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Abstract—In this paper, we analyze downlink non-orthogonal
multiple access (NOMA) networks with limited feedback. Our
goal is to derive appropriate transmission rates for rate adap-
tation and minimize outage probability of minimum rate for
the constant-rate data service, based on distributed channel
feedback information from receivers. We propose an efficient
quantizer with variable-length encoding that approaches the best
performance of the case where perfect channel state information
is available everywhere. We prove that in the typical application
with two receivers, the losses in the minimum rate and outage
probability decay at least exponentially with the minimum feed-
back rate. We analyze the diversity gain and provide a sufficient
condition for the quantizer to achieve the maximum diversity
order. For NOMA with K receivers where K > 2, we solve the
minimum rate maximization problem within an accuracy of ¢
in time complexity of O (Klogl), then, we apply the previously
proposed quantizers for K =2 to the case of K > 2. Numerical
simulations are presented to demonstrate the efficiency of our
proposed quantizers and the accuracy of the analytical results.

Keywords—NOMA, rate adaptation, outage probability, mini-
mum rate, limited feedback

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has received sig-
nificant attention recently for its superior spectral efficiency
[2]. It is a promising candidate for mobile communication
networks, and has been included in LTE Release 13 for the
scenario of two-user downlink transmission under the name
of multi-user superposition transmission [3]. The key idea of
NOMA is to multiplex multiple users with superposition cod-
ing at different power levels, and utilize successive interference
cancellation (SIC) at receivers with better channel conditions
[4]. Specifically, for NOMA with two receivers, the messages
to be sent are superposed with different power allocation
coefficients at the BS side. At the receivers’ side, the weaker
receiver decodes its intended message by treating the other’s as
noise, while the stronger receiver first decodes the message of
the weaker receiver, and then decodes its own by removing the
other message from the received signal. In this way, the weaker
receiver benefits from larger power, and the stronger receiver
is able to decode its own message with no interference. Hence,
the overall performance of NOMA is enhanced, compared with
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traditional orthogonal multiple access schemes. It is shown in
[5] that the rate region of NOMA is the same as the capacity
region of Gaussian broadcast channels with two receivers,
but with an additional constraint that the stronger receiver is
assigned less power than the weaker one.

There has been a lot of work on NOMA. In [2] and [5],
the authors evaluated the benefits of downlink NOMA from
the system and information theoretic perspectives, respectively.
The performance of NOMA with randomly deployed users
was investigated in [6]. A lot of effort has been put into the
power allocation design in NOMA. For example, the authors in
[7] and [8] analyzed the necessary conditions for NOMA with
two users to beat the performance of time-division-multiple-
access (TDMA), and derived closed-form expressions for the
expected data rates and outage probabilities. In [9], power
allocation based on proportional fairness scheduling was in-
vestigated for downlink NOMA. Transmit power minimization
subject to rate constraints was discussed in [10]. A joint
consideration of dynamic user clustering and power allocation
was studied in [11].

However, all the mentioned papers have assumed a perfect
knowledge of the distributed channel state information (CSI)
at the BS and all the geographically-distributed receivers,
which is difficult to realize in practice. Therefore, we consider
the limited feedback scenario wherein each receiver only
has access to its own local CSI, from the BS to itself, and
then broadcasts its feedback information to the BS and other
receivers [12]. Under such settings, interesting problems arise,
for example: How to design simple but efficient quantizers
for NOMA? What are the performance losses compared with
the full-CSI case? A user-selection scheme based on limited
feedback was studied in [13]. In [14], the authors derived
the outage probability of NOMA based on one-bit feedback
of channel quality from each receiver, and performed power
allocation to minimize the outage probability. Additionally, the
problems of transmit power minimization and user fairness
maximization based on statistical CSI subject to outage con-
straints were studied in [15]. In [16], the authors derived the
outage probability and sum rate with fixed power allocation
by assuming imperfect and statistical CSI. In [17], the authors
solved the sum rate maximization problem for downlink
NOMA networks using a minorization-maximization algo-
rithm in statistics. In [18], several antenna selection schemes
were proposed for the NOMA systems, and the user fairness
was evaluated using the Jain’s fairness index.

In this paper, we focus on the limited feedback design
for the typical scenario of downlink NOMA, where a BS
communicates with two receivers simultaneously [3]. Based
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on distributed feedback and in the interest of user fairness, we
wish to have the minimum rate of the receivers be as large as
possible. Like [19], we also use the minimum achieved rate
of all receivers as the performance measure, but moreover,
the main focus of our work is to design efficient quantizers
for downlink NOMA and analyze the achieved performance.
With this goal, to dynamically adjust the transmission rates
for better channel utilization, we propose a uniform quan-
tizer which assigns each value to its left boundary point
and employs variable-length encoding (VLE). Then, power
allocation is calculated based on the channel feedback. We
calculate the transmission rates that can be supported by the
current channel states, and analyze the rate loss compared
with the full-CSI scenario. The derived upper bound on rate
loss shows that it decreases at least exponentially with the
minimum of the feedback rates. The feedback rate in this paper
refers to the number of feedback bits each receiver sends for
each channel state. For the constant-rate service where the
target data rate needs to be supported and outage probabil-
ity is the main concern, we conversely propose a uniform
quantizer which quantizes each value to its right boundary
point.! Through the developed upper bound, we show the
outage probability loss also decays at least exponentially with
the minimum of feedback rate. Additionally, we analyze the
achieved diversity gain and provide a sufficient condition
on the proposed quantizer in order to achieve the full-CSI
diversity order. For the general scenario with K receivers,
we solve the minimum rate maximization problem within an
accuracy of € in time complexity of O (K log é) and apply the
previously proposed quantizers for the two-user case here by
treating the quantized channels as the perfect ones. We perform
Monte Carlo numerical simulations to verify the superiority
of our proposed quantizers and the accuracy of the theoretical
analysis.

The primary goal of this paper is to study the impacts
of quantization on the performance of NOMA, and provide
meaningful insights for practical limited feedback design. To
summarize, the main contributions of this paper are three-fold:

(1) We propose efficient quantizers to maximize the mini-
mum rate in NOMA. The ideas of our proposed quan-
tizers and VLE as well as the designs for rate adaptation
and outage probability based on distributed feedback can
be generalized to many other scenarios, e.g., NOMA
with other performance measures, the more general
interference channels, and so on.

(2) Our theoretical analysis serves as a general framework to
analyze the performances of such quantizers in NOMA
and other scenarios. For instance, it can be easily applied
to study the performances of other power allocation
schemes in NOMA based on limited feedback, i.e., [7],
[8].

(3) We solve the minimum rate maximization problem for
any number of receivers with linear time complexity.

The remainder of this paper is organized as follows: In
'For example, in some real-time multimedia service applications, the

minimum data rate needs to be supported as often as possible, such that
the chance of service outage can be greatly reduced.

Receiver 1

BS

Receiver 2

Fig. 1: Downlink NOMA networks. The solid and dashed lines
represent the signal and feedback links, respectively.

Section II, we provide a brief description of the system model
and formulate the problem of limited feedback. In Sections
IIT and IV, we propose efficient quantizers for rate adaptation
and outage probability, and analyze the performance loss. We
extend our proposed quantizers to the general case with any
number of receivers in Section V. Numerical simulations are
provided in Section VI. We draw the main conclusions and
summarize future work in Section VII. Technical proofs are
presented in the appendices.

