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Abstract. The effectiveness of Intelligent Tutoring Systems (ITSs)
often depends upon their pedagogical strategies, the policies used to
decide what action to take next in the face of alternatives. We induce
policies based on two general Reinforcement Learning (RL) frameworks:
POMDP &. MDP, given the limited feature space. We conduct an empir-
ical study where the RL-induced policies are compared against a random
yet reasonable policy. Results show that when the contents are controlled
to be equal, the MDP-based policy can improve students’ learning signif-
icantly more than the random baseline while the POMDP-based policy
cannot outperform the later. The possible reason is that the features
selected for the MDP framework may not be the optimal feature space
for POMDP.
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1 Introduction

Reinforcement Learning (RL) offers one of the most promising approaches to
applying data-driven decision-making to improve student learning in Intelligent
Tutoring Systems (ITSs), which facilitates learning by providing step-by-step
support and contextualized feedback to individual students [4,12]. These step-
by-step behaviors can be viewed as a sequential decision process where at each
step the system chooses an action (e.g. give a hint, show an example) from a
set of options. Pedagogical strategies are policies that are used to decide what
action to take next in the face of alternatives.

A number of researchers have applied RL to induce pedagogical policies for
ITSs [2,3,5,8]: some apply Markov Decision Processes (MDPs) thus treating the
user-system interactions as fully observable processes [6,11] while others utilize
partially-observable MDPs (POMDPs) [9,13,14] to account for hidden states. In
this work, we focus on comparing POMDPs vs. MDPs directly and induce the
policies based upon these two frameworks given a small feature set. Besides, we
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employ a simple baseline pedagogical policy where the system randomly decides
whether to present the next problem as Worked Example (WE) or as Problem
Solving (PS). Because both PS and WE are always considered to be reason-
able educational intervention in our learning context, we refer to such policy as
random yet reasonable policy or random in the following. The empirical result
indicates that the RL-induced policies can improve students’ learning signifi-
cantly more than the random baseline for a particular type of students.

2 Methods

MDP is defined as a 4-tuple 〈S ,A,T ,R〉, where S denotes the observable state
space, defined by a set of features that represent the interactive learning envi-
ronment; A denotes the space of possible actions for the agent to execute; T
represents the transition probability, and R represents expected reward of tran-
siting from a state to another one by taking an action. In our work, the optimal
policy π∗ of an MDP is generated by Value Iteration algorithm.

POMDP is an extension of MDP, defined by a 7-tuple 〈S , A, R, Ph , Po ,
B , prior〉, where A and R have the same definitions as in MDPs. S represents
the hidden state space. Ph denotes the transition probability among the hidden
state by taking the action, and Po is the conditional observation probability.
Prior denotes the prior probability distribution of hidden states. B denotes the
belief state space, which is constructed through Input-Output Hidden Markov
Model (IOHMM) [1] in our work.

The POMDP policy induction procedure can be divided into three steps.
First, we transform the training corpus into the hidden state space through the
Viterbi algorithm. Second, we implement Q-learning to estimate the Q-values
for each hidden state and action pair: (s, a). Third, we estimate the Q value of
belief state b and action a at time step t as:

Qt(b, a) =
∑

s

Bt(s) · Q(s, a) (1)

Thus, Qt(b, a) is a linear combination of the Q(s, a) for each hidden state with
its corresponding belief Bt(s). When the process converges, π∗ is induced by
taking the optimal action a at time t associated with the highest Qt(b, a).

3 Experiment

Participates and Conditions. 124 undergraduate students who enrolled in
Fall 2016 were randomly assigned to one of three conditions: MDP (N = 45),
POMDP (N = 40), Random (N = 39). We subdivided the conditions into
Fast (n = 61) and Slow (n = 63) groups based upon their average response
time on Level 1. Combining conditions with Fast and Slow, we had a total of
6 groups: MDP-Fast (N = 22), MDP-Slow (N = 23), POMDP-Fast (N = 18),
POMDP-Slow (N = 22), Random-Fast (N = 21), Random-Slow (N = 18).
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The Chi-square test demonstrated that there was no significant difference on
distribution of Fast vs. Slow among three conditions: χ2 = 0.03, p = 0.86.

Procedure. Deep Thought (DT) was a data-driven ITS that teaches logic proofs
and it was used as part of an assignment in an undergraduate discrete math-
ematics course. DT consists of 6 strictly ordered levels of proof problems [7].
Students were required to complete 3–4 problems per level and a total of 18–24
problems overall. Students could skip problem if they encountered an issue to
solve this problem. We treat level 1 as the pre-test phase to measure student’s
incoming confidence since students received the same problems in level 1 where
all of the problems were PS. From level 2 to level 6, students were assigned a PS
at the end of each level for evaluating student’s performance fairly. Implemented
policies made other decisions during the training process. ITS made total 10–15
decisions during a complete training process for each student.

