
1536-1276 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2017.2720169, IEEE
Transactions on Wireless Communications

Downlink Non-Orthogonal Multiple Access with
Limited Feedback

Xiaoyi (Leo) Liu, Student Member, IEEE, Hamid Jafarkhani, Fellow, IEEE

Abstract—In this paper, we analyze downlink non-orthogonal
multiple access (NOMA) networks with limited feedback. Our
goal is to derive appropriate transmission rates for rate adap-
tation and minimize outage probability of minimum rate for
the constant-rate data service, based on distributed channel
feedback information from receivers. We propose an efficient
quantizer with variable-length encoding that approaches the best
performance of the case where perfect channel state information
is available everywhere. We prove that in the typical application
with two receivers, the losses in the minimum rate and outage
probability decay at least exponentially with the minimum feed-
back rate. We analyze the diversity gain and provide a sufficient
condition for the quantizer to achieve the maximum diversity
order. For NOMA with K receivers where K > 2, we solve the
minimum rate maximization problem within an accuracy of ε

in time complexity of O
(
K log 1

ε

)
, then, we apply the previously

proposed quantizers for K = 2 to the case of K > 2. Numerical
simulations are presented to demonstrate the efficiency of our
proposed quantizers and the accuracy of the analytical results.

Keywords—NOMA, rate adaptation, outage probability, mini-
mum rate, limited feedback

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has received sig-
nificant attention recently for its superior spectral efficiency
[2]. It is a promising candidate for mobile communication
networks, and has been included in LTE Release 13 for the
scenario of two-user downlink transmission under the name
of multi-user superposition transmission [3]. The key idea of
NOMA is to multiplex multiple users with superposition cod-
ing at different power levels, and utilize successive interference
cancellation (SIC) at receivers with better channel conditions
[4]. Specifically, for NOMA with two receivers, the messages
to be sent are superposed with different power allocation
coefficients at the BS side. At the receivers’ side, the weaker
receiver decodes its intended message by treating the other’s as
noise, while the stronger receiver first decodes the message of
the weaker receiver, and then decodes its own by removing the
other message from the received signal. In this way, the weaker
receiver benefits from larger power, and the stronger receiver
is able to decode its own message with no interference. Hence,
the overall performance of NOMA is enhanced, compared with
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traditional orthogonal multiple access schemes. It is shown in
[5] that the rate region of NOMA is the same as the capacity
region of Gaussian broadcast channels with two receivers,
but with an additional constraint that the stronger receiver is
assigned less power than the weaker one.

There has been a lot of work on NOMA. In [2] and [5],
the authors evaluated the benefits of downlink NOMA from
the system and information theoretic perspectives, respectively.
The performance of NOMA with randomly deployed users
was investigated in [6]. A lot of effort has been put into the
power allocation design in NOMA. For example, the authors in
[7] and [8] analyzed the necessary conditions for NOMA with
two users to beat the performance of time-division-multiple-
access (TDMA), and derived closed-form expressions for the
expected data rates and outage probabilities. In [9], power
allocation based on proportional fairness scheduling was in-
vestigated for downlink NOMA. Transmit power minimization
subject to rate constraints was discussed in [10]. A joint
consideration of dynamic user clustering and power allocation
was studied in [11].

However, all the mentioned papers have assumed a perfect
knowledge of the distributed channel state information (CSI)
at the BS and all the geographically-distributed receivers,
which is difficult to realize in practice. Therefore, we consider
the limited feedback scenario wherein each receiver only
has access to its own local CSI, from the BS to itself, and
then broadcasts its feedback information to the BS and other
receivers [12]. Under such settings, interesting problems arise,
for example: How to design simple but efficient quantizers
for NOMA? What are the performance losses compared with
the full-CSI case? A user-selection scheme based on limited
feedback was studied in [13]. In [14], the authors derived
the outage probability of NOMA based on one-bit feedback
of channel quality from each receiver, and performed power
allocation to minimize the outage probability. Additionally, the
problems of transmit power minimization and user fairness
maximization based on statistical CSI subject to outage con-
straints were studied in [15]. In [16], the authors derived the
outage probability and sum rate with fixed power allocation
by assuming imperfect and statistical CSI. In [17], the authors
solved the sum rate maximization problem for downlink
NOMA networks using a minorization-maximization algo-
rithm in statistics. In [18], several antenna selection schemes
were proposed for the NOMA systems, and the user fairness
was evaluated using the Jain’s fairness index.

In this paper, we focus on the limited feedback design
for the typical scenario of downlink NOMA, where a BS
communicates with two receivers simultaneously [3]. Based
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on distributed feedback and in the interest of user fairness, we
wish to have the minimum rate of the receivers be as large as
possible. Like [19], we also use the minimum achieved rate
of all receivers as the performance measure, but moreover,
the main focus of our work is to design efficient quantizers
for downlink NOMA and analyze the achieved performance.
With this goal, to dynamically adjust the transmission rates
for better channel utilization, we propose a uniform quan-
tizer which assigns each value to its left boundary point
and employs variable-length encoding (VLE). Then, power
allocation is calculated based on the channel feedback. We
calculate the transmission rates that can be supported by the
current channel states, and analyze the rate loss compared
with the full-CSI scenario. The derived upper bound on rate
loss shows that it decreases at least exponentially with the
minimum of the feedback rates. The feedback rate in this paper
refers to the number of feedback bits each receiver sends for
each channel state. For the constant-rate service where the
target data rate needs to be supported and outage probabil-
ity is the main concern, we conversely propose a uniform
quantizer which quantizes each value to its right boundary
point.1 Through the developed upper bound, we show the
outage probability loss also decays at least exponentially with
the minimum of feedback rate. Additionally, we analyze the
achieved diversity gain and provide a sufficient condition
on the proposed quantizer in order to achieve the full-CSI
diversity order. For the general scenario with K receivers,
we solve the minimum rate maximization problem within an
accuracy of ε in time complexity of O

(
K log 1

ε

)
, and apply the

previously proposed quantizers for the two-user case here by
treating the quantized channels as the perfect ones. We perform
Monte Carlo numerical simulations to verify the superiority
of our proposed quantizers and the accuracy of the theoretical
analysis.

The primary goal of this paper is to study the impacts
of quantization on the performance of NOMA, and provide
meaningful insights for practical limited feedback design. To
summarize, the main contributions of this paper are three-fold:

(1) We propose efficient quantizers to maximize the mini-
mum rate in NOMA. The ideas of our proposed quan-
tizers and VLE as well as the designs for rate adaptation
and outage probability based on distributed feedback can
be generalized to many other scenarios, e.g., NOMA
with other performance measures, the more general
interference channels, and so on.

(2) Our theoretical analysis serves as a general framework to
analyze the performances of such quantizers in NOMA
and other scenarios. For instance, it can be easily applied
to study the performances of other power allocation
schemes in NOMA based on limited feedback, i.e., [7],
[8].

(3) We solve the minimum rate maximization problem for
any number of receivers with linear time complexity.

The remainder of this paper is organized as follows: In

1For example, in some real-time multimedia service applications, the
minimum data rate needs to be supported as often as possible, such that
the chance of service outage can be greatly reduced.

BS

Receiver 1

Receiver 2

Fig. 1: Downlink NOMA networks. The solid and dashed lines
represent the signal and feedback links, respectively.

Section II, we provide a brief description of the system model
and formulate the problem of limited feedback. In Sections
III and IV, we propose efficient quantizers for rate adaptation
and outage probability, and analyze the performance loss. We
extend our proposed quantizers to the general case with any
number of receivers in Section V. Numerical simulations are
provided in Section VI. We draw the main conclusions and
summarize future work in Section VII. Technical proofs are
presented in the appendices.

Notations: The sets of real and natural numbers are rep-
resented by R and N , respectively. For any x ∈ R , bxc is
the largest integer that is less than or equal to x, and dxe
is the smallest integer that is larger than or equal to x. Pr{·}
and E[·] represent the probability and expectation, respectively.
For a random variable (r.v.) X , fX (·) is its probability density
function (p.d.f.). CN(µ,λ ) represents a circularly symmetric
complex Gaussian r.v. with mean µ and variance λ . For a
logical statement ST, we let 111ST = 1 when ST is true, and
111ST = 0 otherwise. Finally, the expression X ∼Y Z means
0 < limY→∞

X
Z < ∞.