Notations: The sets of real and natural numbers are rep-
resented by ® and A, respectively. For any x € ®, |x] is
the largest integer that is less than or equal to x, and [x]
is the smallest integer that is larger than or equal to x. Pr{-}
and E[-] represent the probability and expectation, respectively.
For a random variable (r.v.) X, fx(-) is its probability density
function (p.d.f.). CN(u,A) represents a circularly symmetric
complex Gaussian r.v. with mean p and variance A. For a
logical statement ST, we let 1gr = 1 when ST is true, and
1sr = 0 otherwise. Finally, the expression X ~y Z means
0 < limy o0 5 < oo,

II. PROBLEM FORMULATION
A. System Model

Consider the downlink transmission in Fig. 1, where a BS
is to transmit a superposition of two symbols to two receivers
over the same resource block.>? Both BS and receivers are
equipped with only a single antenna. According to the mul-
tiuser superposition transmission scheme [3], the transmitted
signal is formed as

x=+/Pisi +VPos2,

where s; is the information bearing symbol for Receiver i
with E[sj] =0 and E ||s;|*| = 1 for each channel state (the
expectation is over all transmitted symbols); P; is the average
transmit power associated with s;. Let P = P, + P> be the total
transmit power, and o = % be the power allocation coefficient,
then, L =aP and P, = (1 —a)P with 0 < a < 1.

Denote by h; ~ CN(0,4;) the channel coefficient from the
BS to Receiver i. Without loss of generality, assume A; > 4,.

2We assume the two receivers have been pre-selected for the NOMA
transmission based on user scheduling algorithms [2], [8]. In this paper,
we mainly focus on the physical-layer performance of NOMA with limited
feedback, and the study of user scheduling algorithms is beyond the scope of
this paper.
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The received signals at Receivers 1 and 2 are respectively
given by

yi =mVPisi +hivV/Poss+ni,  y2 =hov/Pisi +hov/Pasy + no,

where n; ~ CN(0,1) represents the background noise. Let

= |h;|*, then, the p.d.f. of H; is S, (x) =
We assume a quasi-static channel model, in wh1ch the channels
vary independently from one block to another, while remaining
constant within each block. Either receiver is assumed to per-
fectly estimate its local CSI (i.e., H;), and send the associated
quantized local CSI to the other receiver and the BS in a
broadcast manner via error-free and delay-free feedback links
[20], [21]. In some scenario where the two receivers are far
away from each other such that they cannot “talk” directly, the
BS can play the role of relaying, i.e., forwarding the feedback
information received from one receiver to the other.

With SIC, the stronger receiver with better channel con-
dition (i.e., larger H;) first decodes the message for the
weaker receiver, and then decodes its own after removing the
message of the weaker one from its received signal; the weaker
receiver with poorer channel condition directly decodes its
own message by treating the message of the stronger one
as noise [9], [22]. Specifically, when H; > H,, the rate for
Receiver 2 (i.e., the weaker one) to decode s, by treating s
as noise is

r(a) =log, <1 +

which is not larger than the rate for Receiver 1 to decode

s2, given as rj_» = log, (1 + %lpff)). If s, is transmitted

at the rate of ry(or), Receiver 1 can decode s, successfully
with an arbitrarily small probability of error [23]. Afterwards,
Receiver 1 can remove hy+/Pss> from y;, and achieve a data
rate for s as

PH)(1- )
oHP+1 )’

ri(a)=1log, (1 + aPH).

On the other hand, when H; < H;, Receiver 2 first decodes s1,
removes hy+/P;s1 from y,, and then decodes s,, while Receiver
1 decodes s; directly by treating s, as noise.

B. Maximum Minimum Rate

Our goal is to maximize the minimum of r (o) and rp(cx)
to ensure fairness between receivers [12], [24]. When perfect
CSI is available at the BS and receivers, the optimal power
allocation coefficient o* can be found by solving the optimiza-
tion problem rm,x = Or<n§)<(lmin{r1 (a),r2(@)}, the solution of

which is given in the following theorem.

Theorem 1. When H;, > H,, the solution of
i o o)} is given b
orgno?émm{rl( ),r2(at)} is given by
2H,
or = 2 (1)

\/(H1 + H>)* + 4HH}P + (H, + H)

3The results in this paper can be trivially generalized to other distributions
of Hy and H,.

Proof: Notice that with o increasing from 0 to 1, rj(a)
increases from 0 to log, (1 +PH;) and ry(a) decreases from
log, (1+ PH>) to 0. Since log, (1 + PH,) > log, (1+ PH,), the
maximum minimum rate is reached when r;(a*) = r(a*),
from which a* in (1) is derived. [ |

The expression of a* when H; < H, can be obtained
straightforwardly. It is found from (1) that: (i) Both messages
attain the same rate at optimality, i.e., r] (&*) = r2 (&*) = rmax-
Moreover, it can be verified that the rate pair (r; (a*), 7, (a*))
is on the rate region boundaries of both NOMA and Gaussian
broadcast channels with two receivers [5]. (ii)) When P — 0,
o — m +H , in which case the power assigned to the stronger
receiver is in proportion to the channel quality of the weaker
one; when P — oo, or* — 0, then, BS should allocate almost all
the power to the weaker one. 4 (i) a* > % Generally, NOMA
steers more power towards the weaker receiver to balance their
transmissions.

With perfect CSI, the decoding order is determined based
on whether H; > H, holds. The maximum minimum rate is

2HH,P

10g2 1+ , Hy > H,,

\/ (Hi+Hy)*+4H H} P+(H +Hy)

Fmax =

log, [ 1+ 2H b . H, <H,,

\/(H1+H2)2+4H|2H2P+(H1+H2)
(2)

and the outage probability of minimum rate is
outmin = Pr{rmax < rth}; (3)

where ry, is the data rate at which the BS will transmit s; and
sy for every channel state.

C. Limited Feedback

In the limited-feedback scenario, for an arbitrary quantizer
q: R — R, Receiver i maps H; to q(H;), and feeds the
index of g (H;) back to the BS and the other receiver, as
shown in Fig.l. The index of ¢(H;) is decoded and the
value of q(H;) is recovered. The decoding order will be
contingent on whether ¢ (H;) > g(H,). For instance, when
q(Hy) > q(H,), Receiver 1 is considered “stronger”, while
Receiver 2 is “weaker”. In this case, the power allocation

coefficient is computed based on (1) by treating ¢ (H;) as H;,
ie., oy = 29(H)

V(q(Hy)+4(Ha)) +4qgﬁf Hy)P+q(H)+q(H,)
For rate adaptation, we s esign appropriate rates ry

and r; 4 for the messages s and s, based on limited feedback
from the two receivers, such that r 4 and > , can be supported
and NOMA can be performed. The corresponding rate loss
will be

Foss = Fmax *min{rl,mrz,q}a

where rmax 1s given in (2).
For a constant-rate service, we care more about whether
the current channels are strong enough to support target data

“Note that ri(a*) = rp(a*) holds for any P. When P — o, a* — 0,

“log, [ 1+ 2PH, H,
V/Hy - H)P +4H P+ (Hy +Hy)

and rj(o*) = will approach

infinity.
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Fig. 2: A uniform quantizer for minimum rate.

rate with the power allocation coefficient computed based on
limited feedback. The achieved outage probability is out, =
Pr{rq < ”th}, where

g = min {r1 (ag),m (th)}

min{log2(1+Px o, % Hy),log, <1+m)}’

— q(H\) > q(Ha),
min {1og2 (1 + ‘m> Jlog, (1+P x 0y x Ha)
q(Hl) < q(H2)a

The outage probability loss is given as

Outigss,g = OUty — OULin, 4)

where out,, is given in (3). In the subsequent sections, we
will propose efficient quantizers and investigate the perfor-
mance losses brought by limited feedback.

