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Abstract—This paper proposes a dual rate output-feedback
control approach for sampled-data MIMO systems with non-
linear uncertainties. Design and analysis of L1 adaptive con-
trollers are extended to sampled-data systems framework. The
controller is designed for detection of zero-dynamics attacks,
and disturbance and uncertainty compensation. In this paper, a
sufficient condition on the sampling time of the digital controller
is obtained that ensures stability of the closed-loop system. It is
shown that the proposed controller can recover the performance
of a continuous-time reference system. A simulation study of
an automatic voltage regulator is provided to validate the
theoretical finding.

I. INTRODUCTION

Many important cyber-physical systems (CPSs) such as
power grids, transportation, and financial systems are subject
to cyber attacks. The sampled-data (SD) nature of control
systems in these infrastructures can generate additional vul-
nerability to stealthy attacks due to the sampling zeros in the
SD system [1], [2]. From controls system perspective, the
hardest to defend are the so-called zero dynamics attacks on
the output-feedback systems. If the closed-loop system pos-
sesses an unstable zero, an (ultimately) unbounded actuator
(or sensor) attack cannot be observed by the monitoring data.
As shown in [2], an interesting property of multirate

sampling is its ability to remove certain unstable zeros of
the discrete-time system when viewed in the lifted linear
time-invariant (LTI) domain. Multirate sampling has been
studied extensively in the context of sampled-data control,
and relevant analysis and synthesis results have been reported
in [3]–[5], to mention only a few. In the literature, the
problem of SD output-feedback control is addressed by
introducing high-gain observers to estimate the unmeasured
states [6]–[8]. Disturbance compensation for SD output-
feedback control of nonlinear systems is studied in [9]–[11].
Although stability analysis of SD nonlinear systems has been
the focus in these papers, the study of transient performance
in nonlinear systems with SD output-feedback control has
not received much attention.
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This paper aims to extend the L1 adaptive control theory
to multirate SD systems. In continuous-time framework, the
L1 adaptive control is known as a robust technique, for
which performance bounds and robustness margins can be
quantified analytically [12]–[14]. The controller compensates
for uncertainties within the bandwidth of a lowpass filter.
Focusing on a multirate scheme that allows attacks to be
detected, the approach of this paper contributes to the body
of work on SD output-feedback control of systems with non-
linear uncertainties and disturbances, by providing uniform
bounds on the reference tracking errors. In addition, analyti-
cal results are derived, that provide a sufficient condition on
the sampling rate of SD system to preserve the performance
of the underlying continuous-time structure.
The rest of the paper is organized as follows. Section II

presents the problem statement. In Section III, the structure
of the dual rate controller is presented. The closed-loop
SD system is analyzed in Section IV. Section V presents a
simulation example. Finally, Section VI concludes the paper.

II. PROBLEM STATEMENT

A. Zero-Dynamics Attack

Consider a continuous-time LTI plant Pc, and the cor-
responding discrete time LTI plant Pd = SPcH, which is
defined with the standard zero order hold and sample devices
H and S . The relationship between Pc and Pd follows from
the following definition.
Definition 1: Given an LTI system with transfer func-

tion Pc(s) with its minimum realization (Ac, Bc, Cc, Dc),
the equivalent step-invariant discrete-time system with z-
transform Pd[z] is given by the following state-space ma-
trices:

Ad = eAcT , Bd =

∫ T

0

eAcτBcdτ, Cd = Cc, Dd = Dc,

where T > 0 is the sampling time.
Most control systems are naturally implemented on a digital
processor with the usual sample and hold elements. Even
if the continuous plant has no unstable zeros, its discrete
representation obtained by the sampled and hold operations
may introduce unstable zeros (so-called “sampling zeros”)
[15].
If a system has non-minimum phase zeros, the actuator

attack signal d[i] = ϵz0
−i can remain undetected for small

enough ϵ, where z0 is the unstable zero of the system [2].
This attack can be easily implemented in the cyber space as
an additive disturbance. This unbounded signal can blow up
the states of the physical system, while the observed output



and control command dictate normal behavior. To deal with
this problem, a multirate scheme can be applied, since it
allows the attack to be detected by ensuring that there are
no relevant unstable zeros in the lifted system.
Theorem 1 ( [2]): Let the lifted LTI system be P̄d =

SNPcH, where the output is sampled with the period T
N ,

where N is a large integer. Suppose the system Pc has full
rank Bc, and O = [C⊤

c , (CcAc)
⊤, . . . , (CcA

N−2
c )⊤]⊤ is of

full rank. Then, the lifted LTI system P̄d does not have any
unstable zeros.
From Theorem 1, unbounded zero-dynamics attacks can

be detectable, if the control system is designed in the
dual rate sampled-data framework. Motivated by the work
on multirate sampled-data (MSRD) control [2], this paper
proposes a dual rate L1 adaptive controller whereby the
outputs are sampled at a multiple of the hold rates for the
purpose of attack detection.

B. Mathematical Formulation

Throughout this paper, ∥xτ∥L∞
denotes the L∞ norm of

the truncated signal xτ (t) for original x(t) ∈ Rn, given as

xτ (t) = x(t), ∀t ≤ τ,
xτ (t) = 0, otherwise.