II. PROBLEM FORMULATION

A. System Model

Consider the downlink transmission in Fig. 1, where a BS
is to transmit a superposition of two symbols to two receivers
over the same resource block.2 Both BS and receivers are
equipped with only a single antenna. According to the mul-
tiuser superposition transmission scheme [3], the transmitted
signal is formed as

x =
√

P1s1 +
√

P2s2,

where si is the information bearing symbol for Receiver i
with E [si] = 0 and E

[
|si|2

]
= 1 for each channel state (the

expectation is over all transmitted symbols); Pi is the average
transmit power associated with si. Let P = P1+P2 be the total
transmit power, and α = P1

P be the power allocation coefficient,
then, P1 = αP and P2 = (1−α)P with 0≤ α ≤ 1.

Denote by hi ∼ CN(0,λi) the channel coefficient from the
BS to Receiver i. Without loss of generality, assume λ1 ≥ λ2.

2We assume the two receivers have been pre-selected for the NOMA
transmission based on user scheduling algorithms [2], [8]. In this paper,
we mainly focus on the physical-layer performance of NOMA with limited
feedback, and the study of user scheduling algorithms is beyond the scope of
this paper.
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The received signals at Receivers 1 and 2 are respectively
given by

y1 = h1
√

P1s1 +h1
√

P2s2 +n1, y2 = h2
√

P1s1 +h2
√

P2s2 +n2,

where ni ∼ CN(0,1) represents the background noise. Let

Hi = |hi|2, then, the p.d.f. of Hi is fHi(x) =
e
− x

λi
λi

for x > 0.3

We assume a quasi-static channel model, in which the channels
vary independently from one block to another, while remaining
constant within each block. Either receiver is assumed to per-
fectly estimate its local CSI (i.e., Hi), and send the associated
quantized local CSI to the other receiver and the BS in a
broadcast manner via error-free and delay-free feedback links
[20], [21]. In some scenario where the two receivers are far
away from each other such that they cannot “talk” directly, the
BS can play the role of relaying, i.e., forwarding the feedback
information received from one receiver to the other.

With SIC, the stronger receiver with better channel con-
dition (i.e., larger Hi) first decodes the message for the
weaker receiver, and then decodes its own after removing the
message of the weaker one from its received signal; the weaker
receiver with poorer channel condition directly decodes its
own message by treating the message of the stronger one
as noise [9], [22]. Specifically, when H1 ≥ H2, the rate for
Receiver 2 (i.e., the weaker one) to decode s2 by treating s1
as noise is

r2(α) = log2

(
1+

PH2(1−α)

αH2P+1

)
,

which is not larger than the rate for Receiver 1 to decode
s2, given as r1→2 = log2

(
1+ PH1(1−α)

αH1P+1

)
. If s2 is transmitted

at the rate of r2(α), Receiver 1 can decode s2 successfully
with an arbitrarily small probability of error [23]. Afterwards,
Receiver 1 can remove h1

√
P2s2 from y1, and achieve a data

rate for s1 as

r1(α) = log2 (1+αPH1) .

On the other hand, when H1 < H2, Receiver 2 first decodes s1,
removes h2

√
P1s1 from y2, and then decodes s2, while Receiver

1 decodes s1 directly by treating s2 as noise.

B. Maximum Minimum Rate

Our goal is to maximize the minimum of r1(α) and r2(α)
to ensure fairness between receivers [12], [24]. When perfect
CSI is available at the BS and receivers, the optimal power
allocation coefficient α? can be found by solving the optimiza-
tion problem rmax = max

0≤α≤1
min{r1(α),r2(α)}, the solution of

which is given in the following theorem.

Theorem 1. When H1 ≥ H2, the solution of
max

0≤α≤1
min{r1(α),r2(α)} is given by

α
? =

2H2√
(H1 +H2)

2 +4H1H2
2 P+(H1 +H2)

. (1)

3The results in this paper can be trivially generalized to other distributions
of H1 and H2.

Proof: Notice that with α increasing from 0 to 1, r1(α)
increases from 0 to log2 (1+PH1) and r2(α) decreases from
log2 (1+PH2) to 0. Since log2 (1+PH1)≥ log2 (1+PH2), the
maximum minimum rate is reached when r1(α

?) = r2(α
?),

from which α? in (1) is derived.
The expression of α? when H1 < H2 can be obtained

straightforwardly. It is found from (1) that: (i) Both messages
attain the same rate at optimality, i.e., r1 (α

?) = r2 (α
?) = rmax.

Moreover, it can be verified that the rate pair (r1 (α
?) ,r2 (α

?))
is on the rate region boundaries of both NOMA and Gaussian
broadcast channels with two receivers [5]. (ii) When P→ 0,
α?→ H2

H1+H2
, in which case the power assigned to the stronger

receiver is in proportion to the channel quality of the weaker
one; when P→∞, α?→ 0, then, BS should allocate almost all
the power to the weaker one. 4 (iii) α? ≥ 1

2 . Generally, NOMA
steers more power towards the weaker receiver to balance their
transmissions.

With perfect CSI, the decoding order is determined based
on whether H1 ≥ H2 holds. The maximum minimum rate is

rmax =


log2

(
1+ 2H1H2P√

(H1+H2)
2+4H1H2

2 P+(H1+H2)

)
, H1 ≥ H2,

log2

(
1+ 2H1H2P√

(H1+H2)
2+4H2

1 H2P+(H1+H2)

)
, H1 < H2,

(2)

and the outage probability of minimum rate is

outmin = Pr{rmax < rth} , (3)

where rth is the data rate at which the BS will transmit s1 and
s2 for every channel state.

C. Limited Feedback

In the limited-feedback scenario, for an arbitrary quantizer
q : R → R , Receiver i maps Hi to q(Hi), and feeds the
index of q(Hi) back to the BS and the other receiver, as
shown in Fig.1. The index of q(Hi) is decoded and the
value of q(Hi) is recovered. The decoding order will be
contingent on whether q(H1) ≥ q(H2). For instance, when
q(H1) ≥ q(H2), Receiver 1 is considered “stronger”, while
Receiver 2 is “weaker”. In this case, the power allocation
coefficient is computed based on (1) by treating q(Hi) as Hi,
i.e., αq =

2q(H2)√
(q(H1)+q(H2))

2+4q(H1)q2(H2)P+q(H1)+q(H2)
.

For rate adaptation, we shall design appropriate rates r1,q
and r2,q for the messages s1 and s2 based on limited feedback
from the two receivers, such that r1,q and r2,q can be supported
and NOMA can be performed. The corresponding rate loss
will be

rloss = rmax−min
{

r1,q,r2,q
}
,

where rmax is given in (2).
For a constant-rate service, we care more about whether

the current channels are strong enough to support target data

4Note that r1(α
?) = r2(α

?) holds for any P. When P → ∞, α? → 0,

and r1(α
?) = r2(α

?) = log2

(
1+ 2PH1H2√

(H1+H2)
2+4H1H2

2 P+(H1+H2)

)
will approach

infinity.
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Fig. 2: A uniform quantizer for minimum rate.

rate with the power allocation coefficient computed based on
limited feedback. The achieved outage probability is outq =
Pr
{

rq < rth
}

, where

rq = min
{

r1 (αq) ,r2 (αq)
}

=



min
{

log2 (1+P×αq×H1) , log2

(
1+

PH2(1−αq)
PH2αq+1

)}
,

q(H1)≥ q(H2),

min
{

log2

(
1+

PH1(1−αq)
PH1αq+1

)
, log2 (1+P×αq×H2)

}
,

q(H1)< q(H2),

The outage probability loss is given as

outloss,q = outq−outmin, (4)

where outmin is given in (3). In the subsequent sections, we
will propose efficient quantizers and investigate the perfor-
mance losses brought by limited feedback.

III. LIMITED FEEDBACK FOR MINIMUM RATE

In this section, we first describe the proposed quantizer
when the minimum rate is the concern, then, we show the
relationship between the rate loss and the feedback rates.

A. Proposed Quantizer

We consider a uniform quantizer qr : R → R , given by5

qr(x) =
{⌊ x

∆

⌋
×∆, x≤ T ∆,

T ∆, x > T ∆,

where x can be any non-negative real number, and the bin size
∆ and the maximum number of bins T ∈ N are adjustable
parameters. As shown in Fig. 2, qr(x) quantizes x to the left
boundary of the interval where x is. For any x ∈ [n∆,(n+1)∆)
when 0≤ n≤ T−1, we have qr(x) = n∆ and x−∆≤ qr(x)≤ x;
for any x ∈ [T ∆,∞), qr(x) = T ∆ and qr(x)≤ x.

