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ABSTRACT: We introduce a new coarse-graining technique
for ab initio molecular dynamics that is based on the adaptive
generation of connected geometric networks or graphs specific
to a given molecular geometry. The coarse-grained nodes
depict a local chemical environment and are networked to
create edges, triangles, tetrahedrons, and higher order
simplexes based on (a) a Delaunay triangulation procedure
and (b) a method that is based on molecular, bonded and nonbonded, local interactions. The geometric subentities thus created,
that is nodes, edges, triangles, and tetrahedrons, each represent an energetic measure for a specific portion of the molecular
system, capturing a specific set of interactions. The energetic measure is constructed in a manner consistent with ONIOM and
allows assembling an overall molecular energy that is purely based on the geometric network derived from the molecular
conformation. We use this approach to obtain accurate MP2 energies for polypeptide chains containing up to 12 amino-acid
monomers (123 atoms) and DFT energies up to 26 amino-acid monomers (263 atoms). The energetic measures are obtained at
much reduced computational costs; the approach currently yields MP2 energies at DFT cost and DFT energies at PM6 cost.
Thus, in essence the method performs an efficient “coarse-graining” of the molecular system to accurately reproduce the
electronic structure properties. The method is comparable in principle to several fragmentation procedures recently introduced in
the literature, including previous procedures introduced by two of the authors here, but critically differs by overcoming the
computational bottleneck associated with adaptive fragment creation without spatial cutoffs. The method is used to derive a new,
efficient, ab initio molecular dynamics formalism (both Born−Oppenheimer and Car−Parrinello-style extended Lagrangian
schemes are presented) a critical hallmark of which is that, at each dynamics time-step, multiple electronic structure packages can
be simultaneously invoked to assemble the energy and forces for the full system. Indeed, in this paper, as an illustration, we use
both Psi4 and Gaussian09 simultaneously at every time-step to perform AIMD simulations and also the energetic benchmarks.
The approach works in parallel (currently over 100 processors), and the computational implementation is object oriented in
C++. MP2 and DFT based on-the-fly dynamics results are recovered to good accuracy from the coarse-grained AIMD methods
introduced here at reduced costs as highlighted above.

I. INTRODUCTION

Ab initio molecular dynamics (AIMD)1−7 has had critical
impact on the study of fundamental chemical problems8−19 and
in complex processes in biological,20−26 atmospheric,27−29 and
materials30−32 chemistry, but the straightforward application of
AIMD to challenging problems is limited by the need for
accurate electronic structure at every instant in time during a
classical trajectory. This makes the routine application of post-
Hartree−Fock theory in AIMD for large systems less affordable.
There have been several algorithmic improvements33−40

including the advent of reduced-scaling post-Hartree−Fock
methods,41−45 but DFT-type treatment, despite its many
challenges,46−48 is the only practically reliable option available
for modeling large systems. In this regard there have been
several new fragment-based electronic structure methods that
have become recently available,49−53 some of which have been
applied to AIMD54−64 studies. In a few of these cases classical
trajectories are obtained in agreement with MP2 and CCSD
levels of theory.60−62,64 Both Born−Oppenheimer60 and

extended-Lagrangian (Car−Parrinello type) options are avail-
able for the methods in refs 61 and 62, and in these cases, the
molecular fragments are determined efficiently, “on-the-fly,”
using a bit-manipulation algorithm.60 These developments may
in the future push the rigorous description of complex
chemical, biological, and materials processes.
Influenced by developments in molecular fragmenta-

tion49,50,53−55,60−62,65−81 and facilitated by work on many-
body theory applied toward computing potential surfaces for
quantum nuclear dynamics,82,83 here we introduce a geometric
network theory to efficiently compute the instantaneous
electronic structure for AIMD simulations in large systems.
One goal that is achieved here is to make MP2-based AIMD
studies efficient for medium-to-large sized polypeptide systems.
Toward this we “coarse-grain” large systems, and the associated
coarse-grained nodes (or CG-nodes) are connected to form a
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geometric network or a connected graph. The nature of the
connectivity in this network is designed to capture all critical
bonded and nonbonded interactions in the system. To achieve
this in a general fashion for arbitrary systems, here, the level of
connectivity in the coarse-grained network is defined based on
(a) a filtered (local-envelope-based) Delaunay triangula-
tion84−87 and (b) a chemical connectivity-based procedure.
This allows us to include interactions beyond those from near
neighbors and may be adaptively determined during dynamics.
Edges connecting nodes (CG-edges) are obtained from the
aforementioned geometric network and used to provide a
decomposition of the full system energy. We gauge the extent
to which such an energy may efficiently capture the full system
MP2 or DFT energy and allow efficient AIMD treatment.
The paper is organized as follows: In Section II we discuss

the coarse-grained network-based energy decomposition
procedure. In Section III we provide benchmarks for accuracy
of MP2 conformational energies; multiple polyalanine, Alan,

conformers ranging in size from n = 4···26 are studied. We find
that the network decomposition provides an accurate
description of conformational stabilization and the computa-
tional cost is reduced to that of DFT when MP2 accuracy is
necessary and to that of PM6 when DFT accuracy is desired.
Thus, in essence the method performs an efficient “coarse-
graining” of the molecular system to accurately reproduce the
electronic structure properties. In Section IV we present AIMD
trajectories that conserve the total energy to inside the sub-
kcal/mol range. The approximate trajectories are compared to
the full system DFT and MP2 calculations and found to be in
good agreement. A variety of measures are compared. Most
notably we gauge the Fourier transform of the velocity
autocorrelation function to probe the differences in spectral
signatures obtained from the trajectories. Conclusions are given
in Section V. The Supporting Information (SI) is provided with
additional AIMD data and additional computational bench-
marks for accuracy.

Figure 1. Part (b) shows the filtered Delaunay triangulation of a helical polypeptide chain shown in part (a). The nodes represent individual coarse-
grained sites. Edges connecting these nodes represent critical interactions that include both nearest neighbor interactions and critical nonbonded
interactions. The interactions captured by such geometric decompositions are to be computed using electronic structure theory. Part (c) selectively
displays the connectivity neighborhood (red) of one node (yellow) for the special Delaunay triangulation shown in part (b).