IITI. LIMITED FEEDBACK FOR MINIMUM RATE

In this section, we first describe the proposed quantizer
when the minimum rate is the concern, then, we show the
relationship between the rate loss and the feedback rates.

A. Proposed Quantizer

We consider a uniform quantizer g, : ® — R}, given by’
X
_[1E] x4,
ar(x) = { TA,

where x can be any non-negative real number, and the bin size
A and the maximum number of bins 7' € Al are adjustable
parameters. As shown in Fig. 2, ¢,(x) quantizes x to the left
boundary of the interval where x is. For any x € [nA, (n+1)A)
when 0 <n<T—1, we have g,(x) =nAand x—A < ¢,(x) <x
for any x € [TA, ), g-(x) = TA and g,(x) <x

x < TA,
x>TA,

B. Rate Adaptation and Loss

When ¢, (-) is employed, Receiver 2 is viewed as the “weak”
receiver if g, (H;) > g, (H,). Then, according to (1), the power
allocation coefficient o, is calculated as

2qr(H2)
) V0ar )+ e ()P4 (H) g2 (Hy) P+ g, (Hy )+, ()]
&, = qr(H) > 0,q, (Hy) > 0,
0, qr(H1) =0 or g, (H) =0,

which satisfies log, (1+Px o0y xq-(H)) =

qr(Hy)x (1-0y,) .
log, <1+orquqr(Hz)+}.> when «, # 0. To exploit the

«, 9 [t

SIn g,, “q” stands for quantizer, and the subscript “r”” represents rate.

channels as much as possible, we let the BS send messages
s1 and s, at rates of

logy (1+P x 0y, x g, (H)),
Per(HZ)(l_aqr)> o)

Per(Hz)Oqu-‘rl

g =
2.4, = 10g, (1 +

Lemma 1. When g, (H\) > q, (H>), the rates ry 4, and r g, in
(5) can be achieved.

Proof: Based on the channel coding theorem [23], if we
can show the channel capacities for s; and s, under the settings
of NOMA are no smaller than ry g4, and ry ., the rates ryg4,
and 4. can be achieved with a probability of error that can
be made arbitrarily small.

When ¢, (H,) =0 or g,(H) =0, it is trivial to verify that
14, and r2 4 can be supported. When ¢, (H1) > g, (H>) > 0,
the channel capacity for Receiver 2 IZ treating s; as noise

1

(HW +q<H><loc>)

is rn =1o
g2 Hy++ 0, xqr(Hy)+ 5

> log,

.4, since log,

1+20=9 ) s an increasing function
X0+ p

of x and ¢,(Hy) < Hp. At the side of Receiver 1,
the channel capacity of s, with treating s; as noise is

— Hl(liath) qr(Hl)X<]7a‘Ir>
712 = 1oz (”%w +1) 2o (” a1 ) S
‘Ir( ) (1 0‘(1;) —
log, l—i-i%xq'(%>+ = ry4,, because H; > g,(Hi) >
q-(H>). Hence, s can be decoded at Receiver 1 with an

arbitrarily small error and removed from y;. After that,
the channel capacity of sy is r; =log, (1+P X oy, x Hy) >
log, (1+P x ¢, x q,(H1)) = r1,4,. Therefore, the rates ry g,
and r, 4, can be achieved for both s and s5. |

To sum up, it is the key fact of g,(x) > x that ensures the
rates 114, and 54, in (5) can be supported. When ¢,(H;) >
q,(H,), the rate loss is

Foss = 'max — min{rl Jir?rzﬂr}'

Lemma 2. The average rate loss of the quantizer q,(-) is
upper-bounded by:

_1A
E [ross) < log, (1+C0 x P x max{e M ,A}) , (6

where Cy is a positive constant that is independent of P,T and
A

Proof: See Appendix A. [ ]

We mainly focus on showing how the average rate loss

changes with the bin size A. It is beyond the scope of this

paper to find the tightest bounds, i.e., the smallest value for

Co. A value for Cy which is derived from the proof in Appendix
Ais Gy = max{4—|— %,M}

TA

It is observed from (6) that when e % > A, the maximum

number of bins, 7, can degrade tTlle rate. To eliminate this

effect, we choose T such that ¢ % = A, which yields T =

A logi ® With an appropriate value for T, we can make the

rate loss decrease at least linearly with A.

6 Approaching the performance in the full-CSI case generally requires a
small value for A. We mainly consider the case where A < 1 in this paper.
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Corollary 1. When T = % log %, the average rate loss of the
quantizer q,(+) is upper-bounded by:

E[ross) <logy (1+Cox PxA) <Cp x P XA, @)

where Cy and C| are positive constants that are independent
of P and A.

C. Feedback Rate

Rather than the naive fixed-length encoding (FLE) for
feedback information which requires [log,(7T + 1)] bits per
receiver per channel state, we consider the more efficient
variable-length encoding (VLE) [21], [25].7 An example of
VLE that can be applied here is by = {0}, b; = {1}, b, = {00},
bz = {01} and so on, sequentially for all codewords in the set
{0,1,00,01,10,11,...}, where b, is the binary string to be fed
back when g,(x) = nA. The length of b, is |log,(n+2)]. The
following theorem derives an upper bound on the rate loss
with respect to the feedback rate of Receiver i (denoted by

R, VLE,).

Theorem 2. When variable-length encoding is applied to the
quantizer q,(-), the rate loss decays at least exponentially as:

E[rios] < logy (1+Cy x P x 2 min{es fovia})
<Gy x Px z—min{Rr,VLEﬁl’RrﬁVLE,Z}’ (8)

where Cy and C3 are positive constants independent of P and
R/ v1E,-

Proof: The feedback rate of Receiver i is derived as

T-1 (n+1)A
Rr,VLE,i = Z Ung(n+2)J /A fH (Hi)dH,'

n=0 n

+llogs(T+2)] [ fin (i),
oo (n+1)A
Z |logy(n+2)| /A fu,(H;)dH;
n=0 B

1 ) (n+1)A o7 % .
< (o} + / —dH;

<log2(n+1) +1

> _A
Z (l—e A
n—=0 | .
(n+DA o7 %
dH;
Ai '

x log,(n+1)

+Zl></

>'h>

i xlog,(n+1)

1+(1 VA i

_nA
e % xlog,(n+1).

| /\

LA
T

HMS

7For example, when A=0.01 and A, = 1, T = AL log 1 ~460.5. When FLE
is adopted, the feedback rate per receiver will be [log, (7 +1)] = 9 bits per
channel state. As shown by the theoretical analysis and numerical simulations
later, VLE will cost far fewer bits.

X1 QO(xl) X qol)Q) X Q()(x,%) q,,(X4) X4
L \{ 1 \ 777777777 \l\/ \ >

0 A 24 3A TA (T +DA

Fig. 3: A uniform quantizer for outage probability.