B. Rate Adaptation and Loss

When qr (·) is employed, Receiver 2 is viewed as the “weak”
receiver if qr (H1)≥ qr (H2). Then, according to (1), the power
allocation coefficient αqr is calculated as

αqr =


2qr(H2)√

[qr(H1)+qr(H2)]
2+4qr(H1)q2

r (H2)P+[qr(H1)+qr(H2)]
,

qr (H1)> 0,qr (H2)> 0,
0, qr (H1) = 0 or qr (H2) = 0,

which satisfies log2 (1+P×αqr ×qr (H1)) =

log2

(
1+

qr(H2)×(1−αqr)
αqr×qr(H2)+

1
P

)
when αqr 6= 0. To exploit the

5In qr , “q” stands for quantizer, and the subscript “r” represents rate.

channels as much as possible, we let the BS send messages
s1 and s2 at rates of

r1,qr = log2 (1+P×αqr ×qr (H1)) ,

r2,qr = log2

(
1+

P×qr(H2)(1−αqr)
P×qr(H2)αqr+1

)
.

(5)

Lemma 1. When qr (H1)≥ qr (H2), the rates r1,qr and r2,qr in
(5) can be achieved.

Proof: Based on the channel coding theorem [23], if we
can show the channel capacities for s1 and s2 under the settings
of NOMA are no smaller than r1,qr and r2,qr , the rates r1,qr

and r2,qr can be achieved with a probability of error that can
be made arbitrarily small.

When qr (H1) = 0 or qr (H2) = 0, it is trivial to verify that
r1,qr and r2,qr can be supported. When qr (H1)≥ qr (H2)> 0,
the channel capacity for Receiver 2 by treating s1 as noise

is r2 = log2

(
1+ H2(1−αqr )

αqr×H2+
1
P

)
≥ log2

(
1+ qr(H2)×(1−αqr )

αqr×qr(H2)+
1
P

)
=

r2,qr , since log2

(
1+ x(1−α)

xα+ 1
P

)
is an increasing function

of x and qr(H2) ≤ H2. At the side of Receiver 1,
the channel capacity of s2 with treating s1 as noise is

r1→2 = log2

(
1+ H1(1−αqr )

αqr×H1+
1
P

)
≥ log2

(
1+ qr(H1)×(1−αqr )

αqr×qr(H1)+
1
P

)
≥

log2

(
1+ qr(H2)×(1−αqr )

αqr×qr(H2)+
1
P

)
= r2,qr , because H1 ≥ qr(H1) ≥

qr(H2). Hence, s2 can be decoded at Receiver 1 with an
arbitrarily small error and removed from y1. After that,
the channel capacity of s1 is r1 = log2 (1+P×αqr ×H1) ≥
log2 (1+P×αqr ×qr (H1)) = r1,qr . Therefore, the rates r1,qr

and r2,qr can be achieved for both s1 and s2.
To sum up, it is the key fact of qr(x) ≥ x that ensures the

rates r1,qr and r2,qr in (5) can be supported. When qr(H1) ≥
qr(H2), the rate loss is

rloss = rmax−min{r1,qr ,r2,qr}.

Lemma 2. The average rate loss of the quantizer qr(·) is
upper-bounded by:

E [rloss]≤ log2

(
1+C0×P×max

{
e
− T ∆

λ1 ,∆

})
, (6)

where C0 is a positive constant that is independent of P,T and
∆.

Proof: See Appendix A.
We mainly focus on showing how the average rate loss

changes with the bin size ∆. It is beyond the scope of this
paper to find the tightest bounds, i.e., the smallest value for
C0. A value for C0 which is derived from the proof in Appendix
A is C0 = max

{
4+ λ1

λ2
,λ2

}
.

It is observed from (6) that when e
− T ∆

λ1 > ∆, the maximum
number of bins, T , can degrade the rate. To eliminate this

effect, we choose T such that e
− T ∆

λ1 = ∆, which yields T =
λ1
∆

log 1
∆

.6 With an appropriate value for T , we can make the
rate loss decrease at least linearly with ∆.

6Approaching the performance in the full-CSI case generally requires a
small value for ∆. We mainly consider the case where ∆≤ 1 in this paper.
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Corollary 1. When T = λ1
∆

log 1
∆

, the average rate loss of the
quantizer qr(·) is upper-bounded by:

E [rloss]≤ log2 (1+C0×P×∆)≤C1×P×∆, (7)

where C0 and C1 are positive constants that are independent
of P and ∆.

C. Feedback Rate

Rather than the naive fixed-length encoding (FLE) for
feedback information which requires dlog2(T + 1)e bits per
receiver per channel state, we consider the more efficient
variable-length encoding (VLE) [21], [25].7 An example of
VLE that can be applied here is b0 = {0}, b1 = {1}, b2 = {00},
b3 = {01} and so on, sequentially for all codewords in the set
{0,1,00,01,10,11, . . .}, where bn is the binary string to be fed
back when qr(x) = n∆. The length of bn is blog2(n+2)c. The
following theorem derives an upper bound on the rate loss
with respect to the feedback rate of Receiver i (denoted by
Rr,VLE,i).

Theorem 2. When variable-length encoding is applied to the
quantizer qr(·), the rate loss decays at least exponentially as:

E [rloss]≤ log2

(
1+C2×P×2−min{Rr,VLE,1,Rr,VLE,2}

)
≤C3×P×2−min{Rr,VLE,1,Rr,VLE,2}, (8)

where C2 and C3 are positive constants independent of P and
Rr,VLE,i.

Proof: The feedback rate of Receiver i is derived as

Rr,VLE,i =
T−1

∑
n=0
blog2(n+2)c

∫ (n+1)∆

n∆

fHi(Hi)dHi

+ blog2(T +2)c
∫

∞

T ∆

fHi(Hi)dHi

≤
∞

∑
n=0
blog2(n+2)c

∫ (n+1)∆

n∆

fHi(Hi)dHi

≤
∞

∑
n=0

log2(n+2)︸ ︷︷ ︸
≤log2(n+1)+1

∫ (n+1)∆

n∆

e
−Hi

λi

λi
dHi

≤
∞

∑
n=0

e
− n∆

λi

(
1− e

− ∆

λi

)
× log2(n+1)

+
∞

∑
n=0

1×
∫ (n+1)∆

n∆

e
−Hi

λi

λi
dHi︸ ︷︷ ︸

=1

= 1+
(

1− e
− ∆

λi

)
∞

∑
n=0

e
− n∆

λi × log2(n+1)

≤ 1+
∆

λi

∞

∑
n=0

e
− n∆

λi × log2(n+1).

7For example, when ∆= 0.01 and λ1 = 1, T = λ1
∆

log 1
∆
≈ 460.5. When FLE

is adopted, the feedback rate per receiver will be dlog2(T +1)e = 9 bits per
channel state. As shown by the theoretical analysis and numerical simulations
later, VLE will cost far fewer bits.

Fig. 3: A uniform quantizer for outage probability.

With the help of [21, Eq.(22)]: ∑
∞
n=1 e−βn log(n) ≤

e−β

β

[
2+ log

(
1+ 1

β

)]
, by letting β = e

− ∆

λi , we have

∞

∑
n=0

e
− n∆

λi × log2(n+1) =
∞

∑
n=1

e
− n∆

λi × log2(n+1)

=
e

∆

λi

log2

∞

∑
n=2

e
− n∆

λi × log(n)≤ 1
∆

λi

[
2

log2
+ log2

(
1+

1
∆

λi

)]
.

Then, Rr,VLE,i is upper-bounded by8

Rr,VLE,i ≤
2

log2
+1+ log2

(
1+

1
∆

λi

)
, (9)

or equivalently (when Rr,VLE,i is sufficiently large),

∆≤ λi

2Rr,VLE,i−1− 2
log2 −1

≤ λi

2Rr,VLE,i−2− 2
log2

=C4×2−Rr,VLE,i .

(10)

Substituting (10) into (7) proves the theorem.
Therefore, we can see that appropriate values for T and

the use of VLE enable the rate loss to decrease at least
exponentially with the feedback rate.

