UV-safe integrand, let us explicitly verify that the spurious UV terms

do indeed cancel. Since the structure of the would-be-needed counterterms is different, the

spurious divergences in each diagram must cancel separately.5 Thus, in general, we must

check that

6∑
i=1

T
(13)
i (a, a1, a2)F

(13)
i,UV(~k, ~q) = 0 , (3.82)

and

4∑
i=1

T
(22)
i (a, a1, a2)F

(22)
i,UV(~k, ~q) = 0 , (3.83)

separately. Because F
(22)
i,UV = 0, Eq. (3.83) is satisfied automatically. For the (13) terms, we

5This follows from the fact that the spurious divergences with the same dependence on k must cancel

separately.
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must evaluate

6∑
i=1

T
(13)
i (a, a1, a2)F

(13)
i,UV(~k, ~q) = 2µ2K(a, a1, a2)Ḡδ

1(a, a2)
(
− Ḡδ

1(a2, a1)− Ḡδ
2(a2, a1) (3.84)

+ ḠΘ
1 (a2, a1) + ḠΘ

2 (a2, a1)
)

which is equal to zero as one can verify with the explicit expressions for the Green’s functions

Eq. (A.10) - Eq. (A.13). Now, we add and subtract Eq. (3.82) from p1−loop in a completely

analogous way to last section. Here we will skip the details and present the final expression,

which is the same as the expression for P IR-safe
1−loop in Eq. (3.66), except with the replacement

F
(13)
i,IR-safe(

~k, ~q)→ F
(13)
i,IR&UV-safe(

~k, ~q) ≡ F
(13)
i (~k, ~q)−F (13)

i,IR (~k, ~q) ΘH(k−q)−F (13)
i,UV(~k, ~q) ΘH(q−k) ,

(3.85)

where we have multiplied F
(13)
i,UV by the step function ΘH(q − k) so that this term does not

change the IR. With this replacement, the fact that Eq. (3.84) is equal to zero ensures that we

have simply added and subtracted zero from the integrand p1−loop, so that the final integral is

not changed. However, the new integrand has the advantage that both the UV and IR parts

which must cancel in the final expression for the one-loop power spectrum, are absent at the

level of the integrand. Explicitly, the formulae for the IR&UV-safe integrand are

P IR&UV-safe
1−loop (a, k) =

∫
d3q

(2π)3

∫ a

0

da2

∫ a2

0

da1

(
pIR&UV-safe

13 (a, a1, a2;~k, ~q)

+ pIR&UV-safe
22 (a, a1, a2;~k, ~q)

)
, (3.86)

where

pIR&UV-safe
13 (a, a1, a2;~k, ~q) =

6∑
i=1

T
(13)
i (a, a1, a2)F

(13)
i,IR&UV-safe(

~k, ~q) , (3.87)

pIR&UV-safe
22 (a, a1, a2;~k, ~q) = pIR-safe

22 (a, a1, a2;~k, ~q) , (3.88)

where F
(13)
i,IR&UV-safe(

~k, ~q) is given in Eq. (3.85).

Now that we have completed our construction of the IR&UV-safe integrand at one loop,

let us briefly comment on how the procedure would generalize to higher loops. As explained

before, it is quite possible that it will be sufficient for comparison to data to evaluate just

the one-loop terms with exact time dependence; higher loop contributions, which are smaller

than the one-loop contributions, can then be computed with the EdS approximation without

losing a relevant amount of precision on the overall result. However, it is conceivable that one

would like to check the difference between exact time dependence and the EdS approximation

at two loops, or, for example, that one would like to compute the two-loop power spectrum in

clustering quintessence for which there is no analogue of the EdS approximation. The exact

time dependence two-loop computation will be complicated by two main factors: there are

more nested time integrals with various time orderings of Green’s functions (this creates many
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more independent diagrams), and there is an additional internal momenta which creates a

more complicated region in the integration variables where IR and UV divergences occur.6

