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Abstract

We study the SL(2, R)-infimal lengths of simple closed curves on half-translation surfaces.
Our main result is a characterization of Veech surfaces in terms of these lengths.

We also revisit the “no small virtual triangles” theorem of Smillie and Weiss and establish
the following dichotomy: the virtual triangle area spectrum of a half-translation surface either
has a gap above zero or is dense in a neighborhood of zero.

These results make use of the auxiliary polygon associated to a curve on a half-translation
surface, as introduced by Tang and Webb.

1 Introduction

Let S be a surface of genus g with p marked points and let QD(S) be the space of quadratic dif-
ferentials on S. Each element g € QD(S) naturally endows S with a locally Euclidean metric with
isolated conical singularities and linear holonomy restricted to {+id}. We also refer to elements
of QD(S) as half-translation surfaces. There is a natural action of SL(2,R) on QD(S) preserving the
signature of the singularities. A half-translation surface g is called a Veech surface if its group of
(derivatives of) affine self-diffeomorphisms is a lattice in SL(2,R). Veech surfaces possess remark-
able dynamical properties akin to flat tori, and arise naturally in the contexts of rational billiards
and Teichmiiller curves in moduli space [Vee89].

In this paper, we study QD(S) from the point of view of simple closed curves on S. On a half-
translation surface g, a simple closed curve «a either has a unique geodesic representative or there
is a maximal flat cylinder on g foliated by closed geodesics in the homotopy class of a. In the
former case, the geodesic representative a? of a is a concatenation of saddle connections. We say
that a is a crooked curve on q if a? has at least two saddle connections whose associated holonomy
vectors are not parallel. We define the SL(2,R)-infimal length of a on g to be

SL
la

(q) = la(qh,

inf
q'eSL(2,R) - g
where I,(q) denotes the geodesic length of a on g. A curve a is crooked on ¢ if and only if I3*(q) is
positive (see Proposition 2.1). Our first main result is a characterization of Veech surfaces in terms
of their SL(2, R)-infimal length spectra.

Theorem 1.1. Let q be a half-translation surface. Then q is a Veech surface if and only if it has no
short crooked curves: there is ane > 0 such that 13%(q) = € for every crooked curve a.

This result is reminiscent of the no-small-(virtual)-triangles theorem due to Smillie and Weiss
[SW10]. They characterize Veech surfaces as the half-translation surfaces which possess a positive
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lower bound on the areas of Euclidean triangles on g with edges formed by saddle connections.
One advantage of working with simple closed curves is that they are topological objects; they do
not depend on the half-translation structure, and therefore we can study them at once over the
entire quadratic differential space. In contrast, a saddle connection on g persists only in an open
subset of the relevant stratum of QD(S).

One of the main tools we use in this paper is the auxiliary polygon P,(q) associated to a simple
closed curve a on g, as introduced by the second author and Webb in [TW15]. The area of P,(q)
gives an estimate for [3"(¢)? up to bounded multiplicative error (see Proposition 2.1(iii)). It follows
that Theorem 1.1 is equivalent to the statement that g is a Veech surface if and only if the polygonal
area spectrum

Poly(g) = {Area(Py(q)) : a is asimple closed curve}

has a gap above zero. In fact, our arguments will prove a slightly stronger statement: either there
is a gap (exactly when g is a Veech surface), or this spectrum is dense in a neighborhood [0, a) for
some a > 0. This statement also holds for the SL(2, R)-infimal length spectrum.

The forward implication of Theorem 1.1 will follow from a relatively straightforward application
of the no-small-virtual-triangles theorem.

The reverse implication of Theorem 1.1 will make use of the auxiliary polygon mentioned above,
as well as two other ingredients: the orbit closure theorem of Eskin, Mirzakhani, and Moham-
madi [EMM15] and a rigidity statement for SL(2, R)-orbits of quadratic differentials due to Duchin,
Leininger, and Rafi [DLR10]. We remark that the orbit closure theorem is used only to deduce local
path connectedness of SL(2, R)—orbit closures in strata of half-translation surfaces.

To prove the reverse implication we use an elementary continuity argument; see Proposition 4.2.
An essential step is establishing that the auxiliary polygon P, (g) is continuous in g, with respect to
the Hausdorff topology. This is achieved in several steps. By continuity of the intersection pairing
between meagured foliations on S, we obtain a continuous fuﬂnction QDY(S) — € (RPL,R) of the
form g — i(vf,w, a) for any fixed curve a on S. The value i(v§+0, a) coincides with the width of
the auxiliary polygon in direction 6, and so the width function wp,q) € % (RP!,R) of the polygon is
continuous in ¢g. Finally, standard results from convex geometry on centrally symmetric sets yield
continuity of P,(q) itself.

As afurther application of continuity of the auxiliary polygon, we show that SL(2, R)-infimal length
is continuous in g; see Proposition 3.12.