Figure 2. Part (b) highlights features of the Delaunay triangulation scheme for the molecular representation in part (a).
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II. COARSE-GRAINED AB INITIO MOLECULAR
DYNAMICS USING GEOMETRIC NETWORKS TO
ALLOW DFT AND POST-HARTREE FOCK
ACCURACY FOR LARGE SYSTEMS

II.A. Nodal Architectures for Molecular Systems
through Simplex Decomposition. We begin by introducing
a coarse-grained (CG) version of molecular systems as
represented in Figure 1. Here, for illustration, a polypeptide
chain is presented, where each amino acid is represented as a
coarse-grained unit or a “CG-node”. These nodes are system
dependent and may capture a chemically significant portion of
the system without eliminating critical interactions, while
maintaining a suitable size for the desired optimization of
computation. The CG-nodes are connected to form a network,
or connected graph, through an edge generation scheme. Two
such schemes are employed here: (a) a filtered Delaunay
triangulation84,85 procedure and (b) a connectivity-displace-
ment-based interaction procedure, both of which are discussed
below.
II.A.1. Delaunay Triangulation of Molecular Systems. In

the Delaunay triangulation procedure, a three-dimensional
network, or a connected graph, is created with CG-nodes as
vertices; CG-edges connect CG-nodes when these obey the so-
called Delaunay triangulation condition.84,85 In three dimen-
sions this condition requires that no nodes may appear within
the circumscribing sphere for each tetrahedral arrangement of
nodes. For this reason, in Figure 2, there is no edge that
connects nodes 2 and 6. Such an edge would create the
tetrahedron with vertices, 2-3-5-6, which would contain node 4
in the interior of the circumscribing sphere and violate the
Delaunay condition. Delaunay triangulation allows an orthog-
onal real-space decomposition of the molecular framework into
tetrahedral (or 3-simplex) domains known as convex hulls.
[Simplexes are n-dimensional generalizations of triangles, with
the tetrahedron being a three-dimensional example.] For
example, Figure 2 contains four convex hulls with vertices, 1-
2-3-4, 1-2-4-5, 2-3-4-5, and 3-4-5-6 which do not overlap. There
are a variety of commercial and open-source software packages
which can provide Delaunay triangulations for objects in n-
dimensions. Here, we make use of the Computational
Geometry Algorithms Library (CGAL),88 which allows
incremental construction of the triangulation and scales as

N(Nlog( )), N being the number of vertices in the geometric
network. A similar method has been employed for potential
surface sampling,89 quantum-dynamical simulations,90 and in
computational geophysics applications.91 It may also be noted
that objects obtained from Delaunay triangulation are dual-
space analogues of Voronoi diagrams.84,85

Once the decomposition is carried out, a CG-edge in this
wire-frame geometric network is interpreted as a set-theoretic
union of the molecular fragments depicted as part of the two
CG-nodes that it connects. Our choice of a Delaunay
triangulation to define nodal connectivity ensures that critical
local interactions are captured in the network topology.
Furthermore, interactions beyond a chosen spatial cutoff are
ignored, and thus we include a local envelope of simplexes
within our Delaunay triangulation, where the size of the local
spatial envelope may depend on the strength of the local
interactions present in the system. For example, in Figure 1, the
local envelope that encapsulates each CG-edge is large enough
to include all connected amino-acid monomers and four
additional pairs of amino-acid monomers that interact through

space to capture nonbonded interactions within a specific
distance cutoff. For the 310-helices that we discuss later in this
publication, these nonlocal interactions capture hydrogen-bond
interactions that are a critical part of protein secondary
structure. An additional edge is required to be included to
capture the same for the α-helix conformation.

II.A.2. Nodal Architectures Based on Molecular Con-
nectivity. The connectivity-displacement-based network-gen-
eration procedure considers bonding and nonbonding (weak)
interactions contained in the system. In this paper, we utilize
the covalent bonding network to determine this framework, but
for other systems hydrogen bonding network connectivities
may also be included within the definition of connectivity for
the determination of the connected graph. This scheme begins
with CG-edge formation between adjacent,“neighboring”, nodes
based on molecular connectivity. Following this, for CG-edges
that share a CG-node, the peripheral nodes may be connected to
form a new CG-edge that captures first degree, nonbonded
interactions. Consequently the connectivity-displacement pa-
rameter, η, is the degree of separation allowed for “interaction”
through CG-edges, where η = 2 implies edge formation between
neighboring CG-nodes as described above. Furthermore, η = 3
creates additional CG-edges between CG-nodes connected
through a chain of three CG-nodes. In all cases, as in the
Delaunay scheme, the CG-edges are a set-theoretic union of the
elements in both CG-nodes. This connectivity-displacement
interaction scheme generates a static network invariant to
evolution of the system as compared to the Delaunay scheme,
which is inherently dynamical and adaptive. Furthermore, the
convex hulls contained within the simplexes defined using the
connectivity-based measure are not spatially orthogonal, in
contrast with those from Delaunay triangulation. The impact of
this feature may be gauged from the flexibility to include the 1−
3 edge interaction in Figure 2 here, which cannot be included
within the Delaunay procedure as a result of the Delaunay
condition noted above.

II.B. Energy Estimates from Systematic and Recursive
Network Decomposition of Molecular Systems. Once a
molecular system is “coarse-grained” to obtain a geometric
network as discussed in the previous subsection, we use it to
construct an energetic measure for the whole system.
Specifically, here, we define an energetic measure for the
whole system as a linear combination of energies obtained from
electronic structure calculations performed using molecular
fragments belonging to CG-nodes and CG-edges as

∑ ∑ ∑= + Δ − Δ −
α

α
=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥E E E E m( 1)

I
I

l

p
l

lnetwork
level,0 cor ., 1 cor ., 1

2

I

(1)

Here, Elevel,0 represents a reference electronic energy for the
whole system, which could be obtained from a low level
electronic structure calculation on the full system. The quantity
“α” in eq 1 represents a CG-edge and I represents a CG-node.
The quantity ΔEαcor.,1 is a correction to Elevel,0 arising from the
subsystem that is depicted by the edge α and is obtained as

Δ = −α α αE E Ecor ., 1 level,1 level,0
(2)

in a fashion consistent with the well-known ONIOM60,92

method. Here, the terms “level, 0” and “level, 1” represent
increasing levels of electronic structure theory. The energy
correction associated with CG-node, I, is also written in a similar
fashion as in eq 2, and hence
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The square-bracketed term in eqs 1 and 3 incorporates an
overcounting correction for CG-node, I, and pI represents the
number of CG-edges that contain the CG-node, I. For example,
in Figure 1(c), the CG-node highlighted in yellow belongs to six
edges (two that are bonded and four that interact through
space). As a result, the sum over the index l in eq 1 essentially
represents a loop over the intersections of CG-edges, and, for
example, l = 2 represents the two-edge intersections on node I,
l = 3 represents the three-edge intersections on node I, and so
on. The phase (−1)l is selected such that (l − 1)-edge
contributions are removed from (l)-edge contributions to
account for overcounting of CG-nodal contributions. The
quantity ml represents the multiplicity of l in pI, that is

≡ =
!