4 Results

In this section, we present the results of our computation, which we do for clustering quintessence

at z = 0 (described in more detail in [33]) and use the cosmological parameters Ωm,0 = 0.27,

ΩD,0 = 0.73 , H0 = 71 km/s/Mpc, ∆2
ζ = 2.42× 10−9, ns = 0.963, and w = −0.9. In order to

implement the numerical computation, we compute each of the following terms separately∫
d3q

(2π)3
F

(13)
i,IR&UV-safe(

~k, ~q) (4.1)∫
d3q

(2π)3

(
F

(22)
i,IR&UV-safe(

~k, ~q) + F
(22)
i,IR&UV-safe(

~k,−~q)
)

(4.2)∫ a

0

da2

∫ a2

0

da1 T
(σ)
i (a, a1, a2) , (4.3)

multiply them together, and add the results for each ~k. The principle advantage of our

approach is that each of the integrands of the momentum integrals is manifestly IR&UV-safe,

with both the k2/q2 and the k/q divergences being canceled in the IR, and the k0P11(k) term

canceled in the UV. This means that at every step of the computation, we are adding numbers

which are of the order of the final result, rather than relying on large numerical cancellations

6Let us highlight a possible procedure. Regarding the Green’s functions, one should first write all of the

time integrals in a way that all of the diagrams have the same limits of integration of the time variables,

as in Eq. (3.3) and Eq. (3.4): this allows one to concentrate on the momentum dependent functions. Then,

as we commented in Footnote 4, one could subtract all of the IR and UV divergences individually from the

momentum dependent pieces (i.e. without mapping all of the divergences to the same point). Because the

divergences are subtracted from different parts of the integration region, it will be more difficult to explicitly

check that the divergences cancel, but of course, we know that they must because of diffeomorphism invariance

(for the IR contributions) or momentum conservation (for the UV contributions). In any case, one could still

do the explicit check. A similar strategy will also help in tackling this problem for computations of the

bispectrum or higher-point functions with exact time dependence. We leave a full exploration of this topic to

future work.
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between terms.7 To see this, in Figure 1 we compare the following quantities

P IR&UV-safe
13 (a, k) =

∫
d3q

(2π)3

∫ a

0

da2

∫ a2

0

da1 p
IR&UV-safe
13 (a, a1, a2;~k, ~q) , (4.4)

P IR&UV-safe
22 (a, k) =

∫
d3q

(2π)3

∫ a

0

da2

∫ a2

0

da1 p
IR&UV-safe
22 (a, a1, a2;~k, ~q) , (4.5)

P13(a, k) =

∫
d3q

(2π)3

∫ a

0

da2

∫ a2

0

da1 p13(a, a1, a2;~k, ~q) , (4.6)

P22(a, k) =

∫
d3q

(2π)3

∫ a

0

da2

∫ a2

0

da1 p22(a, a1, a2;~k, ~q) . (4.7)

From Figure 1, it is clear that computing P1−loop without the IR&UV-safe integrand involves a

large cancellation: |P22| ≈ |P13| � |P1−loop|. However, when using the IR&UV-safe integrand,

no cancellation is involved in the computation. The goal of using IR&UV-safe integrands is

to have |P IR&UV-safe
22 | ≈ |P IR&UV-safe

13 | ≈ |P1−loop| so that the same numerical precision that is

desired in the end can be used to compute the separate terms. In fact, the situation here is

even better: for low k, |P IR&UV-safe
13 | ≈ |P1−loop| and |P IR&UV-safe

22 | � |P1−loop|, while for higher

k the contributions switch so that |P IR&UV-safe
22 | ≈ |P1−loop| and |P IR&UV-safe

13 | � |P1−loop|. We

remind the reader that if an individual contribution is much less than the final result, then

one can in principle use even less numerical precision to compute that contribution.