IV. LIMITED FEEDBACK FOR OUTAGE PROBABILITY

Outage probability is an important performance metric that
evaluates the chance that the channels are not strong enough to
support the constant-rate data service [26]. An ideal quantizer
for outage probability should have at least the following
properties: (i) The outage probability loss should decrease
toward zero when the feedback rate increases toward infinity.
(ii) The outage probability loss should approach zero whenever
P→ 0 or P→∞. The intuition of (ii) comes from the fact that
when P is adequately small, the outage probabilities of both
the full-CSI case and the quantizer should be close to one;
when P is significantly large, both outage probabilities should
be almost zero. Then, the outage probability losses in both
scenarios go to zero.

A. Proposed Quantizer

As portrayed in Fig. 3, the uniform quantizer proposed for
outage probability is given by

qo(x) =
{⌈ x

∆

⌉
×∆, x≤ T ∆,

(T +1)∆, x > T ∆.
(11)

The only difference between qo(·) and qr(·) lies in whether
the left or right boundary of the interval is used as the re-
construction point. The quantizer proposed for rate adaptation

8Although it is intractable to derive a closed-form expression for Rr,VLE,i,
the upper bound in (9) provides a good estimate on how many feedback bits
will be consumed.
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cannot be directly inherited because when the channel is
very weak (i.e., Hi < ∆), it will be quantized as zero (i.e.,
qr(Hi) = 0), which will result in a zero-value power allocation
coefficient, i.e.,αqr = 0, and a minimum rate of zero, i.e.,
r1 (αqr) = 0 or r2 (αqr). In this case, the transmission will
surely encounter an outage. However, even a weak channel
reserves the possibility of non-outage, so long as the transmit
power P is large enough. Therefore, an appropriate quantizer
for outage probability should not quantize any value to zero.
The quantizer in (11) fulfills this requirement.

B. Outage Probability Loss
Lemma 3. The outage probability loss of the quantizer qo(·)
is upper-bounded by:

outloss,qo ≤C5× e−
C6
P × 1+

√
P

P
×max

{
∆

1
2 ,∆

3
2 ,e
− T ∆

λ1

}
,

(12)

where C5 and C6 are positive constants that are independent
of P and ∆.

Proof: See Appendix B.
Different from the rate loss which increases linearly in terms

of P, because of the term e−
C6
P × 1+

√
P

P , the upper bound on
outloss,qo in (12) converges to zero either when P→ 0 or P→
∞.

To have good performance, we mainly focus on the quantiz-
ers with small granularities. When ∆≤ 1, we have ∆

3
2 ≤ ∆

1
2 ,

and the upper bound in (12) is restricted by max
{

e
− T ∆

λ1 ,∆
1
2

}
.

For fixed ∆, the optimal choice for T should satisfy e
− T ∆

λ1 =∆
1
2 ,

given by T = λ1
2∆

log 1
∆

.

Corollary 2. When 0 < ∆≤ 1 and T = λ1
2∆

log 1
∆

, the average
rate loss of the quantizer qo(·) is upper-bounded by:

outloss,qo ≤C5× e−
C6
P × 1+

√
P

P
×∆

1
2 , (13)

where C5 and C6 are positive constants independent of P and
∆.

C. Feedback Rate
The same VLQ for rate adaptation can be applied to

qo(·) for a better utilization of the feedback resource. From

(9) and (10), we obtain Ro,VLE,i ≤ 2
log2 + 1+ log2

(
1+ 1

∆

λi

)
and ∆ ≤ C4× 2−Ro,VLE,i . Thus, ∆

1
2 ≤

√
C4×2−Ro,VLE,i = C7×

2−
Ro,VLE,i

2 ≤C7×2−
min{Ro,VLE,1 ,Ro,VLE,2}

2 . The following theorem
states the relationship between the outage probability loss of
qo(·) and the feedback rates.

Theorem 3. When variable-length encoding is applied to the
quantizer qo(·), the rate loss decays at least exponentially as:

outloss,qo ≤C8× e−
C6
P × 1+

√
P

P
×2−

min{Ro,VLE,1,Ro,VLE,2}
2 ,

(14)

where C6 and C8 are positive constants independent of P and
Ro,VLE,i.

D. Diversity Order

With an outage probability out, the achieved diversity order
is given as d = limP→∞

logout
logP [26, Section 2.3]. The following

lemma shows the achievable diversity order of qo(·) and a
sufficient condition to achieve the maximum diversity order
in the full-CSI scenario.

Lemma 4. (1) With qo(·) and fixed ∆, the diversity orders
of 1

2 and 1 are achievable for Receivers 1 and 2,
respectively.

(2) A sufficient condition for both receivers to achieve the
maximum diversity order of 1 is ∆∼P P−

1
3 .

Proof: See Appendix C.
In the full-CSI case, both receivers can achieve the same

diversity order of 1 as in the case when no interference exists.
In the limited feedback case, it can be found from the proofs in
Appendices B and C that the cause of this insufficient diversity
order for Receiver 1 comes from the marginal region when
0 < H1,H2 ≤ ∆. Therefore, an adequately small ∆ that scales
at least in proportion to P−

1
3 in the high-P region is desired

to diminish the probability that Hi falls into that region so as
to obtain the maximum diversity gain.

V. EXTENSION TO MORE THAN TWO RECEIVERS

A. Full-CSI Performance

In this section, we consider NOMA with more than two
downlink receivers. Assuming perfect CSI universally avail-
able and H1 ≥ H2 ≥ ·· · ≥ HK , the maximum minimum rate
can be obtained by solving the optimization problem:

rmax = max
ααα=[α1,...,αK ]

min
k=1,...,K

rk(ααα),

subject to 0≤ αk ≤ 1,
K

∑
k=1

αk = 1, (15)

where K is the number of receivers, and rk(ααα) =

log2

(
1+ αk

∑
k−1
i=1 αi+

1
PHk

)
is the achieved rate for Receiver k

under superposition coding and SIC. To the best of our
knowledge, no closed-form solution for rmax is available in the
literature. We present the following lemma that helps solving
the above optimization problem numerically.

Lemma 5. There exists ααα? = [α?
1 ,α

?
2 , . . . ,α

?
K ], such that all

receivers achieve the same rate at optimality, i.e., rmax =
r1 (ααα

?) = r2 (ααα
?) = · · ·= rK (ααα?).

The proof of Lemma 5 is given in Appendix D. Since rmax =

rk (ααα
?) = log2

(
1+ α?

k

∑
k−1
i=1 α?

i +
1

PHk

)
for k = 1, . . . ,K, we have

α?
k = (2rmax −1)×

(
∑

k−1
i=1 α?

i +
1

PHk

)
, which leads to9

α
?
k = (2rmax −1)

[
1

PHk
+(2rmax −1)

k−1

∑
i=1

2(k−1−i)rmax

PHi

]
. (16)

9Note that [19] also derives (16), but using the tools of convex optimization.
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To find α?
k , we need to solve for rmax first. Summing both sides

from k = 1, . . . ,K and after trivial calculations, we obtain

K

∑
k=1

α
?
k = 1 = (2rmax −1)

K

∑
i=1

2(K−i)rmax

PHi︸ ︷︷ ︸
=ϖ(rmax)

. (17)

In other words, rmax satisfies ϖ (rmax) = 1.10

Let rub = log2
(
1+mink=1,...,K PHk

)
= log2(1+PHK). Since

ϖ (x) is an increasing function of x as well as ϖ(0)< 1 and
ϖ(rub)≥ 1, we could use the bisection method to find the root
of ϖ(x) = 1 in the interval (0,rub]. The calculation of ϖ (x)
costs O(K), thus, the time complexity of finding rmax within
an accuracy of ε is O

(
K log 1

ε

)
.

B. Limited Feedback

Under limited feedback, the previously proposed quantizers
qr (·) and qo (·) in Figs. 2 and 3 can still be applied here for rate
adaptation and outage probability, respectively. The maximum
minimum rate can be calculated using the bisection method
by treating qr (Hk) or qo (Hk) as Hk, and the corresponding
power allocation coefficients can be computed. Although it
is non-trivial to derive upper bounds on the losses in rate or
outage probability for K > 2 theoretically, numerical simula-
tions in Section VI show that the relationships between the
performance loss and the feedback rate are similar to the case
of K = 2.

VI. NUMERICAL SIMULATIONS AND DISCUSSIONS

In this section, we perform numerical simulations to validate
the effectiveness of our proposed quantizers for rate adaptation
and outage probability. In all subsequent simulations for K
receivers, we use the channel variances in Table I.

TABLE I: Channel variances for numerical simulations.

