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Abstract

Because large-scale structure surveys may very well be the next leading sources of cosmological
information, it is important to have a precise understanding of the cosmological observables; for this
reason, the Effective Field Theory of Large-Scale Structure (EFTofLLSS) was developed. So far, most
results in the EFTofLL.SS have used the so-called Einstein-de Sitter approximation, an approximation
of the time dependence which is known to be accurate to better than one percent. However, in
order to reach even higher accuracy, the full time dependence must be used. The computation with
exact time dependence is sensitive to both infrared (IR) and ultraviolet (UV) effects in the loop
integrands, and while these effects must cancel because of diffeomorphism invariance, they make
numerical computation much less efficient. We provide a formulation of the one-loop, equal-time
exact-time-dependence power spectrum of density perturbations which is manifestly free of these
spurious IR and UV divergences at the level of the integrand. We extend our results to the total
matter mode with clustering quintessence, show that IR and UV divergences cancel, and provide
the associated IR- and UV-safe integrand. This also establishes that the consistency conditions are
satisfied in this system. We then use our one-loop result to do an improved precision comparison of
the two-loop dark-matter power spectrum with the Dark Sky N-body simulation.
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1 Introduction

Large-scale structure surveys may potentially be our next leading source of cosmological
3

max’

where k. is the largest wavenumber under theoretical control. Thus, it is important to
have a precise understanding of large-scale structure (LSS) observables at the highest k& (most
ultraviolet, or UV) possible. In order to address this concern, the Effective Field Theory of
Large-Scale Structure (EFTofLSS) was developed (there is by now a rather large literature,
see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33]) to describe gravitational clustering in the mildly
non-linear regime through the correct treatment of the effects of UV modes on large-scale

information because the amount of information in such surveys scales roughly like k

observables. The main idea is that, in order to correct mistakes introduced in perturbation
theory from uncontrolled short-scale physics, one must include suitable counterterms in the
perturbative expansion. Once the coefficients, or coupling constants, of these counterterms
are fit to observation, they will correctly describe the effects of short-scale physics on the
large-scale modes that we directly observe in large-scale structure surveys. The result is a



controlled expansion in k/knp,, where kyy, is the scale at which the effective field theory can
no longer describe the dynamics (i.e. it is the strong coupling scale). For k < kyp,, predictions
can be computed to arbitrary precision (up to non-perturbative effects) by including more
and more loops. So far, this research program has shown that large-scale structure clustering
can be accurately described for dark matter [22], galaxies [12, 17], including baryons [14], and
in redshift space [32, 28] up to relatively high wavenumbers. Codes used to produce some of
the results mentioned in the former references, as well as the one used to obtain the results
presented in this paper, are publicly available online.!

When constructing the perturbative solution, loop integrals need to be performed. For
[R-safe (IR stands for infrared) quantities, the loop integrals have spurious IR divergencies
that cancel in the final answer (this cancellation being guaranteed by diffeomorphism in-
variance [5]). As it was noted in [5], the numerical cost of the computation (as well as the
conceptual cleanliness of it) can be ameliorated by constructing an IR-safe integrand. Ref-
erence [5] constructed the IR-safe integrand in the Einstein-de Sitter (EdS) approximation,
where all loop contributions have the same time dependence (for example, all 1-loop contri-
butions are proportional to D, (a)?*, where D, (a) is the linear growth factor). This treatment
made manifest the cancellation of large IR contributions in the loop expansion, which are
guaranteed to cancel by the equivalence principle in equal-time correlation functions of den-
sity perturbations, at the level of loop integrands; practically, this means that the computer
does not waste time precisely computing very large numbers which will ultimately cancel each
other to give a much smaller result. These cancellations were originally studied in [34, 35],
and more recently in [36]. The IR properties of the loop expansion are related to the so-called
consistency conditions for dark matter [34, 36, 35, 37, 38, 39, 40], which [5, 41] pointed out
are also a result of the equivalence principle ([41] used an explicit construction of adiabatic
modes due to Weinberg [42]). The fact that there was only one mode (dark matter) present
in these discussions was important because it meant that there was a unique freely falling
observer to transform to and remove not only gradients of the gravitational potential (which
is always possible), but also the velocity of the species. The fact that large-scale velocity
effects do not cancel in equal-time correlations functions in the presence of multiple modes
was pointed out in [43, 39, 40].

A similar scenario exists for spurious UV contributions to loop integrals. The leading
behavior in the UV (k/q — 0) is fixed to be

PRV o #Pu(h) [ Pula). (1)
PR ok [ S Pu@)Pu(a). (1.2

which are indeed the kinds of terms which can be corrected by counterterms in the pertur-
bative expansion. When computing with exact time dependence, though, Pj3 and P are
each a sum of different terms with different time dependences. These terms happen to have
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individually spurious leading UV behavior, which must cancel separately in Pj3 and Psy (be-
cause they have different k£ dependences). For exactly the same reasons mentioned above for
the spurious IR terms, we would like to eliminate the spurious UV terms at the level of the
integrand. This is exactly what we do in this paper: we provide a manifestly IR- and UV-
safe (which we will abbreviate as IR&UV-safe for now on) integrand.

In this paper, we extend the results of [5] to provide the one-loop IR&UV-safe integrand
with exact time dependence, i.e. when the time dependence is computed with the exact
Green’s functions. To date, most of the computations in the EFTofLLSS have been done in the
EdS approximation, and because we ultimately want the most precise computation possible,
it may soon become necessary to use the exact time dependence. It was shown [44] (see also
[45, 46, 47, 2] for related discussions) that the difference between the EAS approximation and
exact time dependence in ACDM at z = 0 for the total power spectrum up to one loop is
about 0.5%. A potential problem with using the exact time dependence, though, is that the
more complex expressions in terms of Green’s functions obscure the cancellation of IR and UV
divergences, which nevertheless must happen because of diffeomorphism invariance. In this
paper, we explicitly show how these cancellations come about and then construct a one-loop
integrand which is manifestly free of these large spurious IR and UV terms. While the two
different loop contributions, Pss(a, k) and Pi3(a, k), have different time dependences, we show
that the leading IR and UV terms in fact do have the same time dependence, thus allowing
the spurious IR and UV terms to cancel. Because of the delicate cancellation of terms which
generally have different time dependences, a numerical computation of the loops with exact
time dependence is more sensitive to the precision with which the time-dependent factors
are computed; a small error in the relative value of the time-dependent coefficients means
that numerically the spurious IR and UV terms will not exactly cancel, and because they are
proportional to large factors (this is indeed what it means to be IR or UV divergent) the overall
numerical error can be high.? Said another way, the IR and UV divergent terms are only
guaranteed to cancel if the numerical coefficients are computed with infinite precision. This
situation could be counterproductive. The reason that we are interested in computing with
exact time dependence is because we want to compute observables with the most precision
possible, so the precision lost due to IR and UV effects better not outweigh the precision gained
in using the exact time dependence. In this paper, we provide an expression for the one-loop
power spectrum with exact time dependence which is immune to these concerns by writing
it in terms of a manifestly IR&UV-safe integrand, where there are no spurious IR or UV
divergences to be cancelled numerically. Then, we use our results to do an improved precision
comparison of the two-loop dark-matter power spectrum (now with exact time dependence,
and IR&UV-safe integrand used for Pj_jo0p) with the Dark Sky N-body simulation [48].

It is interesting to note (as we will show later) that our results here can be easily extended

2In practice, because the real universe has a natural IR cutoff around the matter-radiation equality scale,
keq ~ 0.01 hMpc~!, these IR terms are not too large in the one-loop computation that we present here. In
fact, as we will see below, it is more important to remove spurious UV terms. However, the IR terms are
expected to be much more of a nuisance in a two-loop or higher order computation than in our one-loop study.



to another system of interest: dark matter coupled to quintessence with zero speed of sound
(also called clustering quintessence), which was a main example used in [33] to describe how
to include dark energy (in the so-called Effective Field Theory of Dark Energy formalism)
in the EFTofLSS, and had been previously studied outside of the context of the EFTofLLSS
in [49, 50, 51]. There, the equations of motion for the adiabatic mode (called d4) are the same
as those in ACDM apart from a different time dependent factor in the continuity equation
(see Eq. (A.1) and Eq. (A.2)). In this paper we also show that for equal-time correlation
functions of the adiabatic mode in the dark matter and clustering quintessence system, the
individual IR and UV divergent terms of the one-loop contribution cancel, and we provide
the IR&UV-safe integrand for that system. Indeed, it is not surprising that this is the case.
When the quintessence has a small speed of sound, i.e. ¢ — 0, the system reduces to a single
mode 4 (the isocurvature mode is proportional to ¢, and thus is absent when ¢ — 0), and
because the equivalence principle is not violated, the arguments of [5] apply. In particular,
the fact that the spurious IR terms cancel also means that the consistency conditions are still
satisfied for correlation functions of §4. However, when ¢ # 0 but |¢?| < 1, an isocurvature
mode proportional to ¢? is generated [33], and we expect the loop integrals to have a strong
IR dependence proportional to ¢?, and the consistency conditions to be violated by terms
proportional to 2.