Then, in Figures 2, 3 and 4, we compare the various ways of computing P1−loop: using the

standard P1−loop without any IR or UV subtractions, using P IR-safe
1−loop , and using P IR&UV-safe

1−loop . In

order to see how sensitive these three methods of computation are to the precise evaluation of

the time dependent coefficients, we also plot the above three computations after changing the

value of one of the time dependent coefficients, T
(13)
1 , by 1%. In this one-loop computation, we

find that overall it is more important to use the UV-safe integrand than the IR-safe integrand:

when changing T
(13)
1 by 1%, the curves which are not UV-safe are wrong by more than a factor

of 5 at low k, and are wrong by between 10% and 70% at higher k, while the curve which

uses IR&UV-safety is wrong by a few percent both at low k and high k (this is the expected

change since we changed one of the terms by 1%).8 In particular, Figure 4 shows that the

difference between using only the IR-safe integrand P IR-safe
1−loop and using the unimproved P1−loop

is between 2% and 7%, which is still non-negligibly boosted from the expected one percent.

As discussed above, this sensitivity arises because each contribution to P1−loop(a, k), P13(a, k)

and P22(a, k), are themselves a sum of terms which are products of a time integral and a

momentum integral. We showed that the cancellation of IR and UV divergences involves

many of these terms, which generically have different time dependences, together. Thus, only

with very large precision of the time integrals are the IR and UV divergences guaranteed to

7As we mentioned, subleading UV-divergences can be removed in a similar way to what we do here, as

already implemented in [22].
8Of course, the sensitivity to using or not using UV-safety depends explicitly on the UV cutoff of the loop

integrals, which we take to be ΛUV = 10hMpc−1. On the other hand, because of the natural IR cutoff due

to the matter-radiation equality scale near keq ∼ 0.01hMpc−1, the sensitivity to using or not using IR-safety

should be essentially independent of the IR cutoff ΛIR used in the loop integrals, as long as ΛIR � keq.
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Figure 1: Here, we compare the various contributions to P1−loop in clustering quintessence, both with and

without the IR&UV-safe integrand. The solid curves use the IR&UV-safe integrand, and the dot-dashed

curves use the standard p13 and p22 integrands without any modifications. The blue curves are the (13) power

spectra, the red curves are the (22) power spectra, and the black curves are the total one-loop contributions.

One can see that for the individual contributions, |P IR&UV-safe
13 | � |P13| and |P IR&UV-safe

22 | � |P22|, but that

the total contributions are essentially the same (they are indistinguishable in this plot, both contained in

the black curve, see Figure 2 for details). Thus, one can compute the IR&UV-safe integrals with much less

numerical precision than the corresponding non-IR&UV-safe integrals.

cancel; even a small numerical error for the time dependent coefficients can produce a large

overall error, simply because the individual IR and UV contributions are large. None of this

is an issue if the IR&UV-safe integrands are used. Although the effect of not using IR-safety

is sizable but not very large in the one-loop computation that we present here, it is expected

that the spurious IR parts of the loop integrals will be much more of a nuisance in a two-loop

or higher order calculation, where the time- and momentum- integrals are more complex.

A similar consideration applies to the UV divergencies, as loops become more divergent at

higher order.

Finally, in Figure 5 we explicitly show the large cancellation between terms in P13 that

must happen in the UV by looking at the contribution T
(13)
1 F

(13)
1 in particular. We see

that the IR&UV-safe integrand is much smaller than the integrand with only IR-safety

(F
(13)
1,IR&UV-safe/F

(13)
1,IR-safe ≈ 0.005 at k = 0.05hMpc−1), and that T

(13)
1 F

(13)
1,IR&UV-safe is much closer

to the final answer p IR&UV-safe
1−loop than the integrand without UV safety. This means that without

using the UV-safe integrands, individual terms in P13 must cancel to the level 5×10−3, and so

the final answer is very sensitive to the precision with which the time dependent coefficients

T
(13)
i are determined. This means that we can greatly speed up numerical computation time

by using the UV&IR-safe integrands (which are expected to help even more in a two-loop or
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Figure 2: In this figure, we show the effect of imprecisely computing the integrals of the time-dependent factors

T
(σ)
i . In particular, for illustration, we have changed one of the time dependent coefficients, T

(13)
1 , by 1%.