The notation ∥.∥p represents the vector or matrix p-norms
with 1 ≤ p ≤ ∞. Also, z denotes z-transform variables
while s is used for the Laplace transform.
Consider the following MIMO system

ẋ(t) = Apx(t) +Bp (u(t) + f(t, x(t)) + d(t)) , x(0) = x0,
y(t) = Cpx(t),

(1)
where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input
signal, and y(t) ∈ Rm is the system output vector. Also,
{Ap ∈ Rn×n, Bp ∈ Rn×m, Cp ∈ Rm×n} is an observable-
controllable triple. The transmission zeros of the system with
the state-space realization (Ap, Bp, Cp) are assumed to be
stable. The initial output signal, y0

∆
= Cmx0, is assumed to

be known, where x0 is an unknown initial condition. Let
d(t) ∈ Rm be the zero-dynamics attack on the actuator. Fi-
nally, f (t, x) ∈ Rm represents the time-varying uncertainties
and disturbances subject to the following assumption.
Assumption 1: There exist constants L0 > 0, L1 > 0, and

L2 > 0 such that

∥f(t, x2)− f(t, x1)∥∞ ≤ L1∥x2 − x1∥∞,

∥f(t, x)∥∞ ≤ L1∥x∥∞ + L0,

∥d(t)∥∞ ≤ L2

hold uniformly in t ≥ 0.
Remark 1: The boundedness of the attack signal d(t) can

be realized by assuming a secure software/hardware structure
for the CPS (ex. Simplex architecture [16], [17]). In such
structure, a backup controller will operate the system, when
the normal mode controller is compromised due to a cyber
attack. By switching from the normal mode to a secured
backup controller, the unbounded stealthy attack can be
removed (from cyber space), rendering d(t) bounded.

In this paper, a dual rate L1 adaptive controller is in-
troduced for sampled-data systems with baseline dual rate
controllers to compensate for uncertainties and to detect the
zero-dynamics attacks. The overall control input, which is
implemented via a zero-order hold mechanism with time
period of Ts > 0, is given by

u(t) = ud[i], t ∈ [iTs, (i+ 1)Ts) , i ∈ Z≥0,

ud[z] = K[z]ȳd[z] + rd[z] + ucd[z],
(2)

where ȳd[z] is the z-transform of the output signal ȳd[i]

ȳd[i] =

[
y⊤ (iTs) , . . . , y

⊤
(
(Ni+N − 1)Ts

N

)]⊤
, (3)

and N ∈ N is the ratio between the hold and sampling rates,
that is, the output y(t) is sampled with the period of Ts

N . Also,
rd[z] is the z-transform of the discrete reference command
rd[i], and K[z] represents the transfer function of a baseline
dual rate controller represented in the lifted domain with
sampling time of Ts. The command signal is assumed to be
bounded, such that ∥rd[i]∥∞ ≤ Mr, where Mr is a positive
constant. This paper considers augmentation of the control
input ucd[z] for the purpose of compensating uncertainties
and recovering the performance of the ideal baseline system,
which is defined as follows

ẋb(t) = Apxb(t) +Bpub(t), xb(0) = 0,

yb(t) = Cpxb(t),

ub(t) = ubd[i], t ∈ [iTs, (i+ 1)Ts) , i ∈ Z≥0,

ubd[z] = K[z]ȳbd[z] + rd[z],

(4)

where ȳbd[z] is the z-transform of the ideal output signal
ȳbd[i] defined as

ȳbd[i] =

[
yb

⊤ (iTs) , . . . , yb
⊤
(
(Ni+N − 1)Ts

N

)]⊤
. (5)

Here, it is assumed that the controller with the transfer
function K[z] stabilizes the multi-rate sampled-data system
in (4). Therefore, for bounded command signal rd[i], there
exists a constant Mx > 0 such that

∥xb(t)∥∞ ≤ Mx, ∀t ≥ 0. (6)

Remark 2: In [2] and [18], such dual rate controller is
proposed using a linear quadratic Gaussian (LQG) structure,
and it is shown that the closed-loop system is exponentially
stable.
Let

ucd[z] = uad[z]−K[z]ȳad[z],

ua(t) = uad[i], t ∈ [iTs, (i+ 1)Ts) , i ∈ Z≥0,
(7)

where ȳad[z] is the z-transform of

ȳad[i]
∆
= ȳd[i]− ȳbd[i], (8)

and uad[i] is an adaptive control input to be introduced
shortly. Next, consider the system

ẋa(t) = Amxa(t) +Bp (ua(t) + σ(t)) , xa(0) = x0,

ya(t) = Cpxa(t),
(9)



where F ∈ Rm×n is chosen such that Am
∆
= Ap − BpF is

Hurwitz, and

σ(t) = Fxa(t) + f (t, xa(t) + xb(t)) + d(t). (10)

It can be shown that the following bound on σ(t) holds

∥σt∥L∞
≤ L3 ∥xat∥L∞

+ L4, (11)

where

L3
∆
= ∥F∥1 + L1, L4

∆
= L0 + L1Mx + L2.

