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Abstract Natural disasters have devastating effects on the infrastructure and disrupt every

aspect of daily life in the regions they hit. To alleviate problems caused by these disasters, first

an impact assessment is needed. As such, this paper focuses on a two-step methodology to

identify the impact of Hurricane Hermine on the City of Tallahassee, the capital of Florida.

The regional and socioeconomic variations in theHermine’s impactwere studied via spatially

and statistically analyzing power outages. First step includes a spatial analysis to illustrate the

magnitude of customers affected by power outages together with a clustering analysis. This

step aims to determine whether the customers affected from outages are clustered or not.

Second step involves a Bayesian spatial autoregressive model in order to identify the effects

of several demographic-, socioeconomic-, and transportation-related variables on the mag-

nitude of customers affected by power outages. Results showed that customers affected by

outages are spatially clustered at particular regions rather than being dispersed. This indicates

the need to pinpoint such vulnerable locations and develop strategies to reduce hurricane-

induced disruptions. Furthermore, the increase in the magnitude of affected customers was

found to be associated with several variables such as the power network and total generated

trips as well as the demographic factors. The information gained from the findings of this

study can assist emergency officials in identifying critical and/or less resilient regions, and

determining those demographic and socioeconomic groups which were relatively more

affected by the consequences of hurricanes than others.
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1 Introduction

Natural disasters such as hurricanes have devastating effects on the infrastructure and

disrupt every aspect of daily life in the regions they hit. Communities living in these

regions suffer from the adverse consequences of hurricanes; therefore, emergency officials

are responsible to find solutions in order to alleviate the problems caused by these disasters.

Although a sizable number of major hurricanes have struck the US Gulf States such as

Florida previously, several areas of this hurricane-prone region have never seen landfalls in

the last 30 years. For example, Hurricane Hermine was the first hurricane to make landfall

in Florida on September 2, 2016, since Hurricane Wilma in 2005, and was the first

hurricane to directly hit Apalachee Bay since Hurricane Alma in 1966 (Berg 2016). As a

result of Hurricane Hermine, a large region in the Northwest Florida endured power

outages, food shortages, and roadway disruptions (Morris and Johnson 2016). At a local

level, Hermine left 100,000 residents without power in the City of Tallahassee, the capital

of Florida, knocking out trees, power lines, and shutting down stores and businesses for

days (Berg 2016; Morris and Johnson 2016; SERT 2017). In addition, this region was also

affected adversely by the Hurricane Irma recently.

Previous studies have investigated the effects and consequences of hurricanes through

spatial and statistical models. For example, a spatial and statistical analysis was conducted

in Demiroluk and Ozbay (2015) to predict the treefalls during a hurricane using several

predictors such as precipitation, roadway density, and wind speed via a hierarchical

Bayesian model. Authors identified regions which possess higher risk of treefalls based on

varying wind speeds. Moreover, it was shown that roadway density and wind speed were

the most important variables affecting the treefall probability. The power system perfor-

mance and power outages, on the other hand, have been of significant interest in the

literature regarding the adverse consequences of hurricanes. For example, the power

system performance and power outages were investigated by Davidson et al. (2003) during

five hurricanes at South and North Carolina in the USA. Authors examined the number of

outages, affected customers, and the geographic distribution of disruptions as well as the

type of failed power system components. The magnitudes of disruptions were found to be

highly correlated with the maximum wind speed. Environmental factors were also used to

predict the number of hurricane-related power outages, which were stated to be essential to

prepare the power system prior to a hurricane landfall (Quiring et al. 2011; Nateghi et al.

2014; Mcroberts et al. 2016). Mcroberts et al. (2016) proposed a two-phase estimation

model using different environmental characteristics such as elevation, land cover, soil,

precipitation, and vegetation characteristics in addition to speed and duration of winds.

Results showed that inclusion of environmental characteristics and two-phase modeling

substantially increased the prediction accuracy compared to previous models. The

importance of environmental factors (e.g., soil characteristics and elevation) on the power

outage was previously shown by Quiring et al. (2011).

To predict power outages and duration of these outages, researchers proposed various

approaches such as negative binomial regression (Liu et al. 2005), generalized additive

models (Han et al. 2009), spatial generalized mixed models (Liu et al. 2008), and random

forest methods (Nateghi et al. 2014). For instance, a random forest model approach was

adopted in Nateghi et al. (2014) using variables such as wind speed, wind duration,

protection of power system, power system components, length of power lines, soil char-

acteristics, precipitation, land slope, elevation, and land cover. They found that wind

characteristics, precipitation, and soil characteristics (e.g., soil moisture level) were the

most effective variables on the duration of power outages. In general, we observed that the
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power outage prediction studies usually relied on some common variables. These variables

can be listed as hurricane characteristics (e.g., wind speed and duration, precipitation),

geographical characteristics (e.g., land cover, elevation, soil type and features, vegetation,

tree type), and power system characteristics (e.g., system components, electricity poles,

power line lengths, protective systems).