This paper is organized as follows. In the beginning of Section 2 we review the construction
of the IR-safe integrand with approximate time dependence presented in [5]. In Section 3.1, we
present the loop contributions with exact time dependence, Py3(a, k) and Py (a, k), in a way
to prepare us for the computation, and in Section 3.2 we find the IR limit of our expressions.
Then, in Section 3.3 we first show how the leading IR terms cancel, and then we construct
the IR-safe integrand, which gives an expression for the integrand which is manifestly free of
IR divergences at every step of the numerical computation. In Section 3.4, we do the same,
but for the spurious UV terms. In Section 4 we present some numerical results of our study,
and in Section 5 we present our results of the improved precision comparison. Finally, in
Section 6, we conclude.

2 Review of IR-safe integrand with EdS approximation

Let us first look at the case previously studied in [5] (see also [52]), which uses the EdS
approximation for the loop integrals. In that case, we have

Plfloop(aa k) - P22(&7 k) + p13(a/7 k) ) (21)

where the respective integrands are defined as

B D(a)* d3q - o W k) — D(a)* d3q -
P = e | G0 Polo) = 5 [ s, 22

so that for equal time power spectra, we only need to consider the momentum dependence in
the functions pao(k, ¢) and p13(k, ¢) to examine the IR properties. While the explicit forms of

5



pas(k, @) and py3(k, §) can be found in [5], we will only need the forms in the IR limits ¢/k — 0
and ¢ — k. In the ¢/k — 0 limit, and taking the initial power spectrum to be Pji(k) o< k",
we have

p13(E;q_) -~ —/{:"Hqu" 2—!—(’)((]") : (2?))
q/k—0

paa(k. @) k"+2u2q”*2-%<9(qn’l), (2.4)

/k: —0 2

where p = k- q/(k q). The equivalence principle ensures that the effect of the loop from the
IR must start like [ d®q Pi1(q), but looking at Eq. (2.3) and Eq. (2.4), there seem to be terms
which go like [d®q(k/q)*Pi1(¢q) and [ d*q (k/q)P11(g) (which we will generically refer to as
divergent terms), so the cancellatlon is not manifest. Being more careful though, one notices
that there is another IR-divergence in pss which comes from the limit ¢ — k (i.e. sending the
other leg of the loop momentum to zero), which goes like

(k- [k —a)? >

% & —q" . (2.5)

1

—E2 @k - g2
Summing the above IR divergences, it was found that the leading divergence which goes
like d3q (k/q)*P11(q) cancels (as it should), but that the divergences come from two different
regions within the integration limits. Additionally, the divergence in Eq. (2.4) proportional to
d®q (k/q)P11(q) is also proportional to y, and so indeed cancels in the final integration over d*q.
Thus, if one were to simply add ng(E, @+p13(E, ¢) and then integrate over dq numerically, the
numerical integration would be computing very large numbers near ¢ — 0 and ¢ — k which
when summed give a result which is much smaller than the individual numbers computed.
This was known to happen [34, 35], although it was sometimes incorrectly attributed to the
Galilean invariance of the Newtonian equations (it is actually guaranteed by diffeomorphism
invariance). All in all, [5] found that the way to write the one-loop power spectrum in a
manifestly IR-safe way is

D(a)* [ d’ . . 4
D(a;)* / (27)3 |:p13(/€, Q) + p2(k, )Ou(lk — ¢ — q)

+ ok, —@Ou(k+ a1 —a)| . (26)

PIR safe (CL k)

1—loop

where Oy is the Heaviside step function. Notice that now the only IR dlvergence is for ¢/k — 0
since poy is not integrated near ¢’ ~ k any longer (the divergence at ¢ — k has been mapped to
q/k — 0), and that the pey term is symmetrized in ¢ <> —¢, so that the terms proportional to
an odd power of p explicitly cancel. Thus, the integrand in Eq. (2.6) is manifestly IR-safe, in
the sense that as q/k — 0, both the d®q (k/q)?Py1(q) and d3q (k/q)P11(q) divergences cancel
at the level of the integrand.



3 IR- and UV-safe integrand with exact time dependence

In the first part of this section, we would like to find an IR-safe analog of Eq. (2.6) for ACDM
with exact time dependence.®> We will then construct the IR&UV-safe integrand in Section 3.4,
which will be an analgous construction to the one that we present for IR modes. In doing this,
our results can be extended trivially to the adiabatic mode in clustering quintessence described
in [33, 51] by restoring the time-dependent function C'(a), which is defined in Eq. (A.3) (in
Appendix A we summarize the results and notation of the clustering quintessence computation
in [33] for convenience), and is equal to unity for ACDM. In this paper, our explicit formulae
will include the factors of C'(a) for completion. In this paper, we are only interested in the
one-loop terms, so we will ignore EFT counterterms (which are trivially IR-safe because they
are tree level).

As a side note, we would like to point out that it is only possible to write the IR-safe

integrand in clustering quintessence because in the c?

— 0 limit, quintessence traces dark
matter so that the system has only one mode. In this case, one can always go to the unique
freely falling frame of the region to eliminate gradients of the metric and any velocity, thus
ensuring [R-safety. If ¢2 # 0, an isocurvature mode is generated, and so we expect the IR

cancellation to be spoiled by terms proportional to 2.

3 As discussed in the Introduction, the EAS approximation is known to be correct to better than percent
level in ACDM. Thus, instead of using the exact time dependence, as we do in this paper, one could also
expand the time dependence around EdS. This should be a very good expansion in ACDM, with an expansion
parameter of order 1/100. Considering the equations of motion Eq. (A.1) with C(a) = 1, one could do this
expansion by setting

-

5™ (a, k) = Dy (a)" (5<n( k) + 6™ (a (3.1)

0™ (a,F) = Dy (a)” (é<")(1‘5)+e@<n>( 1‘5)) : (3.2)

where € ~ 0(1/100), 6 (k) and ©(™ (k) are the time-independent EdS fields, and 6™ (a, k) and O™ (a, k)
give the deviations from EdS time dependence. Plugging this into the equations of motion Eq. (A.1), one can
then expand to the desired order in € (although first order should be sufficient for most purposeb) The result
will be differential equations for 6 (a, k) and O (a, k) which are sourced by 6 (k) and O (k). One can
then use the Green’s functions of this system to solve for 6(™ (a, k) and ©((a, k). The advantage of this
approach is that one will in general have less diagrams, because of the linear expansion in €, and there will
be less nested time integrals. Thus, the computation should be much faster.

However, we choose not to pursue this course of action for the following reasons. First of all, we would like
to establish our results with exact time dependence as a matter of principle, and because at one loop it is not
too difficult, we choose this path. Second of all, in this work, in addition to ACDM, we are also interested
in the clustering quintessence system for which there is no known analogue of the EdS approximation. Thus,
we leave this expansion for future work.