This plot contains six curves. The black solid curve is P IR&UV-safe
1−loop , the black dot-dashed curve is P IR-safe

1−loop , the

black dashed curve is P1−loop. Since these curves appear as the single solid curve (they are indistinguishable

in this plot), we deduce that the numerical integration of the time coefficients is done sufficiently. All of the

green curves have T
(13)
1 changed by 1%: the dashed curve is P IR&UV-safe

1−loop , the dot-dashed is P IR-safe
1−loop , and the

dotted is P1−loop (they are indicated in the legend as “with ∆T
(13)
1 ”). We can see that of the curves with an

incorrect T
(13)
1 , P IR-safe

1−loop and P1−loop (which both appear as the dot-dashed curve because they are overlaid)

are greatly affected at low k, while P IR&UV-safe
1−loop is essentially unchanged (see Figure 3 for more details). This

shows that in this computation, using the UV-safe integrand is the most important, although we expect

spurious IR effects to be more of a nuisance in a two-loop or higher order computation.

higher order computation), where these problems are not present.

5 Precision comparison

In this section, we compare the two-loop power spectrum for dark matter in the EFTofLSS

at z = 0 to the Dark Sky N -body simulation [48], in a ΛCDM cosmology with cosmological

parameters Ωm,0 = 0.295, Ωbaryon = 0.0468, ΩΛ,0 = 0.705, h = 0.688, ns = 0.9676, and σ8 =

0.835.9 This precision comparison was originally done in [22] using the EdS approximation

for all time dependence in the power spectrum (i.e. for linear, one-loop, and two-loop terms).

9http://darksky.slac.stanford.edu/
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Figure 3: This figure shows the same information as Figure 2, but in more detail, and the labeling of the

curves is exactly the same as in Figure 2 (legends are provided on the right-hand side of each row). In this

plot, we divide the various methods of computation by P IR&UV-safe
1−loop (with the numerical coefficients computed

correctly) to study in more detail the size of the various effects (this also explains why we do not plot

between k = 0.07hMpc−1 and k = 0.1hMpc−1, where P IR&UV-safe
1−loop → 0 and causes the curves to blow up).

Computations for which we have changed T
(13)
1 by 1% are indicated in the legend as “with ∆T

(13)
1 .” From

the top two plots, we see that the effect of changing T
(13)
1 by 1% in P IR&UV-safe

1−loop (the green dashed curve in

the top plots) is a few percent. However, in the lower two plots, we see that the effect of changing T
(13)
1 by

1% in P IR-safe
1−loop and P1−loop (respectively the green dot-dashed and green dotted curves in the lower plots) is

much more dramatic: larger than a factor of 5 for low k and between 10% and 70% at higher k. This shows

that in this computation, using the UV-safe integrand is most important, although we expect spurious IR

effects to be more of a nuisance in a two-loop or higher order computation.

In Figure 6, we provide the same computation done in [22], but we use the P IR&UV-safe
1−loop with

exact time dependence (which we computed above), instead of the PEFT-1-loop with the EdS

approximation used in [22]. In other words, in Figure 6, all one-loop terms are computed using

the exact time dependence presented in this paper, but two-loop terms are computed using

the EdS approximation. We refer the reader to [22] for all the details of this computation. In

Figure 6, we see that the result is very similar to the one obtained in [22], but slightly better.

In Appendix B, we give details about the determination of the coupling constants used in

Figure 6. The values of the counterterm parameters are given as

c2
s(1) ' 0.57

(
kNL

2hMpc−1

)2

, c1 ' −0.97

(
kNL

2hMpc−1

)2

, c4 ' −6.6

(
kNL

2hMpc−1

)4

. (5.1)
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Figure 4: The difference between using P1−loop and P IR-safe
1−loop , where T