− !· !

⎛
⎝⎜
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p l l( )l
I I
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which is the number of times that l-edges appear inside the
local neighborhood network that defines the neighbors of CG-
node, I. However, also notice that the bracketed term, “[···]” in
eq 3, is a partial sum of the binomial expansion for (x−1)pI for x
= 1, with terms l = 0 and l = 1 omitted. Hence,
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As a result,
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and eq 1 may be simplified to

∑ ∑= + Δ − Δ −
α

αE E E E p( 1)
I

I Inetwork
level,0 cor ., 1 cor ., 1

(7)

This simplification is a key step in the formalism presented here
and greatly reduces the computational cost in determining
contributions from CG-edge overlaps.
The procedure developed above can be easily generalized to

include all embedded CG-simplexes within the constructed wire-
frame geometric network. Although, we do not benchmark this
generalization here, we present the general expression in
Appendix A. The expression in Appendix A, when combined
with either Delaunay triangulation or connectivity-displacement
parameter η, may be used to derive a systematic approach for
fragmentation and molecular coarse-graining to achieve energy
and forces in agreement with high level electronic structure
theory in a computationally efficient manner. For example,
there are essentially two dimensions where the CG-technique
introduced here can be systematically improved.

(a) For any given truncation of the generalized version of eq
A1 (for example, truncated in this paper to CG-edges as
given in eq 7), the parameter η discussed in Section II.A
is an expansion coefficient that allows us to “tune-in”
many-body interactions between coarse-grained units of
the specific size depicted by the truncation order. In

Section III, we have exhaustively probed all possible
fragmentation protocols as allowed within the truncated
description presented in eq 7.

(b) The other dimension where the CG-description can be
systematically improved is by introducing energy
contributions from faces and all embedded simplexes as
stated above, but this generalization is not numerically
benchmarked in this paper. (See Appendix A.)

II.C. Computational Efficiency of the Nodal Decom-
position Scheme. Fragmentation methods51,60,71,73−76,93

often consider overlapping subsystems to introduce many-
body interactions, while maintaining smaller fragment sizes to
optimize computational complexity. The associated total energy
of the system is obtained by assembling the energies of all
fragments with suitable removal of contributions from common
subfragments as allowed by the inclusion−exclusion principle.94
There are several fragment-based methods that benefit from
such an approach.50,51,53,60−62,71−74

The connections between fragment-based electronic struc-
ture methods and the approach developed here can be
understood through inspection of Figure 3. For example, in

Figure 3(b), chemically bonded neighbor interactions are
depicted by portraying CG-edges and corresponding fragments
that would be used in the above listed fragmentation protocols.
In Figures 3(c) and 3(d) longer-range interactions are depicted
using both the corresponding CG-edges and molecular frag-
ments depicted as Venn diagrams. While computing the
overlapping regions between these sets may become challeng-
ing, all possible many-body interactions are included in such a
decomposition which may be critical for modeling complex
systems. The computational challenge appears in two parts: (i)
the “derivative” fragments formed from overlaps would need to
be identified from all of the predefined “primitive” fragments,
and (ii) the overcounting coefficient for each of these fragments
would be needed. The first problem needs determination of all

Figure 3. Connections between the CG-approach and molecular
fragmentation are illustrated here for a 310 polypeptide helical
fragment. The CG-network in part (a) comprises (i) chemically
bonded (nearest neighbor) fragments (illustrated using Venn diagrams
in part (b)), that is connectivity-displacement parameter, η = 2, (ii)
next nearest neighbors, that is, parts (b) and (c) together represent η =
3, and finally (iii) parts (b), (c), and (d) together represent all
interactions obtained in part (a) from connectivity-displacement
parameter, η = 4. Importantly, the CG-network in part (a) includes all
interactions depicted in parts (b), (c), and (d). Computing the
overlapping fragments and their respective weights from all such
interactions are appreciably reduced by the CG-algorithm introduced
in this paper.
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possible overlaps for every fragment with all other fragments,
and this procedure would scale as N( )2 in the worst case and

N( ) when some local spatial cutoff condition is enforced.
Next, the procedure needs to be iterated to compose all
overlapping fragments between any three primitive fragments;
the number of such regions would potentially grow up to

N( )3 without local truncation. In general, high order overlaps
will need to be considered, and for an adaptive scheme,
essential for dynamics, the algorithm must cycle until reaching a
point where all overlapping regions have been exhausted,
requiring a potentially exponential scaling number of overlap
calculations

∑
=

⎛
⎝⎜

⎞
⎠⎟

N

nn 1

frag

(8)

where Nfrag is the total number of fragments created from the
algorithm, and n is the order of overlaps, that is n = 2 checks for
number overlaps between pairs of fragments and so on. The
complexity depicted in eq 8 grows exponentially but tails off as
n increases for fixed Nfrag. Once all such overlapping derivative
fragments are found, the appropriate coefficients (that correct
for overcounting) would be needed for the overall energy
expression obtained from the principle of inclusion-exclusion.94

The summation of all of these coefficients grants the weights of
the derivative fragments, and as before the calculation of these
coefficients through direct determination of all possible
combinations would require an exponential number of
operations.
The approach proposed here, arising from eq 7, circumvents

the exponential scaling bottleneck described above. Specifically,
the scaling of the algorithm depends on the number of edges
obtained from Delaunay triangulation. Since the number of
nodes are related to the number of edges through η, the CG-
algorithm would require roughly

η η

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠⎟

N N

2
log

2
frag frag

(9)

evaluations. We further note that even for moderately sized
systems our algorithm shows orders of magnitude speed up
over the exponential scaling number of comparisons required
from eq 8. In practice we see great reduction in computational
costs. For example, a 16-amino-acid fragment with η = 4 yields
42 edges in the CG-network and hence 42 primary fragments in
a fragmentation protocol. These 42 primary fragments will

require ∑ η
=
* − ( )n42n 1

2 ( 1) checks to discover all possible fragments

obtained from intersections involving the primary fragments.
This is effectively done in the current CG-algorithm in an
extremely efficient fashion and requires only 9 ms of CPU time
(on an 8-core Intel i7, at 3.4 GHz and 8GB RAM). Thus, we
observe significant cost savings, allowing more two-body
interactions to be efficiently included. (As an illustration note
that the two-body interactions captured within an η = 4
calculation involve all interactions represented in Figures
3(b)−3(d).) The consideration of higher many-body inter-
action would follow similar scaling to eq 9. For instance three-
body interactions (CG-triangles) would be linearly dependent
on number of monomers (CG-nodes) but quadratically
dependent on the distance cutoff (η) leading to an expression
similar to eq 9.