Next consider the virtual triangle area spectrum, defined as follows:
VT(q) ={lunvl : u,vehol(q)}

where hol(qg) is the set of holonomy vectors of saddle connections in g. The no-small-virtual-
triangles theorem of [SW10] states that VT (g) has a gap above zero if and only if g is a Veech sur-
face. In our second theorem we show further that VT(q) resembles the polygonal area spectrum
as discussed above:

Theorem 1.2. Let q be a half-translation surface. Then VI(q) either has a gap above zero (exactly
when q is a Veech surface) or is dense in a neighborhood [0, a) for some a > 0.
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In fact, our argument provides a new proof of the “gap implies Veech” direction of the no-small-
virtual-triangles theorem. Moreover, the virtual triangles yielding the dense subset of [0, a) in the
non-Veech case are based virtual triangles; see Section 5 and Proposition 5.1. The non-Veech case
of Theorem 1.2 is proved very similarly to Theorem 1.1.

Finally we have some additional results on polygonal area and SL(2, R)-infimal length when g is a
Veech surface. The first of these will be derived from the analogous result for VT (g) in [SW10].

Theorem 1.3. If g is a Veech surface then Poly(q) is a discrete subset of R.

Next, for a > 0 define the sets

PA(a) = {qe QDY(S) : Area(P,(q)) = a for every crooked curve a on qt,
IL(a) = {qe QDY(S) : lgL(q) > a for every crooked curve a on g} .

We say that two half-translation surfaces are affinely equivalent if they are related by the actions
of the mapping class group and SL(2,R).

Theorem 1.4. For any a >0, the sets PA(a) and IL(a) both contain only finitely many affine equiv-
alence classes of half-translation surfaces.

This result is an application of Theorem 2.2 of [EMM15], which classifies the closed SL(2,R)-
invariant subsets of strata of half-translation surfaces: namely, any such subset is a finite union
of orbit closures.
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2 Background

2.1 Quadratic differentials and half-translation surfaces

We begin by recalling relevant background regarding quadratic differentials and half-translation
surfaces. For further details, consult [Str84].

Let S be a surface of genus g and let p < S be p marked points with 3g -3+ p = 1. A half-translation
structure on S consists of a finite set ¢ of singular points on S (possibly including marked points),
together with an atlas of charts to C defined away from ¢, where the transition maps are of the
form z — +z + ¢ for some c € C. By pulling back the standard Euclidean metric on C, one obtains
a locally Euclidean metric on S — ¢. We require that the metric completion of this metric yields S
with a singular Euclidean structure, where every singularity has a cone angle nx for some n = 1,
and those that are not marked points must have cone angle at least 37. The atlas determines a
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preferred vertical direction on S, and we consider this to be part of the data in the half-translation
structure.

One can construct a half-translation surface by taking a finite collection of disjoint Euclidean poly-
gons in C, with pairs of edges identified by gluing maps of the form z — +z+ ¢ [FM14].

By a quadratic differential q on S, we mean a complex structure on S equipped with an integrable
holomorphic quadratic differential on S — p with finitely many zeros. This means that g can ex-
tended to a meromorphic quadratic differential on S with at worst simple poles at the marked
points. The number of zeros minus the number of poles of g, counted with multiplicity, is 4g — 4.
The union of the set of zeros and poles will constitute the singularities of q. There is a natural
holomorphic coordinate system z on S such that, in a neighborhood of a point away from a sin-
gularity, g is given by g = dz®. In a neighborhood of a zero of order k = 1, q = z*dz?, and in a
neighborhood of a pole, g = %dzz. A zero of order k has cone angle (k +2)r and a pole has cone
angle 7. Thus g induces a half-translation structure on S, where the singular Euclidean metric is
given locally by |dz|?. We shall use g to denote a quadratic differential on S, as well as S equipped
with the corresponding half-translation structure. The assumptions on g ensure that the area of
the half-translation surface, equal to f S |q| dz?, is finite.

Let QD(S) be the space of quadratic differentials on S. This is a complex manifold of dimension
6g — 6+ 2p, and can be identified with the cotangent bundle to Teichmiiller space J (S) via the
natural projection QD(S) — 9 (S) obtained by taking the underlying complex structure of each
half-translation surface. The space QD' (S) of unit area quadratic differentials on S can be identi-
fied with the unit cotangent bundle to I (S).

There is a natural SL(2, R)-action on QD(S) defined by post-composing the coordinate charts to C
by an R-linear transformation. One can view this action by applying an element A € SL(2,R) to a
defining set of polygons for a half-translation surface g to obtain a new half-translation structure
A- g, noting that parallel edges of the same length remain so under SL(2, R)-deformations. Note
that SL(2, R)-deformations preserve area, and so SL(2,R) also acts naturally on QD! (S).

cosf —sinf

. -g; or in natural coordinates at a regular point,
sinf cos6 ) 9 8 P

We will write e?? - g as shorthand for (

el .q=e%dz?.