With the help of [21, Eq.(22)]: Yo ,e P'log(n) <
_ _A
% {2+log (1 + %)}, by letting B =e¢ *, we have

> _nA s

Y e % xlogy(n+1 Ze % xlogy(n+1)

=0

’ A

el

1 2 1
e lleog( §— —— +log, | 1+ —+

Then, R,vLE, is upper-bounded by?

2 1
Ryvig: < @+1+10g2 <1+f,> s &)

or equivalently (when R,.vyLg; is sufficiently large),
Ai < Ai

< = Cy x 2 Rrviei,
REVLE i —2~ o2

A<

2
RivIEi~1-5g _ |

(10)

Substituting (10) into (7) proves the theorem. |

Therefore, we can see that appropriate values for 7 and
the use of VLE enable the rate loss to decrease at least
exponentially with the feedback rate.

IV. LIMITED FEEDBACK FOR OUTAGE PROBABILITY

Outage probability is an important performance metric that
evaluates the chance that the channels are not strong enough to
support the constant-rate data service [26]. An ideal quantizer
for outage probability should have at least the following
properties: (i) The outage probability loss should decrease
toward zero when the feedback rate increases toward infinity.
(i1) The outage probability loss should approach zero whenever
P — 0 or P — oo. The intuition of (ii) comes from the fact that
when P is adequately small, the outage probabilities of both
the full-CSI case and the quantizer should be close to one;
when P is significantly large, both outage probabilities should
be almost zero. Then, the outage probability losses in both
scenarios go to zero.

A. Proposed Quantizer
As portrayed in Fig. 3, the uniform quantizer proposed for
outage probability is given by
X
_ [ IR xA,
90(x) = {(T+ 1A,
The only difference between g, (-) and g,(-) lies in whether

the left or right boundary of the interval is used as the re-
construction point. The quantizer proposed for rate adaptation

x < TA,

x> TA. an

8Although it is intractable to derive a closed-form expression for R, vLE,.
the upper bound in (9) provides a good estimate on how many feedback bits
will be consumed.
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cannot be directly inherited because when the channel is
very weak (i.e., H; < A), it will be quantized as zero (i.e.,
q,(H;) = 0), which will result in a zero-value power allocation
coefficient, i.e.,0;, = 0, and a minimum rate of zero, i.e.,
ri(ag) =0 or r(ay). In this case, the transmission will
surely encounter an outage. However, even a weak channel
reserves the possibility of non-outage, so long as the transmit
power P is large enough. Therefore, an appropriate quantizer
for outage probability should not quantize any value to zero.
The quantizer in (11) fulfills this requirement.

B. Outage Probability Loss

Lemma 3. The outage probability loss of the quantizer q,(-)
is upper-bounded by:

G 14+P 3 1A
OUtjogs g, < C5 X e P x %ﬁ X max{Aé,Ag,e M },
(12)

where Cs and Cg are positive constants that are independent
of P and A.

Proof: See Appendix B. [ |
Different from the rate loss which increases linearly in terms
of P, because of the term e_CTG X H‘f the upper bound on
OUtlogs,q, in (12) converges to zero elther when P— 0 or P —
o,
To have good performance, we mainly focus on the quantiz-
ers with small granularities. When A < 1, we have A2 < A%,

_TA
and the upper bound in (12) is restricted by max {e A ,A% }

_TA
For fixed A, the optimal choice for T should satisfy e *1 = A? ,
given by T = %log%.

Corollary 2. When 0 <A< 1l and T = 2A L log 4 x» the average
rate loss of the quantizer q,(-) is upper-bounded by:

G 14+VP 1

OUutjossg, < C5 X e P X 2 X AZ,

where Cs and Cg are positive constants independent of P and

A

(13)

C. Feedback Rate

The same VLQ for rate adaptation can be applied to
qo(+) for a better utilization of the feedback resource. From

(9) and (10), we obtain R,vig; < ey + 1+ 1l0g, (1+:)

and A < Cyq x 27 RovLEi Thus, Az < /Cy x 2 RoVLE: =

Ry VLE,i VLE i B m‘"{Ro VLE,1:Ro VLE, 2} .
2" <Cy;x2 2 . The following theorem

states the relationship between the outage probability loss of
qo(+) and the feedback rates.

C7><

Theorem 3. When variable-length encoding is applied to the
quantizer q,(-), the rate loss decays at least exponentially as:

G 1+vP _mn{RovigiRoviEa}
Oty <Cyxe P x — Y2 3
055,40 P ,

(14)
where Cg and Cg are positive constants independent of P and
Ry VLE,i-

D. Diversity Order

With an outage probability out, the achieved diversity order
is given as d = limp_, l(]’(%";t [26, Section 2.3]. The following
lemma shows the achlevable diversity order of ¢,(-) and a
sufficient condition to achieve the maximum diversity order

in the full-CSI scenario.

Lemma 4. (1) With q,(-) and fixed A, the diversity orders
of % and 1 are achievable for Receivers 1 and 2,
respectively.

(2) A sufficient condition for both receivers to achieve the
maximum diversity order of 1 is A ~p pP3.

Proof: See Appendix C. [ ]
In the full-CSI case, both receivers can achieve the same
diversity order of 1 as in the case when no interference exists.
In the limited feedback case, it can be found from the proofs in
Appendices B and C that the cause of this insufficient diversity
order for Receiver 1 comes from the marginal region when
0 < Hy,H < A. Therefore, an adequately small A that scales
at least in proportion to P~ 3 in the high-P region is desired
to diminish the probability that H; falls into that region so as
to obtain the maximum diversity gain.

V. EXTENSION TO MORE THAN TWO RECEIVERS

A. Full-CSI Performance

In this section, we consider NOMA with more than two
downlink receivers. Assuming perfect CSI universally avail-
able and H; > H, > --- > Hg, the maximum minimum rate
can be obtained by solving the optimization problem:

Fmax =  Max min 7 (o
T Gy otk k=TnK W),
K
subject to 0 < oy < 1, ) o =1, (15)
k=1
where K is the number of receivers, and ri(e) =

(1+ %) is the achieved rate for Receiver k

log,

Zi:1 o m
under superposition coding and SIC. To the best of our
knowledge, no closed-form solution for 7y« is available in the
literature. We present the following lemma that helps solving
the above optimization problem numerically.

Lemma 5. There exists a* = [0, 05, ..., 0], such that all
receivers achieve the same rate at optimality, i.e.,
r (a*) =nr (a*) = =TK (a*).

"max =

The proof of Lemma 5 is given in Appendix D. Since rp.x =

logy ( 1+ rt— ) for k=1,...,K, we h
ri (o) = ng( JrZ, Ty +P}Ik> or ,-..,K, we have
oy = (2"mx —1) x (Zk Lor+ PH; ), which leads to’
1 k—1 2(k 1—i)rmax
a* — 2rmax _ l - 2rmax _ ) 16
i = ( ) PH, + L (16)

9Note that [19] also derives (16), but using the tools of convex optimization.
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To find oy, we need to solve for rpy,x first. Summing both sides
from k= 1,...,K and after trivial calculations, we obtain

K o (K—i)rmax

K
o =1=@m Ny (17)
L L g
=0 (rmax)

In other words, ryax satisfies @ (rmax) = 1.1

@ (x) is an increasing function of x as well as @(0) < 1 and
@ (ryp) > 1, we could use the bisection method to find the root
of @(x) =1 in the interval (0,ry]. The calculation of @ (x)
costs O(K), thus, the time complexity of finding rpax Within
an accuracy of € is O (Klog1).