(13)
1 has been changed by 1% in each

expression, is about 1% at low k, and is between 2% and 7% at higher k, which is still non-negligibly boosted

from the expected one percent. As can be seen in Figure 3, both P1−loop and P IR-safe
1−loop (because they do not

use UV-safety) are very different from the more precise answer P IR&UV-safe
1−loop (by more than a factor of 5 at

low k, and between 10% and 70% at higher k). Figure 4 isolates the effect of IR-safety, and shows that it is

between a 2% and 7% effect.
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Figure 5: In this figure, we show the the size of the UV terms that we removed from P13 by looking at the

contribution from T
(13)
1 F

(13)
1 in particular. It is clear that the term without the UV-safe integrand is much

larger than the one with the UV-safe integrand. Without using the UV-safe integrand, a very large part of

T
(13)
1 (a, a1, a2)F

(13)
1,IR-safe(

~k, ~q) must be canceled by another term T
(13)
i (a, a1, a2)F

(13)
i,IR-safe(

~k, ~q) for i 6= 1 in order

to get down to the final answer of pIR&UV-safe
1−loop ; this cancellation has to happen at the level of 5× 10−3 around

k = 0.05hMpc−1. Thus, if one does not use the UV-safe integrand, the final answer is much more sensitive

to the precision with which the integrals of the time dependent coefficients T
(13)
i are determined.

6 Conclusion

Large-scale structure surveys may very well be the next leading sources of cosmological infor-

mation. Because most modes are concentrated on short scales, it is important to understand
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Figure 6: We present the precision comparison of the two-loop dark-matter power spectrum to the Dark Sky

N -body simulation. As an improvement to the computation done in [22], we use P IR&UV-safe
1−loop with exact

time dependence instead of the PEFT-1-loop with the EdS approximation, which was used in [22]. That is, all

one-loop terms are computed using the exact time dependence presented in this paper, but two-loop terms

are computed using the EdS approximation. The results are very similar to the ones obtained in [22], but

slightly better.

large-scale structure observables in the mildly non-linear regime. In order to accomplish this,

the EFTofLSS has been developed to systematically and controllably include the effects of

gravitational clustering in the UV on the mildly non-linear regime of interest. This approach

increases our understanding in two ways: first, it extends the maximum k at which we under-

stand the theory, and second, for k . kNL, it allows us to compute observables to a very high

precision by including more and more loops. So far, most computations in the EFTofLSS have

used the so-called EdS approximation to solve for the time dependence of the loop contribu-

tions. Because this approximation was known to be accurate to less than 1%, and because

the aim of previous computations had been about 1% accuracy, the EdS approximation was

perfectly fine. However, since the ultimate goal of the EFTofLSS is precision computation,

it is conceivable that less than 1% accuracy will be desirable in the future, in which case one

will be forced to use the exact time dependence routinely (at least on the lower order loops).

As an alternative to using the exact time dependence in ΛCDM, one could also improve the

EdS approximation by expanding the time dependence around EdS. Because EdS is such

a good approximation in ΛCDM, this should be a very quickly converging expansion, with

an expansion parameter of O(1/100) (we highlighted a procedure to do this in Footnote 3).

However, because the exact time dependence is not too complicated at one loop, and because

we are also interested in clustering quintessence in this work (for which there is no analogue

of the EdS approximation), we leave an exploration of this direction to future work.

There is a small technical challenge to using the exact time dependence, though. Because

the diagrams become more complicated, P13(a, k) and P22(a, k) are each a sum of terms which

are products of a function of momenta, F
(σ)
i (~k, ~q), and a function of times, T

(σ)
i (a, a1, a2).

Each contribution is then separately integrated over d3q and da2 da1, and then the results
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are added together. In each F
(σ)
i , there are both IR and UV divergent terms which must

ultimately cancel in the full equal-time one-loop expression (the IR cancellation is due to

the equivalence principle, the UV one to matter conservation), but inexact evaluation of the

time integrals can spoil this cancellation. Thus, one could be left with spurious numerical

contributions to the integrand of P1−loop. Said another way, one has to compute the numerical

time integrals (and of course also the momentum integrals, which have spurious divergencies

in different regions of the integration over d3q) to a very high precision to make sure that the

final result is not dominated by these spurious contributions as q/k → 0 and as k/q → 0.