2.2 Geodesic representatives and measured foliations

Let .# be the set of (free homotopy classes of) essential simple closed curves on S. For any a € .#,
either @ has a unique geodesic representative on g, or there is a unique maximal flat cylinder on
q foliated by the closed geodesics in the homotopy class of a. In the former case, the geodesic
representative of a is a concatenation of saddle connections — embedded geodesic arcs or loops
with endpoints at singularities with no singularities on their interior. The angle between consecu-
tive saddle connections is always at least 7 on both sides. We shall use a? to denote any geodesic
representative of a on q.

If a9 is a core curve of a flat cylinder, then we call « a cylinder curve on q. Let cyl(g) denote the set
of cylinder curves on g, and cyl(q) the set of curves whose geodesic representatives have constant
direction on g. Any curve in . — cyl(q) is called a crooked curve on q.
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Let |dz|? = dx? + dy? be the singular Euclidean metric associated to g. We can consider several
notions of length of a curve @ on g. The Euclidean length I,(g) of a? is given by integrating a¥
with respect to |dz| (in local coordinates). Integrating a9 with respect to |dx| and |d y| (in local
coordinates) gives the horizontal and vertical lengths lf (g) and l[‘x/ (q) respectively. Finally, define
the SL(2,R)-infimal length of a with respect to g to be

SL _ : I
Iy (q)= q/esil(lzf,me).q la(q).

This should be viewed as a measure of length of @ with respect to the SL(2,R)-orbit of g, rather
than with respect to g itself.

Using the natural coordinate of g, one can pull back the foliation of C by lines in the direction
6 € RP! to obtain a measured foliation vz on ¢, where the transverse measure is the Euclidean dis-
tance between leaves. In particular, the horizontal and vertical directions respectively give rise to
the horizontal and vertical foliations VSI = v% and vg = vg/ 2 The map QD(S) x RP! — # F(S) de-
fined by (g,60) — VZ is continuous, where .4 % (S) is the space of measured foliations on S [HM79].
Let 4% (q) = {tw/f] : 0eRPL,te R+}. Let M F (S) and 224 F (q) be the projectivizations of

MF (S) and M F (q), respectively. Note that these sets are invariant under SL(2, R)-deformations.

The geometric intersection number i: . x . — R extends continuously to 4 % (S) x 4 F (S). For
any curve &, we have i(v/], @) = Iy (¢) and i(vy, @) = I/ (). See [FLP79] for additional background
on measured foliations.

2.3 Auxiliary polygons

We now recall the construction from [TW15] of the auxiliary polygon P,(q) associated to a curve
a and a quadratic differential g € QD(S).

To each saddle connection e on ¢, we assign a holonomy vector v, € R?> which is parallel to it and
is of the same length. This is well defined up to scaling by +1. For consistency, we require that
the direction 6(v,) (that is, the oriented angle from the positive x—axis to v,) lies in the interval
[0, 7). Consider a geodesic representative a9 on q. If a is a cylinder curve, we may choose a? to
be a boundary component of the maximal flat cylinder with core curve a. Let m, be the number
of times a9 runs over the saddle connection e, in either direction. Define

1
P():{ [eMeVp : ——
alq ;e ele > >

where the sum is taken over all saddle connections used by a4.

The set P, (q) is a convex Euclidean polygon, unless a7 has constant direction, in which case P, (q)
degenerates to a line segment parallel to a? of length [, (g). In particular, in the case of a cylinder
curve, the definition of P, (g) does not depend on the choice of boundary component. Moreover,
this construction commutes with SL(2,R)-deformations: for all A € SL(2,R) we have P,(A-q) =
A-P a (Cl ) .

Proposition 2.1 ([TW15]). Given a curvea € & and q € QD1 (S), the auxiliary polygon P, (q) de-
fined above satisfies the following:
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(i) The perimeter of Py (q) is21ly(q),
(i) height(Py(q)) = 1Y () and width(P4(q)) = I (g),
(il) 7Area(Pq(q)) < I5%(9)* < 8Area(Py(q)),
(iv) Area(P,(q)) =0 ifand only ifa € cyl(q). O

Here, the perimeter of a polygon P is the length of its boundary 0P. In the situation where P
degenerates to a line segment, we view 8P as a closed path traversing the line segment once in
each direction.

The next property of P,(q) that we need is really a statement about centrally symmetric convex
polygons in general. Let v1, ..., v; be non-zero vectors in R? whose directions 0(v;) satisfy

0<0(w)<---<0(vy) <m.

Let Py be the convex set {Zle tivi: —1/2<5;<1/2}.
Lemma 2.2. The points py = Zle vi/2 and — py lie on the boundary 0 Py.. Furthermore,

(i) the boundary arc 0" Py, traveling counter-clockwise from —py. to py., is the path obtained by
concatenating the vectors v,..., Uy, in order. Similarly, the boundary arc 0~ Py from py. to
— Pk is the concatenation of — vy, ..., — Uk.