B. Limited Feedback

Under limited feedback, the previously proposed quantizers
g, (+) and g, (+) in Figs. 2 and 3 can still be applied here for rate
adaptation and outage probability, respectively. The maximum
minimum rate can be calculated using the bisection method
by treating g, (Hy) or g, (Hy) as Hy, and the corresponding
power allocation coefficients can be computed. Although it
is non-trivial to derive upper bounds on the losses in rate or
outage probability for K > 2 theoretically, numerical simula-
tions in Section VI show that the relationships between the
performance loss and the feedback rate are similar to the case
of K=2.

VI. NUMERICAL SIMULATIONS AND DISCUSSIONS

In this section, we perform numerical simulations to validate
the effectiveness of our proposed quantizers for rate adaptation
and outage probability. In all subsequent simulations for K
receivers, we use the channel variances in Table I.

TABLE I: Channel variances for numerical simulations.

K=2
K>2

M=1,,=05
Mo=1.k=1,... K

Results for other values of channel variances will exhibit
similar observations. For outage probability, sufficiently large
number of channel realizations are generated to observe at
least 10000 outage events.

In Fig. 4, we simulated the minimum rates of the full-
CSI case, g,(-) and the TDMA scheme (where each receiver
occupies half of the time to transmit). We observe that
the proposed quantizer with NOMA outperforms the TDMA
scheme when A = 0.01 and 0.05. The rate loss between the
full-CSI case and g,(-) with A=0.01 is almost negligible. The
corresponding values for 7T = % log% and the feedback rates
for both receivers (bits/per channel state) are listed in Table
II. Compared with FLE which costs [log,(T + 1)] bits per
receiver per channel state, VLE can save almost half of the
feedback bits.

10Note that [27] has solved a different optimization problem, i.e. maxi-
mizing the sum rate subject to a minimum rate constraint, which satisfies
YX | oF =1 but results in different os.

——TFuall.CSI

-e-¢,,A=0.01 3

67—x—q,v,A =0.05 ]
~*TDMA

Minimum Rate
w - wm

[S)

-10 0 10 20 30 40
P (dB)

Fig. 4: Simulated minimum rates of NOMA for K = 2.
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Fig. 5: Simulated rate losses versus (a) A and (b)
min {Rr,VLE,l aRr,VLE,2} for K=2 and P =10 dB.

In Fig. 5, we plot the rate losses of g,(-) for different values
of A and the feedback rates R, viEg,1 and R, viLg>. It shows that
the rate loss of ¢,(-) decreases at least linearly with respect
to A and exponentially with min{R,vig 1,R.vLE2}, which
validates the accuracy of our derived upper bounds in (7) and
(8). In addition, Fig. 5(a) shows that A needs to be less than
0.15 such that g,(-) can obtain a higher rate compared with
the TDMA scheme.

In Fig. 6, we compare the outage probabilities of the full-

10'8

- ~1
Z10
2
=}
=
2
&
@
&
8
21072}
© 7 =Tl oS
--q,, A =0.01
—+q,, A = miv}{O.Z P’l«}
¢, A=P 5 ]
$-q,,A=10.2 7
(B VT ‘ ‘ b
-5 0 10 15 20 25 30
P (dB)

Fig. 6: Simulated outage probabilities of NOMA for K = 2.
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TABLE II: Feedback rate for either receiver.

A T [log,(T +1)] | Receiver 1 | Receiver 2 2 0.08 ‘ (a‘) p=10 [‘iB ‘
0.01 | 461 9 5.3 4.6 'i
B ]
0.05 60 6 3.6 2.7 = 0.06f 1
% —--Go
£ 0.04- -x-0.0219% /Al
& —“*-TDMA
¢ [~e-FLE, A = 0.01 g 002 . 1
o —x—¥£1é ﬁ = 88} ]I%ece@ver% b .E o % Py
P——O——_x-VLE, A = 0.01, Receiver
—~-FLE, A = min{0.2, P’i«} =] 0.5 0.4 0.3 0.2 0.1 0
7" ——VLE, A = min{0.2, P}, Receiver 1| VA
-#-VLE, A = min{0.2, P}, Receiver 2 @ (b) A=0.01
o 6f 1 ERTS
;“; i -4
& of 7 Z = TDMA
D Femmm = K= m - K== == R e R . =
Z z /\
] 2
S / £ i
k¢ 0 g ] A~
* )
2 e £ 10"
3 5
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i Rl TEEEL R S L S 1 P (dB)
s 0 5 0 15 20 25 30 Fig. 8: Simulated outage probability losses versus v/A and P
P (dB) fi —
or K=2.

Fig. 7: Simulated feedback rates versus P for K = 2.

CSI case, go(-) under various values of A and the TDMA Sx10° ‘ ‘ ‘ ‘ ‘
scheme. It can be seen that: (i) The curve for g,(-) with i% wforisiuyia)
A =0.01 almost coincides with that of the full-CST case. (ii) ast 00075 2" — 7 —
When P is large, g, (-) with A =0.2 suffers from an insufficient "

diversity gain in the high-P region. According to our analysis 4 1
in Lemma 4, A = 0.2 is large enough not to scale with P~3.! &

(iii) Although the maximum diversity order is achieved when _‘§ 3 |
A= P’%, much less array gain is obtained in the lower gl |
and medium-P regions (where A is large). Alternatively, A = &

min{O.2,P_%} will reserve both benefits of the maximum 525’ 1
diversity order brought by P73 and the higher array gain of 2k |
A = 0.2.'2 The comparison of feedback rates for VLE and

FLE (which requires [log, (T +2)] = [log, (4log £ +2)| T BB B
bits per channel state) under different values of A and P’ is min {Rovip1, Roviea}

shown in Fig. 7, which verifies the superiority of VLE. It Fig. 9: Simulated outage probability losses versus

can be seen that the feedback rates for A = min 0.2,P’%} min {Ro.vLE 1,RovLE 2} for K = 2.

stay flat in the low and medium-P regions (since 0.2 < P_%).
When P’% < 0.2 where P > 20.9 dB, the feedback rates start
to increase as A gets smaller.

In Fig. 8(a), the outage probability loss decays at least
linearly with respect to A; in Fig. 8(b), the outage probability
loss approaches zero whenever P — 0 or P — oo; in Fig.

9, the outage probability loss decays at least exponentially

. min{ R R . .
with { O’VLEZ‘I OVLEZJ ~ All these observations validate our

Rate Loss
=

e 2 o
[ wn

e
e
P

0 ‘ ‘ ‘
. . 0.1 0.08 0.06 0.04 0.02 0
theoretical analysis. @A
In Figs. 10 and 11, we simulated the rate and outage 0.2 ‘ ‘ e
probability losses for more than two receivers. For Receiver k, 015! . =%-0.45 % 27 Mt v

the channel variance is set to be A = %, the maximum number

Rate Loss

of bins T for g,(-) and g,(-) is T = & log £, and the accuracy M
used by the bisection method is £ = 10~*. We simply treat the 0.05;
o 15 2 25 3 35 4
"The value 0.01 for A will also exhibit an insufficient diversity order as (b) ming—y__4 R viEk

long as P is large enough, although we might not be able to observe this in
the region of P <30 dB in Fig. 6.