The assessment of different aspects of hurricane impact has been as important as

predicting power outages. For example, $410 million loss was estimated for State of

Virginia through simulating various hurricane scenarios that will lead workforce losses due

to absence (Akhtar and Santos 2013). In addition to economic loss, several studies paid

attention to vulnerability and resilience of different demographic and socioeconomic

groups as well as impacts of hurricanes and power outages on these groups (Lindell and

Prater 2003; Gabe et al. 2005; Bjarnadottir et al. 2011; Bian and Wilmot 2017). For

instance, Congressional Research Services’ report on the impact of the Hurricane Katrina

showed that the poor and African-American population suffered the most due to the storm

(Gabe et al. 2005). Considering this important association between demographics/so-

cioeconomics and hurricane impact, Bjarnadottir et al. (2011) developed a social vulner-

ability index for coastal communities using factors such as race, age, gender, and

socioeconomic status, which also showed social vulnerability is driven by these factors.

Another study focused on daily power outages rather than hurricane-induced ones (Lié-

vanos and Horne 2017). This study examined the community resilience to daily power

outages considering a few socioeconomic- and transportation-related variables such as the

disadvantage of Native Americans, distance to the nearest hospital, and distance to the

major roadway. Authors have also used a spatial regression approach using these variables

in order to interpret the outlying reasons behind the daily power outage durations.

In this study, we investigated the impact of Hurricane Hermine both on the City of

Tallahassee infrastructure and on the communities of the city. The prominent conse-

quence of the hurricane—power outages, was examined spatially and statistically in

order to comprehend the regional variations of Hermine’s impact on the different

demographic and socioeconomic groups. This analysis also led to the identification of the

factors such as the type of power lines or wind speed which drive the magnitude of this

impact. In order to perform this, a two-step approach was adopted. First step includes

(a) a spatial analysis to illustrate the magnitude of customers affected by power outages

in different regions, and (b) a spatial autocorrelation analysis based on Moran’s I index

(Ord and Getis 1995; Koenig 1999) together with a clustering analysis based on Anselin

Local Moran’s I index (Anselin 1995; McCullagh 2006). The spatial analysis was con-

ducted in order to determine the spatial distribution of the customers affected from

outages. Second step involves a statistical analysis to model the number of customers

affected by power outages over the total population (i.e., percentage of affected cus-

tomers) using several variables related to demography, socioeconomics, power system

components (e.g., underground/overhead power lines), roadway disruptions, and trans-

portation. Note that, in this study, the objective is to assess the impact of Hurricane

Hermine on the Tallahassee communities rather than attempting to predict the locale of

power outages. That is, we use demographic-, socioeconomic-, and transportation-related

variables in order to answer the following question: Where and why post-hurricane

treatments and remedies of the city agencies should focus?
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2 Case study area and data description

This section presents a case study application in the City of Tallahassee, the capital of

Florida, which was hit by Hurricane Hermine on September 2, 2016 (Fig. 1a). Tallahassee

is also a home to two universities and has a population of 190,894, which makes it a

midsize city and a considerable urban region. In this paper, several datasets were used to

conduct the proposed case study application. These datasets include those that are related

to the city infrastructure (power lines, failed power system components and roadway

closures due to fallen trees, provided by the City of Tallahassee—Figs. 1b, c and 2,

respectively), 2010 Census data (U.S. Census Bureau 2010) (census block groups—Fig. 2),

and maximum measured wind speeds at weather stations in Tallahassee (WeatherSTEM

2017) (Fig. 2).

The City of Tallahassee is a full-service municipality providing essential services to the

region: electric, gas, water solid waste, sewer, public works, airport, mass transit, etc. It

was one of the first public utilities in the USA to implement a full-scale Automated

Metering Infrastructure in 2009. Power outage data were gathered through the ‘‘ping’’

operation for the power network, which identifies the outages. ‘‘Ping’’ data contain

unresponsive devices (e.g., circuit breakers, reclosers, fuses, switches, transformers, and

service points) and the following information: the feeder they belong to, dispatch remarks,

time of outage, time of restoration, duration for the outages, and number of customers

affected. These data are sampled hourly data which shows the number and location of

customers at distribution level who experience outage after the hurricane. Note that the

cascading failure is not considered in this study since cascading effects happened in the

range of seconds and minutes not hours. So, they do not reflect in hourly data. Therefore,

cascading effect in a dynamic form is not part of this work; however, the impact of

cascading is shown as the customer outages, and that outage is caused by the direct effect

of hurricane and cascading effect. The restoration covers a time frame from September 1 to

September 10, 2016, affecting 60,928 customers (Berg 2016). The failed power system

components were used to calculate number of customers affected by power outage at each

US census population block group. Note that the failure of these components results in

different outcomes in the context of affected customers. For instance, service point failures

usually indicate one or a few number of customers suffering from the outage. Failure of

circuit breakers, on the other hand, affects a large number of customers since these

components serve multiple power lines connected to many customers.