3.1 Expressions for one-loop kernels

Below, first we will verify that the leading IR terms of each separate loop cancel, and then
we will provide the IR-safe version of the loop integral. In order to continue, let us write

Eq. (A.22) and Eq. (A.23) (the expressions for Py and Py3 found in [33], which use exact
time dependence) in a more useful form:

Psy(a, k) / qg/ da2/ day paz(a,ar, as; JCT) , (3.3)
Pis(a, k) / 3/ d(lg/ day p13(a, a1,a2,];,® ) (3.4)
(2m) Jo 0
where
4
pa(a, ar, axk, q) = ZTi(Q (a,a1,a0) F*2 (K, q) (3.5)
i=1
6
ps(a, a1, a2k, q) = ZTZ«(I (a,a1,a2)F, 13)( k.q) . (3.6)
i=1

We will define the various quantities that enter above momentarily. First, however, let us
comment on the computational strategy. Each function pss and pq3 is a sum over terms which
are products of a function of time and a function of momentum. Thus, in order to compute the
loop, we must numerically compute the integrals over the functions of time [ das [ da; TZ-(U)
(where o € {13,22}) separately from the functions of momentum [ d3q FZ-(”)7 multiply them,
and then add them together. In order for this approach to be the most numerically efficient, we
want each of the Fi(a) (lg, ¢) functions to be IR-safe separately. That way, numerical uncertainty
in the time integrals will not spoil any cancellations that are supposed to happen in the

momentum integrals. Our IR-safe integrand will have this property.

Next, we will comment on the limits of integration of the time integrals. Notice that
in BEq. (A.22) for Py, the limits are ['day [ day, while in Eq. (A.23) for Pi3 they are
foa das f0a2 day. In order to compare the Pj3 and Pss integrands directly, we want them to
have the same limits, so we use the following fact, valid for any function f(ay, as),

/dag/ day f(ay, as) (/ dag/ da1+/ dal/ dag) (a1.05)  (37)
:/0 das /0 day (f(ay, az) + flaz,ar) | (3.8)

where in the first passage we re-parametrize the square region 0 < a; < a and 0 < ay < a,
and in the second passage we redefined the variables of integration in the second term. This
allows us to write Eq. (3.3) and Eq. (3.4), in a way in which Py and P;3 have the same limits
for the time integrals.

Let us now go back to defining the terms that appear in Eq. (3.5) and Eq. (3.6). In order
to write the time dependent coefficients Tim) and Ti(lg’), we first define various G, the part of
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the Green’s functions Eq. (A.10) - Eq. (A.13) that do not contain the Heaviside function, as
GY5 (a1, a2) = G195 (a1, a2) Onlar — az) . (3.9)

Using Eq. (A.31) - Eq. (A.32) and Eq. (A.33) - Eq. (A.36), this leads us to write the time
dependent coefficients TZ-(]‘S) as (first making the replacement f(a) = a D’ (a)/D(a) every-
where, where D’ (a) = 0,D4(a))

T1(13)(a, ar,a3) = K(a, a1, a3) G3(a, a)G (az, ay) | (3.10)
T2(13)(a, ar,a3) = K(a, a1, a3) G3(a,a)GS(az, ay) | (3.11)
T3(13)(a, ar,a3) = K(a,ay,as) G3(a,a2)GO (az, ay) | (3.12)
ng)(a, ar,as) = K(a,ay,as) G(a,a2)GS (az,ay) | (3.13)
T5( 3)(a,a1,a2) = K(a,ay,as) G5(a,a2)G (az, ay) | (3.14)
T(1 Na,a1,a2) = K(a, a1, a2) G(a, a2)GS (az, a1) | (3.15)
where the common factor K is given by
aras D (a)Dy(ay)D’, (a1) D', (a
K(a,a1,09) = — é(czﬂg((a:;Di((aj)L o (3.16)
The other time-dependent coefficients Tim) are given by
T (a, a1, a2) = K (az, ar, az) 2G4 (a, a1) G4 (a, az) | (3.17)
T2(22)(a, a1, az) = K(as, a1, a2) (G3(a,a1)G(a, az) + G3(a,a1)GS(a, az)) (3.18)
TéQz)(a, ap,az) = T2(22)(a,a1,a2) : (3.19)
T4(22)(a, ar,ay) = K(ag, ay,as)2GY(a,a,)Gy(a,as) . (3.20)

With the above definition of the time dependent Ti(a) functions, we have the following
momentum dependent functions:

F{(k,q) = 40.(k, ) a(—q.k + @) PP P, (3.21)
(k) = 48k, @) a(—q,k + q) P P (3.22)
13)< @) =40,k @) ak + @, —q) P P (3.23)
Fy(k,q) = 4 8(k, @) ok + ¢, —q) P" P | (3.24)
FY (k@) = 4 x 20,(k, @) B(— qk+§)P~ ' (3.25)
13)( k.q) =4 x2B(k,q) B(—q.k +q) PP (3.26)

and

( (k—q.q° P P (3.27)
FP (R, Q) =20,k — q.0) 8k — ¢.9) P PP, (3.28)
( (k—q.q) Bk —q.q PE_P> (3.29)
F(k,q) =28(k—q,q) Bk — ¢.q) P P (3.30)



where in the above o and [ are the standard interaction functions from dark-matter pertur-
bation theory

— —

(G, @) =1+ 252 (3.31)
i
Lo e+ @lPa @
B(q1, i) = ; 3.32)
24743 (

and oy (1, ¢2) = (a1, @) + (@, ¢1)). To get the compact forms in Eq. (3.21) - Eq. (3.30),
we have used the properties that oy and 8 are symmetric, that a(q, —¢) = a(—4q1, @) and
B(q1, —@) = B(—q1, ¢2), and switched the variable of integration from ¢ to —¢ in some terms.

3.2 IR-limit

In this section, we will examine the IR properties of the integrands p,y; and p;3 and show
that both the leading and subleading IR divergences must cancel when the full one-loop
contribution is computed. In the next section we will use the IR limits found here to write
the manifestly IR-safe integrand. In pi3, the only IR divergence is for ¢/k — 0, for which we
have the following limits:

- k2 -
F(F,q) = 2 (q— + 1) PP (3:33)
FM™ (K, q) = —2u2 K1) pinpin 3.34
2 (k@) = —2p 2 )T (3.34)
2

FU(E, q) — 2( 2+ i’ +O(k2))P,§nP;n, (3.35)
F{(k, ) = 24> PPl (3.36)

k 2 L

13 in pin
FE q) — 2(uq—+2—6u + 4t +O(k2)>PEPq. , (3.37)

F(13) ];,’ _ 2]{2 in pin

o (k@) =—2p ?P,;*Pq ) (3.38)
where in the above, relations with an “ = 7 sign are exact relations, independent from the

limit ¢/k — 0, and relations with a “ — 7 sign are only valid in the limit ¢/k — 0. We are
concerned with the IR terms that we know must cancel because of the equivalence principle,
i.e. the ones proportional to k?/¢* and k/q, so we define

K .
13) 13) 13) 13) in pin
Fl(IR( k,q) = F2(IR( k,q) = F5(IR( k,q) = FG(IR( k, q) :_2#2?13,; 7 (3.39)

13) 13)
F?EIR( k,q) = F4(IR( k,q) =0 (3.40)
so that FZIR( ,q) = limg/k0 F' (K, q) to order k/q.

The analysis of the pss integrand is slightly more complicated because there are two IR
divergences: one for ¢/k — 0, and one for ¢ — k. However, these divergences are really the
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same, since pos(a, ay, as; k, q) = pae(a,ay, as; kk— q), as can be seen directly in Eq. (3.27) -
Eq. (3.30). In the next section, we will see that this allows us to write the IR-safe integrand
such that the only IR divergence is for ¢/k — 0, so we will provide that limit here. Thus, for
q/k — 0, we have

- (5 s - 2252 1o (’;—)) P (342
s (5 - S0 o (£)) rerr (343
FP(E, q) — (%k—j +§ :—u+ 28 — “;881%;5 +0 (];0)> pirpi (3.44)

From this, we see that the only divergences proportional to k/q comes from pgs, but that
all of those terms are proportional to an odd power of u. Thus, we can eliminate them at
the level of the integrand by using a quantity that is manifestly even for ¢ — —¢, which we
do below in Eq. (3.49). For now, similar to Eq. (3.39) and Eq. (3.40), we can define the IR
divergent terms of pos as

e - (ke e ) e .19
g - (ke R ) Peey, (.10
Fim(k,@) = %2’;—2 + g v gﬁgff > PrEF (348)

so that F“R( ,q) = limg, 0 F ( ,q) to order k/q.