II.D. Further Computational Enhancements through
Extended Lagrangian Treatment of Elevel,0. The theoretical
framework is benchmarked in Section III for accuracy in
computing isomer stabilization energies for polypeptide chains
and is demonstrated, in Section IV, through ab initio molecular
dynamics simulations. When DFT accuracy is desired, Elevel,0 is
computed using PM6, and when MP2 accuracy is desired,
Elevel,0 is obtained from DFT. Thus, for MP2 accuracy, the costs
toward computing electronic energies for N number of CG-
nodes would scale as * +N M M( ( ( ) ))3.5 5 where M is related
to the number of electronic basis functions (or size) within
each CG-node. Similarly, the costs for the corresponding CG-
edge calculations would be η* * +N M M(( ) ((2 ) (2 ) ))3.5 5 .
The full low level calculation would scale as ((NM) )3.5 .
Therefore, in the large system limit the calculation of Elevel,0

would quickly dominate the total CPU time, reducing the
overall scaling to order of N3.5. These formal results are further
substantiated through computational scaling curves provided in
Section III.
Thus, in the large system limit, the efficiency of the algorithm

is constrained by the calculation of Elevel,0. Since the greatest
impact of the Elevel,0-expense is on AIMD simulations, here, in
addition to studying the full Born−Oppenheimer molecular
dynamics implementation of eq 7, this energy functional is also
embedded within an extended Lagrangian95,96 framework, and
the electronic parameters that determine Elevel,0 are propagated
with the nuclear degrees of freedom through a simple
adjustment of the relative electron−nuclear time-scales. This
is based on the previously demonstrated Atom-centered
Density Matrix Propagation with post-Hartree−Fock accuracy
(ADMP-pHF)61 and is reminiscent of the Car−Parrinello
method5,97 but provides post-Hartree−Fock electronic struc-
ture accuracy, “on-the-fly”. Thus, we introduce the extended
Lagrangian

μ μ

Λ

= +

− − −E

Tr V MV Tr W

R P Tr P P

1
2

[ ]
1
2

[( ) ]

( , ) [ ( )]

T
level 0

level 0 level 0 level 0
2

level 0

level,0
1/4

, level,0
1/4 2

network , , , ,

(10)

Here M, R, and V are the nuclear masses, positions, and
velocities. The single particle density matrix Plevel,0 determines
Elevel,0 and has velocity (Wlevel,0) with fictitious inertia tensor
μlevel,0. Thus, the dynamical parameters depicted in eq 10 are
{R, V; Plevel,0, Wlevel,0}, which each evolve in time through
velocity Verlet98 integration. The values of the fictitious inertia
tensor are chosen as discussed in refs 61 and 62. Specifically,
the single particle orbitals represented within Plevel,0 are mass-
weighted as per the respective Fock matrix elements as outlined
in ref 62 (See eqs 5 and 6 in ref 62.) in such a way that the
core-orbitals are weighted with a greater inertia as compared to
the valence. This allows an adjustment of time-scales for the
electronic degrees of freedom represented by Plevel,0 leading to
simultaneous propagation with nuclear degrees of freedom
through eq 10. This process is very much akin to the well-
known Car−Parrinello scheme but differs here by allowing “on-
the-fly” post-Hartree−Fock accuracy as well as larger time-steps
as compared to those traditionally used in Car−Parrinello
dynamics, as a result of μlevel,0. However, as noted in ref 62, the
frequency of nuclear motion is perturbed quadratically (red-
shifted), by the choice of μlevel,0, and hence a scaling factor is
required for the frequencies. The scaling factor is system
independent, and we use the same scaling factor as in ref 62 for
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all our studies. (Precise values are mentioned in the results
section.)
To preserve the idempotency7,99,100 of Plevel,0, a Lagrange

multiplier matrix, Λlevel,0, is used. The Lagrangian is integrated
using velocity Verlet,98 while the Lagrangian multiplier matrices
maintain the idempotency of Plow,0 through an iterative process
at each step, as described in refs 61, 62, and 100. It is critical to
note that only the low level electronic structure, Plevel,0, is
propagated in time, and the remaining fragment energies are
obtained through convergence as done in ADMP-pHF in ref
61. The nuclear and density matrix gradients have similar forms
as those discussed in ref 61.

III. CONFORMER STABILIZATION STUDIES ON
POLYALANINE SYSTEMS WITH
POST-HARTREE-FOCK ACCURACY

Here we probe the accuracy and efficiency in computing
electronic energies and gradients in agreement with post-
Hartree−Fock theories using the CG-methods described above.
Toward this, we consider polyalanine chains, Alan, of lengths in
the range of 4 through 26. In Section III.A, we first discuss our
coarse-graining strategies for polypeptide chains following
which isomer stabilization energies are benchmarked in Section
III.B. The choice of polyalanine chains is based on their
significant helical propensities101−103 due to hydrogen bond-
ing.102,104−108

In Section III.B, we consider the conformational stability of
two sets of linear and helical polyalanine structures. Examples
of these structures for Ala10 are found in Figure 4. The first set
of structures was obtained through geometry optimization at

the B3LYP/6-31++G(d,p) level of electronic structure theory
to obtain the β-strand and 310 helical conformers in gas phase.
Helical starting structures (Figure 4(a)) converged to the
expected106,107 310 form (Figure 4(b)) that is characterized by
(i → i + 3) hydrogen bonding with peptide-backbone dihedral
angles109 at approximately ϕ = −60° and ψ = −20°. The linear
conformation (Figure 4(c)) converged to the β-strand
secondary structure (Figure 4(d)), with dihedral angles at
approximately ϕ = −160° and ψ = 160°. We have also used α-
helix (Figure 3(a)), with (i → i + 4) hydrogen bonding and
dihedral angles at about ϕ = −57° and ψ = −48°, and the
completely extended straight chain (extended β-strand) (Figure
3(c)) with dihedral angles at ϕ = −180° and ψ = 180° in our
benchmarks here since these have a critical role in the dynamics
of the short peptides104,107 and as parts of larger biological
systems.110,111 Furthermore, these nonequilibrium structures
may also be sampled during the dynamics studies such as those
constructed later in this publication. For all cases the
fragmentation protocols are as described in Section III.A.