Roadway closures were identified through online requests and requests through a mobile

app called DigiTally (DigiTally 2017), which are both maintained by the City of Talla-

hassee. DigiTally establishes a platform to connect residences directly with City of Tal-

lahassee, which helps communicating more effectively and efficiently to resolve issues in

the community. Through these systems, residents can file requests for any issues and

monitor others. During Hurricane Hermine, 776 roadway closures/disruptions due to tree

failures were reported in a 1-week window. Note that, although this may not be the whole

roadway closures that happened as a result of fallen trees, the City of Tallahassee officials

have ensured the research team that this dataset included all the major roadway closures

the city has experienced. The total number of roadway closures together with the average

duration of closure was determined for each US census population block group and then

used in the Bayesian spatial autoregressive model.
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Fig. 1 Overview of the study area and data: a study area, b power infrastructure, c customers and failed
components of the power infrastructure
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3 Methodology

This study consists of two different methodological approaches to investigate the impact of

Hurricane Hermine both on the infrastructure and on the communities of the City of

Tallahassee: spatial and statistical analyses. Spatial analyses include: (a) mapping the

affected customers, (b) determining the density distribution of the magnitude of power

outages using a kernel density estimation (KDE)-based approach, (c) identifying the spatial

autocorrelation (using Global Moran’s I index) between power outage magnitudes of

affected customers to discover whether there is a clustering pattern or not, and (d) illus-

trating those power outage clusters using the Local Moran’s I index, if there is a clustering

pattern identified by the Global Moran’s I index. Following the spatial analysis, a statistical

modeling approach was utilized to comprehend the intricacy of the power outages. As

such, a Bayesian spatial autoregressive model was adopted to conduct a statistical analysis

due to its advantage in modeling spatially distributed datasets which possess inherent

spatial correlation between observations. This type of Bayesian modeling approach was

preferred due to its power when sample size is relatively small (Dunson 2001; De Winter

et al. 2009). A flowchart illustrating overall methodology is provided in Fig. 3.

3.1 Spatial analysis

The power outage data revealed the spatial distribution of affected customers. This

information was used to obtain the power outage density map shown in Fig. 4. Figure 4a

Fig. 1 continued
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shows the failed power system components along with the power outage densities

throughout the study region. Figure 4b, on the other hand, displays how roadway closures

and the power outage densities are related. It is clear from the figures that a direct rela-

tionship between roadway closure intensity and the elevated power outage density exists

since roadway closures, particularly those with longer durations, were more frequent at

those regions with high outage densities. The power outage density was calculated based

on the spatial distribution of affected customers using a kernel density estimation (KDE)

approach (Brunsdon 1995) in ArcGIS software (ESRI 2014). This was followed by

determining the total number of affected customers in each census block group to be able

Fig. 2 US Census population block groups, hurricane-related roadway closures due to fallen trees and
maximum wind speed measurements at weather stations

Fig. 3 Methodology flowchart
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Fig. 4 Power outage density along with a failed power system components and b roadway closures
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to observe the regional variation of the power outages in the city. As such, two different

metrics were calculated: (1) total number of affected customers and (2) total number of

affected customers divided by the total population of each census block group (i.e., per-

centage of affected customers). Identifying the affected customers in each census block

group provided a visual basis to compare different regions in terms of the impact of the

hurricane. A spatial autocorrelation analysis was conducted based on Moran’s I index (Ord

and Getis 1995; Koenig 1999) to determine whether there is a spatial clustering pattern for

customers affected from outages. This was followed by a clustering analysis which was

conducted based on Anselin Local Moran’s I index (Anselin 1995; McCullagh 2006) in

order to identify those census block group clusters based on the magnitude of affected

customers. Both analyses were conducted using the ArcGIS software (ESRI 2014). This

spatial analysis aimed to highlight those regions which compel special attention for post-

hurricane treatments (e.g., improving infrastructure, building redundant systems, and

providing generators). In addition, findings pinpoint the critical locations city can focus on

in order to alleviate future outage problems. The regional variations of power outages in

the City of Tallahassee are provided in Results section.