3.3 IR-safe integrand

In this section, we write the manifestly IR-safe version of Pj_joep, in such a way that the
leading IR divergences in Eq. (3.3) and Eq. (3.4), proportional to k%/¢? and k/q, which must
cancel, are absent at the level of the integrand. First, we verify that the leading IR terms
indeed cancel (this exercise will also be useful in defining the IR-safe integrand anyway). To
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start, we can manipulate Py analogously to [5] to get

d3 a az 5 -
Pzz(a,k)Z/(szg)/o da2/0 day <p22(a,a1,a2;k,g7)@H(|k;—cﬂ—q)
‘|’p22(&, al,ag;E, —J) @H(’E—i—ﬂ - q)) (349)

where we have used the fact that pQQ(a,al,aQ;E,q) = pQQ(a,al,ag;IZ,lZ — §), as discussed
above. This expression has two advantages. First, the subleading divergence proportional to
k/q manifestly cancels, because all of those terms were odd in ¢ as discussed above. Second,
the divergence in poy for ¢ — k has been mapped to ¢/k — 0, and the integral no longer
involves the region ¢ ~ k. Then, we can write the full one-loop contribution as

d3 a a N - —
P joop(a, k) = / (27;;3 /0 daQ/O day <p13<a7@17a23 k,q) + p2a(a, ai, az; k, §) Ou(lk — 4l — q)

+p22(a,a1,a2;12, —q) @H(|E+q_1 —Q)> . (3.50)

We already know that the term proportional to k/q cancels, so we would like to verify now
that the leading IR parts (which only come from ¢/k — 0 now because psy is not integrated
near ¢~ k any longer) of the integrand in Eq. (3.50) cancel.

The equation Eq. (3.50) is the start to finding the IR-safe integrand, but it will also help
us explicitly verify that the IR divergences cancel. In order to check the cancellation, we
consider the integrand as ¢/k — 0. In that limit, both of the Heaviside functions can be
taken to be unity, so we need to consider the k*/¢? terms of (as we said, the k/q terms cancel
already)

p1s(a, ay, a; k, q) + 2p2ala,ar, as; k, q) . (3.51)
These are

2

a,a,a ;/2, k ~ - - -
pis(a; ar, azi k, q) — —2/12?[((@, ap,as) (G‘f(a,ag)G‘f(ag,al) + G4 (a, az)GS(ag, ay)

PinPin
k9q

+ Gg(a, ag)@?(ag, ar) + Gg(a, ag)ég)(ag, al)) (3.52)
and

2p22(a,a1,a2; k’»@)
PI_:;HP%II

k2 A A A :
2 K (.01, 0) (G§<a, a1)G1(a, az) + G (a,a1)G5(a, as)

+ G, )Gl (a,02) + G(a,a1)Gh(a, ) ) . (3.53)
Thus, these two will cancel if

D (a) (GY(a,a2)G4(as, a1) + G3(a, as)Gy(az, ar) + Gy(a, a2)GY (a2, ar) + Go(a, a2)GS (a2, ar))
+ Dy (az) (GY(a, a1)GY(a, az) + Gi(a, a1)Gy(a, az) + Go(a,a1) G (a, az) + Gy(a, ar)Gy(a, az))
=0 (3.54)
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and indeed, one can check that this is the case by using the explicit expressions Eq. (A.10) -
Eq. (A.13). Thus, we have successfully shown that the IR divergences in P;_jo0, (proportional
to k?/q* and k/q respectively) cancel. In particular, while P;3 and Py have different time
dependences, this shows that the leading IR terms in fact have the same time dependence,
and that this allows these terms to cancel.

Now, we notice that at finite ¢ each diagram has a different time dependence, which
becomes the same only in the limit ¢/k — 0. This has the unfortunate consequence that the
cancellation in the IR will happen only if the time integrals are computed very accurately.
This inconvenience can be avoided by doing the following procedure. We can first add and
subtract out of each diagram the IR divergent part. The sum of all the divergences of a single
diagram combine themselves into a term that has some given time dependence times a common
momentum dependent factor. This time dependence is the same as the one associated to the
sum of the IR divergencies of the other diagram, with the same momentum dependent factor.
A relative minus sign ensures the cancellation. This manipulation guarantees that the IR
divergent terms never enter the computation at all, thus making each separate contribution
[R-safe. This is necessary, contrary to the case studied in [5], because we are summing together
many different contributions which are products of integrals over time and integrals over
momentum. Thus, in order for the final answer to be the most computationally efficient, each
of the contributions must be manifestly IR-safe. Concretely, our procedure is the following.
We start with the integrand of Pj_jo0p in Eq. (3.50):

pl—loop(aaahaQ; E@) Ep13(a,a1,a2;E,§) +p22(a7a17a2;E7®@H(|E_ ﬂ - Q)
+pmla,ar,azk,—Q) On([k+q —q) . (3.55)

To this, we will momentarily add and subtract the IR terms through the function

plll:iloop(c% a1, a2, IZ: q_) = p111:3{<a7 ar, a2; E? q_> + pIZI;{(a7 ay, a2, IZ: q_)
+p121§(a, aq, as; IZ, —q) (3.56)
where

6

P an,a0:k,§) = Y T (a, a1, 00) Fipg (F, §)Ou(k — q) (3.57)
i=1
4

P (a ar, a5k, Q) =Y T (a, a1, 00) F'57) (k. )Ou(k — q) . (3.58)

=1

The functions pi¥ and ply are nothing but the original expressions for p;3 and pa, from Eq. (3.6)
and Eq. (3.5), but with Fi(g) replaced by Fl(‘ljf){ and multiplied by a Heaviside function Oy (k—q)
so that the UV is unchanged. This means that we can express the integrand of P_joop as

plfloop(aa a1, A2; E? i) = (plfloop(aa a1, A2; ];':7 (T) - pll}iloop(aa a1, A2; E? @)
+ pIIFiloop(aa ay, a2; k, CT) (359)
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by simply adding and subtracting the IR parts, so that overall the integrand is unchanged.

Let us now examine separately the terms inside and outside of the parentheses on the
right-hand side of Eq. (3.59). We start with the terms inside of the parentheses and rearrange
them so that we subtract the IR terms from each contribution to pi_isp individually to get

p1—100p(a,a1,a2, ,q) — p1 100p(a ay, az; k, q) =

PR (0, ay, ag; K, @) + P (a, ay, ag; k, @) (3.60)
where
6
pllg_safe(aa ay, az; kv (T) - Z T;(lg) (a, ai, a2) i %E{)-Safe( @ (361)
4
pg;”_safe(C% a1, @2; k’ @ - Z 72(22) (CL, ai, CLQ) (F;(IR safe(k _) + F;(?l?{ safe( q_>) (362>
and
Fin ek, @) = FY (k. §) — ESY (k. @) ©ulk — q) . (3.63)
D ok d) = FP2 (k. ) On(lk — @ — @) — FSa (k. @) On(k — q) . (3.64)

By definition, each of the FZ%ZL) cafe and Fﬁ?g_safe integrands are IR-safe because we have sub-
tracted the IR divergences explicitly.

Now let us look at the other term on the right-hand side of Eq. (3.59) which is
6
P op (@ a1, a2k, ) = > T (a, ay, a2) Fi3y) (K, @) ©Ou(k — q) (3.65)

4
+ > T, an,00) (FSRGE @) + FGR(F~D)) Oulk—a) =0,

i=1

and is zero simply because the IR divergences cancel (as we have already shown), i.e. it
follows from Eq. (3.52), Eq. (3.53), and Eq. (3.54). Thus, this term does not contribute at all
to the one-loop integral, and we are finally left with*

d3 a az 5
Pl k) = [ o [ day | day (P (0, a1, 005 F, @) + P (0,00, 00K, ) )
(27T) 0 0
(3.66)

4 We would like to comment that instead of doing the manipulation that maps the IR divergence in Psy
from ¢ — k to q/k — 0, one could directly subtract out the divergence at ¢ — k at the level of the integrand.
This more straightforward approach could be advantageous for computations higher than one loop because
the momentum dependence of the integrands becomes more complicated as one integrates over more and more
loop momenta.
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with pi§=* and pi§i=** given in Eq. (3.61) and Eq. (3.62). Of course, P&5(a, k) =
Py _jo0p(a, k) because we have simply added zero to Pj_joep, but we put the extra label “IR-
safe” to denote that it is computed with the IR-safe integrand. Thus, we have arrived at
our final expressions Eq. (3.66), Eq. (3.61) and Eq. (3.62). We have shown that the IR di-
vergences (proportional to k?/¢* and k/q) in the one-loop, equal-time power spectrum with
exact time dependence in ACDM cancel (as was required by the equivalence principle), and
we have provided integrands which are IR-safe during every step of the numerical integration.
By keeping the factor of C(a) in the various time-dependent coefficients, our results trivially

extend to the adiabatic mode in clustering quintessence.