K = 2 λ1 = 1,λ2 = 0.5
K > 2 λk =

1
k ,k = 1, . . . ,K

Results for other values of channel variances will exhibit
similar observations. For outage probability, sufficiently large
number of channel realizations are generated to observe at
least 10000 outage events.

In Fig. 4, we simulated the minimum rates of the full-
CSI case, qr(·) and the TDMA scheme (where each receiver
occupies half of the time to transmit). We observe that
the proposed quantizer with NOMA outperforms the TDMA
scheme when ∆ = 0.01 and 0.05. The rate loss between the
full-CSI case and qr(·) with ∆= 0.01 is almost negligible. The
corresponding values for T = λ1

∆
log 1

∆
and the feedback rates

for both receivers (bits/per channel state) are listed in Table
II. Compared with FLE which costs dlog2(T + 1)e bits per
receiver per channel state, VLE can save almost half of the
feedback bits.

10Note that [27] has solved a different optimization problem, i.e. maxi-
mizing the sum rate subject to a minimum rate constraint, which satisfies
∑

K
k=1 α?

k = 1 but results in different α?
k s.
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In Fig. 5, we plot the rate losses of qr(·) for different values
of ∆ and the feedback rates Rr,VLE,1 and Rr,VLE,2. It shows that
the rate loss of qr(·) decreases at least linearly with respect
to ∆ and exponentially with min{Rr,VLE,1,Rr,VLE,2}, which
validates the accuracy of our derived upper bounds in (7) and
(8). In addition, Fig. 5(a) shows that ∆ needs to be less than
0.15 such that qr(·) can obtain a higher rate compared with
the TDMA scheme.

In Fig. 6, we compare the outage probabilities of the full-
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Fig. 6: Simulated outage probabilities of NOMA for K = 2.
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TABLE II: Feedback rate for either receiver.

∆ T dlog2(T +1)e Receiver 1 Receiver 2
0.01 461 9 5.3 4.6
0.05 60 6 3.6 2.7
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Fig. 7: Simulated feedback rates versus P for K = 2.

CSI case, qo(·) under various values of ∆ and the TDMA
scheme. It can be seen that: (i) The curve for qo(·) with
∆ = 0.01 almost coincides with that of the full-CSI case. (ii)
When P is large, qo(·) with ∆= 0.2 suffers from an insufficient
diversity gain in the high-P region. According to our analysis
in Lemma 4, ∆ = 0.2 is large enough not to scale with P−

1
3 .11

(iii) Although the maximum diversity order is achieved when
∆ = P−

1
3 , much less array gain is obtained in the lower

and medium-P regions (where ∆ is large). Alternatively, ∆ =

min
{

0.2,P−
1
3

}
will reserve both benefits of the maximum

diversity order brought by P−
1
3 and the higher array gain of

∆ = 0.2.12 The comparison of feedback rates for VLE and
FLE (which requires dlog2(T +2)e =

⌈
log2

(
λ1
2∆

log 1
∆
+2
)⌉

bits per channel state) under different values of ∆ and P is
shown in Fig. 7, which verifies the superiority of VLE. It
can be seen that the feedback rates for ∆ = min

{
0.2,P−

1
3

}
stay flat in the low and medium-P regions (since 0.2≤ P−

1
3 ).

When P−
1
3 ≤ 0.2 where P≥ 20.9 dB, the feedback rates start

to increase as ∆ gets smaller.
In Fig. 8(a), the outage probability loss decays at least

linearly with respect to ∆; in Fig. 8(b), the outage probability
loss approaches zero whenever P → 0 or P → ∞; in Fig.
9, the outage probability loss decays at least exponentially

with
min{R0,VLE,1,R0,VLE,2}

2 . All these observations validate our
theoretical analysis.

In Figs. 10 and 11, we simulated the rate and outage
probability losses for more than two receivers. For Receiver k,
the channel variance is set to be λk =

1
k , the maximum number

of bins T for qr(·) and qo(·) is T = λk
∆

log 1
∆

, and the accuracy
used by the bisection method is ε = 10−4. We simply treat the

11The value 0.01 for ∆ will also exhibit an insufficient diversity order as
long as P is large enough, although we might not be able to observe this in
the region of P≤ 30 dB in Fig. 6.

12We also observe a similar effect of ∆ on the achieved minimum rates,
but we mainly elaborate it on outage probability.
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result of bisection method based on perfect CSI as the “full-
CSI” performance. Compared with Figs. 5, 8 and 9 for K = 2,
Figs. 10 and 11 exhibit very similar relationships between the
losses and ∆ or the feedback rates.

VII. CONCLUSIONS AND FUTURE WORK

We have introduced efficient quantizers for rate adaptation
and outage probability of minimum rate in NOMA with two
receivers. We have proved that the losses in rate and outage
probability both decrease at least exponentially with the min-
imum of the feedback rates. Furthermore, we generalized the
proposed quantizers to NOMA with any number of receivers.
The performance of NOMA with noisy quantized feedback
will be an interesting future research direction.

APPENDIX A: PROOF OF LEMMA 2

To clarify, the notation Di for i ∈ N represents a positive
constant independent of P,T and ∆. The average rate loss of
qr(·) can be expressed as

E [rloss] =
∫

H0,≥
rloss

2

∏
i=1

fHi(Hi)dHi︸ ︷︷ ︸
=E≥[rloss]

+
∫

H0,<

rloss

2

∏
i=1

fHi(Hi)dHi︸ ︷︷ ︸
=E<[rloss]

,

where H0,≥ = {(H1,H2) : qr(H1)≥ qr(H2)} and H0,< =
{(H1,H2) : qr(H1)< qr(H2)}. We will only show E≥ [rloss] ≤
log2

(
1+D0×P×max

{
e
− T ∆

λ1 ,∆

})
, and skip the proof for

E< [rloss] due to similarity. Note that qr(H1)≥ qr(H2) does not
necessarily mean H1 ≥ H2, since it is possible that qr(H1) =
qr(H2) and H1 < H2. When qr(H1)≥ qr(H2), define

snrmax =

{
α?H1 = g≥(H1,H2), if H1 ≥ H2,
α?H2 = g<(H1,H2), if H1 < H2,

snrqr = αqr ×qr(H1) = g≥ (qr(H1),qr(H2)) ,
snrloss = snrmax− snrqr .

(18)

where g≥(x,y) = 2xy√
(x+y)2+4xy2P+x+y

and

g<(x,y) = 2xy√
(x+y)2+4x2yP+x+y

. Then, we have

rloss = log2 (1+P× snrmax) − log2 (1+P× snrqr) =

log2

(
1+P snrloss

1+P×snrqr

)
≤ log2 (1+P× snrloss). Grounded

on this, the main steps of the proof are listed as follows:
(1) Partition H0,≥ into the following mutually disjoint sub-

regions H1, . . . ,H4:

H1 = {(H1,H2) : qr(H1)≥ qr(H2),H1 < T ∆,H2 < T ∆,
H1 < ∆ or H2 < ∆} ,

H2 = {(H1,H2) : qr(H1)≥ qr(H2),H1 ≥ H2,
∆≤ H1 < T ∆,∆≤ H2 < T ∆}

H3 = {(H1,H2) : qr(H1) = qr(H2),H1 < H2,
∆≤ H1 < T ∆,∆≤ H2 < T ∆}

H4 = {(H1,H2) : qr(H1)≥ qr(H2),
H1 ≥ T ∆ or H2 ≥ T ∆} .

Here, H1 and H4 are edge regions where Hi < ∆ or Hi ≥
T ∆; H2 and H3 are the dominant regions where ∆ ≤
Hi < T ∆. It can be verified that Hi ∩H j = /0 for i 6= j,
and H0,≥ =

⋃4
i=1 Hi.

(2) Let Ei =
∫

Hi
snrloss ∏

2
i=1 fHi(Hi)dHi. Then, E≥ [snrloss] =

∑
4
i=1 Ei. Prove Ei ≤Di×max

{
e
− T ∆

λ1 ,∆

}
for i = 1, . . . ,4.

(3) After Steps (1) and (2), we obtain E≥ [snrloss] ≤ D0×
max

{
e
− T ∆

λ1 ,∆

}
. Based on Jensen’s inequality, we have

E≥ [rloss]≤ E≥ [log2 (1+P× snrloss)]

≤ log2 (1+P×E≥ [snrloss])

≤ log2

(
1+D0×P×max

{
e
− T ∆

λ1 ,∆

})
.