(ii) Py admits a tiling by the (possibly degenerate) parallelograms v; x v, with one copy of v; x v;
for each unordered pairi # j.

Proof. We proceed by induction on k, the case k = 1 being trivial (with P; aline segment).

Recall that the Minkowski sumof sets A,Bc R? istheset A+B={a+b: ac A be B}. Observe that
Py is the Minkowski sum of Py_; with the line segment S with endpoints +v/2. The description
of P;_; given by the induction hypothesis allows us to see this sum clearly. The boundary of Py
decomposes into four parts: the path 8* Py_; + {—vy/2}, the path 0~ Pr._; + {vy/2}, and two shifted
copies of Si; see Figure 1. It is the assumption that 8(vy) lies between 6(v;) and x for all i that
ensures that 0Py, is as described.

Figure 1: The polygon Py expressed as Py_; + S, and tiled by parallelograms v; x v;.
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The point py is the initial point of the path 6~ Py_; + {v/2}, which is on the boundary. Similarly,
— pr is the initial point of 8* Py._; + {— vy /2}, and conclusion (i) is now clear.

Next divide Py into two regions, one bounded by 0Py_; + {v;/2}, and the other bounded by the
paths 0" Pr_1 + {v/2}, 8% Pr_1 + {—vx/2}, and the two copies of Sy. The first region is isometric to
Py_1 and can be tiled by the parallelograms v; x v}, i < j < k, by the induction hypothesis. The
second region is the sum 0% Py_; + Sk, and is tiled by the parallelograms v; x v, for all i < k, since
0" Pj._; is a concatenation of the vectors v;, i < k. O

Since P, (q) is Py for the vectors {m,v, : e appearsin a}, ordered appropriately, we immediately
deduce the following from Lemma 2.2(ii).

Lemma 2.3. Foranya € .% and q € QD'(S), we have

Area(Pq(q)) = ) Meme Ve A Ve,

ee

where the sum is taken over all unordered pairs of distinct saddle connections e, e’ appearing in
ad. O

2.4 Rigidity

A key tool that we use is the following result of Duchin, Leininger, and Rafi. Our formulation of the
statement is slightly different from theirs, but their proof still works without modification.

Proposition 2.4 ((DLR10], Lemma 22). Let q,q' € QD\(S) be half-translation surfaces. If cyl(q) <
cyl(q) then SL(2,R)-q =SL(2,R) - ¢q'. °

Therefore, if SL(2,R) - g # SL(2,R) - ¢’ then both c?l(q) — cAyI(q’) and cAyI(q’) - c?l(q) are non-empty.

Remark 2.5. One consequence of Proposition 2.4 is that when 3g -3+ p > 1, every g € QD' (S) has
a crooked curve. This is true because QDl (S) always has real dimension greater than 3, and hence
cannot be a single SL(2, R)-orbit.

Remark 2.6. Theorem 1 of [DLR10] states that the marked length spectrum of simple closed
curves determines the half-translation surface g. Associated to g is the marked polygonal area
spectrum, which is the SL(2, R)-invariant function ¥ — R given by a — Area(P4(q)). We observe
that, by Proposition 2.1(iv) and Proposition 2.4, the marked polygonal area spectrum of g deter-
mines its SL(2,R)—orbit.

2.5 SL(2,R)-orbit closures

The space QD1 (S) of unit-area half translation structures on S is naturally partitioned into strata
Q(x), where « is a partition of 4g — 4 specifying the orders of the singularities. The mapping
class group MCG(S) acts on QDl (S) and each stratum Q(x) by change of marking. The SL(2,R)-
action on QD!(S) preserves each stratum, and also descends naturally to the moduli space of
half-translation surfaces MQD(S) = QDI(S)/ MCG(S), as well as each unmarked stratum MQ(x) =
Q(x)/MCG(S). Let m: QD!(S) — MQD(S) be the natural projection, which is an orbifold covering
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map. Given q € Q(x), let M be the closure of 7(SL(2,R) - ) in MQ(x). We call M, the orbit closure
associated to g.

The structure of M4 has been elucidated in the work of Eskin, Mirzakhani, and Mohammadi, as
follows:

Theorem 2.7 ((EMM15], Theorem 2.1). Forany q € Q(x), the orbit closure M is an affine invariant
submanifold of MQ(x). O

The statement given in [EMM15] actually refers to abelian differentials rather than quadratic dif-
ferentials. However, the result applies equally well to the setting of quadratic differentials, by con-
sidering an appropriate two-fold branched covering of the surface.

The precise definition of “affine invariant submanifold” is rather involved and we shall not repeat
it here in its entirety. It suffices to note that it includes the following:

* My is SL(2, R)-invariant,
* M, is the image of a properly immersed orbifold f: N — MQ(x).