3.2 Bayesian spatial autoregressive model

Bayesian spatial autoregressive modeling was used to assess the impact of hurricane on the

different demographic and socioeconomic groups as well as to identify factors such as type

of power lines or wind speed which drive the magnitude of this impact. The necessity of

implementing spatial autoregressive model arose from the spatial autocorrelation analysis

(Moran’s I) conducted for the residuals obtained from ordinary least-squares analysis (Ord

and Getis 1995; Koenig 1999). Findings of this analysis are provided in Results sec-

tion. The demographic and socioeconomic variables were provided in the US Census data

(U.S. Census Bureau 2010), whereas power outages and roadway closures were provided

by the City of Tallahassee. Moreover, maximum wind speeds at weather stations were

collected from the WeatherSTEM (WeatherSTEM 2017), and the total generated trips at

census block groups were obtained from the Capital Region Cube model (Citilabs 2016;

FSUTMS 2017). The list of candidate variables for the model together with their

descriptive statistics and definitions is provided in Table 1. The correlations between these

candidates were tested using Pearson correlation coefficient measure (Fig. 5), and highly

correlated variables such as percentage of white and African-American population were

identified. Then, the potential models were investigated, and the final model along with its

variables was determined. Note that the dependent variable of the analysis is total number

of affected customers over the total population (i.e., percentage of affected customers).

This metric is similar to the ‘‘System Average Interruption Frequency Index’’ (SAIFI)

proposed by IEEE (IEEE 2012); however, the denominator in this paper is the total

population rather than total customers given in SAIFI.

The spatial autoregressive modeling is a particular approach applicable to spatially

distributed datasets which possess an inherent spatial correlation between observations.

This type of data is known to produce systematically varying residuals when implemented

with models that disregard spatial relations between observations (i.e., generalized linear

models) (LeSage 1997). The reason behind the Bayesian approach was as follows: (a) the

sample size of the study data was relatively small (N = 160), and (b) the constant variation

of errors and normality assumption inherent to maximum likelihood (ML) estimation was

relaxed. The Bayesian and ML approaches are known to result in similar estimates when

sample size is large enough (N[ 200) (Dunson 2001; De Winter et al. 2009). However,
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one of the advantages of Bayesian models is observed when there is this aforementioned

small sample size problem, which prevents making consistent and accurate estimates using

the ML approach (Dunson 2001). In this study, there are 160 census block groups used to

model the power outages, which compels the use of Bayesian approaches rather than ML-

based ones (De Winter et al. 2009). Furthermore, the Bayesian extension of spatial

autoregressive model introduces the concept of spatial heterogeneity which relaxes the

Table 1 Descriptive statistics and definitions of candidate variables

Variables Min Max Mean Med SD Definition

White (%) 0.003 0.972 0.607 0.656 0.263 Percentage of white population

African-American
(%)

0.011 0.981 0.328 0.266 0.266 Percentage of African-American
population

Young (18-) (%) 0 0.427 0.186 0.197 0.086 Percentage of 18 years and younger
population

Aging (65?) (%) 0 0.591 0.102 0.092 0.078 Percentage of 65 years and older
population

Average family size 0 4 2.856 3 0.548 Average family size in a census
block group

Above poverty (%) 0 1.487 0.723 0.761 0.297 Percentage of people living above
poverty level

Below poverty (%) 0 1.117 0.225 0.139 0.24 Percentage of people living below
poverty level

College Degree (%) 0 0.417 0.16 0.156 0.081 Percentage of people with at least
college degree

Use of car for
transportation (%)

0 0.857 0.447 0.452 0.164 Percentage of people relying on
private cars for transportation

Use of public
transportation (%)

0 0.142 0.008 0 0.021 Percentage of people using public
transportation for travel purposes

Median family
income

0 16 5.837 5.045 3.599 Median income of families living in
a census block group (divided by
10,000)

Zero vehicle
ownership (%)

0 0.404 0.032 0.015 0.051 Percentage of people with no vehicle
ownership

Number of road
closures

0 28 4.869 3 5.199 Total number of road closures within
the census block group

Average day roads
closed

0 5 1.854 1.991 1.173 Average duration of road closures
(days)

Total length of
underground (UG)
power lines

0 63 6.049 3.049 8.728 Total length of underground power
lines (divided by 10,000)

Total length of
overhead (OH)
power lines

0.061 30 8.641 7.752 5.4 Total length of overhead power lines
(divided by 10,000)

Total length of power
lines

2.053 698 146.899 118.2 106.2 Total length of power lines

Maximum wind
speed

14 47 24.519 22 9.447 Maximum wind speed measured
during hurricane

Total generated
trips/total
population

0 44 3.642 1.985 5.152 Total daily travels generated in a
census block group over total
population

Min minimum, Max maximum, Med Median, SD standard deviation
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assumptions of normality and constant variation of errors. A detailed description and

discussion on the Bayesian inference can be found in Gelman et al. (2003). The structure of

Bayesian spatial autoregressive model is given below (LeSage 1997):

y ¼ qW1yþ Xbþ u

u ¼ kW2uþ �

��N 0; r2V
� �

V ¼ diag v1; v2; . . .; vnð Þ

ð1Þ

where y is an n by 1 vector of observations, X is n by k matrix of model variables, b is k by

1 vector of variable coefficients, W1 and W2 are n by n row-standardized (rows sum to 1)

spatial weight matrices also known as contiguity matrices involving the distance relations

between observations and having zeros in diagonal. q and k are the spatial autoregressive

parameters, � is a normally distributed error term with zero mean and non-constant vari-

ance with different values for each observation through V. The magnitudes of vi which

introduce spatial heteroscedasticity via non-constant variance were estimated by the

Bayesian approach.