Now, we only need to show the upper bound on Ei in Step
(2).

For E1, since H1 ⊆ {(H1,H2) : H2 ≤ ∆} and snrloss ≤
snrmax ≤ H1, we obtain

E1 ≤
∫

∞

0
H1

e
−H1

λ1

λ1
dH1

∫
∆

0

e
−H2

λ2

λ2
dH2

= λ1

(
1− e

− ∆

λ2

)
≤ λ1×

∆

λ2
= D1×∆,

where the last inequality follows since 1− e−x ≤ x for x≥ 0.
For E2, since H1 ≥ H2 and qr (Hi) ≤ Hi ≤ qr (Hi)+∆ for

Hi ≤ T ∆, we upper-bound snrloss by

snrloss

=
2H1H2√

(H1 +H2)
2 +4H1H2

2 P︸ ︷︷ ︸
=ϒ

+(H1 +H2)

− 2qr (H1)qr (H2)√
[qr (H1)+qr (H2)]

2 +4qr (H1)q2
r (H2)P+[qr (H1)+qr (H2)]︸ ︷︷ ︸

≤ϒ+H1+H2

≤ 2
H1H2−qr (H1)qr (H2)

ϒ+H1 +H2
≤ 2

H1H2− (H1−∆)(H2−∆)

ϒ+H1 +H2

= 2∆
H1 +H2−∆

ϒ+H1 +H2
≤ 2∆. (19)

Then, an upper bound on E2 can be E2 ≤
2∆
∫
H2 ∏

2
i=1 fHi(Hi)dHi ≤ 2∆ = D2×∆.

9
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For E3, we have qr(H1) = qr(H2)≤ H1 < H2 and qr (Hi)≤
Hi ≤ qr (Hi)+∆ hold for (H1,H2) ∈ H3. Similar to (19), we
can also obtain snrloss ≤ 2∆ and E3 ≤ D3×∆.

For E4, since H4 ⊆ {(H1,H2) : H1 > T ∆} and
snrloss ≤ snrmax ≤ H2, the upper-bound on E4
can be E4 ≤

∫
∞

T ∆
fH1(H1)dH1

∫
∞

0 H2 fH2(H2)dH2 =∫
∞

T ∆

e
−H1

λ1
λ1

dH1
∫

∞

0 H2
e
−H2

λ2
λ2

dH2 = λ2e
− T ∆

λ1 = D4 × e
− T ∆

λ1 . We
have accomplished Step (2) and the proof of (6) is complete.
�

APPENDIX B: PROOF OF LEMMA 3

When the uniform quantizer qo(·) is applied, the outage
probability loss in (4) is rewritten as

outloss,qo =
∫

I0,≥
111min{r1(αqo),r2(αqo)}<rth

2

∏
i=1

fHi(Hi)dHi︸ ︷︷ ︸
=out≥,loss,qo

+
∫

I0,<

111min{r1(αqo),r2(αqo)}<rth

2

∏
i=1

fHi(Hi)dHi︸ ︷︷ ︸
=out<,loss,qo

.

where

I0,≥ = {(H1,H2) : qr(H1)≥ qr(H2),rmax = log2 (1+P× snrmax)≥ rth}
=
{
(H1,H2) : qr(H1)≥ qr(H2),snrmax ≥ β

P = 2rth−1
P

}
,

I0,< =
{
(H1,H2) : qr(H1)< qr(H2),snrmax <

β

P

}
.

and snrmax is defined in (18). We show out≥,loss,qo ≤ D5×

e−
D6
P × 1+

√
P

P ×max
{

e
− T ∆

λ1 ,∆
1
2 ,∆

3
2

}
and skip the proof for

out<,loss,qo due to similarity. The main steps of the proof are:
(1) Partition I0,≥ into the following mutually disjoint sub-

regions:

I1 =
{
(H1,H2) : qr(H1)≥ qr(H2),snrmax ≥ β

P ,

H1 ≤ ∆,H2 ≤ ∆} ,
I2 =

{
(H1,H2) : qr(H1)≥ qr(H2),snrmax = g≥(H1,H2)≥ β

P ,

∆ < H1 ≤ T ∆,H2 ≤ ∆} ,
I3 =

{
(H1,H2) : qr(H1)≥ qr(H2),H1 ≥ H2,g≥(H1,H2)≥ β

P ,

∆ < H1 ≤ T ∆,∆ < H2 ≤ T ∆} ,
I4 =

{
(H1,H2) : qr(H1) = qr(H2),H1 < H2,g<(H1,H2)≥ β

P ,

∆ < H1 ≤ T ∆,∆ < H2 ≤ T ∆} ,
I5 =

{
(H1,H2) : qr(H1)≥ qr(H2),snrmax ≥ β

P ,

H1 > T ∆ or H2 > T ∆} .

Here, I1, I2 and I5 are the marginal regions where Hi ≤
∆ or Hi > T ∆; I3 and I4 are the main regions where
∆ < Hi ≤ T ∆. It can be verified that Ii∩ I j = /0 for i 6= j,
and I0,≥ =

⋃5
i=1 Ii.

(2) Let Fi =
∫

Ii
111min{r1(αqo),r2(αqo)}<rth

∏
2
i=1 fHi(Hi)dHi.

Then, out≥,loss,qo = ∑
5
i=1 Fi. Prove Fi ≤ D2i+5 ×

e−
D2i+6

P × 1+
√

P
P ×max

{
e
− T ∆

λ1 ,∆
1
2 ,∆

3
2

}
for i = 1, . . . ,5.

Now, we need to show the upper bound on Fi in Step (2).

For F1, we have qo(H1) = qo(H2) = ∆ ≥ H2, and
thus, αqo = 1√

P∆+1+1
≤ 1√

PH2+1+1 . For any (H1,H2) ∈
I1, since g≥(x,y) ≤ min{x,y} and g<(x,y) ≤ min{x,y}, it
must have β

P ≤ snrmax ≤ min{H1,H2}. Moreover, we obtain
111min{r1(αqo),r2(αqo)}<rth

≤ 111r1(αqo)<rth
+111r2(αqo)<rth

, and

111r1(αqo)<rth
= 111

H1×αqo<
β

P
= 111

H1<β

√
P∆+1+1

P
,

111r2(αqo)<rth
= 111 H2(1−αqo )

PH2αqo+1 < β

P
≤ 111

H2

(
1− 1√

PH2+1+1

)
PH2×

1√
PH2+1+1

+1
< β

P

= 111
H2<

β2+2β

P
.

Thus, an upper bound on F1 is

F1 ≤
∫

I1

111
H1<β

√
P∆+1+1

P

2

∏
i=1

fHi(Hi)dHi

+
∫

I1

111
H2<

β2+2β

P

2

∏
i=1

fHi(Hi)dHi

≤
∫

β

√
P∆+1+1

P

β

P

e
−H1

λ1

λ1

∫
∆

β

P

e
−H2

λ2

λ2
dH1dH2

+
∫

∆

β

P

e
−H1

λ1

λ1

∫ β2+2β

P

β

P

e
−H2

λ2

λ2
dH1dH2

≤ e
−

β

P
λ1

λ1
×
[

β

√
P∆+1+1

P
− β

P

]
× 1

λ2
×
[

∆− β

P

]

+
1
λ1
×
[

∆− β

P

]
× e
−

β

P
λ2

λ2
×
[

β 2 +2β

P
− β

P

]

≤ e
−

β

P
λ1

λ1
×β ×

≤
√

P∆+1︷ ︸︸ ︷√
P∆+1

P
× 1

λ2
×∆

+
1
λ1
×∆× e

−
β

P
λ2

λ2
× β 2 +β

P

≤ D17× e−
D18

P ×
√

P∆+1
P

×∆

+D19× e−
D20

P × ∆

P

≤ D7× e−
D8
P × 1+

√
P

P
×max

{
e
− T ∆

λ1 ,∆
1
2 ,∆

3
2

}
. (20)

For F2, let F2,i =
∫

I2
111ri(αqo)<rth

∏
2
i=1 fHi(Hi)dHi for i =

1,2. Then, F2 ≤ F2,1 +F2,2. For F2,1, since H1 > H2 for
(H1,H2) ∈ I2 and g≥(x,y) is increasing on x and y, we have

111r1(αqo)<rth
= 111 2H1×qo(H2)√

[qo(H1)+qo(H2)]
2+4qo(H1)q2o(H2)P+[qo(H1)+qo(H2)]

< β

P

≤ 111 2(qo(H1)−∆)×qo(H2)√
[qo(H1)+qo(H2)]

2+4qo(H1)q2o(H2)P+[qo(H1)+qo(H2)]
< β

P

(21)
= 111

g≥(qo(H1),qo(H2))<
β

P×
1

1− ∆

qo(H1)

≤ 111
g≥(qo(H1),qo(H2))<

β

P×
(

1+ 2∆

qo(H1)

) (22)

≤ 111
g≥(qo(H1),qo(H2))<

β

P×
(

1+ 2∆

qo(H2)

)

10
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Fig. 12: The integration region I
′′
2 .