Before we end this discussion of IR effects, let us briefly comment on the very important
task of correctly describing the baryon acoustic oscillations (BAO). The IR-resummation is
a way to controllably include the effects of long-wavelength displacements on the BAO peak.
The relevant formulae for the various systems (dark matter, galaxies, and redshift space) were
developed in [4, 10, 13, 28, 32]. Ref. [21] provided a simplification (with approximations) of
the same formulas applied to dark matter in real space. The IR-resummation can be applied
directly to the exact time-dependence power spectra presented in this paper, using the stan-
dard formulae presented in previous works for the resummation. This is because the difference
between the exact time-dependence displacements and the EdS approximated displacements
is very small (indeed it is zero in the limit that we treat the displacements as linear). More-
over, this difference can be recovered order by order in the perturbative expansion of the
resummation formula. In other words, one can use the approximate resummation matrix
which uses EdS displacements (call it Mgqg), and the formulae will automatically recover the
correct resummation as a Taylor expansion in M. — Mgqs. This is a remarkable property
of the formula developed in [4].

3.4 UV-safe integrand

In addition to the spurious IR terms which we have shown must cancel in the final expression
for P)_je0p, there are also spurious UV contributions to the individual momentum-dependent
functions E(U) that must cancel in the full one-loop result. These spurious UV divergences
are not present with the approximate time dependence, because in that case each diagram
has a common time factor, and the structure of the UV divergences (which are different for
each diagram) forces them to cancel automatically.

The same reasoning applies to the UV terms as to the IR terms: full cancellation only
happens when the time dependent coefficients are determined with infinite precision, so a
mistake in the time integrals can cause the large UV terms to not cancel completely. This
means that one has to run the integrals with much more precision than the precision desired
in the final answer. To address this, in this section we will provide a manifestly UV-safe
integrand using a procedure directly analogous to the one we used for the IR terms: we
will subtract out the spurious UV terms at the level of the integrand so that they never
enter the computation at all. As in the presentation of the IR-safe integrand, the exact
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time dependence makes the cancellation more opaque, but we show how it happens below.
Additionally, one could subtract the UV terms of the loop integrals which are degenerate with
the counterterms (discussed more below). As noted in [22] this has the advantage that one
does not waste computational time computing a (large) part of the loop which will ultimately
be adjusted by the counterterms, and so less numerical precision can be used on the loop
computation to obtain a desired final precision.

First, let us consider, in general, the UV dependence of the individual loop terms. There
can be no terms at lower order in k/q for k/q — 0 than

R?@wxﬁﬂx@/f%%;aﬂ@, (3.67)
P2gv<k) o k4/ (5733%]311((])]311@) . (3.68)

Notice that these are just the terms of the power spectrum that can be adjusted by coun-
terterms: the k*Py;(k) counterterm comes from the 929 term in the stress tensor, and the
k* term comes from the stochastic counterterm [2]. In principle, one does not even need to
compute these terms in the loop, since they are degenerate with the counterterms [22]. For
simplicity, in this paper, we choose not to cancel at the integrand level the pieces that are de-
generate with counterterms, although the procedure to do this is a straightforward extension
of what we present below, where we focus on cancelling only the UV divergences that cannot
be cancelled by a counterterm and so must cancel at the level of the integrand.

Let us now find the UV terms in our integrands in Eq. (3.21) - Eq. (3.26) and Eq. (3.27) -
Eq. (3.30). For k/q — 0, we have

2y — k? S
13 in pin
FI(k, q) = -2 (1 + ?) prp (3.69)
(3) 77 2 K\ pin pi
Fy 7 (k,q) = —2u (1 + ?) PAP (3.70)
(13) (7 2 K 2 4 k! in pin
Fy2 (k@) — 2 u+?(2—6u +4p*) + O pr PYP (3.71)
13) 72 _ in pin
(k,q) = 2u* P} P} (3.72)
(13) (7 k? 2 k! in pin
Fo (k@) — ?(—4+2u)+0 pr PrP (3.73)
N
F ( ,q) = —2,u PmPLrl (3.74)
where in the above, relations Wlth an “ =7 sign are exact relations, independent from the

limit k£/q — 0, and relations with a “ — ” sign are only valid in the limit k/q — 0. We are
concerned with the UV terms that we know must cancel, i.e. the ones proportional to £°/¢°.
so we define

FLR ke, Q) = Fy (k. @) = —Fy R (k@) = —FL R (k. @) = —202 PP | (3.75)
5Uv(k7 q) = Fﬁlé’%(k 7)=0, (3.76)
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so that Fﬁj”v( k,q) = hmk/(HOF ( ,q) to order k°/q°. As we discussed above, one could
also include the terms proportional to k%/¢?, which are degenerate with the counterterms, in
the above definitions. This would mean that the loop could be reliably computed using less
precision because the overall size of the integrals is smaller.

The terms in Py are

(22) 5 1 /K k>
(22) 7 L[k 2 k°
- 1 /K4 K5 N
F2 (R q) — — (E“ — 2% + 0 (—5>) PPy (3.79)
- 1 [k kS
FPE, Q) — 5 (E +0 (q >) P pi (3.80)

All of these terms start proportional to k%/¢*, and so are degenerate with the stochastic
counterterm. As we mentioned above, we will not explicitly remove these terms from the
integrand, although it is straightforward to do so. These terms are typically small for a one-
loop computation, so we do not expect them to have a large contribution anyway. The terms
proportional to k°/¢® are also proportional to an odd power of y, so we can eliminate them
at the level of the integrand by using a quantity that is manifestly even for ¢ — —¢. With
this in mind, we define the UV terms as

FE (R, ) = Fyen (k. Q) = Fi (k@) = Foow (B, @) =0, (3.81)

so that FZ(%?V( k,q) = limy /g0 FP(E, ) to order k3/¢3.

Before defining the UV-safe integrand, let us explicitly verify that the spurious UV terms
do indeed cancel. Since the structure of the would-be-needed counterterms is different, the
spurious divergences in each diagram must cancel separately.” Thus, in general, we must
check that

6
S 10 a1, 02) (K, §) = 0, (3.82)
=1
and
4
> 1 (a, a1, a2) i (k, @) =0, (3.83)

separately. Because Fz%i), = 0, Eq. (3.83) is satisfied automatically. For the (13) terms, we

5This follows from the fact that the spurious divergences with the same dependence on k must cancel
separately.

17



must evaluate
6 — — —
ZTZ-(B)(CL, ar, ag)Fi(’tS\),(k;, Q) = 212K (a, a1, a3)G(a, a2)< — G%(ag, ay) — GS(az,ay)  (3.84)
i=1

+ G (ay, a1) + G2 (as, al))

which is equal to zero as one can verify with the explicit expressions for the Green’s functions
Eq. (A.10) - Eq. (A.13). Now, we add and subtract Eq. (3.82) from p;_jo0p in a completely
analogous way to last section. Here we will skip the details and present the final expression,

which is the same as the expression for P{¥=3 in Eq. (3.66), except with the replacement

Fitinste (B ) = Fiiovesase (k. @) = B (8, @) = Fig (8, @) On(k —q) = FR (F, @) Ol —k)

(3.85)
where we have multiplied Fz(g)\), by the step function Oy (g — k) so that this term does not
change the IR. With this replacement, the fact that Eq. (3.84) is equal to zero ensures that we
have simply added and subtracted zero from the integrand p;_jo0p, so that the final integral is
not changed. However, the new integrand has the advantage that both the UV and IR parts
which must cancel in the final expression for the one-loop power spectrum, are absent at the
level of the integrand. Explicitly, the formulae for the IR&UV-safe integrand are

d3 a az —
Piteoy " (a, k) = /#/0 daz/o day (pg&UV_S&fe(aaalaaz;ka@

+ ng{&UV-S&fe<a7 ai, az; Ea @) ) (386)

where
6
p%i&UV—safem’ ai, az; k’ (7) = Z 7}(13) (CL, ai, a’2) ‘F;(,;}?{)(gzUV—safe(k7 CT) ) (387)
i=1
pg;n&UV—safem’ a1, Qg; E7 q_j = pg;_safe(aa ai, G2; ];7 @ 9 (388>

where F;E%li{ﬁcUV—safe(E7 ) is given in Eq. (3.85).