III.A. Effective Coarse-Graining Strategies for Poly-
peptide Chains. Since the peptide bond, NH−CO, is
considered to have a partial double bond character,109 our
CG-nodes are defined by breaking the backbone bond between
the α-carbon and carbonyl carbon forming CHR-NH-CO CG-
node fragments; but, when chemical bonds are broken to create
these coarse-grained units, dangling valencies are created.
Hence, in a fashion consistent with the ONIOM method-
ology,60,61 the dangling valencies are saturated by the use of link
atoms; hydrogen atoms were used as link atoms for this work.
Furthermore, as discussed in refs 24, 112, and 113, the forces
computed on the link atoms during the CG-node and CG-edge
electronic structure calculations are correctly transformed back
to obtain corrections to forces on the real system atoms
through appropriate Jacobians.
To now determine the CG-edges in an automated and

adaptive fashion, we utilize the two schemes discussed in
Section II.A, and the associated edges are shown in Figure 5 for
a Ala6 conformer. Our first scheme to find these CG-edges
considers the bond connectivity information between nodes.
That is the CG-nodal unit displacement along the bonding
network of the system is used here rather than any Cartesian
criteria. For polypeptide systems, sequential displacement
between the Cα along the peptide backbone was used for this
system. The linear bond topology of the polypeptides leads the
quantity pI to be upper bounded by 2*η, when η is chosen as
the connectivity cutoff to be included in forming the network
(and is defined in Section II.B). Figure 5 shows a sample set of
edges from 6-alanine with increasing η. As the value of η
increases, the expectation is that the full system energy would
be better represented with increasing longer range interactions
being considered. If η is taken as the full residue length of the
system, then it would consider all possible dimers (CG-edges)
within the system. While increasing η would require more
calculations for additional edges, this is offset here through
parallelism on a distributed computing environment.
Delaunay triangulation, with the application of a filter based

on Cartesian distance, was the second method explored to
determine CG-edges. This method uses a simplex decom-
position of a field of vertices that are chosen as the centers of
mass of each CG-node. The result is the nonoverlapping
partitioning, or tessellation, of the three-dimensional Cartesian
space enclosed by our molecule, into space-filling polyhedra.
The edges formed in this fashion are our CG-edges after passing

Figure 4. Four different structural motifs of Ala10 are shown here along
with the associated backbone dihedral angles α-helix (a) and extended
β-strand (c) are nonoptimized structures, while 310 helix (b) and β-
strand (d) were optimized from the respective structures at B3LYP/6-
31++G(d,p). Additional structural characteristics are discussed in
Section III.B.
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through a Cartesian distance filter to remove edges that

represent insignificant interactions. For our system we set the

filter at 6.5 Å, which would represent the distance between

hydrogen-bonded amino-acid pairs. This scheme has the

advantage of capturing interactions based on locality rather

than based on bond connectivity, providing an adaptive

definition of the network, and adding and removing edges

based on the relevance of interactions. Thus, the filtered

Figure 5. α-Helical Ala6 structure (a) is subject to Delaunay triangulation of the CG-node center of masses, and associated simplex decomposition is
shown in part (b). Edge generation through the connectivity scheme is also presented for increasing values of η (parts (c)−(e)). These figures also
show an important difference between the connectivity-based and Delaunay triangulation schemes. The edge generation between amino acids 1
(blue) and 3 (tan) is shown on the left figure in part (d). However, such an edge is absent in the Delaunay interpretation in part (b), since the
associated tetrahedron would have another node inside the circumcircle thus violating the Delaunay condition as discussed earlier in Section II.A.
Thus, the Delaunay scheme may not include certain nonbonded interactions which would be part of the connectivity-displacement-based scheme.

Figure 6. Errors in the conformational energy for the gas phase optimized structures, with increasing η. This figure also includes a Delaunay
triangulation of the center of mass corresponding to the CG-nodes with a 6.5 Å filter. B3LYP:PM6 calculations (a) used 6-31++G(d,p) basis and
MP2:B3LYP calculations (b) used 6-31+G(d,p) basis for both electronic structure methods. Note the results of η = 2 in (b) were excluded as the
errors were too large and obscured the rest of the data. Due to the extensive nature of the error, the corresponding per residue errors are shown in SI,
Figure SI-1, and the absolute energy errors are shown Figures SI-3 and SI-4. The per-residue errors are generally less than 1 kcal/mol for all systems.
The legend key “η=N” in part (a) represents the case where all amino-acid dimers were connected with an edge and used in the calculation. Indeed,
the approach in Section II.B allows efficient computation of many-body effects to all orders as described in Section II.C and in Figure 7.
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Delaunay triangulation scheme produces a dynamically defined
network, unlike our connectivity-based scheme, and would
evolve within an AIMD calculation to capture interactions
between components of protein secondary structure better.
Furthermore, for larger scale production calculations, it is
foreseeable that one will need to combine both connectivity-
based and Delaunay-based simplex decomposition techniques,
given that critical nonbonded interactions may fluctuate during
dynamics.
III.B. Isomer Stabilization Energies. All four conformers

depicted in Figure 4 were considered at a variety of residue
lengths. At both B3LYP/6-31++G(d,p) and MP2/6-31+G(d,p)
levels, it was found that the 310 helical conformation was most
stable for all Alan conformations considered here. The
conformational stability of the 310 helix was found to be
greater with MP2. [Here conformational stability is defined as
the difference in absolute energy between the helical structure
and the linear conformer.] These stabilization energies act as
benchmarks for our coarse-graining methods. [Absolute
energies are also benchmarked, and these results are described
in the SI.] While the optimized 310-helices and β-strands were
studied using polypeptide lengths in the range 4 through 14,
the nonoptimized α-helix and extended extended β-strand were
considered using polypeptide lengths in the range 4 through 26.
III.B.1. Error in Stabilization of Minimum Energy