Since m: Q(x) — MQ(x) is an orbifold covering, the preimage gt (M) is also the image of a prop-
erly immersed orbifold (in fact, manifold) of the same dimension as N.

The main conclusion we need to draw from Theorem 2.7 is that 7~ (M) is locally path connected.
Let M, be the connected component of ! (M) containing q. Then local path connectedness of
gt (M) implies that M, is open and closed in gt Mg).

Now let I'; = MCG(S) be the (setwise) stabilizer of 1\7Iq, and define
Gg=T4 SL2,R)-q).

Lemma 2.8. 1\~/Iq is the closure of 04 in Q(x).

Proof. Certainly, 1\~/Iq contains 04 and is closed in Q(x), so it contains the closure of ;. Also,
n~1(M,) is the closure of MCG(S) - (SL(2,R) - g). Note that if g € MCG(S) - T, then g- (SL(2,R) - )
is contained in the component g1\~/[q of ﬂ_l(Mq), which is disjoint from 1\~/Iq. Now if ¢’ € 1\7[6, isa
limit of a sequence of points g; € g; - (SL(2,R) - q), the open set 1\~/Iq must contain almost all g;, and
therefore g; € T, for almost all i, and ¢’ is in the closure of G,. O

We will also make use of the following finiteness result.

Theorem 2.9 ([EMM15], Theorem 2.2). Any closed SL(2,R)-invariant subset of Q(x) is a finite
union of SL(2,R)-orbit closures. O

2.6 Veech surfaces

Recall that g € QD(S) is a Veech surface if its group of affine automorphisms is a lattice in SL(2,R).
We now state several characterizations of Veech surfaces due to Smillie and Weiss [SW10], which
builds on work of Vorobets [Vor96]. By a triangle on q, we mean a Euclidean triangle on g with
isometrically embedded interior, whose sides are saddle connections on g. Let hol(g) be the set of
holonomy vectors arising from saddle connections on q.
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Theorem 2.10 ([SW10]). For any q € Q(x), the following are equivalent.
(i) g is a Veech surface,
(ii) g has no small triangles: there is a lower bound € > 0 on the areas of all triangles on q,

(iii) g has no small virtual triangles: there exists € > 0 such that |u A v| > € for all pairs of non-
parallel holonomy vectors u, v € hol(q),

(iv) the virtual triangle area spectrum VI(g) = {lu A v| : u,v ehol(q)} is discrete,
(v) m(SL(2,R)- q) is closed in MQ(x). O

Note that condition (v) is the same as saying that M, = 7(SL(2,R) - ). Applying Lemma 2.8, we
deduce the following.

Corollary 2.11. A half-translation surface q is a Veech surface if and only if 1\7[(, =04. O

3 Continuity results

3.1 Continuity of the auxiliary polygon

Here we show that the polygon P,(q) is continuous in g, with respect to the Hausdorff topology in
the plane. First we recall some basic notions from convex geometry. See, for instance, Sections 1.7
and 1.8 of [Sch14].

For any non-empty compact convex subset K < R?, the support function hx: S' — R is defined by
hg(u) =sup{{x,u) : xeK}.
Here (-, ) is the usual inner product on R?. The width function wi: S' — Ris defined by
w (u) = hg(u) + hg (- u).

Note that wy is even, and descends to a function on RP! which we also denote by wx. Now let dy
denote Hausdorff distance. We have the following standard fact:

Lemma 3.1 ([Sch14],Lemma 1.8.14). Suppose K and L are non-empty compact convex subsets of
R?. Then
dp (K, L) = sup |hg(w) — hr(u)]. O

ueS!
Next consider centrally symmetric convex sets: these are convex sets K such that K = —K. Note that

the auxiliary polygons P, (q) are both convex and centrally symmetric. If K is centrally symmetric
then hg (1) = hg (—u) for all u, and therefore

Wk = Zh[(. (3.2)

Now let H f || denote the sup norm for functions f: RP! — R, and let % (RP!,R) be the space of
continuous functions, with the sup metric. Let J#; be the space of non-empty centrally symmet-
ric compact convex sets in R2, with the Hausdorff metric. The next lemma follows directly from
Lemma 3.1 and equation (3.2).
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Lemma 3.3. IfK,Le€ % then

2dy(K,L) = sup |wg(0) —wr@)| =llwg —will. O
OeRP!

Corollary 3.4. The map W: ., — € (RP!,R) given by K — %wK is an isometric embedding. O
Let us now return our attention to the auxiliary polygons.

Theorem 3.5. The map QD' (S) x.# — %, defined by (q, @) — Py (q) is continuous in the first factor.