≤ 111
g≥(qo(H1),qo(H2))<

β

P×
(

1+ 2∆
H2

) (23)

≤ 111
g≥(H1,H2)<

β

P×
(

1+ 2∆
H2

), (24)

where (21) follows from qo(H1) ≤ H1 + ∆, (22) follows
from

(
1− ∆

qo(H1)

)
×
(

1+ 2∆

qo(H1)

)
≥ 1 because qo(H1)≥ 2∆ >

qo(H2) = ∆, (23) follows from qo(H2) ≥ H2 and (24) fol-
lows from g≥ (qo(H1),qo(H2))≥ g≥ (H1,H2). Then, we obtain
F2,1 ≤

∫
I ′2=I2∩

{
(H1,H2):g≥(H1,H2)<

β

P×
(

1+ 2∆
H2

)}
∏

2
i=1 fHi(Hi)dHi.

We change the integration variables from (H1,H2) to
(φ ,H2) where φ = g≥(H1,H2). Then, H1 = φ2P+φ

H2−φ
× H2,

and the Jacobian matrix is
∣∣∣ dH1

dφ

∣∣∣ = 2φPH2+H2−φ2P
(H2−φ)2 × H2 ≤

2φPH2+H2
(H2−φ)2 ×H2 ≤ 2φPH2+2H2

(H2−φ)2 ×H2 = 2(φP+1)
(H2−φ)2 ×H2

2 . For any

(H1,H2) ∈ I
′
2, we have: (i) β

P ≤ φ = g≥(H1,H2) ≤ H2 and
φ < β

P ×
(

1+ 2∆

H2

)
; (ii) since H1 ≥H2, H1 =

φ2P+φ

H2−φ
×H2 ≥H2,

then, H2 ≤ φ 2P+ 2φ . Therefore, F2,1 is derived as F2,1 ≤∫
I ′′2 =

{
(H1,H2):

β

P≤H2≤φ2P+2φ , β

P≤φ≤min
{

H2,
β

P

(
1+ 2∆

H2

)}}
∏

2
i=1 fHi(Hi)dHi.

The integration region I
′′
2 is demonstrated in Fig. 12 as the

shaded area surrounded by the points A,E,D and C. It can
be strictly proven that I

′′
2 is within the region surrounded

the points A,B,D and C. Recall that H1 = φ2P+φ

H2−φ
×H2 and∣∣∣ dH1

dφ

∣∣∣≤ 2(φP+1)
(H2−φ)2 ×H2

2 . Then, we have

F2,1 ≤
∫ β+
√

β2+8∆β

2P

β

P

∫
φ2P+2φ

φ

e
−H2

λ2

λ2
× e
− 1

λ1
× φ2P+φ

H2−φ
×H2

λ1

× 2(φP+1)

(H2−φ)2 ×H2
2 dφdH2

z=H2−φ
= D21

∫ β+
√

β2+8∆β

2P

β

P

∫
φ2P+φ

0
e
− z

λ2
− φ

λ2︸ ︷︷ ︸
≤e
− z

λ2 ×e
−

β

P
λ2

× e
− 1

λ1
× φ2P+φ

z ×(z+φ)︸ ︷︷ ︸
≤e
− φ2(φP+1)

λ1z

×φP+1
z2 × (z+φ)2dφdz

≤ D21× e
− β

λ2P

∫ β+
√

β2+8∆β

2P

β

P

∫
φ2P+φ

0
e
− z

λ2 e
− φ2(φP+1)

λ1z

× (φP+1)×
[

1+
2φ

z
+

φ 2

z2

]
dφdz. (25)

Using the inequalities: (i)
∫

∞

0 xv−1e−
β

x −γxdx =

2
(

β

γ

) v
2
Kv

(
2
√

βγ

)
[28, Eq. (3.471.9)] with Kv(z)

being the modified bessel function of the second kind,
(ii) K0(x) ≤ 2

x and K−1(x) = K1(x) ≤ 1
x for x > 0 [29,

Eq. (27)], after lengthy but basic calculations, we obtain
F2,1 ≤ D22× e−

D23
P × ∆+

√
∆

P .13

For F2,2, because H1 > H2 and qo(H1)> qo(H2) = ∆≥H2,
we have

αqo

≤ 2qo(H2)√
[qo(H2)+qo(H2)]

2 +4qo(H2)q2
o(H2)P+qo(H2)+qo(H2)

=
1√

qo(H2)P+1+1
=

1√
P∆+1+1

. (26)

Since r2 (αqo) is decreasing on αqo , we obtain
r2 (αqo)≥ r2

(
1√

P∆+1+1

)
and 111r2(αqo)<rth

≤ 111
r2

(
1√

P∆+1+1

)
<rth

=

111
H2

(
1− 1√

P∆+1+1

)
PH2

1√
P∆+1+1

+1
< β

P

= 111 H2
√

P∆+1
PH2+1+

√
P∆+1

< β

P
≤ 111 H2

√
P∆+1

P∆+1+
√

P∆+1
< β

P
=

111
H2≤

β(
√

P∆+1+1)
P

. Similar to (20), we will have F2,2 ≤∫
I2

111
H2<β

√
P∆+1+1

P
∏

2
i=1 fHi(Hi)dHi ≤ D24× e−

D25
P ×

√
P∆+1

P ×∆.
Together with the upper bound on F2,1, we obtain
F2 ≤ F2,1 + F2,2 ≤ D22 × e−

D23
P × ∆+

√
∆

P + D24 × e−
D25

P ×
√

P∆+1
P ×∆≤ D9× e−

D10
P × 1+

√
P

P ×max
{

e
− T ∆

λ1 ,∆
1
2 ,∆

3
2

}
.

For F3, since qo(H1) ≥ qo(H2) and qo(Hi)− ∆ ≤ Hi ≤
qo(Hi) for i = 1,2, we obtain

r1 (αqo)
= log2 (1+PH1×αqo)≥ log2 (1+P× (qo(H1)−∆)×αqo)
= log2 (1+P×qo(H1)×αqo −P×∆×αqo)

= log2

(
1+P×g≥(qo(H1),qo(H2))−P×g≥(qo(H1),qo(H2))× ∆

qo(H1)

)
= log2

(
1+P×g≥(qo(H1),qo(H2))×

(
1− ∆

qo(H1)

))
≥ log2

(
1+P×g≥(qo(H1),qo(H2))×

(
1− ∆

qo(H2)

))
≥ log2

(
1+P×g≥(H1,H2)×

(
1− ∆

qo(H2)

))
,

r2 (αqo) = log2

(
1+

H2(1−αqo)
H2αqo+

1
P

)
= log2

(
1+

(qo(H2)−∆)×(1−αqo)
(qo(H2)−∆)×αqo+

1
P

)
≥ log2

(
1+

(qo(H2)−∆)×(1−αqo)
qo(H2)×αqo+

1
P

)
= log2

(
1+

qo(H2)×(1−αqo)
qo(H2)×αqo+

1
P
− ∆×(1−αqo)

qo(H2)×αqo+
1
P

)
= log2

(
1+P×g≥(qo(H1),qo(H2))×

(
1− ∆

qo(H2)

))
≥ log2

(
1+P×g≥(H1,H2)×

(
1− ∆

qo(H2)

))
,

Therefore, we have

111min{r1(αqo),r2(αqo)}<rth

≤ 111
log2

(
1+P×g≥(H1,H2)×

(
1− ∆

qo(H2)

))
<rth

= 111
g≥(H1,H2)<

β

P
(

1− ∆

qo(H2)

)
≤ 111

g≥(H1,H2)<
β

P

(
1+ 2∆

qo(H2)

) ≤ 111
g≥(H1,H2)<

β

P

(
1+ 2∆

H2

), (27)

13Detailed calculations for (25) can be found in Appendix B of [30].
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where (27) is because
(

1− ∆

qo(H2)

)
×
(

1+ 2∆

qo(H2)

)
= 1 +

∆

qo(H2)
−2
(

∆

qo(H2)

)2
≥ 1 since qo(H2)≥ 2∆ for (H1,H2) ∈ I3,

and qo(H2)≥ H2. Similar to (23) and (25), we can obtain an
upper bound on F3 (the detailed derivation is omitted due to
similarity). For F4, its upper bound can be developed in the
same way as the upper bound on F3.