Moreover, the sampled output of the system in (9)

yad[j] = ya

(
j
Ts

N

)
,

[
j
Ts

N
, (j + 1)

Ts

N

)
, j ∈ Z≥0

(12)
can be obtained from (8), where ȳd[i] is given in (3). Also,
ȳbd[j] is defined in (5), in which yb

(
j Ts

N

)
= ybd[j] and

xbd[j + 1] = eAp
Ts
N xbd[j] +

(∫ Ts
N

0

eApτBpdτ

)
uNbd[j],

ybd[j] = Cpxbd[j], xbd(0) = 0.
(13)

Notice that uNbd[j] is given by

uNbd[j] = ub

(
j
Ts

N

)
, j ∈ Z≥0, (14)

where ub(t) is defined in (4).
Given the two systems in (4) and (9), the following rela-

tions can be established: for all t ≥ 0, x(t) = xa(t)+xb(t),
y(t) = ya(t) + yb(t), and u(t) = ua(t) + ub(t).
While (4) represents the ideal baseline system, the system

in (9) governs the dynamics due to uncertainties and attacks.
In the following, an adaptive output feedback controller,
uad[z], is designed to regulate the output ya(t) of the system
in (9) to zero. At the same time, the augmented control input
ucd[z] given in (7) recovers the nominal response provided
by the baseline controller.

III. CONTROL DESIGN

We define a few variables of interest and design con-
straints. Let

H(s)
∆
= (sI−Am)

−1
Bp,

G(s)
∆
= H(s) (I− C(s)) ,

H1(s)
∆
= C(s)M−1(s),

H2(s)
∆
= H(s)C(s)M−1(s),

(15)

where M(s)
∆
= Cp(sI − Am)−1Bp. The design of the

controller proceeds by considering a strictly proper stable
transfer function C(s) such that C(0) = Im. The selection
of C(s) must ensure that the following L1-norm condition
holds

∥G(s)∥L1
L3 < 1, (16)

and
C(s)M−1(s) is proper. (17)

Also, since M(s) has stable transmission zeros, H1(s),
H2(s) are stable and proper transfer matrices.
Given that Am ∈ Rn×n is Hurwitz, there exists a positive

definite matrix P ∈ Rn×n solving A⊤
mP + PAm = −Q for

a given positive definite matrix Q ∈ Rn×n. Define

Λ
∆
=

[
Cp

D
√
P

]
, (18)

where
√
P satisfies P =

√
P

⊤√
P , and D ∈ R(n−m)×n is

a matrix that contains the null space of Cp

(√
P
)−1

, i.e.

D

(
Cp

(√
P
)−1

)⊤

= 0 . (19)

Let P1 ∈ Rm×m and P2 ∈ R(n−m)×(n−m) be positive
definite matrices:

P1
∆
= Cp

√
P

−1√
P

−⊤
C⊤

p , P2
∆
= DD⊤. (20)

Let T > 0 be a given constant, and

1nm
∆
=

[
Im

0(n−m)×m

]
∈ Rn×m. (21)

Define [
η⊤1 (t) η⊤2 (t)

] ∆
= 1⊤nmeΛAmΛ−1t, (22)

where η1(t) ∈ Rm×m and η2(t) ∈ R(n−m)×m, and

κ(T )
∆
=

∫ T

0

∥∥∥1⊤nmeΛAmΛ−1(T−t)ΛBp

∥∥∥
2
dτ. (23)

Further, let Φ(T ) be the n× n matrix

Φ (T )
∆
=

∫ T

0

eΛAmΛ−1(T−τ)Λdτ. (24)

Let O(s)
∆
= C(s)M−1(s)Cp(sI−Am)

−1, and let
(Aq, Bq, Cq) be a minimal state-space realization such that

Cq(sI−Aq)
−1

Bq
∆
= O(s). (25)

Define the function Γ(·) as

Γ (T )
∆
= α1(T )

∥∥(sI−Aq)
−1Bq

∥∥
L1

+ α2(T ), (26)

where

α1(T )
∆
= max

t∈[0, T ]

∥∥∥Cq

(
eAqt − I

)∥∥∥
∞

,

α2(T )
∆
= max

t∈[0, T ]

∫ t

0

∥∥∥Cqe
Aq(t−τ)Bq

∥∥∥
∞

dτ.