Structures: 310-Helices and β-Strands. The chosen systems
are coarse-grained as discussed in the previous subsection. Both
filtered Delaunay triangulation and connectivity-displacement-
based ideas are explored. Figure 6 shows the accuracy of our
scheme in obtaining conformer stabilization energies for the
optimized structures with increasing residue length and
increasing η. The error in conformer stabilization energy is
here defined as

Δ = −

− −

β

β

‐ ‐

‐ ‐

E E E

E E

( )

( )

conform. strand,high 3 helix,high

strand,CG 3 helix,CG

10

10 (11)

where the conformer stabilization is the difference in absolute
energies of the 310 helix and the β-strand. The error in
conformer stabilization energy is the difference between the

coarse-grained technique as compared to that from conformer
stabilization computed using the higher level of theory used in
the corresponding coarse grain calculation. As noted in Figure
6(b) MP2:B3LYP extrapolation shows monotonic corrections
to the stabilization energy with the increase in connectivity-
displacement factor η. The network with only chemically
bonded neighbor edges (η = 2) was excluded from Figure 6(b)
since the error was significantly larger as compared to those
from other values of η. The expansion to the first degree
nonbonded neighboring edges (η = 3) shows a manageable but
increasingly large error as the system size grows; but with
further increase in η, the error in conformational stabilization
energy is significantly reduced to far less than 1 kcal/mol error
at η = 4 and with further monotonic refinement for η = 5.
These η values allow the inclusion of (i → i + 3) interactions,
thereby properly accounting for the hydrogen bonding
interactions that are critical for the 310 helical conformational
stability. Yet, the errors are extensive with respect to the size of
the system, and hence we also present, per residue, errors in
stabilization and in absolute energies in the SI. Furthermore,
the complexity of the CG-calculations grows with the
complexity of the full system low level calculation as seen in
Figure 7. In Figure 7(b), for smaller systems such as Ala4, the
computational effort is dominated by the high level fragment
calculations, but for larger systems, the full system low level
calculation dominates the calculation.
It may also be useful to consider the behavior of Hartree−

Fock as low level, while requiring MP2 at the desired higher
level. This may be attractive since the fragment SCF
calculations do not need to be performed again for MP2
given their availability during the Hartree−Fock fragment
calculations. However, as seen in Figure 7(b), for larger
systems, the computational scaling is determined by the full
system low level calculation. As a result of this, the reuse of SCF
results for the fragment MP2 calculations yields no significant
gain in computational overhead, but this result does provide
another rationalization toward the extended Lagrangian
formalism in Section II.D. Thus, given the very good accuracy
of the B3LYP:MP2 calculations at lower values of η, we
proceed with this choice for the remaining portion of the paper.

Figure 7. Computational efficiency of CG-AIMD is portrayed here. In essence MP2 accuracy is achieved at much-reduced (B3LYP) cost as seen in
part (b). Furthermore, the algorithm discussed in Sections II.B and II.C allows efficient treatment of all many-body interactions at the chosen
geometric CG-edge truncation noted in eq 7 (also see Appendix A, eq A1). As seen in part (a) though, the choice of η particularly affects the scaling
of DFT accuracy, since the number of required fragment-DFT calculations increases quadratically with increasing η for the implementation in eq 7.
For the range of system sizes considered in part (b), a similar quadratic scaling has little effect in comparison with the inherent (N5) scaling of
MP2, which dominates the figure.
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It must also be noted here, that two different electronic
structure packages were used here to compute the MP2 and
B3LYP energies. For MP2, the Psi4 package114 was used,
whereas for DFT the Gaussian09115 suite of electronic structure
programs was used. While, this does not affect the accuracy of
the results (to show this, in SI, Figure SI-5, we also present
results where both MP2 and DFT fragments were computed
using Gaussian09), it does provide us with additional flexibility
given the wide range of options available in various individual
electronic structure packages. In fact this is one of the critical
hallmarks of our approach where the energies and gradients
from CG-edge, CG-node, etc. are sufficiently decoupled such that
completely different electronic structure environments may be
used within one single calculation. This kind of partition is also
done here for the AIMD calculations reported in Section IV,
with further discussions on these computational details reserved
for a future publication.
In contrast to the MP2:B3LYP calculations, the B3LYP:PM6

corrections (Figure 6(a)) start at a moderate accuracy with
neighboring edges (η = 2) but converge to roughly 0.25 kcal/
mol per residue stabilization error. This systematic error, even
with increase in η, may be due to the semiempirical PM6
method, that would need to be improved through dispersion
corrections.116,117

The use of Delaunay triangulation with a distance filter of 6.5
Å for the MP2:B3LYP demonstrates approximately the same
magnitude of error as connectivity-displacement factor η = 3,
but it overstabilizes the helical structure as compared to the
linear structure. This is due to the lower level of refinement in
the treatment of the linear structures, which with a Delaunay
filter distance of 6.5 Å yields a similar simplex network as in the
case of the connectivity-displacement calculation with η = 2;
the helical structures’ networks on the contrary remain close to
η = 4. Although the helical structures have a greater gain with a
larger network, the linear structures also benefit from a more
expanded network. These networks from the filtered Delaunay
when treated at B3LYP:PM6 display a similar error as η = 4
since the accuracy for the linear structure for this level of theory
is relatively invariant to choice of η as compared to the 310
helical structure.
III.B.2. Error in Stabilization of Structures That Are Not

Stationary Points: α-Helix and Extended β-Strand. As in
Figure 6, Figure 8 shows the accuracy of our scheme but with

the conformational energy calculated as the difference in
absolute energy between idealized α-helix (Figure 4(a)) and the
fully extended β-strand (Figure 4(c)). These structures allow us
to investigate nonoptimized, but relevant, structures that may
appear during dynamics. The α-helix is a very common peptide
motif,101−103 whereas an extended β-strand is often considered
the least stable conformation of short chain polypeptides.107