For F5, when H1 ≥ H2 ≥ ∆, since g≥(H1,H2) ≥
2H1H2√

(H1+H1)2+4H2
1 H2P+H1+H1

= H2√
PH2+1+1 , we obtain from (27)

that

111min{r1(αqo),r2(αqo)}<rth
≤ 111

g≥(H1,H2)<
β

P

(
1+ 2∆

H2

)
≤ 111

g≥(H1,H2)<
β

P (1+ 2∆

∆ )=
3β

P
≤ 111 H2√

1+H2P+1
< 3β

P
= 111

H2<
D26

P
, (28)

where D26 = (3β +1)2−1. Similarly, when H1 < H2, we have
111min{r1(αqo),r2(αqo)}<rth

≤111
H1<

D26
P

. Therefore, an upper bound
on F5 is

F5 ≤
∫

I4∩{(H1,H2):H1≥H2}
111

H2<
D26

P
×

2

∏
i=1

fHi(Hi)dHi

+
∫

I4∩{(H1,H2):H1<H2}
111

H1<
D26

P
×

2

∏
i=1

fHi(Hi)dHi

≤
∫

∞

T ∆

1
λ1

e
−H1

λ1 dH1︸ ︷︷ ︸
=e
− T ∆

λ1

∫ D26
P

β

P

1
λ2

e
−H2

λ2︸ ︷︷ ︸
≤e
− β

Pλ2 ≤e
− β

Pλ1

dH2

+
∫

∞

T ∆

1
λ2

e
−H2

λ2 dH2︸ ︷︷ ︸
=e
− T ∆

λ2 ≤e
− T ∆

λ1

∫ D26
P

β

P

1
λ1

e
−H1

λ1︸ ︷︷ ︸
≤e
− β

Pλ1

dH1 (29)

≤ e
− T ∆

λ1 × 1
λ2
× e
− β

Pλ1 × D26−β

P

+ e
− T ∆

λ1 × 1
λ1
× e
− β

Pλ1 × D26−β

P

≤ D27× e−
D28

P × 1
P
× e
− T ∆

λ1

≤ D15× e−
D16

P × 1+
√

P
P

×max
{

e
− T ∆

λ1 ,∆
1
2 ,∆

3
2

}
,

where (29) is based on the assumption that λ1 ≥ λ2. This
completes the proof of the upper bound on outloss,qo in (12).
�

APPENDIX C: PROOF OF LEMMA 4

It is trivial to obtain the maximum diversity order for
both receivers is 1 in the full-CSI case.14 When qo(·) is
employed, the outage probability of Receiver i is outqo,i =∫

111ri(αqo)<rth
∏

2
i=1 fHi(Hi)dHi for i= 1,2. Following the deriva-

tions of Fi for i = 1, . . . ,5 in Appendix B, we will ob-

tain outqo,1 ≤ outmin +D29× e−
D30

P ×

[
√

∆+e
− T ∆

λ1
P + ∆

3
2√
P

]
and

14Detailed derivations for the maximum diversity order can be found in
Appendix C of [30].

outqo,2 ≤ outmin + D31 × e−
D32

P × D33+∆+e
− T ∆

λ1
P .15 Therefore,

for fixed ∆, the diversity orders of 1
2 and 1 are achievable

for Receivers 1 and 2, respectively.

For Receiver 1, ∆
3
2√
P

in the upper bound on outqo,1 is the

bottleneck for diversity gains. If we scale ∆ as ∆
3
2 ∼P

1√
P

,

i.e., ∆∼P P−
1
3 , the diversity order of 1 is also achievable for

Receiver 1. �

APPENDIX D: PROOF OF LEMMA 5

Given K and β > 0, define the following two optimization
problems:
(P1) r?max(K,β ) = max

ααα=[α1,...,αK ]
min

k=1,...,K
rk(ααα), subject to 0 ≤

αk ≤ β and ∑
K
k=1 αk = β .

(P2) r†
max(K,β ) = max

ααα=[α1,...,αK ]
min

k=1,...,K
rk(ααα), subject to

r1(ααα) = · · ·= rK(ααα), 0≤ αk ≤ β , and ∑
K
k=1 αk = β ,

where (P1) is the original optimization problem in (15) when
β = 1. We will show that the maximum minimum rates of (P1)
and (P2) are the same, i.e., r?max(K,β ) = r†

max(K,β ), which
proves the lemma.

Denote the optimal power allocations for (P1) and
(P2) by ααα?

K(β ) =
[
α?

1,K(β ), . . . ,α
?
K,K(β )

]
and ααα

†
K(β ) =[

α
†
1,K(β ), . . . ,α

†
K,K(β )

]
, respectively. Since r?max(K,β ) ≥

r†
max(K,β ), it is sufficient to prove that r?max(K,β ) ≤

r†
max(K,β ).

The proof for K = 2 is provided in the proof of Theorem 1.
By induction, assume r?max(K,β ) = r†

max(K,β ) holds for K =
K1. When K = K1 +1, there are two possibilities:

(i) If rK1+1

(
ααα?

K1+1(β )
)

≥ rK1+1

(
ααα

†
K1+1(β )

)
,

since rK1+1 (ααα) = log2

(
1+

αK1+1

∑
K1
i=1 αi+

1
PHK1+1

)
=

log2

(
1+

αK1+1

β−αK1+1+
1

PHK1+1

)
for any ααα satisfying

∑
K1+1
i=1 αi = β , it must have α?

K1+1,K1+1(β ) ≥
α

†
K1+1,K1+1(β ), then, β1 = ∑

K1
k=1 α?

k,K1+1(β ) =

β − α?
K1+1,K1+1(β ) ≤ β − α

†
K1+1,K1+1(β ) =

∑
K1
k=1 α

†
k,K1+1(β ) = β2. Next, we obtain

r?max(K1 +1,β )

= min
{{

min
k=1,...,K1

rk
(
ααα

?
K1+1(β )

)}
,rK1+1

(
ααα

?
K1+1(β )

)}
≤min

{
r?max (K1,β1) ,rK1+1

(
ααα

?
K1+1(β )

)}
(30)

= min
{

r†
max (K1,β1) ,rK1+1

(
ααα

?
K1+1(β )

)}
(31)

≤min
{

r†
max (K1,β2) ,rK1+1

(
ααα

?
K1+1(β )

)}
(32)

= min
{

r†
max (K1 +1,β ) ,rK1+1

(
ααα

?
K1+1(β )

)}
(33)

15Note that when we derive the diversity order for F2,2, we will not use
its upper bound here. From (26), we obtain αqo ≤ 1√

P∆+1+1
≤ 1√

PH2+1+1 , and
111r2(αqo )<rth

≤ 111
r2

(
1√

PH2+1+1

)
<rth

= 111
H2<

β2+β

P
, then, it is trivial to obtain that

F2,2 ≤ D34× e−
D35

P
P .

12
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= min
{

rK1+1

(
ααα

†
K1+1(β )

)
,rK1+1

(
ααα

?
K1+1(β )

)}
= rK1+1

(
ααα

†
K1+1(β )

)
= r†

max (K1 +1,β ) .

Thus, r?max(K1 + 1,β ) ≤ r†
max(K1 + 1,β ). The inequality

(30) is due to the optimality of r?max (K1,β1); (31) arises
from the assumption that r?max(K,β1) = r†

max(K,β1) when
K = K1; (32) is because r†

max(K,β ) is non-decreasing on
β ; (33) holds since r†

max (K1,β2) = r†
max (K1 +1,β ).

(ii) If rK1+1

(
ααα?

K1+1(β )
)

< rK1+1

(
ααα

†
K1+1(β )

)
, we

have r?max(K1 + 1,β ) ≤ rK1+1

(
ααα?

K1+1(β )
)

<

rK1+1

(
ααα

†
K1+1(β )

)
= r†

max(K1 + 1,β ), which completes
the proof of Lemma 5. �
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