The Bayesian modeling approach compels the identification of prior distributions for

parameters based on the prior knowledge about the variables and their parameters.

However, this prior knowledge is generally not available, and prior distributions are chosen

for convenience rather than any prior information about the actual parameter distributions.

Fig. 5 Correlation chart of candidate variables
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The posterior distributions of parameters are determined based on these prior distributions

(Gelman et al. 2003).The Bayesian specification of the model as used in this study is given

below (LeSage 1999):

b�N c; Tð Þ
r� 1=rð Þ

r=vi � IDv2 rð Þ=r
r�C m; kð Þ

ð2Þ

where a normal prior was introduced to b and a diffuse prior was introduced into r.
Variance terms, vi, are fixed, and they were estimated based on the informative prior

distribution of v2(r)/r with a gamma distributed parameter r.

There are two special models that can be derived based on the general model specifi-

cation given in Eq. 1 through the imposed restrictions on spatial weight matrices. First

model involves setting W1 to zero which creates spatially correlated disturbances with a

classical regression model, or the so-called spatial errors model (SEM). Setting W2 to zero,

on the other hand, produces a mixed regressive—spatial autoregressive model (SAR)

which is also known as the spatial lag model (LeSage 1997; Anselin 2002). We tested the

general proposed model as well as these two special models in order to identify the best-

fitting model to the used data.

4 Results

4.1 Spatial analysis results

The first step of the analysis involves the spatial investigation of power outages induced by

the Hurricane Hermine. The analysis was conducted to identify those critical locations

which were affected the most. In order to achieve this, the total number of customers

affected by outages in each census block group was determined, and two metrics—total

number of affected customers and percentage of affected customers—were calculated

(Fig. 6). Figure 6a, b displays a slight variation due to the normalization by the total

population living in the census block groups. Figure 6a shows that power outages were

more or less spread over the City of Tallahassee. It is observed that there were customers

highly affected by the outages in the whole city. Figure 6b, on the other hand, shows that

the power outages were mostly clustered in the Northwest and Mid-Southeast of the City of

Tallahassee when the focus is on the percentage of affected customers. Note that red

regions have relatively decreased in the Southeast compared to Fig. 6a. This means that

even though there are a substantial number of affected customers in the Southeast Talla-

hassee, the number of affected customers is not that high compared to the total population.

Furthermore, roadway closures were displayed along with the affected customers in both

maps. It is apparent from the maps that there is a higher concentration of roadway closures

in those regions with elevated percentage of affected customers. This indicates a close

relationship between roadway closures and power outages, which is expected since fallen

Fig. 6 Spatial distribution of power outages in each census block group together with wind speed
measurements: a total number of affected customers and b total number of affected customers over total
population

c
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trees are the most prominent cause of these two disruptions. Nevertheless, roadway closure

can also stem from damages inflicted to the power system components. For instance,

similar to fallen trees, fallen electricity poles or other failed power feeder lines can also

lead to roadway closures. Furthermore, power outages can also affect traffic signalization

of the city which would further cripple the transportation network and cause closure of

roadways due to safety concerns.

Figure 7a, b, on the other hand, demonstrates the spatial clustering of census block

groups based on the magnitude of affected customers. Although the visual inspection of

Fig. 6a, b does not show a clustering pattern, spatial autocorrelation (Global Moran’s I)

and clustering analysis (Local Moran’s I) results disclosed that there is a clustering pattern

based on both number of affected customers and percentage of affected customers. For

instance, Fig. 7a reveals that there is a high clustering of number of affected customers in

the Mid-Southeast Tallahassee and a smaller region in the Northwest Tallahassee. This

clustering pattern shifted westward when percentage of affected customers is considered,

as shown in Fig. 7b. This type of visualization of the outage data can be helpful for the city

officials to pinpoint those critical locations for post-hurricane treatments. However, there is

a need for more concrete statistics-based analyses in order to verify these results, which

will be presented in the next section.

4.2 Spatial autoregressive model results

To assess the necessity for a spatial autoregressive model, Moran’s I statistics was cal-

culated first for the residuals of an ordinary least-squares analysis. The result for this

analysis (Moran’s I: 0.18, Moran’ I statistics: 4.76[ 1.96, hypothesis of no spatial cor-

relation rejected) clearly showed that there is an inherent spatial relationship between

observations that cannot be captured by non-spatial models. This finding indicates that a

linear (or nonlinear) model which disregard a spatial correlation between observations is

not appropriate for the data used in this study. Given the need for spatial models, we

created the spatial weights matrix required for spatial model. As such, we first identified

the distance that provides the highest spatial correlation between observations through a

Ripley’s K function approach (Gatrell et al. 1996), which resulted in 6.25 miles. Then, a

spatial weights matrix was created by using this distance (6.25 mi) as threshold value. The

spatial relationship between observations was conceptualized by the inverse distance

method.