Now that we have completed our construction of the IR&UV-safe integrand at one loop,
let us briefly comment on how the procedure would generalize to higher loops. As explained
before, it is quite possible that it will be sufficient for comparison to data to evaluate just
the one-loop terms with exact time dependence; higher loop contributions, which are smaller
than the one-loop contributions, can then be computed with the EdS approximation without
losing a relevant amount of precision on the overall result. However, it is conceivable that one
would like to check the difference between exact time dependence and the EAS approximation
at two loops, or, for example, that one would like to compute the two-loop power spectrum in
clustering quintessence for which there is no analogue of the EAS approximation. The exact
time dependence two-loop computation will be complicated by two main factors: there are
more nested time integrals with various time orderings of Green’s functions (this creates many
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more independent diagrams), and there is an additional internal momenta which creates a

more complicated region in the integration variables where IR and UV divergences occur.®

4 Results

In this section, we present the results of our computation, which we do for clustering quintessence
at z = 0 (described in more detail in [33]) and use the cosmological parameters 2,, o = 0.27,
Qpo=0.73, Hy = 7T1km/s/Mpc, Ag =242 x 107% n, = 0.963, and w = —0.9. In order to
implement the numerical computation, we compute each of the following terms separately

d*q 13 2
/ (27.‘_)3 ‘Fi(,IR)&UV—safe(kv (7) (41)
d*q (22) 7 (22) —
(2m)3 (Fz‘,IR&UV-safe(ka Q) + Fi ke uv-sate (K; —CD) (4.2)

/ dag/ da; T (a, a1, as) | (4.3)
0 0

multiply them together, and add the results for each k. The principle advantage of our
approach is that each of the integrands of the momentum integrals is manifestly IR&UV-safe,
with both the k?/¢* and the k/q divergences being canceled in the IR, and the k°P;; (k) term
canceled in the UV. This means that at every step of the computation, we are adding numbers
which are of the order of the final result, rather than relying on large numerical cancellations

6Let us highlight a possible procedure. Regarding the Green’s functions, one should first write all of the
time integrals in a way that all of the diagrams have the same limits of integration of the time variables,
as in Eq. (3.3) and Eq. (3.4): this allows one to concentrate on the momentum dependent functions. Then,
as we commented in Footnote 4, one could subtract all of the IR and UV divergences individually from the
momentum dependent pieces (i.e. without mapping all of the divergences to the same point). Because the
divergences are subtracted from different parts of the integration region, it will be more difficult to explicitly
check that the divergences cancel, but of course, we know that they must because of diffeomorphism invariance
(for the IR contributions) or momentum conservation (for the UV contributions). In any case, one could still
do the explicit check. A similar strategy will also help in tackling this problem for computations of the
bispectrum or higher-point functions with exact time dependence. We leave a full exploration of this topic to
future work.
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between terms.” To see this, in Figure 1 we compare the following quantities

d3

Pt (o) = [0 o [T a4
PIR&UV-safe 1.y / / d(lg/ day pR&eUV=sate g ahaZ;E,q‘) , (4.5)
Pis(a, k) / / daz/ day pi3(a al,az,k%@ ) (4.6)

PQQ(CL ]C / / d(lz/ da1 p22 a al,aQ, q_) (47)

From Figure 1, it is clear that computing P;_j,0p without the IR&UV-safe integrand involves a
large cancellation: |Pag| = |Pi3| > |Pi—100p|- However, when using the IR&UV-safe integrand,
no cancellation is involved in the computation. The goal of using IR&UV-safe integrands is

to have |PjR&eUV=safe| ~ | pIR&UV-safe| ~

| P1_100p| SO that the same numerical precision that is
desired in the end can be used to compute the separate terms. In fact, the situation here is
even better: for low k, |PIR€UV=ale| o~ | Py ] and |PIREUV=sale] <« | Py ], while for higher
k the contributions switch so that |PIRCUV=sale| o~ | P || | and | PIREUV=safe] 1Py ] We
remind the reader that if an individual contribution is much [less than the final result, then

one can in principle use even less numerical precision to compute that contribution.

Then, in Figures 2, 3 and 4, we compare the various ways of computing P;_jo0p: using the

: ; : IR-safe ; IR&UV-safe
standard P1-jo0p without any IR or UV subtractions, using P08, and using P70

order to see how sensitive these three methods of computation are to the precise evaluation of

. In

the time dependent coefficients, we also plot the above three computations after changing the
value of one of the time dependent coefficients, T by 1%. In this one-loop computation, we
find that overall it is more important to use the UV-safe integrand than the IR-safe integrand:
when changing Tl(l?’) by 1%, the curves which are not UV-safe are wrong by more than a factor
of 5 at low k, and are wrong by between 10% and 70% at higher k, while the curve which
uses IR&UV-safety is wrong by a few percent both at low k& and high & (this is the expected
change since we changed one of the terms by 1%).® In particular, Figure 4 shows that the
difference between using only the IR-safe integrand P{%53 and using the unimproved Py_jop
is between 2% and 7%, which is still non-negligibly boosted from the expected one percent.
As discussed above, this sensitivity arises because each contribution to Pi_jep(a, k), Pis(a, k)
and Pyo(a, k), are themselves a sum of terms which are products of a time integral and a
momentum integral. We showed that the cancellation of IR and UV divergences involves
many of these terms, which generically have different time dependences, together. Thus, only
with very large precision of the time integrals are the IR and UV divergences guaranteed to

"As we mentioned, subleading UV-divergences can be removed in a similar way to what we do here, as
already implemented in [22].

80f course, the sensitivity to using or not using UV-safety depends explicitly on the UV cutoff of the loop
integrals, which we take to be Ayy = 10 hMpc~™!. On the other hand, because of the natural IR cutoff due
to the matter-radiation equality scale near keq ~ 0.01 hMpc™!, the sensitivity to using or not using IR-safety
should be essentially independent of the IR cutoff A used in the loop integrals, as long as Ajr < Keq.
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Figure 1: Here, we compare the various contributions to Pj_jsep in clustering quintessence, both with and
without the IR&UV-safe integrand. The solid curves use the IR&UV-safe integrand, and the dot-dashed
curves use the standard p;3 and pas integrands without any modifications. The blue curves are the (13) power
spectra, the red curves are the (22) power spectra, and the black curves are the total one-loop contributions.
One can see that for the individual contributions, |P,JR&UV-s3fe| < |Pys| and |PSR&UV=safe| « | Py, but that
the total contributions are essentially the same (they are indistinguishable in this plot, both contained in
the black curve, see Figure 2 for details). Thus, one can compute the IR&UV-safe integrals with much less
numerical precision than the corresponding non-IR&UV-safe integrals.

cancel; even a small numerical error for the time dependent coefficients can produce a large
overall error, simply because the individual IR and UV contributions are large. None of this
is an issue if the IR&UV-safe integrands are used. Although the effect of not using IR-safety
is sizable but not very large in the one-loop computation that we present here, it is expected
that the spurious IR parts of the loop integrals will be much more of a nuisance in a two-loop
or higher order calculation, where the time- and momentum- integrals are more complex.
A similar consideration applies to the UV divergencies, as loops become more divergent at
higher order.