Proof. Let a € ¥ be fixed. Applying Proposition 2.1, we see that

+9, a)

ESENIE]

Wp,(qg) ) = Width(e_ig -Pu(q)) = lf(e_ig -q) = i(V

for all g € QD'(S) and 6 € RP!. The map QD!(S) x RP! — .#.%(S) given by (q,0) — V§+0 is con-
tinuous. By continuity of intersection number on .4 % (S) x 4 % (S) and compactness of RP!, the
map g — wp, (g defines a continuous function from QD' (S) to ¢’ (RP', R). Moreover, its image is
contained in W (%), and composing this map with %W‘l yields the function g — Py(q). This
map is continuous by Corollary 3.4. O

Finally, applying continuity of Area: %) — R [Sch14, Theorem 1.8.20] yields the desired result.

Corollary 3.6. The function Area: QD1 (S) x & — Ry defined by Area(q, @) = Area(Py(q)) is con-
tinuous and SL(2,R)—invariant in the first factor. O

3.2 Continuity of SL(2, R)-infimal length

In this section, we apply continuity of the auxiliary polygon to deduce continuity of SL(2,R)-
infimal length.

Given K € %, let r~ (K) = inf,,cq1 hgx(u) and r* (K) = sup s hx(1). One can show that these two

numbers coincide with the minimum and maximum distances to the origin of points on K. De-

fine the eccentricity of K to be ecc(K) = ;tgg = 1. Note that r~ (K) = 0 ifand only if K is degenerate.

Recall that any matrix A € SL(2,R) has a singular value decomposition

A= eiel (g A(zl)eigz,

for some stretch factor A = 1 and 64,60, € R. Moreover, 1 = A(A) is unique, and A(AB) < A(A)A(B)
and A(A™1) = A(A) for all A, B € SL(2,R). Also note that

R e T

- +ra. +
AAT (K)=r"(A-K) < AAr " (K) and A A

3.7

for all K € .#;. Since A acts as a A(A)-Lipschitz map from R? to itself, we deduce for all K, L € %
that
d(A-K,A-L) < A(A) dy(K,L). (3.8)
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Lemma 3.9. Fix ry >0, and suppose K, L € ; satisfy r~(K),r~ (L) > ro. Then

-2 2
(1+dH(K,L)) - ecc(K) - (1+dH(K,L)) .

o ecc(L) o

Proof. Let D =dy (K, L). Applying Lemma 3.1 gives

ecc(l) rt(L) r-(K) ~ rt(L)

ecc(K) r*(K) r~(L) - (r+(L)+D)
r~(K)

r—(K)+D) ( D)Z
< |1 .

The other bound can be deduced similarly. O

Define the eccentricity of a curve a € . on g € QD!(S) to be eccy(g) = ecc(Py(g)). Note that
eccq(q) = oo if and only if a € cyl(g). By Theorem 3.5, eccy is continuous on the set of quadratic
differentials on which « is crooked.

Lemma 3.10. Let a be a crooked curve on q € QD' (S), and suppose the SL(2,R)—infimal length of a
is attained at m € SL(2,R) - q. There is a constant ¢ = 1 (independent of S, q, and a) such that

A(A)?2

< eccq(A-m) < cA(A)?

forall AeSL(2,R). In particular, ecc,(m) < c.

Proof. By Lemma 6.4 and Corollary 7.2 of [TW15], there exists Ag € SL(2,R) such thatecc, (Ag-m) <
2 and A(Ap) < ¢ for a constant ¢’ independent of S, ¢, and a. Taking ¢ = 2(¢’ )2, the result follows
by applying the inequalities in (3.7), with K = Py (Ag - m). O

Lemma 3.11. Let a be a crooked curve on g € QD1 (S). Then foralle > 0 and Ay = 1, there exists an
open neighborhood U < QD' (S) of q such that for all ¢’ € U and A € SL(2,R) satisfying A(A) < Ao,
we have:

eccq(Aq)
eccq(A-q)

() 1+e)2< <(+e€)?,

(ii) 1la(A-q)—1la(A-g")| < me.

I~ (Pa(q))

Ty and choose 6 < min{

Proof. Setry = I Pu(@) 1oe L}

2 * Ao’ Ao

By Theorem 3.5, there is an open neighborhood U of g with dg(Py(q), Po(g") <6 forall ¢’ € U.
Choose any ¢’ € U and A € SL(2, R) satisfying A(A) < Ag. Then

d(Po(A-q),Po(A-q") < min{ree,e}
by (3.8). Now by (3.7), we deduce

r~(Pa(q)) S r (Pa(q) -6 S r (Palq)) _ o

- !
r(Peld-q)) = — 1o 210
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Applying Lemma 3.9 yields the first claim. For the second claim, we use the well-known fact that
the perimeter of any convex region K c R? is fgr wi (u)du, where wg (u) is the width of K at u € S'.
Set wy(u) to be the width of P, (q) at u. Then using Proposition 2.1(i) and Lemma 3.3 we have

”a(A'q) - la(A‘ q/)|

1 /A
—'[ Wa.q(u) —wa.qg(Wdu
2 |Jo

IA

1 /A
Efo |wa.qw) — wa.qw)|du

ndp(Pa(A-q),Pa(A-q")) < me. O

IA

Proposition 3.12. Foranycurvea € &, the function | OSC‘L : QD1 (S) = Rsq is continuous and SL(2, R)—
invariant.