In this paper, three spatial autoregressive models were tested, namely general, SAR, and

SEM models, in order to find the best-fitting approach through checking the statistical

significance of spatial autoregressive model parameters q and k (LeSage 1999). Table 2

shows that parameters of both SAR and SEM models are statistically significant at a 5%

significance level, while parameters of the general model are not significant. This finding

indicates that SAR or SEM model is more appropriate than the general model. A further

examination was conducted to check the spatial correlation between residuals of the SAR

model. Spatial autocorrelation analysis indicated that there still exists a spatial dependence

in the residuals of SAR model, implying that spatial correlation between observations is

not fully captured. Therefore, SEM model appears to fit the study data better than SAR

model. Nevertheless, we presented results for both models in order to show a better picture

of the spatial model findings.

Result of the spatial autoregressive modeling shows that most of the variables (9 out of

12) have statistically significant effects on the percentage of affected customers at a

significance level of 10% (Table 3). Moreover, both approaches (SEM and SAR) appear to

Nat Hazards

123

Author's personal copy



Fig. 7 Spatial autocorrelation and Local Moran’s I results: a total number of affected customers and
b percentage of affected customers
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produce similar results. ‘‘Aging (65 ?) %’’ variable reveals that the higher the percentage

aging population living in a census block, the higher the percentage of affected customers.

This finding implies that the regions commonly populated by aging residents were highly

affected by the power outages. Another interesting finding is that percentage of affected

customers increases by the increasing ‘‘Average Family Size.’’ This means that census

block groups where larger families are living suffered power outages more significantly

than other locations. This assessment also holds for ‘‘College Degree %’’ and ‘‘Car Use for

Transportation %.’’

‘‘Median Family Income,’’ on the other hand, discloses a different pattern due to its’

negative coefficient. That is, higher median family income seems to be associated with

decreasing percentage of affected customers. One explanation for this finding might be the

fact that higher-income families usually prefer in newly developed/developing parts of the

city, where the infrastructure is relatively new and/or power lines are under the ground. For

example, the coefficient of ‘‘Total Length of Overhead Power Lines’’ shows that the longer

the overhead power lines, the higher the percentage of affected customers. The effect of

Table 2 Spatial model parameter significance

Parameters General (p level) SAR (p level) SEM (p level)

q 0.393 (0.144) 0.523 (0.011) –

k 0.207 (0.601) – 0.703 (0.004)

Table 3 Bayesian spatial autoregressive model results

Variables SEM SAR

b p p\ 0.1 b p p\ 0.1

Intercept - 0.286 0.06 4 - 0.506 0.00 4

Young (18-) (%) - 0.196 0.29 7 - 0.345 0.15 7

Aging (65 ?) (%) 0.845 0.01 4 0.815 0.01 4

Average family size 0.077 0.08 4 0.074 0.08 4

College degree (%) 0.518 0.05 4 0.575 0.04 4

Car use for transportation (%) 0.320 0.03 4 0.376 0.01 4

Median family income - 0.012 0.10 4 - 0.014 0.05 4

Number of road closures 0.007 0.07 4 0.007 0.06 4

Average day roads closed 0.063 0.00 4 0.060 0.00 4
P

length of OH power lines 0.010 0.02 4 0.011 0.01 4
P

length of UG power lines 0.001 0.40 7 0.001 0.46 7

Maximum wind speed 0.002 0.22 7 0.002 0.20 7
P

generated trips/
P

population 0.007 0.06 4 0.007 0.05 4

k 0.703 0.00 4 – –

q – – 0.523 0.01 4

Number of observations: 160, number of variables: 12

b Estimated coefficient mean, p p value,
P

total, SEM spatial error model, SAR spatial mixed autoregressive
model
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‘‘Total Length of Underground Power Lines,’’ on the other hand, is very small and not

statistically significant even though it has a positive coefficient. Figure 1b shows that

underground lines are more frequent at newly developed/developing areas than other parts

of the city due to the ease of deployment of underground lines at newly developing areas.

Consequently, regions that have overhead lines rather than underground lines appear to be

more vulnerable to hurricanes, which is logical and expected.

Total number of roadway closures within each census block group and average duration of

these closures directly reflect the impact of the hurricane, and in turn, there is a substantial

association between power outages and these variables. A substantial amount of power

outages could actually be a result of fallen trees on the power lines. As such, the higher the

number of roadway closures and duration of these closures, the higher the number of per-

centage of affected customers. Similarly, ‘‘Maximum Wind Speed’’ variable is used as a

measure to quantify themagnitude of the HurricaneHermine. Surprisingly, the effect of wind

speed is not as firm as the effect of roadway closures since it is not statistically significant.