Finally, in Figure 5 we explicitly show the large cancellation between terms in Pz that
must happen in the UV by looking at the contribution T} 1(13)F1(13) in particular. We see
that the TR&UV-safe integrand is much smaller than the integrand with only IR-safety
(Fl(,llig&UV-safe / Fl(,ll?l):g-safe ~ 0.005 at k& = 0.05 hMpc™!), and that T} 1(13)F1(71§3&Uv_wfe is much closer
to the final answer pfﬂ%}év'safe than the integrand without UV safety. This means that without
using the UV-safe integrands, individual terms in P;5 must cancel to the level 5 x 1072, and so
th&ginal answer is very sensitive to the precision with which the time dependent coefficients
T,

»") are determined. This means that we can greatly speed up numerical computation time

by using the UV&IR-safe integrands (which are expected to help even more in a two-loop or
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Figure 2: In this figure, we show the effect of imprecisely computing the integrals of the time-dependent factors
Ti(a). In particular, for illustration, we have changed one of the time dependent coefficients, Tl(ls), by 1%.
This plot contains six curves. The black solid curve is Pln_{i%gg/ -safe the black dot-dashed curve is Plllj‘i(iif;, the
black dashed curve is Pi_jo0p. Since these curves appear as the single solid curve (they are indistinguishable
in this plot), we deduce that the numerical integration of the time coefficients is done sufficiently. All of the
green curves have T 1(13) changed by 1%: the dashed curve is P}Efgg}}’ safe the dot-dashed is Pllgif)%f;, and the
dotted is Pi_i00p (they are indicated in the legend as “with AT1(13)”). We can see that of the curves with an
incorrect T1(13), Pllﬁigifg and Pj_jeop (Which both appear as the dot-dashed curve because they are overlaid)
are greatly affected at low k, while PIR{ZUV=2 is essentially unchanged (see Figure 3 for more details). This
shows that in this computation, using the UV-safe integrand is the most important, although we expect

spurious IR effects to be more of a nuisance in a two-loop or higher order computation.

higher order computation), where these problems are not present.

5 Precision comparison

In this section, we compare the two-loop power spectrum for dark matter in the EFTofLL.SS
at z = 0 to the Dark Sky N-body simulation [48], in a ACDM cosmology with cosmological
parameters €2, 0 = 0.295, Qparyon = 0.0468, Qp o = 0.705, h = 0.688, ny = 0.9676, and oy =
0.835.2 This precision comparison was originally done in [22] using the EdS approximation
for all time dependence in the power spectrum (i.e. for linear, one-loop, and two-loop terms).

Yhttp://darksky.slac.stanford.edu/
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Figure 3: This figure shows the same information as Figure 2, but in more detail, and the labeling of the
curves is exactly the same as in Figure 2 (legends are provided on the right-hand side of each row). In this

plot, we divide the various methods of computation by PE{%SQ/ -safe (with the numerical coefficients computed

correctly) to study in more detail the size of the various effects (this also explains why we do not plot

between k = 0.07 hMpc~! and k = 0.1 AMpc~!, where Plﬂj‘l%gg'safe — 0 and causes the curves to blow up).
Computations for which we have changed T1(13) by 1% are indicated in the legend as “with AT1(13).” From
the top two plots, we see that the effect of changing T1(13) by 1% in PF_“I%EI;/ -safe (the green dashed curve in

the top plots) is a few percent. However, in the lower two plots, we see that the effect of changing T1(13) by
1% in Plﬂj‘izi% and Pj_jeop (respectively the green dot-dashed and green dotted curves in the lower plots) is
much more dramatic: larger than a factor of 5 for low k and between 10% and 70% at higher k. This shows
that in this computation, using the UV-safe integrand is most important, although we expect spurious IR
effects to be more of a nuisance in a two-loop or higher order computation.

In Figure 6, we provide the same computation done in [22], but we use the P{Fz5V=** with

exact time dependence (which we computed above), instead of the Pgpr.1100p With the EAS
approximation used in [22]. In other words, in Figure 6, all one-loop terms are computed using
the exact time dependence presented in this paper, but two-loop terms are computed using
the EAS approximation. We refer the reader to [22] for all the details of this computation. In
Figure 6, we see that the result is very similar to the one obtained in [22], but slightly better.
In Appendix B, we give details about the determination of the coupling constants used in
Figure 6. The values of the counterterm parameters are given as

kNL kNL kNL

2 2 4
2 ~ ~Y ~Y
cs(l) ~ 0.57 (Wpc_l) , C1 = —0.97 <Wpc_l) , C4 =X~ —6.6 <Wpc_l) . (51)
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Figure 4: The difference between using Pj_jo0p and PE}S%%, where T1(13) has been changed by 1% in each

expression, is about 1% at low k, and is between 2% and 7% at higher k, which is still non-negligibly boosted

from the expected one percent. As can be seen in Figure 3, both Pj_j50p and Plnj‘izif; (because they do not
use UV-safety) are very different from the more precise answer Pln_{‘l%gg’ -safe (hy more than a factor of 5 at
low k, and between 10% and 70% at higher k). Figure 4 isolates the effect of IR-safety, and shows that it is

between a 2% and 7% effect.
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Figure 5: In this figure, we show the the size of the UV terms that we removed from P;3 by looking at the
contribution from T1(13)F1(13) in particular. It is clear that the term without the UV-safe integrand is much
larger than the one with the UV-safe integrand. Without using the UV-safe integrand, a very large part of
7% (a, a4, a2)F1(,11?l)33-safe(E7 ) must be canceled by another term T\ (a, ay, ag)Fi(&i’g_safe(l_c’, q) for i # 1 in order
to get down to the final answer of pllpj‘%olgg'safe; this cancellation has to happen at the level of 5 x 10~2 around
k = 0.05 hMpc~!. Thus, if one does not use the UV-safe integrand, the final answer is much more sensitive

to the precision with which the integrals of the time dependent coefficients Tl-(lg) are determined.

6 Conclusion

Large-scale structure surveys may very well be the next leading sources of cosmological infor-
mation. Because most modes are concentrated on short scales, it is important to understand
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Figure 6: We present the precision comparison of the two-loop dark-matter power spectrum to the Dark Sky

N-body simulation. As an improvement to the computation done in [22], we use Plﬂf‘l%gg/ safe with exact

time dependence instead of the Pgpr.1-100p With the EAS approximation, which was used in [22]. That is, all
one-loop terms are computed using the exact time dependence presented in this paper, but two-loop terms
are computed using the EdS approximation. The results are very similar to the ones obtained in [22], but
slightly better.

large-scale structure observables in the mildly non-linear regime. In order to accomplish this,
the EFTofLLSS has been developed to systematically and controllably include the effects of
gravitational clustering in the UV on the mildly non-linear regime of interest. This approach
increases our understanding in two ways: first, it extends the maximum £ at which we under-
stand the theory, and second, for k < kyr, it allows us to compute observables to a very high
precision by including more and more loops. So far, most computations in the EFTofLL.SS have
used the so-called EdS approximation to solve for the time dependence of the loop contribu-
tions. Because this approximation was known to be accurate to less than 1%, and because
the aim of previous computations had been about 1% accuracy, the EdS approximation was
perfectly fine. However, since the ultimate goal of the EFTofLLSS is precision computation,
it is conceivable that less than 1% accuracy will be desirable in the future, in which case one
will be forced to use the exact time dependence routinely (at least on the lower order loops).
As an alternative to using the exact time dependence in ACDM, one could also improve the
EdS approximation by expanding the time dependence around EdS. Because EdS is such
a good approximation in ACDM, this should be a very quickly converging expansion, with
an expansion parameter of O(1/100) (we highlighted a procedure to do this in Footnote 3).
However, because the exact time dependence is not too complicated at one loop, and because
we are also interested in clustering quintessence in this work (for which there is no analogue
of the EdS approximation), we leave an exploration of this direction to future work.

There is a small technical challenge to using the exact time dependence, though. Because
the diagrams become more complicated, Pi3(a, k) and Py (a, k) are each a sum of terms which
are products of a function of momenta, Fi(o)(k,cf), and a function of times, TZ-(U)(

Each contribution is then separately integrated over d*q and das da;, and then the results

a,ai, az).
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are added together. In each Fi(g), there are both IR and UV divergent terms which must
ultimately cancel in the full equal-time one-loop expression (the IR cancellation is due to
the equivalence principle, the UV one to matter conservation), but inexact evaluation of the
time integrals can spoil this cancellation. Thus, one could be left with spurious numerical
contributions to the integrand of P;_jo0p. Said another way, one has to compute the numerical
time integrals (and of course also the momentum integrals, which have spurious divergencies
in different regions of the integration over d3q) to a very high precision to make sure that the
final result is not dominated by these spurious contributions as ¢/k — 0 and as k/q — 0.
This kind of problem would defeat the purpose of using the exact time dependence in the
first place.

However, since we know that these IR and UV terms must cancel in the final result, we
can re-write the standard integrands for the exact time-dependent diagrams P53 and Pss into
a form in which these IR and UV divergent terms never enter the numerical computation
at all: this is the IR&UV-safe integrand given by Eq. (3.86), Eq. (3.87) and Eq. (3.88).
Contrary to the previously supplied IR-safe integrand for the EAS approximation [5], for
which a single integrand could be used for the one-loop computation, the non-trivial time
dependence considered in this paper forces us to write each of the many contributions to
Py _1o0p in a manifestly IR&UV-safe way. We find that, in the one-loop computation presented
here, UV-safety is more important than [R-safety, although we expect the effects of spurious
IR terms to be much more of a nuisance for two-loop and higher order computations.