The MP2:B3LYP extrapolation for these stability calculations
showed the same trend as for the optimized structures
discussed above, that is monotonic convergence to subkcal/
mol accuracy with increasing η, with convergence at η = 5
which is expected since the α-helical conformation has
hydrogen bonding between (i → i + 4) residues. However,
this conformational energy dependence on η implies that as the
system evolves during dynamics the peptide may deform from
the 310- to α-helix requiring a different coarse-grained network
to properly capture the interactions. Setting η = 5 may resolve
that particular deformation, but clearly other structural changes
may also occur during dynamics. The simulations conducted in
this paper, however, use a fixed CG-scheme since we do not see
these transformations during the dynamics calculations
presented here. Future publications will evaluate aspects
regarding change in network connectivity.
Turning to the B3LYP:PM6 treatment of these structures,

the smaller polypeptide chains (Ala4 through Ala12) show good
accuracy for the structures when the choice of η is greater than
2, but as with the systems in Figure 6, further refinement shows
minimal gains in accuracy. The absolute energies for fully
extended β-strand conformers are not significantly affected by
choice of η, while the choice of η for the α-helix leads to the
oscillatory behavior in Figure 6; but as the system size is
increased, the overall error in the fully extended β-strand
structure increases but remains fairly invariant to the choice of
η, but the α-helix error decreases and then oscillates with the
choice of η. These systematic errors are again indicative of the
lack of dispersion correction in PM6 and B3LYP.
For the case of Delaunay triangulation, the MP2:B3LYP

treatment produced very similar errors as it did for the
optimized set of structures above. Although, due to the required
change of η to capture the hydrogen bond, the magnitude of its
error is now similar to η = 4 but yet again overstabilizing the
helical conformer over the linear. For the B3LYP:PM6
treatment the Delaunay scheme errors closely resemble the

Figure 8. Errors in conformational stabilization energy between the α-helix and fully extended β-strand. B3LYP:PM6 calculations (part (a)) used 6-
31++G(d,p) basis, and MP2:B3LYP calculations (part (b)) used 6-31+G(d,p) basis with the Psi4 package used for the higher level calculation. As in
Figure 6 the results of η = 2 in (b) were excluded since the errors were too large and obscured the rest of the data. Due to the extensive nature of the
error, the corresponding per residue errors are shown in SI, Figure SI-2, and the absolute energy errors are shown Figures SI-3 and SI-4.
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errors for η = 3. This occurs as the CG-network for α-helix
closely resembles η = 5, while the linear CG-network is
effectively η = 2.
In summary, for both optimized as well as nonequilibrium

structures, the MP2:B3LYP studies provide monotonic
improvement with increasing η stabilizing at the stage where
hydrogen bonds preserving secondary structure are correctly
captured. The B3LYP:PM6 study, on the contrary, yields a
systematic error with increasing size which is perhaps due to
lack of dispersion correction.

IV. BENCHMARKING THE COARSE-GRAINED AB
INITIO MOLECULAR DYNAMICS TRAJECTORIES

In this section, we test the CG-AIMD scheme for utility in
efficiently computing classical trajectories for medium-sized
polypeptide fragments in the gas phase. There are essentially
two flavors of classical trajectory methods that we utilize here.
The Born−Oppenheimer molecular dynamics1,2,4 is used here
with electronic energy defined as per eq 1. The associated
nuclear gradients are used in conjunction with the velocity
Verlet scheme98 to propagate the molecular framework. These
gradients appear in parts and include the full system gradients
(gradients of Elevel,0 with respect to the nuclear variables) at the
chosen lower level of theory and CG-nodes and CG-edges
(gradients of ΔEα

cor.,1 and ΔEIcor.,1 in eq 1 with respect to the
nuclear variables). The latter include contributions from
multiple levels of theory as indicated by eq 2. Furthermore,
in our case these energies and gradients are obtained using two
different electronic structure packages, Gaussian09115 and
Psi4,114 and these calculations are done in parallel using an
MPI protocol. The final gradients required for BOMD are
assembled exactly as prescribed by eq 1 and are closely related
to the equivalent discussion refs 60 and 61. Furthermore, we
utilize the appropriate Jacobians to back-transform the link
atom gradients on to the Cartesian framework of the molecular
system.
It is already clear that the full system energy and gradients

could become a bottleneck for large systems. To overcome this,
we propagate the electronic structure parameters that describe
the lower level full system (for example DFT) using a Car−
Parrinello-like extended Lagrangian treatment5 as described in
eq 10. Our method differs from the traditional Car−Parrinello

approach in that we choose to propagate the single particle
density matrix, and N-representability is assured through the
idempotency condition and conservation of particle number
using the Lagrangian in eq 10. Further details can be found in
refs 61, 62, and 100. Furthermore, for production simulations
here we chose a fictitious inertia tensor where the valence
orbitals have an inertia of 180 au (=0.1 amu·bohr2), and the
core orbitals are weighted as per their respective Fock matrix
value as discussed in refs 61 and 62. This choice is known to
perform well for hydrogen bonded systems.28,61,118−121 The
numerical value of the inertia-tensor determines the maximum
time-step for CG-ADMP-pHF dynamics with larger values
allowing larger time-steps.
Both CG-BOMD and CG-ADMP-pHF trajectories were

computed by integrating the equations of motion using velocity
Verlet98 integration with a variety of step sizes with simulation
details presented in tables in the Supporting Information. No
thermostats were employed, hence the total energy would be
expected to be well-conserved with acceptable drifts in total
energy. An effective temperature for each simulation is obtained
using average kinetic energy with associated fluctuations. We
gauge the effectiveness of a dynamics trajectories by recording
the energy conservation drift in total energy during dynamics.
Energy conservation is reliant upon the smoothness of the
potential energy surface sampled by the system, which implies a
conservative Hamiltonian since these simulations are in the
microcanonical regime. The conservation of total energy is also
critical as the time-correlation functions are computed to obtain
vibrational density of states, and these involve nuclear velocities
that require a conservative Hamiltonian dynamics. All dynamics
trajectories discussed here use CG-networks where the CG-
nodes are defined as discussed in Section III.A, and CG-edges are
a union of CG-nodes. Furthermore, the measure η is chosen to
include a range of values including all possible amino-acid
dimer units, since the conformational energy was noted to
improve with η (Sections III.B.1 and III.B.2). We studied the
dynamics of Ala3 and Ala4 in helical and β-strand initial
conformations under treatment by both CG and standard
electronic structure methods; the simulation parameters and
energy conservation data are summarized and tabulated in the
SI. As noted in the tables in SI, all simulations conserve the
total energy within a few of a tenths of a kcal/mol.