12We also observe a similar effect of A on the achieved minimum rates,
but we mainly elaborate it on outage probability.

Fig. 10: Simulated rate losses versus (a) A and (b)
minkzl,m,KR,’VLEYk for K=4 and P =10 dB.
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Fig. 11: Simulated outage probability losses versus (a) v/A and
(b) ming—; . xR, vigk for K =4 and P =10 dB.

result of bisection method based on perfect CSI as the “full-
CSI” performance. Compared with Figs. 5, 8 and 9 for K =2,
Figs. 10 and 11 exhibit very similar relationships between the
losses and A or the feedback rates.

VII. CONCLUSIONS AND FUTURE WORK

We have introduced efficient quantizers for rate adaptation
and outage probability of minimum rate in NOMA with two
receivers. We have proved that the losses in rate and outage
probability both decrease at least exponentially with the min-
imum of the feedback rates. Furthermore, we generalized the
proposed quantizers to NOMA with any number of receivers.
The performance of NOMA with noisy quantized feedback
will be an interesting future research direction.

APPENDIX A: PROOF OF LEMMA 2

To clarify, the notation D; for i € IN represents a positive
constant independent of P,7 and A. The average rate loss of
gr(+) can be expressed as

. 2 2
E[rloss] = / rlosstH,-(Hi)dHi“l‘/ rlosstH,-(Hi)dHi;
J > i=1 Ho.< i=1

=E< [rloss]

where Hy> = {(Hi,H2):q,(H1)>q,(Hy)} and . =
{(H1,H2) : qr(H1) < q,(H2)}. We will only show Ex [rjoss] <
TA

=E> [Foss]

14+DyxPxmax<e * A} ), and skip the proof for

log,

E< [r10ss] due to similarity. Note that g,(H;) > g,(H») does not
necessarily mean H; > H,, since it is possible that ¢,(H;) =
q,(H,) and H; < Hy. When ¢,(H;) > q,(H;), define

snr _ (X*Hl :gZ(H],HQ), ifH] ZHz,
max — a*Hz:g<(H1,H2), if H; < Hj, (18)
snrg, = (er X qr(Hl) =8> (ql‘(Hl)aqr(HZ)) y
SNIoss = SNMmax — SNT, .
_ 2xy
where g>(x,y) . = Y T and
_ Xy

g<(x,y) = s Then, we  have

Floss = 10gy (14 P X snrmax) log, (1+P xsnr,,) =
log, (1 —&-P% < log, (1+P X snryss). Grounded

on this, the main steps of the proof are listed as follows:
(1) Partition #y > into the following mutually disjoint sub-
regions H,...,Hy:
H = {(H\,H,) : q,(H\) > q,(H>),H, < TA,H, < TA,
H, <AOI‘H2<A},
9 = {(Hi,H>) : q-(H1) > q-(H2),H > Hy,
A<H <TAA<H, <TA}
95 ={(Hi,H) : q-(H\) = q,(H2), Hi < Hy,
A<H; <TAA<H, <TA}
Hy = {(H1,H2) : q,(H1) > q,(H2),
H{ >TA or Hy > TA}.
Here, #; and #; are edge regions where H; < A or H; >
TA; #, and #; are the dominant regions where A <
H; < TA. It can be verified that ;N #H; = 0 for i # j,
and 7> = UL, 7.
(2) Let & = f}[l SNMoss Hi2:1 fu;(H;)dH;. Then, E> [snrigss] =

_TA
Zj}zléai. Prove & <D;xmax{e * A fori=1,...,4.
(3) After Steps (1) and (2), we obtain Ex [snriyss] < D X

_TA
max<e * ,A:. Based on Jensen’s inequality, we have

E> [Floss] < Es [10g, (14 P X Snrjogs)]
<log, (14 P X E> [snriess))

_Ta
<log, <1+D0 xmeax{e M ,A}) .

Now, we only need to show the upper bound on &; in Step
(2).

For &, since #; C {(H\,Hy):Hy <A} and snrj <
SNrmax < Hi, we obtain

Hy Hy
(5’</°°H ¢ [ an
=) Uy w9
A A
le<1—e 22)Sﬂ,1><=D1><A,
A

where the last inequality follows since 1 —e™* < x for x > 0.
For &, since H; > H, and ¢, (H;) < H; < q,(H;) + A for
H; <TA, we upper-bound snross by

SNFpss
B 2H\H,
\/ (Hy + Hy)* +4H\H3P + (H, + Hy)
-1
_ 251r (HI)Qr (HZ)
V1 (H1) + - (o) + 4, (Hy) g2 (Ha) P+ g, (1) + g, (o)
§T+H1+H2
o Hi—g, (Hy)qr(H>) < Hif — (Hi —A) (H,—A)
- Y+H +H - Y+H +H
H +Hy,—A
=2A————— <2A. 19
Y+H +H, — (19)

Then, an upper bound on & <can be & <

2A [ TTiy S, (Hi)dH; < 2A = Dy x A
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For &3, we have gq.(H,) = q,(H2) < H; < H, and ¢, (H;) < For 7|, we have go(H1) = qo(H2) = A > Hp, and
H; < g, (H;) + A hold for (Hy,H,) € #4. Similar to (19), we thus, «, = \/PA+1+1 < \/PH21+1+1' For any (H{,H,) €
can also obtain snrjoss < 2A and &3 < D3 X A. Iy, since g>(x,y) < min{x,y} and g-(x,y) < min{x,y}, it

For &, since #Hy C {(Hi,H,):H,>TA} and must have 5 < snfmax < min{H;,H,}. Moreover, we obtain

SNross < SNrmax < Hp, the upper-bound on & 1 . <1 +1 , and
can be & S fTAfl'll (H,)dH, fo Hy fi, (Hy)dH, = min{ry (0, ).r2(0o ) } <rin 1(@g0 ) <rin 2 (g, ) <rin
Hl 1 = 1 = 1 /,
Jra® /1 ~dH [y Hr ;L “dH, = ke W =Dy xe “HL We 1”(“‘10)<r‘h IHIX%<% Hll<5%’ .
l:we accomplished Step (2) and the proof of (6) is complete. r2(ag ) <rm %;;;qu1)<% = Hz( sz+ +1> Hy<B2428
NG e <
APPENDIX B: PROOF OF LEMMA 3 Thus, an upper bound on % is
When the uniform quantizer ¢,(-) is applied, the outage
probability loss in (4) is rewritten as F1 < /1 1 1 Hy<pYPALIL iIJlin (H;)dH,
2 2
OUtioss,g, = /10,2 lmin{n(aqn),rz(aqo)}<rm il;!in (H;)dH; + /11 1H2<ﬁ2;2B l];][in(Hl)dH
=out> Joss,qo Biva;lH e*% A e %
2 gy 7/13 o dHdH,
NdH: )
+ /10 . lmin{rl (aqo),rz(aqo)}<rth Hin (Hl)dHl : P ) P H,
: i1 R =
=out < loss,qo / / dH] dH2
where B
e M
loz = {(H1.Ha) : (F1) 2 g (Ho). v = Tog (1P x shrmas) 2 rin} < €20 {B VPA;HI _ ﬁ y % « [A_ ﬁ]
= {1, Ho) : @, (H1) 2 gy (F) snimen = = 251 ! ; :
_P
IO,<:{(HlvHZ):Qr(Hl)<Qr(H2)75nrmax<%}~ +i>< |:A ﬁ:| y e R |:ﬁ2+2ﬁ ﬁ:|
and snry,x is defined in (18). We show outs jossq, < D5 X M P A2 P P
bs  14vP AL A3 . B SVEPAH
e~ P x —p xmax{e M A2,A2 5 and skip the proof for P —
e M PA+1 1
out < joss,q, due to similarity. The main steps of the proof are: < » X B x P X = X A
(1) Partition Iy > into the following mutually disjoint sub- B
regions: 1 T 2
g +7L xAx—el XB;_ﬁ
I = {(H17H2) ICIr(Hl) > Qr(H2)>Sn|'max > %7 ! D182 \/ﬂ-ﬁ-]
H]SA,HQSA}, §D17X67TXTXA