Proof. Fix a € .% and g € QD'(S). We now prove that IS is continuous at g. In the case where
@ € cyl(q), we have I5'(g) = 0 = Area(q, @). Continuity of I3" at g then follows from Proposition
2.1(iii) and Corollary 3.6.

Assume a is crooked on g. Given any ¢ € (0, 1), we shall show that |I5%(q) - I5%(q")| < me for all ¢’ in
a sufficiently small neighborhood of q. Suppose lgL(q) is attained at A; - g, for some A; € SL(2,R).
Choose Ag = 2cA(A;), where cis the constant from Lemma 3.10. Let U be an open neighborhood of
q which satisfies the conclusion of Lemma 3.11. For ¢’ € U, let A, € SL(2,R) be such that lgL(q’ ) =
lo(A2-¢"). By Lemmas 3.10 and 3.11(i), we have

eccq(A1-q) < (1+e)%eccqa(Ar-q) < (1+€)*c < 4c.

Applying Lemma 3.10 with m = A, - ¢, we obtain A(A;A;1)? < c¢-eccq(A; - g'), and therefore

A(A1A;Y < 2¢. Thus,
A(Az) = MA2ATHA(AD) = MAA;HA(AL) < 2¢A(A)) < Ag.

Finally, applying Lemma 3.11(ii) yields

139(q) — e < 1a(Ar- q)—me < lo(A2-q) = 13"(q)
< Ig(A1-q) < Io(A,-q)+7e = I58(q) + e

as required. O

4 The polygonal area spectrum

We are now ready to prove Theorem 1.1. The first step is Theorem 1.3, which says that Poly(g) is
discrete if g is a Veech surface.

Proof of Theorem 1.3. By Theorem 2.10(iv), the virtual triangle area spectrum VT(g) is discrete. For
each simple closed curve a, Area(P,(q)) is a positive integer combination of numbers from the set

VT(q), by Lemma 2.3. The result follows. O

Using Proposition 2.1(iii), we obtain:
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Corollary 4.1. Ifq € QD'(S) is a Veech surface then

inf{I3"(q) : a is crooked on q} > 0. O

For the converse, it is worth remarking that the existence of short crooked curves is not an imme-
diately obvious consequence of having small virtual triangles. From a given collection of saddle
connections on g for which |u A v| can be taken to be arbitrarily small, it appears difficult to con-
struct a sequence of saddle connections to satisfy the following:

* no two saddle connections intersect (in their interiors),
¢ consecutive saddle connections meet with an angle of at least 7 on both sides,
¢ their concatenation is homotopic to an essential simple closed curve.

(Small triangles on g are not particularly useful since their sides must meet at an angle of less than
7.) In our proof below, the auxiliary polygon plays a key role in bypassing this difficulty.

For g € Q(x), recall that 6, =T - (SL(2,R) - q) is a dense subset of 1\~/Iq in Q(x), where I'; < MCG(S)
is the stabilizer of 1\7[q.

Proposition 4.2. Suppose g € QD' (S) is not a Veech surface. Then there is a number a > 0 such that
the polygonal area spectrum Poly(q) contains a dense subset of [0, a.

Proof. Applying Corollary 2.11, we have Mq # 04 and so we may choose g’ € Mq @q Then
SL(2,R) - g # SL(2,R) - ¢’, and so by Proposition 2.4, there exists a curve a € cyl(q) - cyl(q ). By
Proposition 2.1(iv), we have Area(q,a) = 0 and Area(q’,a) = a > 0. Since Mq is connected and
Area(+, @) is continuous, by Corollary 3.6, we deduce that [0,a] < Area(My, a). It follows that
Area(04, a), and hence Area(0,, %), contains a dense subset of [0, a]. Finally, the polygonal area
spectrum Poly(q) = Area(q,.¥) is invariant under SL(2, R)-deformations and changes of markings,
and therefore Area(q,.#) = Area(0y4, ). O

Note that this proof uses only the fact that Area(-, a) is a continuous SL(2, R)—invariant function to
R>( which takes the value 0 precisely when «a € cyl(q) Since the same properties hold for I3%, we
may argue as above to deduce:

Proposition 4.3. If g € QD' (S) is not a Veech surface then there exists a > 0 such that the SL(2,R)—
infimal length spectrum {lgL(q) raed } contains a dense subset of [0, a. O

We conclude this section with a proof of Theorem 1.4, which is restated below. For a > 0, recall
that

PA(a)
IL(a)

{ge QD!(S) : Area(P,(q)) = a for every crooked curve a on qt,

{geQD(S) : 15L(q) = a for every crooked curve a on qt.