This means that, at the very least, there is a high variation in the effect of maximummeasured

wind speed on the power outages. This indicates that the maximum wind speed of the

hurricane is relatively less effective by itself, and probably environmental factors such as

presence of trees and poor infrastructure elevate the severity and disruptiveness of the

hurricane. In other words, failed power components might be already in bad condition which

would not be able to withstand even low-to-moderate wind speeds while components in good

condition or with redundancy endured higher wind speeds without failing. Indeed, the power

outages were mostly observed at periphery of the city where power system redundancy was

questionable. Around the city center, on the other hand, power system redundancies seemed

to prevent total outage despite higher wind speeds. Consequently, although wind speed may

directly affect the failure of individual system components such as switches and feeders,

failure of a system is more likely to be triggered by the combination of several factors (e.g.,

state of repair, redundancy, and wind speed). From a transportation point of view, results

show that the regions that generate more trips were more affected by the power outages as

‘‘Total Generated Trips/Total Population’’ variable has a positive coefficient. This is critical

since the total generated trips generally reflect the magnitude of travels starting from a zone

and usually residential areas generate higher number of trips. Therefore, disruptions in these

areas prolong the recovery period after the hurricane and in turn further cripple the economic

and social life in the city. Nonetheless, it is important to note that the city center is observed to

be relatively less affected by outages. This indicates that city may still be functioning since

major government or business offices might not be as severely affected as the residential

areas, which would enhance the economic recovery efforts. Therefore, it is critical to pay

particular attention to the power system components in and around facilities such as gov-

ernmental offices and big businesses. However, overall resilience of the city depends on the

well-being of the citizens since people are the engines of the disaster response and recovery

efforts which bring about importance of power system resilience in the residential areas.

5 Conclusions

In this study, the hurricane-induced power outages were investigated spatially and statis-

tically in order to comprehend the regional variations of the hurricane’s impact on the city

infrastructure as well as different demographic and socioeconomic groups. This is per-

formed through analyzing the data based on the adverse consequences of a recent

Nat Hazards

123

Author's personal copy



Hurricane Hermine that hit the City of Tallahassee. Spatial analysis was performed in order

to identify the highly affected areas based on the ‘‘percentage of affected customers’’

metric. Spatial autoregressive modeling, on the other hand, provided critical information

about the association between the magnitude of affected customers and several variables

related to demographics, socioeconomics, infrastructure, transportation, and hurricane

characteristics.

The information gained by such investigation of hurricane-induced power outages can

assist emergency officials in identifying critical and less resilient regions, and determining

those demographic and socioeconomic groups which were more affected by the adverse

consequences of the hurricane. For example, the analysis showed that the higher the

percentage of aging (65?) residents, the higher the percentage of affected customers. This

indicates the need for addressing those problems related to infrastructure and power system

components at those regions where more 65 ? populations live. Another critical finding is

that the magnitude of power outages appeared to be increasing in regions which generate

more trips. This is critical since the total generated trips generally reflect the magnitude of

travels starting from a zone, and usually residential areas generate higher number of trips.

In addition, the roadway infrastructure also appears to be crippled in those regions. For a

more resilient community, this transportation perspective should be considered, and dis-

ruptions in these areas should be prevented in order to maintain the economic and social

quality of life in the city.

There are several limitations of this study. For example, there were not enough number

of weather stations to find the maximum measured wind speeds to cover the whole study

area, and there were a number of census block groups without wind speed measurements.

Therefore, measurements of the wind stations closest to these census block groups were

used in the analysis. This assumption might have created some errors related to estimating

the effect of maximum wind speed on the magnitude of power outages. Furthermore,

hurricane-related roadway closures were obtained from the online requests and the Digi-

Tally database, which mainly shows online requests from the city residents. Therefore, it is

possible that there may be other locations which were not reported online by the residents.

This might be a drawback of data source in terms of reflecting the actual extend of roadway

closures. Moreover, the impact of only Hurricane Hermine was investigated in this study

due to data availability. However, as a future study, the impact of Hurricane Irma will be

investigated and compared with the findings of this study if and when the data for this

recent hurricane are available to the authors.
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Liévanos RS, Horne C (2017) Unequal resilience: the duration of electricity outages. Energy Policy

108:201–211. https://doi.org/10.1016/j.enpol.2017.05.058
Lindell MK, Prater CS (2003) Assessing community impacts of natural disasters. Nat Hazards Rev. https://

doi.org/10.1061/(ASCE)1527-6988(2003)4:4(176)
Liu H, Davidson RA, Rosowsky DV, Stedinger JR (2005) Negative binomial regression of electric power

outages in hurricanes. J Infrastruct Syst 11:258–267. https://doi.org/10.1061/(ASCE)1076-
0342(2005)11:4(258)

Liu H, Davidson RA, Apanasovich TV (2008) Spatial generalized linear mixed models of electric power
outages due to hurricanes and ice storms. Reliab Eng Syst Saf 93:897–912. https://doi.org/10.1016/j.
ress.2007.03.038