While doing this, we have extended the results of this paper to the adiabatic mode in the
dark matter plus clustering quintessence system by including the non-trivial time dependent
factor in the continuity equation, given by a function C(a) in the equations of motion (where
C(a) = 1 for ACDM). In that system, because it is in the limit of small speed of sound
(c2 — 0) of quintessence, there is really only one mode, the adiabatic mode 4. Because
the equivalence principle is not violated, the effects of the bulk velocity and the gradient of
the gravitational potential can be removed by a diffeomorphism. Thus, we recover that the
full equal-time power spectrum is free of IR divergences, and thus also establish that the
consistency conditions are satisfied.

Finally, we have presented an improved precision comparison of the two-loop dark-matter
power spectrum to the Big Sky N-body simulation. In order to make our computation more
precise, we have used P}E{fg}fy safe with exact time dependence instead of Pgpr.100p With the
EdS approximation that was used in [22]. We found that the results are very similar, although

there is indeed an improvement in the right direction.
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Appendices

A Reference formulae

In this appendix, we provide some relevant formulae from [33] for reference. To avoid clutter,
we have removed the “A” subscript from the adiabatic fields 64 and ©4, so that 0 and ©
refer to the adiabatic fields. The equations of motion for the adiabatic mode ¢; and ©j in
clustering quintessence are (ACDM is obtained by setting C'(a) = 1)

, 2 a3 d3 L Lo
a5 f+ W f+ // (h q2 (k’ —q1 —Q2)&(Q1,Q2)@§15§2 ) (A-l)
, _ 27r d? d3 - RN
00— [0 jﬁ (©r - 63) f* / / N ol G = 6)3(7. 6)9305
(A.2)

where fi(a) = a0,D+(a)/D+(a), a(qi, q2) and ({1, ¢>) are the standard dark-energy inter-
action vertices given in Eq. (3.31) and Eq. (3.32), and D, is the growing solution to the
second-order linear system for d; defined by Eq. (A.1) and Eq. (A.2). The non-trivial time
dependent factor in the clustering quintessence system is given by

Cla) = 1+ (14 w) 2D (i) . , (A.3)

Qmo \ao
where Qp ¢ is the quintessence energy-density fraction today, €1, is the dark-matter energy-
density fraction today, and w is the equation of state for dark energy. We can solve this
system with Green’s functions by expanding 6 = 6 + 6@ 4 §®) 4+ () +  (where § is
the one-loop counterterm contribution) and finding

5 — / di (G% a)s{" (a, k) + G3(a,a)S5" (@, 15)) , (A4)
0
o = /0 da(G?(a,a)an)(a, k) + GS(a,a)S5" (@, E)) : (A.5)

where GS, G5, GP, and GY are the Green’s functions for the system (G4 encodes the response of
§ to a perturbation to the continuity equation, G encodes the response of § to a perturbation
to the Euler equations, and similarly for ©), and the source terms Si(n) are the n-th order
expansion of the right-hand sides of Eq. (A.1) and Eq. (A.2) and are given explicitly in [33].
Using Eq. (A.4) and Eq. (A.5) in Eq. (A.1) and Eq. (A.2), we find that the four Green’s
functions are specified by the following equations

W - f+<a)G?(a> &) = )\ad(a — CNL) , (AG)
adGUd(a D _ 1,68 (a,a) - ﬁz; (Gg?(a,a) ~ Gi(a, a)) —(1-M\)sa—a), (A7)
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where A\, is

AM=1 and Xy =0,
o =1,2, and §(a — a) is the Dirac delta function. The retarded Green’s functions satisfy the
boundary conditions

G(a,a) =0 and GO(a,a) =0 for a>a, (A.8)
(1 — )‘cr)

a

Ao o
G(a,a) == and G9(a,a) = (A.9)
a
We can then construct the Green’s functions in the usual way using the linear solutions and
the Heaviside step function, Oy (a — @), and imposing the boundary conditions Eq. (A.8) and
Eq. (A.9). This gives

G¥(a, ) = awl o (dD d—a(&) D (a) - Jd(d) D(a)) Oula—a) (A.10)
63(0.0) = L (D,@D-@) - D@D ) Oula ) (A11)
GV(a.a) = f+<§>/3wa> (dDJa(a) ) D) dDJa(a))@H(a AT G
GO(a,d) = % (D+(d) 4D d—a(") - D_(a)dDd;;“)> Oula—a) , (A.13)

where W (a) is the Wronskian of D, and D_

CdAD_(@) .. dD,(a)
=—m W5

W(a) D_(a) . (A.14)

In addition, the counterterm is given by (see [33] for details)

k2 D+(CL> in

8N (a) = —(2m) & (a)—— in A15
£0) =~ (o) g 08 (A.15)

The expansion of the power spectrum is defined by
P(CZ, k) = Pn(a, ]f) —+ PQQ(CZ, k) -+ Plg(a, k) -+ Pf;(a, k) + e (A16)

where the various contributions are given by

(6 (@) (@)’ = Pua(a k) . (A17)
(07 ()02 (a)) = Ppa(a, k) | (A.18)
200 (a)0%) (a)) = Pra(a. k) | (A.19)
20 ()05 (@) = Pij(a.k) . (A.20)
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and (---) means that we have removed a factor of (27)36p(k + ¥') from the expectation
value. In particular, on the initial conditions, this means that (0}*d)" = P:. This leads to
the following expressions for the power spectrum contributions

Pri(a, k) = gj(( )) P, (A.21)
Pro(a. k) = 2 / (dig(axq, @gmw@%—@g&a)) pin_pin (A.22)

Pis(a, k) =4 (( )) P / (;l:;?’ (of(z?, k+ G kU (a) + B7(k k + 7, k)Voy(a)

+7(k, k + 7E>v31<a>> n, o (A23)

Pe(a, k) = —2(2r) & (a) kl%L ( g:&) Pr (A.24)

Because the counterterm Pfi is trivially IR safe, we will not consider it in this paper. The
momentum dependent functions in Eq. (A.22) and Eq. (A.23) are given as

ol (ky, Ky, ks) = o(ky — ko, ko)ovg (K, ko — ks) (A.25)
o (ky, kg, k) = o(ky — ko, ko) B(ks, ky — k) (A.26)
BY(Ky, ko, k3) = 2B(k1 — ka, ko) oy (K3, ks — k3) | (A.27)
B2(ky, ko, k3) = 2B(ky — Ky, ko) B(ks, ky — ks) (A.28)
VU (ky, ko, k3) = a(ka, k1 — ko) (ks, ky — k) | (A.29)
72(—»17 _)27 _)3) = Q(Ez, /;1 k'Q)B(k:% ];2 - ];3) ) (A-?’O)

where «, ag, and ( are the standard dark-energy interaction vertices given in Eq. (3.31) and
Eq. (3.32). The time dependent factors in Eq. (A.22) and Eq. (A.23) are given by

/ f* SG (a,d)da (A.31)
/ f* ;2 aggc (a,a)da (A.32)
and
U (a) = /0 1 %gg(a)a{(a, a)da . (A.33)
UO(a) = /0 1 ggﬁﬁigg(a)a?m, i)da (A.34)
V2.(a) = /0 1 éé?l)ligg?(a)ag(a, a)da (A.35)
Ve, () = /0 1 é}%ﬁé‘?g?(a)cg(a, 3)da (A.36)



B

Fitting details

In this appendix, we present the results of the fitting procedure used to determine the values

of the counterterm parameters used in the precision comparison in Section 5. Although we

refer the reader to [22] for details, we note that the curves from the determination of the

parameters are slightly better when using the exact time dependence PREUV-safe that we

loop

presented in this paper, as they have smaller oscillations.
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Figure 7: In this figure, we show the results of the fitting procedure used to determine the values of the
various counterterm parameters. These plots show the determined value of the counterterms ci(l), c1, and ¢4
as a function of the maximum k& used in the fit (called knyax). The shaded region is the 20 error region, and
any long dashed lines represent a 1o error region.
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