Figure 9. Vibrational density of states from B3LYP level dynamical trajectories for helical initial conformations of Ala3 (a) and Ala4 (b). We present
the full system with a positive amplitude and each of the coarse-grained dynamics (CG) with a negative amplitude for ease of comparison.
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We next inspect the vibrational density of states to gauge the
level of agreement between the coarse-grained trajectories and
higher level full system calculations. As in previous
work,9,10,18,19,122 we compute the absolute value of Fourier
transform of the nuclear velocities (Ṽ(ω)) to provide the
spectral activity involved in each trajectory at a given frequency.
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This expression, based on the convolution theorem,123 obtains
the vibrational density of states (I(ω)) from the nuclear
velocities. Here we utilize this to gauge agreement between
trajectories by probing the level to which spectral activity is
reproduced. In addition, as stated in Section IIII.D and
examined in more detail in ref 62, a uniform scaling factor of
1.021 was applied to the frequencies in CG-ADMP-pHF
trajectories.
In order to quantify this agreement, we calculate the

correlation coefficient between the vibrational density of states
for the CG-BOMD and CG-ADMP-pHF trajectories (repre-
sented as IV,CG) and the BOMD trajectories where the full
system energy and forces are computed at the target level of
theory at every step (represented as IV,BOMD) as

ρ =
·

∥ ∥∥ ∥
I I

I I
V BOMD V CG

V BOMD V CG

, ,

, , (13)

which is the Pearson correlation coefficient123 of the two. The
more similar the two spectra, the closer ρ would be to identity.
We present selected spectra for B3LYP (Figure 9) and MP2

(Figure 10); the spectra for the other dynamics trajectories can
be found in the SI. These spectra show quantitative agreement
between the coarse-grained and full system dynamics. The
essential features from the full benchmarks appear in the CG-
AIMD vibrational states as well. The most pronounced peaks in
the lower frequency end of the spectra, here presented,
represent the Amide I and Amide II modes. These modes are
often used to aid in the characterization of polypeptide
conformations,124,125 and our CG-method is able to correctly
replicate these important bands. Across the spectra, the CG-

AIMD trajectories were able to reproduce the methyl and α-
carbon−hydrogen stretch regime (about 3100 cm−1 to 3200
cm−1). The DFT results are red-shifted with respect to the
MP2 derived density of states. The given coarse-grained
dynamics matches this relationship quite well and shows
qualitative agreement to the full system. The CG-BOMD for
MP2:B3LYP density of states had correlation coefficients
greater than 0.9 with the full BOMD MP2 trajectories, and CG-
BOMD for B3LYP:PM6 had coefficients greater than 0.8. This
demonstrates good agreement between these trajectories.

V. CONCLUSIONS

In this publication, we introduce a geometric network
formalism to coarse grain large molecular systems to ease the
computation of electronic structure gradients for use in ab initio
molecular dynamics (AIMD) trajectories. These geometric
networks were constructed through the partitioning of the
system into nonoverlapping nodes which are connected by
edges to form a connected graph. We employed two schemes
to determine edge formation: a filtered Delaunay triangu-
lation84,85 and a connectivity-displacement procedure. An
energetic measure for the full system is constructed using this
geometric network. This energetic measure is shown to be
analogous to previously developed fragmentation meth-
ods,51,60,71,73−76,93 but it circumvents the exponential scaling
costs associated with determining fragment overlaps and
weights consistent with the Principle of Inclusion and
Exclusion.94 Furthermore, the current approach also provides
an efficient computational framework to evaluate higher order
many-body effects in a completely adaptive fashion.
The scaling of post-Hartree−Fock methods limits the

utilization of these electronic structure methods for larger
systems and makes ab initio molecular dynamics simulations
cost prohibitive for any system larger than a few dozen atoms.
The goal for this work is to provide alternatives that can bridge
this scaling problem. This is specifically achieved here by
replacing the scaling costs for full system electronic structure
treatment with a cheaper method. The higher levels of
treatment are reserved for the CG-edges and CG-nodes that
are significantly smaller and system size independent, thus
contributing only a constant computational scaling, restricting

Figure 10. Vibrational density of states calculated from MP2 level dynamical trajectories for helical initial conformations of Ala3 (a) and Ala4 (b). We
present the full system with a positive amplitude and each of the coarse-grained dynamics (CG) with a negative amplitude for ease of comparison.
The CG-ADMP-pHF trajectories frequencies were shifted by a scaling factor of 1.021 as in previous work.62 See the discussion in Section IIII.D.
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the computational cost to the lower level treatment on the full
system. Furthermore, the individual CG-edge and CG-node
calculations at all levels of treatment are completely decoupled
and hence can be spawned on multiple nodes on a distributed
computer-architecture. This implies that multiple electronic
structure packages may be used interchangeably; in this work
we used the Gaussian09115 and Psi4114 packages.
Through conformational benchmarks with varying lengths of

polyalanine chains, it was shown that the aforementioned
energetic measure can achieve MP2 level accuracy with DFT
cost. Next it was demonstrated that the use of this geometric
network to determine the gradients in use in AIMD, within
both Born−Oppenheimer and extended Lagrangian formal-
isms, conserved the total energy to within the sub-kcal/mol
range. These coarse-grained dynamics trajectories were able to
reproduce the spectral features found in the full system
benchmark comparison trajectories.

■ APPENDIX A: HIGH-ORDER GENERALIZATIONS TO
EQ 7 PROVIDE A SYSTEMATIC ROUTE TO
INCREASING ACCURACY

The procedure developed in Section IIII.B is generalized to
include all embedded CG-simplexes. The essence of this idea in
captured in the expression below
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where summation in the third term on the right side is
presented in reverse to include corrections from the largest
subclusters (n-gons) and then consider corrections arising from
each set of progressively smaller subsystems. The term ΔEα,N

cor.,1

is a generalization to the corresponding term in eq 7 but now
includes energy corrections from embedded N-gons. Further-
more, the square-bracketed term incorporates an overcounting
correction for the α-th n-gon, with energy correction, ΔEα,ncor.,1.
The term pα

n,m is essentially a generalization of pI, in eqs 1 and 3,
and represents the number of times the α-th n-gon appears in all
m-gons.
In addition, multiple levels of theory can be added by simply

expanding Elevel,0 in terms of additional layers. Alternately,
specific CG-nodes, CG-edges, or higher order CG-simplices may
be further decomposed using a similar approach.
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