Let

Υ(T ) =
∥∥∥e−AmTΦ−1(T )eΛAmΛ−1T 1nm

∥∥∥
∞
,

Ψ(T ) =
∥∥∥H1(s)Cp(sI−Am)−1

(
eAmT − I

)∥∥∥
L1

,

X(T ) =∥H(s)∥L1

(
NΓ

(
T

N

)
+Ψ

(
T

N

))
Υ

(
T

N

)
+ ∥H2(s)∥L1

,

Ω(T ) =
X(T )

1− ∥G(s)∥L1
L3

,

J =
2
√
m
∥∥Λ−⊤PBp

∥∥
2

λmin (Λ−⊤PΛ−1)

√
λmax (Λ−⊤PΛ−1)

λmax (P2)
,

(27)



where H(s), H1(s), H2(s) are defined in (15), and P2 is
given in (20). Next, we introduce the functions

β1(T )
∆
= max

t∈[0, T ]
∥η1(t)∥2 , β2(T )

∆
= max

t∈[0, T ]
∥η2(t)∥2 ,

(28)
where η1(t) and η2(t) are given in (22). Also

β3(T )
∆
= max

t∈[0, T ]
η3(t), β4(T )

∆
= max

t∈[0, T ]
η4(t), (29)

where

η3(t, T )
∆
=

∫ t

0

∥∥∥1⊤nmeΛAmΛ−1(t−τ)ΛΦ−1(T )eΛAmΛ−1T 1nm

∥∥∥
2
dτ,

η4(t, T )
∆
=

∫ t

0

∥∥∥1⊤nmeΛAmΛ−1(t−τ)ΛBp

∥∥∥
2
dτ.

(30)

The sampling time Ts of the digital controller is chosen
such that

Ts ∈ (0, T ∗
s ] , (31)

where T ∗
s is an upper bound, satisfying

I
(
T ∗
s

N

)(
sup

T∈(0, T∗
s ]

Ω(T )

)
L3 < 1, (32)

with

I(T ) ∆
= (β1(T ) + β3(T ) + 1)

(
β2(T )J +

√
mβ4(T )

)
,

Ω(T ) and J being given in (27), and β1(T ), β2(T ), β3(T ),
β4(T ) being defined in (28)-(29).
Remark 3: It is straightforward to verify that Ω(T ) is a

bounded function, as T tends to zero. In addition, we can see
that β1(T ), β2(T ), β3(T ), and β4(T ) approach arbitrarily
closely to zero for sufficiently small T . Therefore, there
always exists a constant T ∗

s > 0 that satisfies the condition
in (31).
Next, we consider the following control laws

xu[j + 1] = eAq
Ts
N xu[j] +A−1

q

(
eAq

Ts
N − I

)
Bqe

−Am
Ts
N σ̂d[j],

uNad[j] = −Cqxu[j], j ∈ Z≥0, xu[0] = 0,

uNa(t) = uNad[j], t ∈
[
j
Ts

N
, (j + 1)

Ts

N

)
uad[i] = uNa(iTs), i ∈ Z≥0,

(33)

where the system matrices (Aq, Bq, Cq) satisfy (25). Also,
σ̂d[·] ∈ Rn is provided by the adaptation laws. The output
predictor is given by

x̂ad[j + 1] =eAm
Ts
N x̂ad[j]

+A−1
m (eAm

Ts
N − I) (BpuP [j] + σ̂d[j]) ,

ŷad[j] =Cpx̂ad[j], j ∈ Z≥0, x̂ad[0] = x̂0,

(34)

where the estimated initial condition x̂0 is given by x̂0 =
C†

py0 (C†
p is the pseudo-inverse of Cp). Also, the predictor

control input uP [j] is defined as

uP [j] = ua

(
j
Ts

N

)
, j ∈ Z≥0, (35)

where ua(t) is given by (7) and (33). The adaptation laws
are governed by the following update laws

σ̂d[j] = −Φ−1

(
Ts

N

)
µ[j],

µ[j] = eΛAmΛ−1 Ts
N 1nmỹad[j], j ∈ Z≥0,

(36)

where ỹad[j] = ŷad[j]− yad[j], and Φ(·) is defined in (24).

IV. ANALYSIS OF THE CLOSED-LOOP
DUAL-RATE SYSTEM

In this section, the analysis of the sampled-data system is
presented, and sufficient conditions for stability of the closed-
loop system are obtained. We proceed by defining a few
variables of interest:

λ0 =
∥∥H1(s)Cp(sI−Am)−1 (x̂0 − x0)

∥∥
L∞

,

λ1 =

∥∥H2(s)Cp(sI−Am)−1 (x̂0 − x0)
∥∥
L∞

1− ∥G(s)∥L1
L3

,

Θ(T ) = ∥H1(s)∥L1
+

(
NΓ

(
T

N

)
+Ψ

(
T

N

))
Υ

(
T

N

)
,

ρr =

∥∥(sI−Am)−1x0

∥∥
L∞

+ ∥G(s)∥L1
L4

1− ∥G(s)∥L1
L3

,

(37)

where H(s), H1(s), and H2(s) are introduced in (15), and
Γ(·) is defined in (26). Also, Υ(·) and Ψ(·) are given in (27).
Let

∆(T, ϵ) = L3 (ρr +Ω(T )ϵ+ λ1) + L4, (38)

where ϵ ∈ R+. Also, let ς(T, ϵ) and α(T, ϵ) be defined as

ς(T, ϵ)
∆
=

∥∥∥∥η2( T

N

)∥∥∥∥
2

√
α(T, ϵ)

λmax(P2)
+

√
mκ

(
T

N

)
∆(T, ϵ),

(39)

α(T, ϵ)
∆
=λmax

(
Λ−⊤PΛ−1

)(2
√
m∆(T, ϵ)

∥∥Λ−⊤PBp

∥∥
2

λmin (Λ−⊤PΛ−1)

)2

+ ξ⊤0 Λ−⊤PΛ−1ξ0,
(40)

where η2(T ) is defined in (22) and κ(T ) is given in (23).
Also, ξ0 = Λ(x̂0 − x0), and x0 and x̂0 are the unknown and
estimated initial conditions, respectively.
Finally, define

γ0(T, ϵ)
∆
=β1

(
T

N

)
ς(T, ϵ) + β2

(
T

N

)√
α(T, ϵ)

λmax(P2)

+ β3

(
Ts

N

)
ς(T, ϵ) +

√
mβ4

(
T

N

)
∆(T, ϵ).