b= {(Hy H2) : g, (HY) = gy (Ha), 5nmas = g (H1 Ho) > B,
A< H, <TAH, <A},

13:{(Hth)Iqr(Hl)qu(Hz)ﬂlZszgz(HlaHz)Zga §D7><e*DT§><1 xmax{eglAA;?Ag}. (20)
A< H; <TA,A < H, < TA}, P

L= {(HlaH2) :qr(Hl) qr(Hz) Hl <H2ag<(H15H2) > ﬁ FOI' JZ’ let ‘/2’ - flz rt(aqy)<r1hH lfH( i)dHi for i =

A< H; <TAA<Hy <TA}, 1 2. Then, % < %1+ F,,. For F#, 1, since Hy > H, for
Is = {(Hth) 4 (HL) > ¢ (Hb), Srmas > %7 (HI,HZ) € I and g>(x,y) is increasing on x and y, we have
H, >TA or H, > TA}. r](aq0)<r[h =1 2, %0 (Hy) <%
Here, I, I and Is are the marginal regions where H; < VlaoCir) a0 (#2400 ) (#2)P+ao (0 (1)
A or H; > TA; Iz and Iy are the main regions where <1 2(g0(H))—A)xq0 (Hp) B
A < H; <TA. It can be verified that ;N I; = 0 for i # j, Va0 (Hy) 00 (#)]7 +4q0 (Hy ) a3 (Hy )P+ [a0 (Hy ) +a0 ()]
P Q1)
and I()‘Z - Ul:1 Il
— : 2 =
@) Let Fi = [i Lninfr, (ay, ) ra(agy ) s <riy Llim1 fo; (Hi)dHi. L (o) o))< B x —
Then, Ou't>.loss,q0 = 21'5:1 :% Prove L% < D2i+5 X ) qo(H])
. o TA < 22
s # X max{ell,Ai,Ag} fori=1,...,5. - gZ(MHl)v%(HZ)K%X(Hq,,%ﬁl)) @)
<
Now, we need to show the upper bound on .%; in Step (2). - lgz (qo(H1)7qo(Hz))<%X(l+ﬁ,§2))
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Fig. 12: The integration region Ig.
1 23
= e (qo(H) g0 (H2) < B x (147 ) 3

<1

24
- é’z(Hl-,Hz)<%x(1+%>7 (24)

where (21) follows from ¢,(H;) < H; + A, (22) follows
from (1 - ﬁ) X (1 —I—ﬁ) > 1 because g,(H;) > 2A >
qo(Hz) = A, (23) follows from ¢,(Hz) > H, and (24) fol-

lows from g> (¢, (H1),90(H2)) > g> (H;,Hp). Then, we obtain
2 :
P2, n=n0{ (Hy Ha)igs (H1 H) < B (1438 ) } [Ty o, (Hi)dH,

We change the integration variables from (Hj,H;) to

(¢,H) where ¢ = g>(Hi,Hy). Then, Hy = ‘LZP:;’ x Hy,
and the Jacobian matrix is |[91| = M < Hy <
20PH,+H. < 20PHy M 0 20 Pﬁf 9)*

R~ 29PHy +2H)

(H—9)* X Hy (Hy—9)* T (H—9)? x Hj. For any

(H\,H) € 12, we have: (i) g <¢= gZ(le,Hz) < H, and
¢ < B x (1 i %); (ii) since Hy > Hy, Hy = $7%8 x Hy > H,
then, Hy < ¢>P +2¢. Therefore, F, is derived as % <

2 .
'[I;:{(Hl7H2>5§§H2§¢2P+2¢7%§¢Smin{1{2»%(H»%)}}Hi:lin(Hl)
The integration region Ig is demonstrated in Fig. 12 as the

shaded area surrounded b the points A,E,D and C. It can
be strictly proven that 12 is within the reglon surrounded

the points A,B,D and C. Recall that H; = 9°P +¢¢ x Hy and

dﬂ (Q)P-‘rl) 2
| = (m, ¢>2XH Then. we have
H °p
Fy < /WW S TR
2,1 .
5 Jo A2 A
P
2(9P+1) x H7d¢dH,
(H2—¢)
248
=H—¢ @ 0°P+o _xi_ll
= " Dy =
B 0 —
2 B
¢P+¢ P+1
R x(z+9) 9 : x (z+¢)*dodz
\—f_/
92 (9P+1)
<e Az
. @ O°P+9 2 0%(oPtD)
§D21><e AQP/ / e he Az
B 0
g
2
><(¢P+1)><[1+¢ q dpdz. =

Using  the  inequalities: (i)  [yx" 'e” frdy =

%)7%@//37/) [28, Eq. (3.471.9)] with %(2)
being the modified bessel function of the second kind,
(il) Hp(x) < 2 and A 4(x) = Hi(x) <1 for x >0 [29,
Eq. (27)], after lengthy but basic calculations, we obtain

Do VA 13
Fr1<Dpxe a ><A+

For %, ,, because H; >H2 and g,(H1) > q,(H2) =A > H,
we have
Ay,
2q,(H)
¢ 90 Hz 1o (F2) -+ 440 (Ha) g3 (H2) P+ o (H2) + o (H2)
1
. (26)
WH)P L 1+1 PA+I+1
Since r(ay,) is decreasing on o, we obtain
1 —
r2(0q,) 212 Zm) 204 L)<t = (e )<
H(l ) = 1wy _p <1 myrin <8 =
2 \/WH P PHy+1+VPA+1 P PALIIVPATT
\/PA+ +1 + L. .
(WH) Similar to (20), we will have %, <

Dos
112 H<Bm+1H, 1 Sy (Hi)AH; < Doy x = 7 x YEEEL A
Together with the upper bound on .%;;, we obtain
D3, A+VA s
T < Foi+ Fap <Dpxe 7 x AR LDy xem 7 x
TA
@xAngxe_DTl’0 x#xmax e M A% A%
For %3, since q,(H)) > qo(H2) and g,(H;) — A < H; <
qo(H;) for i = 1,2, we obtain
dH I (aqo)
=log, (1+PH; x aqo ) >log, (14+P x (q,(Hi) —A) x ay,)

=log, (14+P xqo(Hi) x 0y, —P X AX 0t,)
—log (14 P x 8 (q0(H1), 4o (H2)) — P (40 (H1), 00 (H2)) % 757 )

=log, (1+Px g=(qo(H1),q0(H2)) % (1= ;-7

>log, (1 +Pxg>(qo(H),q0(H)) X
> log, 1+P><g>(H1,H2 x(l

A
 qo(H2)

(o log H2 Hy(1-04,) (qo(H2)—A)x (1—aty,)
40) 2 Hotqg+P t o) Dxag
> 10 ‘IO H2 1 aq
£ Go(Ha) ><o‘qzﬂLP
— log, q,, (H)x (1— aq,,) 7 Ax(1-0y, )
9o Hz X(qu-‘rp O(Hz)X(qu"rP

=log, ( 1+ P x g>(q0(H1),q0(H2)) X (1*#112)))

>log, (1+P x g>(Hi,Hz) % (1_ﬁ)>’

Therefore, we have

lmin{rl (tho)-,rz(aqo)}<rth

=1
5’2(1‘11,11’2)<#A
”(‘To(ﬂz))

27)

< 110g2(1+P><gZ(H1,H2)>< (kﬁw))qﬁl

2A ) <1
qo(Hz)

3Detailed calculations for (25) can be found in Appendix B of [30].