This kind of problem would defeat the purpose of using the exact time dependence in the

first place.

However, since we know that these IR and UV terms must cancel in the final result, we

can re-write the standard integrands for the exact time-dependent diagrams P13 and P22 into

a form in which these IR and UV divergent terms never enter the numerical computation

at all: this is the IR&UV-safe integrand given by Eq. (3.86), Eq. (3.87) and Eq. (3.88).

Contrary to the previously supplied IR-safe integrand for the EdS approximation [5], for

which a single integrand could be used for the one-loop computation, the non-trivial time

dependence considered in this paper forces us to write each of the many contributions to

P1−loop in a manifestly IR&UV-safe way. We find that, in the one-loop computation presented

here, UV-safety is more important than IR-safety, although we expect the effects of spurious

IR terms to be much more of a nuisance for two-loop and higher order computations.

While doing this, we have extended the results of this paper to the adiabatic mode in the

dark matter plus clustering quintessence system by including the non-trivial time dependent

factor in the continuity equation, given by a function C(a) in the equations of motion (where

C(a) = 1 for ΛCDM). In that system, because it is in the limit of small speed of sound

(c2
s → 0) of quintessence, there is really only one mode, the adiabatic mode δA. Because

the equivalence principle is not violated, the effects of the bulk velocity and the gradient of

the gravitational potential can be removed by a diffeomorphism. Thus, we recover that the

full equal-time power spectrum is free of IR divergences, and thus also establish that the

consistency conditions are satisfied.

Finally, we have presented an improved precision comparison of the two-loop dark-matter

power spectrum to the Big Sky N -body simulation. In order to make our computation more

precise, we have used P IR&UV-safe
1−loop with exact time dependence instead of PEFT-1-loop with the

EdS approximation that was used in [22]. We found that the results are very similar, although

there is indeed an improvement in the right direction.
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Appendices

A Reference formulae

In this appendix, we provide some relevant formulae from [33] for reference. To avoid clutter,

we have removed the “A” subscript from the adiabatic fields δA and ΘA, so that δ and Θ

refer to the adiabatic fields. The equations of motion for the adiabatic mode δ~k and Θ~k in

clustering quintessence are (ΛCDM is obtained by setting C(a) = 1)

aδ′~k − f+Θ~k =
(2π)3f+

C(a)

∫∫
d3q1

(2π)3

d3q2

(2π)3
δD(~k − ~q1 − ~q2)α(~q1, ~q2)Θ~q1δ~q2 , (A.1)

aΘ′~k − f+Θ~k −
f−
f+

(Θ~k − δ~k) =
(2π)3f+

C(a)

∫∫
d3q1

(2π)3

d3q2

(2π)3
δD(~k − ~q1 − ~q2)β(~q1, ~q2)Θ~q1Θ~q2 ,

(A.2)

where f±(a) = a ∂aD±(a)/D±(a), α(~q1, ~q2) and β(~q1, ~q2) are the standard dark-energy inter-

action vertices given in Eq. (3.31) and Eq. (3.32), and D+ is the growing solution to the

second-order linear system for δ~k defined by Eq. (A.1) and Eq. (A.2). The non-trivial time

dependent factor in the clustering quintessence system is given by

C(a) = 1 + (1 + w)
ΩD,0

Ωm,0

(
a

a0

)−3w

, (A.3)

where ΩD,0 is the quintessence energy-density fraction today, Ωm,0 is the dark-matter energy-

density fraction today, and w is the equation of state for dark energy. We can solve this

system with Green’s functions by expanding δ = δ(1) + δ(2) + δ(3) + δ(ct) + . . . (where δ(ct) is

the one-loop counterterm contribution) and finding

δ
(n)
~k

=

∫ a

0

dã

(
Gδ

1(a, ã)S
(n)
1 (ã, ~k) +Gδ

2(a, ã)S
(n)
2 (ã, ~k)

)
, (A.4)