(41)

Lemma 1: For arbitrary ξ =

[
y
z

]
∈ Rn, where y ∈ Rm

and z ∈ R(n−m), there exist positive definite P1 ∈ Rm×m

and P2 ∈ R(n−m)×(n−m) such that

ξ⊤
(
Λ−1

)⊤
PΛ−1ξ = y⊤P1y + z⊤P2z, (42)

where Λ is given in (18). Also, P1 and P2 are defined in
(20).



Proof: The proof of Lemma 1 is found in [13].
Lemma 2: Let Od[z] denote the z-transform of a step-

invariant discrete-time approximation of O(s), that is defined
in (25). Given a bounded discrete-time signal rd[j], define
r(t) = rd[j] for t ∈ [jT, (j + 1)T ), j ∈ Z≥0, where T > 0
is a sampling time. Then, the following holds

∥(ε− ε′)t∥L∞
≤ Γ (T ) ∥rt∥L∞

, (43)

where Γ(·) is defined in (26); ε(t) is the signal with Laplace
transform of ε(s) = O(s)r(s), and ε′(t) = εd[j], t ∈
[jT, (j + 1)T ), j ∈ Z≥0, where εd[j] is the discrete signal
with the z-transform εd[z] = Od[z]rd[z].

Proof: The proof is straightforward and hence omitted
here.
Consider the following closed-loop reference system

ẋref (t) = Amxref (t) +Bp (uref (t) + σref (t)) ,

uref (s) = −C(s)σref (s),

yref (t) = Cpxref (t), xref (0) = x0,

(44)

where σref (s) is the Laplace transform of σref (t) given by

σref (t) = Fxref (t) + f (t, xref (t) + xb(t)) + d(t). (45)

The reference system in (44) defines the best performance
that can be achieved by the closed-loop system given in
(9), (33)-(36), where instead of the estimates the actual
unknown signals are used in (44). Notice that σref (t) is
unknown, and this reference system is used only for the
analysis purposes. To prove the stability of the closed-loop
sampled-data system with the digital controller proposed
in (33)-(36), we introduce a condition for stability of the
reference system in (44). Then, we establish uniform bounds
between the closed-loop system defined by (9), (33)-(36) and
the reference system.
Lemma 3: Let C(s) and M(s) verify the L1-norm condi-

tion. Then, the closed-loop reference system is BIBO stable
and the following holds

∥xref∥L∞
≤ ρr < ∞, (46)

where ρr is given in (37).
Proof. The proof is similar to the proof of Lemma 4.2.3 in
[13] and is omitted. �
We consider an equivalent state-space model of the pre-

dictor dynamics in (34) given by

˙̂xa(t) = Amx̂a(t) +Bpua(t) + σ̂(t), x̂a(0) = x̂0,

ŷa(t) = Cpx̂a(t),
(47)

where

σ̂(t) = σ̂d[j], , j ∈ Z≥0, t ∈
[
j
Ts

N
, (j + 1)

Ts

N

)
,

(48)
and ua(t) is given by (7) and (33). Since σ̂(t) and ua(t) are
piecewise constants in (47), from (34) we have

ŷa

(
j
Ts

N

)
= ŷad[j], j ∈ Z≥0. (49)

Let x̃a(t) = x̂a(t) − xa(t). Then the prediction error
dynamics between (9) and (47) are given by

˙̃xa(t) = Amx̃a(t) + σ̂a(t)−Bpσ(t), x̃(0) = x̂0 − x0,
ỹa(t) = Cpx̃a(t),

(50)
where σ̂(t) is defined in (48).
Lemma 4: Consider the closed-loop system defined by

(9), (33)-(36), and the closed-loop reference system in (44).
The following upper bounds hold∥∥(xref − xa)t

∥∥
L∞

≤ Ω(Ts)∥ỹat∥L∞
+ λ1,

where Ω(·) is given in (27), λ1 is defined in (37), and ỹa(t)
is the prediction error defined in (50).