<1
= Cgs (H,H) < (14 gx(H )< B (1475)
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where (27) is because (1—%) X (1-1—%) =14+

ﬁ -2 (ﬁ) > 1 since q,(Hy) > 2A for (Hy,H,) € I,
and g,(H>) > H,. Similar to (23) and (25), we can obtain an
upper bound on %3 (the detailed derivation is omitted due to
similarity). For .%,, its upper bound can be developed in the
same way as the upper bound on .%3.

For 75, when H, > Hy > A, since g>(Hi,Hy) >
2H\H) _ H, =
= we obtain from (27
/(Hy +H )2 +4H} Hy P+ Hy +Hy VPHy+1+17 (27
that
; <
lmm{n(aqo),rz(aqo)}<rlh — ng(Hl,H2)<%<1+L§)
<1 3 < H =1 D 28
— Tg>(H Hy)< %(1+2A)=TB = \/ﬁ+l<$ Hy< 2267 (28)

where Dy = (3B 4 1)* — 1. Similarly, when H, < H,, we have

1. {ru ( gy )2 (g, ) b <y = < 1 <D Therefore, an upper bound
on %5 is
2
75< [ (H;)dH,
N{(Hy,Hy):H|>H,} H2< %o lI:_Ille(
2

06 X [ [ fu: (Hi)dH;

1
/14ﬂ{(H17H2)1H1<H2} Hi<=p i=1

dH,
B
_TA <e Ph<o PY
— M
o] _H e m
+ —e R de/ — e M dH; 29)
TA 7Lz B 7Ll S~~~
£ B
_TA  _TA <e PA
— M<e M -
_TaA _ Do —
<e M x—xe Ph 2%~ P
< 5 P
_TA B _
te M ox—xe Ph oy 220 B
1 P
1 _TA

D 1 P _IA
<Dss xe P x %ﬁ xmax{e M ,A%,A%},

where (29) is based on the assumption that A; > A,. This
completes the proof of the upper bound on outieg g, in (12).
[ |

APPENDIX C: PROOF OF LEMMA 4

It is trivial to obtain the maximum diversity order for
both receivers is 1 in the full-CSI case.'* When g,(-) is
employed, the outage probability of Receiver i is outy,; =
flri(aq(,)<rm [T, fu,(H;)dH; for i = 1,2. Following the deriva-

tions of .%; for i = 1,...,5 in Appendix B, we will ob-

. 2]
tain outg, | < outmin + Dy X e~ P X f” +4 f and

4Detailed derivations for the maximum diversity order can be found in
Appendix C of [30].

TA

_Dxn M
outy,2 < outyy + D31 X e P X %

for fixed A, the diversity orders of %
for Receivers 1 and 2, respectively.
3

15 Therefore,
and 1 are achievable

For Receiver 1, % in the upper bound on out,, | is the
. . . 3
bottleneck for diversity gains. If we scale A as A2 ~p \%,

i.e., A~p P_%, the diversity order of 1 is also achievable for
Receiver 1. ]

APPENDIX D: PROOF OF LEMMA 5

Given K and f3 > 0, define the following two optimization

problems:
(P1) 5 (K,B) = max  min r (@), subject to 0 <
a=[ay,..., ok k=1,...K

oy < ﬁ and Zszl o = ,B

Fiax (K, B) a:[g}ﬁ?ga,dkg}%},xk<a>’

= r[((a), 0< o <pB, and Zle o =f,
where (P1) is the original optimization problem in (15) when
B = 1. We will show that the maximum minimum rates of (P1)
and (P2) are the same, i.e., 7. (K,B) = ri.(K,B), which
proves the lemma.

Denote the optimal power allocations

(P2) by @x(B) = | x(B):- ..t x(B)]

P2) subject  to

for (P1) and
and o (B)

[a?)K(ﬁ),...,aIE)K(ﬁ), respectively. Since i, (K,B) >
rhx(K,B), it is sufficient to prove that rt,. (K,B) <
Fhax (K, B)-

The proof for K =2 is provided in the proof of Theorem 1.
By induction, assume 77, (K,B) = rl..(K,B) holds for K =
Ki. When K = K; + 1, there are two possibilities:

W1 e (@0 B) = e (i (B),
since rg+1 (@) = log, H_# =
X ]al+PHK T
QK| +1 . .
lo 14— for any o satisfyin
|\ e y ying
K +1 .
Zizlf o; = B, it must have KaI§1+LK1+1(ﬁ) >
Ok 1x,41(B),  then, By = Zk%lalzKH—l(B)
ﬁ - a;;l—}—l K1+1(B) S :B aK1+1,K1+1(B) =

Zk 1O K1+1(ﬁ) = f,. Next, we obtain
r;lax(Kl'i_Lﬁ)

_min{{k Iim}K e (a,(,H(/s))},rKlH (a;<1+1(ﬁ))}

< min{rm (K1,B1) g, +1 (a,(1+1( )} (30)
fmln{rmax( ) TR +1 (aK1+1( )} (3D
<min{rf (K ) k41 (@k, 1 (B)) } (32)
_mln{rmax (KI‘H B) .k +1 (aKl 1(/3))} (33)

I5Note that when we derive the diversity order for fz 2, we w111 not use

11ts upper b0121(11 here. From (26), Welobtaln Og, < }T \/m T = l‘/ﬁ T . and
(g, ) <rn = . . oy B2 , then, it is trivial to obtain that
VP11 ) 't P
_Dss

Frr < Dsux -
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= min{rKlH (a;(1+l(ﬁ)> TR +1 (a;(lﬂ(ﬁ))}
= i1 (@1 (B)) = rhs (K1 1,B).

Thus, 7. (K1 +1,8) < ri.(Ki +1,8). The inequality
(30) is due to the optimality of 7, (Ki,B1); (31) arises
from the assumption that 7%, (K, B1) = 7). (K, B1) when
K = Kj; (32) is because rl,,(K,B) is non-decreasing on
B; (33) holds since 7}, (K1,B2) = rix (K1 + 1, B).
I e (a%1+1(ﬁ)3 < i (@ (B)),

R K1+ LB) < i (@0 (B) <

K +1 (a}'(lﬂ(ﬁ)) = 1l (K1 +1,B), which completes
the proof of Lemma 5. ]

we

have
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