Θ
(n)
~k

=

∫ a

0

dã

(
GΘ

1 (a, ã)S
(n)
1 (ã, ~k) +GΘ

2 (a, ã)S
(n)
2 (ã, ~k)

)
, (A.5)

whereGδ
1, Gδ

2, GΘ
1 , andGΘ

2 are the Green’s functions for the system (Gδ
1 encodes the response of

δ to a perturbation to the continuity equation, Gδ
2 encodes the response of δ to a perturbation

to the Euler equations, and similarly for Θ), and the source terms S
(n)
i are the n-th order

expansion of the right-hand sides of Eq. (A.1) and Eq. (A.2) and are given explicitly in [33].

Using Eq. (A.4) and Eq. (A.5) in Eq. (A.1) and Eq. (A.2), we find that the four Green’s

functions are specified by the following equations

a
dGδ

σ(a, ã)

da
− f+(a)GΘ

σ (a, ã) = λσδ(a− ã) , (A.6)

a
dGΘ

σ (a, ã)

da
− f+G

Θ
σ (a, ã)− f−(a)

f+(a)

(
GΘ
σ (a, ã)−Gδ

σ(a, ã)

)
= (1− λσ)δ(a− ã) , (A.7)
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where λσ is

λ1 = 1 and λ2 = 0,

σ = 1, 2, and δ(a− ã) is the Dirac delta function. The retarded Green’s functions satisfy the

boundary conditions

Gδ
σ(a, ã) = 0 and GΘ

σ (a, ã) = 0 for ã > a , (A.8)

Gδ
σ(ã, ã) =

λσ
ã

and GΘ
σ (ã, ã) =

(1− λσ)

ã
. (A.9)

We can then construct the Green’s functions in the usual way using the linear solutions and

the Heaviside step function, ΘH(a− ã), and imposing the boundary conditions Eq. (A.8) and

Eq. (A.9). This gives

Gδ
1(a, ã) =

1

ãW (ã)

(
dD−(ã)

dã
D+(a)− dD+(ã)

dã
D−(a)

)
ΘH(a− ã) , (A.10)

Gδ
2(a, ã) =

f+(ã)/ã2

W (ã)

(
D+(ã)D−(a)−D−(ã)D+(a)

)
ΘH(a− ã) , (A.11)

GΘ
1 (a, ã) =

a/ã

f+(a)W (ã)

(
dD−(ã)

dã

dD+(a)

da
− dD+(ã)

dã

dD−(a)

da

)
ΘH(a− ã) , (A.12)

GΘ
2 (a, ã) =

f+(ã)a/ã2

f+(a)W (ã)

(
D+(ã)

dD−(a)

da
−D−(ã)

dD+(a)

da

)
ΘH(a− ã) , (A.13)

where W (ã) is the Wronskian of D+ and D−

W (ã) =
dD−(ã)

dã
D+(ã)− dD+(ã)

dã
D−(ã) . (A.14)

In addition, the counterterm is given by (see [33] for details)

δ
(ct)
~k

(a) = −(2π)c̄2
A(a)

k2

k2
NL

D+(a)

D+(ai)
δin
~k
. (A.15)

The expansion of the power spectrum is defined by

P (a, k) = P11(a, k) + P22(a, k) + P13(a, k) + P ct
13(a, k) + · · · (A.16)

where the various contributions are given by

〈δ(1)
~k

(a)δ
(1)
~k′

(a)〉′ = P11(a, k) , (A.17)

〈δ(2)
~k

(a)δ
(2)
~k′

(a)〉′ = P22(a, k) , (A.18)

2〈δ(1)
~k

(a)δ
(3)
~k′

(a)〉′ = P13(a, k) , (A.19)

2〈δ(1)
~k

(a)δ
(ct)
~k′

(a)〉′ = P ct
13(a, k) , (A.20)
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and 〈· · · 〉′ means that we have removed a factor of (2π)3δD(~k + ~k′) from the expectation

value. In particular, on the initial conditions, this means that 〈δin
~k
δin
~k′
〉′ = P in