Proof. Let
uC(s) = −C(s)M−1(s)Cp(sI−Am)−1σ̂(s), (51)

uM (s) = −C(s)M−1(s)Cp(sI−Am)−1e−Am
Ts
N σ̂(s), (52)

It follows from (50) that

ỹ(s) =−M(s)σ(s) + Cm(sI−Am)
−1

σ̂(s)

+ Cp(sI−Am)
−1

(x̂0 − x0) .
(53)

Letting e(t)
∆
= xref (t) − xa(t) and denoting by de(s) the

Laplace transform of

de(t)
∆
= σref (t)− σ(t), (54)

from (9), (7), (33), (44), (51), (52), and (53) it follows

e(s) =H(s)C(s)M−1(s)ỹa(s) +H(s) (I− C(s)) de(s)

−H(s)C(s)M−1(s)Cp(sI−Am)−1 (x̂0 − x0)

+H(s) (uC(s)− uM (s)) +H(s) (uM (s)− ua(s)) ,
(55)

where H(s) is defined in (15). The upper bound is given by

∥et∥L∞
≤
∥∥H(s)C(s)M−1(s)

∥∥
L1

∥ỹat∥L∞

+∥H(s)∥L1

∥∥(uC − uM )t
∥∥
L∞

+ ∥H(s)∥L1

∥∥(uM − ua)t
∥∥
L∞

+
∥∥H(s)C(s)M−1(s)Cp(sI−Am)−1 (x̂0 − x0)

∥∥
L∞

+∥H(s) (I− C(s))∥L1
L3∥et∥L∞

.
(56)

From (12) and (49), we have

ỹa

(
j
Ts

N

)
= ỹad[j], j ∈ Z≥0. (57)

From (36), (48), and (57), the following relation holds∥∥∥e−Am
Ts
N σ̂t

∥∥∥
L∞

≤ Υ

(
Ts

N

)
∥ỹat∥L∞

, (58)

where Υ(·) is defined in (27). Notice that uNad[j] given
in (33) is a step-invariant discrete-time approximation of
uM (s), given in (52). Therefore, using(7), (25), (33), and
Lemma 2, we have

∥(uM − ua)t∥L∞
≤NΓ

(
Ts

N

)
Υ

(
Ts

N

)
∥ỹat∥L∞

. (59)

Moreover, form (51), (52), and (58) one can obtain

∥(uC − uM )t∥L∞
≤ Ψ

(
Ts

N

)
Υ

(
Ts

N

)
∥ỹat∥L∞

, (60)



where Ψ(·) is defined in (27), and Γ(·) is introduced in (43).
Also, the triple (Aq, Bq, Cq) is defined in (25). From (56),
(59), and (60), the following upper bound holds

∥et∥L∞
≤ Ω(Ts)∥ỹat∥L∞

+ λ1. (61)

�
Lemma 5: Let T ∗

s satisfy the condition in (31). Then,
there exists ϵ̄ > 0 such that

γ0(T, ϵ̄) < ϵ̄, ∀T ∈ (0, T ∗
s ] . (62)

Moreover, for each ϵ > 0

lim
T→0

γ0(T, ϵ) = 0, (63)

where γ0(T, ϵ) is given in (41).
Proof. By substituting (28)-(38) in (41), and recalling (31)
and (32), one can easily show the existence of ϵ̄ satisfying
(62). Verification of (63) is straightforward. �
Theorem 2: Consider the system in (9) and the controller

in (33)-(36) subject to conditions in (16)-(17). If Ts ∈
(0, T ∗

s ], where T ∗
s satisfies (32), then there exists a constant

ϵ̄ > 0 such that
∥ỹat∥L∞

< ϵ̄, (64)

∥xref − xa∥L∞
≤ γ1, ∥uref − ua∥L∞

≤ γ2, (65)

where ỹa(t) is the prediction error defined in (50), and

γ1
∆
= Ω(Ts)ϵ̄+ λ1,

γ2
∆
= ∥C(s)∥L1

L3γ1 +Θ(Ts)ϵ̄+ λ0.
(66)

Also, Ω(·) is defined in (27), and λ0, λ1, Θ(·) are given in
(37).
Remark 4: Lemma 5 indicates that arbitrarily small bound

on the prediction error ϵ̄ can be achieved as Ts goes to zero.
The terms λ0 and λ1 in (66) exist due to the nonzero initial
condition. For zero initial condition, λ0 and λ1 are zero.
For λ0, λ1 ≡ 0, we can show that γ1 and γ2 can be made
arbitrarily small by selecting sufficiently small sampling
time. This implies that the closed-loop sampled-data system
recovers the performance of the continuous-time reference
system in (44) as the sampling time goes to zero.
Proof.
Let ϵ̄ be a constant satisfying (62). First, we prove the

bound in (64) by a contradiction argument. Since Cmx̂0 =
y0, i.e. ỹ(0) = 0, and ỹa(t) is continuous, then assuming the
opposite implies that there exists t′ such that

∥ỹa(t)∥∞ < ϵ̄, ∀ 0 ≤ t < t′,

∥ỹa(t′)∥∞ = ϵ̄,
(67)

which leads to ∥∥ỹat′

∥∥
L∞

= ϵ̄. (68)

Let e(t) ∆
= xref (t) − xa(t). Lemma 4 and the upper bound

in (46) can be used to derive the following bound∥∥xat′

∥∥
L∞

≤ ∥xref t′∥L∞
+ ∥et′∥L∞

≤ ρr +Ω(Ts)ϵ̄+ λ1.
(69)