Theorem 4.4. For any a >0, the sets PA(a) and IL(a) both contain only finitely many affine equiv-
alence classes of half-translation surfaces.
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Proof. Applying Corollary 3.6, we deduce that PA(a) is a closed and SL(2,R)-invariant subset of
QDl(S). Moreover, PA(a) is invariant under the action of MCG(S), and so PA(a) descends to a
closed SL(2,R)-invariant subset C in MQD(S). It follows that C n Q(x) is closed and SL(2,R)-
invariant in each stratum Q(x) under the subspace topology. By Theorem 2.9, C n Q(x) is a finite
union of SL(2,R)—orbit closures. Since elements of PA(a) are necessarily Veech surfaces by The-
orem 1.1, C N Q(x) must be a finite union of SL(2,R)-orbits. Finally, there are only finitely many
strata for a given genus, and so the desired result follows.

The proof for IL(a) proceeds identically using Proposition 3.12 in place of Corollary 3.6. O

5 The virtual triangle area spectrum

We are almost ready to prove Theorem 1.2. In the introduction we defined the virtual triangle
area spectrum VT(g). Let VTy(gq) < VT(g) be the subset consisting of the numbers |u A v| such
that u and v are the holonomy vectors of a pair of saddle connections with a common endpoint
(that is, a based virtual triangle). Note that saddle connections forming a based virtual triangle
need not form a triangle, since they may have angle 7= or more on both sides. We also define
VTo(X) = Ugex VTo(g) for any set X < QD'(S).

We know from the implication (i) = (iii) of Theorem 2.10 that if g is a Veech surface then VT (g) has
a gap above zero. The remainder of Theorem 1.2 follows from the next proposition:

Proposition 5.1. Suppose g € QD' (S) is not a Veech surface. Then there is a number a > 0 such that
VTo(q) contains a dense subset of [0, al.

Proof. As in the proof of Proposition 4.2, there exist a half-translation surface g’ € 1\7[,, —0O4and a
curve a € Efl(q) - c/\yl(q’), and we know that Area(q, @) = 0 and Area(q’, @) > 0. Let ¢; be a path in
M, from go = q to q1 = q'. Consider the set

{re[0,1] : Area(q;,a)>0},

which is an open neighborhood of 1 in [0, 1] that does not contain 0. It has a connected component
(t0,1]. Replacing the path g; by its restriction to [#y, 1] and reparametrizing over [0, 1], we have
Area(qp, @) = 0 and Area(qy, a) > 0 forall £ € (0, 1].

Now consider the geodesic representative a0 and express it as a concatenation of saddle connec-
tions e; --- e. Let a; be the topological arc represented by e;; it is an isotopy class rel endpoints,
where the interior of the arc is required to avoid the singularities. Consider the set

{t€10,1] : each a; is represented by a saddle connection in ¢,}.

This set is an open neighborhood of 0 in [0, 1]. Again, replacing the path ¢g; by its restriction to
an interval [0, €] and reparametrizing over [0, 1], we may assume that the arcs «;, ..., @ are repre-
sented by saddle connections for all ¢ € [0, 1]. Let e;(#) denote the saddle connection in g, repre-
senting «;. Let v;(t) be the holonomy vector of e; ().

Define functions ¢;(#) = |v;(¥) A vi+1(2)] for each i (with indices taken mod k). These are contin-
uous because holonomy vectors vary continuously where defined. Since all e; are parallel on gy,
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we have ¢;(0) = 0 for all i. We claim that ¢;(#;) > 0 for some #; > 0 and some i. If not, then for
all ¢ € [0,1] the saddle connections e;(t) are all parallel. The angles between consecutive saddle
connections (on either side) must remain constant, since they are constrained to lie in the discrete
set 7Z, and therefore the concatenation e (f) --- ex(f) remains a geodesic representative for @ on
g:. But this contradicts the fact that Area(q;, a) > 0 for all ¢ € (0,1].

Restricting g; to [0, ;] and reparametrizing over [0, 1] one last time, we have a path g; in 1\7[q and a
pair of saddle connections e; (), e;+1(f) which persist on g throughout the path, such that ¢; (0) =
[v;(0) A vi+1(0)] =0and ¢; (1) = |v;(1) A v;4+1(1)| = a > 0. The function ¢; is defined and continuous
on the open set U c 1\~/Iq where e; and e;; persist. This set contains the path g; and hence ¢;(U)
contains [0, a]. Since UN0 is dense in U, it follows that ¢; (U N 0y), and hence VT (0,), contains
a dense subset of [0, a]. Finally, the based virtual triangle area spectrum is invariant under change
of marking and SL(2,R), and so VTy(q) = VTo(0Oy). O
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