Performance Evaluation. To fully evaluate student performance, we modified
our in-class exam, referred as Post-test. Students’ answers were graded to the
scale of 1–100 by the Teaching Assistants of the class (who are not part of the
research group). We mainly treated the Post-test score as Students’ learning
outcome measure in the following.

Training Data was collected in the Fall 2014 and Spring 2015 semesters. All of
the students used the same ITS, followed the same general procedure, studied the
same training materials, and worked through the same set of training problems.
The only substantive difference was the presentation of the materials, WE or
PS, randomly decided. The training dataset contained the interaction logs of
306 students and the average number of problems solved by students was 23.7
and the average time that students spent in the tutor was 5.29 h. There are
a total of 133 features to represent students’ behaviors. We generate the same
feature space for both MDP and POMDP through a MDP-based feature selection
approach [10], which selects a total of six features, shown as follows:

1. totalPSTime: total time that students spend on PS.
2. easyProbCount: easy problem that students solved so far.
3. newLevel: whether students jump into a new level.
4. avgStepTime: average step time so far.
5. hintRatio: the ratio between hint count and number of applying rules.
6. numProbRule: number of rules in the current problem’s solution.

4 Results

Pre-test Score. A two-way ANOVA using condition {MDP, POMDP, Random}
and type {Fast, Slow} as factors, shows that there is no significant interaction
effect with the students’ pre-test scores. Additionally, a one-way ANOVA indi-
cates that there is no significant difference in the pre-test scores among the three
conditions, or between the Fast and Slow groups. Therefore, we can conclude that
all of the six groups have a similar incoming competence. Table 1 presents the
mean and (SD) of pre- and post-test score for each group.
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Post-test Score. A two-way ANCOVA, using condition and type as factors and
pre-test as the covariate, shows a significant interaction effect on the post-test
score: F (2, 117) = 4.06, p = .019. Additionally, one-way ANCOVA tests show
that there is no significant difference either among conditions or between Fast
and Slow. Furthermore, one-way ANCOVA tests on policy using pre-test as the
covariate shows no significant difference among the three Fast groups on the post-
test score: F (2, 57) = 0.74, p = 0.48, but the significant difference among the
three Slow groups: F (2, 59) = 5.03, p = .009. Specifically, pairwise t-tests indi-
cate that MDP -Slow scored significantly higher post-test than both POMDP -
Slow and Random-Slow : p = .004 and p = .015 respectively, and no significant
difference is found between the latter two groups. Therefore, our results exhib-
ited an Aptitude-Treatment Interaction effect: all of three Fast groups learned
equally well after training on ITS regardless of the policies employed while the
Slow groups were indeed more sensitive to induced policies. For Slow groups, the
MDP policy significantly outperformed the POMDP and Random policies while
no significant difference existed between the latter two policies.

Table 1. Pre- and Post-test scores for each group

Policy Pre-test score Post-test score

Total Fast Slow Total Fast Slow

MDP 74.90 (26.3) 75.34 (27.6) 74.48 (25.5) 88.26 (15.2) 84.23 (17.7) 92.12 (11.3)

POMDP 75.18 (25.9) 74.01 (29.1) 76.15 (23.2) 79.53 (24.4) 86.47 (23.6) 73.86 (24.1)

Random 65.99 (28.1) 67.69 (28.8) 64.02 (27.8) 82.85 (22.3) 88.98 (17.9) 75.69 (25.3)

Furthermore, we compared the Fast and Slow groups within each condi-
tion. Two-sample t-tests shows no significant difference between Fast and Slow
under the POMDP condition: t(38) = 1.67, p = 0.11, but the marginal signifi-
cant difference between Fast and Slow under either MDP or Random condition:
t(43) = −1.78, p = .081 and t(37) = 1.91, p = .063 respectively.

5 Conclusions and Future Work

In this study, we induced two types of RL policies using MDP and POMDP
framework respectively and compared their effectiveness against the random
baseline in the context of ITS. Besides, we split students into Fast and Slow
groups based on their average step time in the initial tutorial level. The empiri-
cal results exhibited an Aptitude-Treatment interaction effect: Fast groups were
less sensitive to the policies in that they learned equally well regardless of the
policies while the Slow groups were more sensitive in that the MDP policy could
help slow groups score significantly higher post-test than the POMDP and Ran-
dom policies. This suggested that the MDP policy is more effective than either
POMDP or Random policy for Slow groups. One of the possible reasons for the
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ineffectiveness of the POMDP policy is that the feature selection and discretiza-
tion limit the full power of the POMDP framework. In future work, we plan to
maintain the continuous features and design effective feature extraction method
for POMDP in order to show the full power of POMDP.
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