Moreover,

∥σt′∥L∞
≤ L3

∥∥xat′

∥∥
L∞

+ L4,

which implies
∥σt′∥L∞

≤ ∆(Ts, ϵ̄), (70)

where ∆(·, ·) is defined in (38).
Consider the state transformation

ξ̃ = Λx̃a, (71)

where Λ is defined in (18). From (50) and (71), it follows

˙̃
ξ(t) = ΛAmΛ−1ξ̃(t) + Λσ̂(t)− ΛBpσ(t),

ỹa(t) = 1nmξ̃(t), ξ̃(0) = Λ (x̂0 − x0) .
(72)

From (72), we have

ξ̃

(
j
Ts

N
+ t

)
= eΛAmΛ−1tξ̃

(
j
Ts

N

)
+

∫ t

0
eΛAmΛ−1(t−τ)Λ

(
σ̂

(
j
Ts

N

)
−Bpσ

(
j
Ts

N
+ τ

))
dτ.

(73)

Since

ξ̃

(
j
Ts

N
+ t

)
=

[
ỹa(j

Ts

N + t)
0

]
+

[
0

z̃(j Ts

N + t)

]
,

where z̃(t) =
[
ξ̃m+1(t), ..., ξ̃n(t)

]⊤
, and ξ̃(j Ts

N + t) can be
decomposed as

ξ̃

(
j
Ts

N
+ t

)
= χ

(
j
Ts

N
+ t

)
+ ζ

(
j
Ts

N
+ t

)
, (74)

such that

χ

(
j
Ts

N
+ t

)
=eΛAmΛ−1t

[
ỹa
(
j
(
Ts
N

))
0

]
+

∫ t

0

eΛAmΛ−1(t−τ)Λσ̂

(
j
Ts

N

)
dτ,

(75)

ζ

(
j
Ts

N
+ t

)
=eΛAmΛ−1t

[
0

z̃(j Ts
N
)

]
−
∫ t

0

eΛAmΛ−1(t−τ)ΛBpσ

(
j
Ts

N
+ τ

)
dτ.

(76)

Next, we prove that∥∥∥∥ỹ(j Ts

N

)∥∥∥∥
2

≤ ς(Ts, ϵ̄),

z̃⊤
(
j
Ts

N

)
P2z̃

(
j
Ts

N

)
≤ α(Ts, ϵ̄), ∀j Ts

N
≤ t′,

(77)

where ς(Ts, ϵ) and α(Ts, ϵ) were defined in (39) and (40),
respectively. It is straightforward to show that ∥ỹ(0)∥2 ≤
ς(Ts, ϵ̄), z̃⊤(0)P2z̃(0) ≤ α(Ts, ϵ̄). Next, for arbitrary (k +
1)Ts

N ≤ t′, k ∈ Z≥0, we can prove that if∥∥∥∥ỹ(kTs

N

)∥∥∥∥
2

≤ ς(Ts, ϵ̄), (78)

z̃⊤
(
k
Ts

N

)
P2z̃

(
k
Ts

N

)
≤ α(Ts, ϵ̄), (79)



then the inequalities in (78)-(79) hold for k + 1 as well,
which would imply that the bounds in (78)-(79) hold for all
k Ts

N ≤ t′. The proof of this part has been omitted due to
space limit.
For all j Ts

N + t ≤ t′, and t ∈
[
0, Ts

N

]
, using the expression

from (73), we obtain

ỹa

(
j
Ts

N
+ t

)
=1⊤nmeΛAmΛ−1tξ̃

(
j
Ts

N

)
+ 1⊤nm

∫ t

0

eΛAmΛ−1(t−τ)Λσ̂

(
j
Ts

N

)
dτ

− 1⊤nm

∫ t

0

eΛAmΛ−1(t−τ)ΛBpσ

(
j
Ts

N
+ τ

)
dτ.

The upper bound in (70) and the expressions of η1(·), η2(·),
η3(·, ·), and η4(·, ·), given in (22) and (30), lead to∥∥∥∥ỹa (

j
Ts

N
+ t

)∥∥∥∥
2

≤ ∥η1(t)∥2

∥∥∥∥ỹa(j Ts

N
)

∥∥∥∥
2

+ ∥η2(t)∥2

∥∥∥∥z̃(j Ts

N
)

∥∥∥∥
2

+ η3

(
t,

Ts

N

)∥∥∥∥ỹa(j Ts

N
)

∥∥∥∥
2

+ η4

(
t,

Ts

N

)√
m∆(Ts, ϵ̄).

Consider (77) and β1(·), β2(·), β3(·), β4(·) defined in (28)-
(29). For arbitrary nonnegative integer j subject to j Ts

N +t ≤
t′ and for all t ∈

[
0, Ts

N

]
, we have∥∥∥∥ỹ(j

Ts

N
+ t

)∥∥∥∥
2

≤β1

(
Ts

N

)
ς(Ts, ϵ̄) + β2

(
Ts

N

)√
α(Ts, ϵ̄)

λmax (P2)

+ β3

(
Ts

N

)
ς(Ts, ϵ̄) +

√
mβ4

(
Ts

N

)
∆(Ts, ϵ̄).