McCullagh M (2006) Detecting hotspots in time and space. In: International symposium and exhibition on
geoinformation. Subang Jaya, Selangor, Malaysia, pp 1–18

Mcroberts DB, Quiring SM, Guikema SD (2016) Improving hurricane power outage prediction models
through the inclusion of local environmental factors. Risk Anal. https://doi.org/10.1111/risa.12728

Morris K, Johnson A (2016) Workshop on the Hurricane Hermine after action report. http://www2.
leoncountyfl.gov/coadmin/agenda/Workshops/ws120161213.pdf. Accessed 21 Nov 2017

Nateghi R, Guikema SD, Quiring SM (2014) Forecasting hurricane-induced power outage durations. Nat
Hazards 74:1795–1811. https://doi.org/10.1007/s11069-014-1270-9

Ord JK, Getis A (1995) Local spatial autocorrelation statistics: distributional issues and an application.
Geogr Anal 27:286–306. https://doi.org/10.1111/j.1538-4632.1995.tb00912.x

Nat Hazards

123

Author's personal copy

https://doi.org/10.1007/s11069-016-2598-0
https://doi.org/10.1007/s11069-011-9817-5
https://doi.org/10.1007/s11069-011-9817-5
https://doi.org/10.1016/0098-3004(95)00020-9
http://www.citilabs.com/
https://doi.org/10.1080/00273170902794206
http://www.talgov.com/Main/digitally.aspx
https://doi.org/10.1093/aje/153.12.1222
https://support.esri.com/en/Products/Desktop/arcgis-desktop/arcmap/10-2
https://support.esri.com/en/Products/Desktop/arcgis-desktop/arcmap/10-2
http://www.fsutmsonline.net/index.php%3f/model_pages/model_pages/
http://www.fsutmsonline.net/index.php%3f/model_pages/model_pages/
http://www.tidec.org/sites/default/files/uploads/crsrept.pdf
https://doi.org/10.1111/j.1539-6924.2009.01280.x
https://doi.org/10.1111/j.1539-6924.2009.01280.x
http://ieeexplore.ieee.org/document/6895236/
http://ieeexplore.ieee.org/document/6895236/
https://doi.org/10.1016/S0169-5347(98)01533-X
https://doi.org/10.1016/S0169-5347(98)01533-X
http://www.rri.wvu.edu/webbook/lesage/spatial/wbook.pdf
http://www.rri.wvu.edu/webbook/lesage/spatial/wbook.pdf
https://doi.org/10.1016/j.enpol.2017.05.058
https://doi.org/10.1061/(ASCE)1527-6988(2003)4:4(176)
https://doi.org/10.1061/(ASCE)1527-6988(2003)4:4(176)
https://doi.org/10.1061/(ASCE)1076-0342(2005)11:4(258)
https://doi.org/10.1061/(ASCE)1076-0342(2005)11:4(258)
https://doi.org/10.1016/j.ress.2007.03.038
https://doi.org/10.1016/j.ress.2007.03.038
https://doi.org/10.1111/risa.12728
http://www2.leoncountyfl.gov/coadmin/agenda/Workshops/ws120161213.pdf
http://www2.leoncountyfl.gov/coadmin/agenda/Workshops/ws120161213.pdf
https://doi.org/10.1007/s11069-014-1270-9
https://doi.org/10.1111/j.1538-4632.1995.tb00912.x


Quiring SM, Zhu L, Guikema SD (2011) Importance of soil and elevation characteristics for modeling hur-
ricane-induced power outages. Nat Hazards 58:365–390. https://doi.org/10.1007/s11069-010-9672-9

SERT (2017) State emergency response team. In: Florida Division of Emergency Management http://www.
floridadisaster.org/eoc/hermine2016/. Accessed 7 May 2017

U.S. Census Bureau (2010) 2010 US census blocks in Florida. Website: Florida geographic data library.
http://www.fgdl.org/metadataexplorer/explorer.jsp. Accessed 1 Oct 2015

WeatherSTEM (2017) https://www.weatherstem.com/. http://leon.weatherstem.com/. Accessed 1 Jan 2017

Nat Hazards

123

https://doi.org/10.1007/s11069-010-9672-9
http://www.floridadisaster.org/eoc/hermine2016/
http://www.floridadisaster.org/eoc/hermine2016/
http://www.fgdl.org/metadataexplorer/explorer.jsp
https://www.weatherstem.com/
http://leon.weatherstem.com/

	Assessment of the hurricane-induced power outages from a demographic, socioeconomic, and transportation perspective
	Abstract
	Introduction
	Case study area and data description
	Methodology
	Spatial analysis
	Bayesian spatial autoregressive model

	Results
	Spatial analysis results
	Spatial autoregressive model results

	Conclusions
	Acknowledgements
	References