~k
. This leads to

the following expressions for the power spectrum contributions

P11(a, k) =
D2

+(a)

D2
+(ai)

P in
~k
, (A.21)

P22(a, k) = 2

∫
d3q

(2π)3

(
αs(~q,~k − ~q)Gδ1(a) + β(~q,~k − ~q)Gδ2(a)

)2

P in
~k−~q P

in
~q , (A.22)

P13(a, k) = 4
D+(a)

D+(ai)
P in
~k

∫
d3q

(2π)3

(
ασ(~k,~k + ~q,~k)U δσ(a) + βσ(~k,~k + ~q,~k)Vδσ2(a)

+ γσ(~k,~k + ~q,~k)Vδσ1(a)

)
P in
~q , (A.23)

P ct
13(a, k) = −2 (2π) c̄2

A(a)
k2

k2
NL

(
D+(a)

D+(ai)

)2

P in
~k
. (A.24)

Because the counterterm P ct
13 is trivially IR safe, we will not consider it in this paper. The

momentum dependent functions in Eq. (A.22) and Eq. (A.23) are given as

α1(~k1, ~k2, ~k3) ≡ α(~k1 − ~k2, ~k2)αs(~k3, ~k2 − ~k3) , (A.25)

α2(~k1, ~k2, ~k3) ≡ α(~k1 − ~k2, ~k2)β(~k3, ~k2 − ~k3) , (A.26)

β1(~k1, ~k2, ~k3) ≡ 2β(~k1 − ~k2, ~k2)αs(~k3, ~k2 − ~k3) , (A.27)

β2(~k1, ~k2, ~k3) ≡ 2β(~k1 − ~k2, ~k2)β(~k3, ~k2 − ~k3) , (A.28)

γ1(~k1, ~k2, ~k3) ≡ α(~k2, ~k1 − ~k2)αs(~k3, ~k2 − ~k3) , (A.29)

γ2(~k1, ~k2, ~k3) ≡ α(~k2, ~k1 − ~k2)β(~k3, ~k2 − ~k3) , (A.30)

where α, αs, and β are the standard dark-energy interaction vertices given in Eq. (3.31) and

Eq. (3.32). The time dependent factors in Eq. (A.22) and Eq. (A.23) are given by

Gδσ(a) =

∫ 1

0

f+(ã)D2
+(ã)

C(ã)D2
+(ai)

Gδ
σ(a, ã)dã , (A.31)

GΘ
σ (a) =

∫ 1

0

f+(ã)D2
+(ã)

C(ã)D2
+(ai)

GΘ
σ (a, ã)dã , (A.32)

and

U δσ(a) =

∫ 1

0

f+(ã)D+(ã)

C(ã)D+(ai)
Gδσ(ã)Gδ

1(a, ã)dã , (A.33)

UΘ
σ (a) =

∫ 1

0

f+(ã)D+(ã)

C(ã)D+(ai)
Gδσ(ã)GΘ

1 (a, ã)dã , (A.34)

Vδσσ̃(a) =

∫ 1

0

f+(ã)D+(ã)

C(ã)D+(ai)
GΘ
σ (ã)Gδ

σ̃(a, ã)dã , (A.35)

VΘ
σσ̃(a) =

∫ 1

0

f+(ã)D+(ã)

C(ã)D+(ai)
GΘ
σ (ã)GΘ

σ̃ (a, ã)dã . (A.36)
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B Fitting details

In this appendix, we present the results of the fitting procedure used to determine the values

of the counterterm parameters used in the precision comparison in Section 5. Although we

refer the reader to [22] for details, we note that the curves from the determination of the

parameters are slightly better when using the exact time dependence P IR&UV-safe
1−loop that we

presented in this paper, as they have smaller oscillations.
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Figure 7: In this figure, we show the results of the fitting procedure used to determine the values of the

various counterterm parameters. These plots show the determined value of the counterterms c2s(1), c1, and c4
as a function of the maximum k used in the fit (called kmax). The shaded region is the 2σ error region, and

any long dashed lines represent a 1σ error region.
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