Since the right-hand side coincides with the definition of
γ0(Ts, ϵ) in (41), we have the bound

∥ỹa (t)∥2 ≤ γ0(Ts, ϵ̄), ∀t ∈ [0, t′],

which, along with the design constraint on Ts introduced in
(62), yields ∥∥ỹat′

∥∥
L∞

< ϵ̄.

This clearly contradicts the statement in (68). Therefore,
∥ỹa∥L∞

< ϵ̄, which proves (64). Further, it follows from
Lemma 4 that

∥et∥L∞
≤ Ω(Ts)ϵ̄+ λ1,

which holds uniformly for all t ≥ 0 and therefore leads to
the first upper bound in (65).
To prove the second bound in (65), from (1), (33), (44),

(51), and (52), (53), it follows
uref (s)− ua(s) =C(s)M−1(s)ỹa(s)− C(s)de(s)

− C(s)M−1(s)Cp(sI−Am)−1 (x̂0 − x0)

+ (uC(s)− uM (s)) + (uM (s)− ua(s)) ,
(80)

where de(s) is the Laplace transform of de(t) defined in
(54). Then, it leads to

∥uref (s)− ua(s)∥L∞
≤
∥∥C(s)M−1(s)

∥∥
L1

∥ỹa∥L∞
+∥(uC(s)− uM (s))∥L∞

+ ∥(uM (s)− ua(s))∥L∞
+
∥∥C(s)M−1(s)Cp(sI −Am)−1 (x̂0 − x0)

∥∥
L∞

+∥C(s)∥L1
L3∥e∥L∞

.

(81)

Combining (59), (60), (64), (65), and (81) leads to

∥uref (s)− ua(s)∥L∞
≤Θ(Ts)ϵ̄+ ∥C(s)∥L1

L3γ1 + λ0.

(82)

This concludes the proof. �

Fig. 1: AVR with system parameters KA = 10, τA = 0.1,KE =
1, τe = 0.4,Kg = 1, τg = 1,Kr = 1, τr = 0.05.

V. SIMULATION EXAMPLE

In this section, simulation study of a sampled-data auto-
matic voltage regulator (AVR) system is considered. AVR
specifies the terminal voltage magnitude of a synchronous
generator by controlling the reactive power. A simplified
block diagram of a linearized AVR is shown in Figure 1.
The open loop system has unstable zero at z0 = −5.49, if
it is sampled at the single rate of Ts = 0.1sec. Next, we
consider an actuator attack of the form d[i] = ϵz−i

0 , where
ϵ = 0.00001 and z0 is the unstable zero of the system. By
faster sampling rate of Ts

N = 0.05sec (N = 2) at the output,
the multirate closed-loop system does not have any unstable
zeros. Therefore, the attack on the multirate system becomes
detectable. Here, the LQG controller of [2], designed for dual
rate systems, is adopted as baseline controller. Then, a dual
rate L1 adaptive controller is augmented to detect the stealthy
attack and improve the performance of the closed-loop in the
presence of disturbance.
In the simulation, an external unknown disturbance of the

form f(x(t), t) = 0.2 sin(0.5t) is applied at the input of
the AVR system. Figure 2a shows the zero-dynamics attack
signal, which is activated at t = 20sec and is removed at t =
21sec. After being detected, the attack signal can be removed
by switching to a secured computing platform, which per-
forms as a backup for the compromised controller software.
Figure 2b shows the augmented L1 control input. Figure 2c
illustrates the output of the AVR system with/without the
augmented dual rate L1 adaptive controller. It can be seen
that the baseline LQG controller cannot compensate for the
sinusoidal disturbance at the input of the system, while the
augmented L1 control mitigates the effect of disturbance,
efficiently. The adaptation variable σ̂(t) is plotted in Figure
2d. Fast rate of change of σ̂(t) can be observed prior to
removal of attack signal at t = 21sec. Therefore, a criteria
based on the fast adaptation loop in the dual rate L1 control
structure, such as ∥σ̂[i]− σ̂[i− 1]∥2 > ∆threshold, is a
feasible choice for timely attack detection.

VI. CONCLUSION

A dual rate output-feedback control approach is proposed
for sampled-data MIMO systems with nonlinear uncertain-
ties. A sufficient condition on the sampling time of the digital
controller is obtained that ensures stability of the closed-
loop system. A simulation study of an automatic voltage



(a)

(b)

(c)

(d)

Fig. 2: Response of the closed-loop AVR system in the presence of
the disturbance input f(x(t), t) = 0.2 sin(0.5t) and zero-dynamics
attack of the form d[i] = z−i

0 . The baseline LQG controller is
implemented with hold rate of 0.1sec and sampling rate of 0.05sec.
(a) Zero-dynamics attack signal. (b) The augmented L1 control
input. (c) Output of AVR with/without augmented L1 controller.
(d) Adaptation variable σ̂(t).

regulator is provided to show that the fast estimation loop
in the L1 control structure can detect zero-dynamics attacks.
Also, the augmented dual rate L1 controller compensates for
disturbance and uncertainties.
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