Komodo: Using verification to disentangle
secure-enclave hardware from software

Andrew Ferraiuvolo Andrew Baumann
Cornell University Microsoft Research

ABSTRACT

Intel SGX promises powerful security: an arbitrary number
of user-mode enclaves protected against physical attacks and
privileged software adversaries. However, to achieve this,
Intel extended the x86 architecture with an isolation mech-
anism approaching the complexity of an OS microkernel,
implemented by an inscrutable mix of silicon and microcode.
While hardware-based security can offer performance and
features that are difficult or impossible to achieve in pure
software, hardware-only solutions are difficult to update,
either to patch security flaws or introduce new features.
Komodo illustrates an alternative approach to attested,
on-demand, user-mode, concurrent isolated execution. We
decouple the core hardware mechanisms such as memory
encryption, address-space isolation and attestation from the
management thereof, which Komodo delegates to a priv-
ileged software monitor that in turn implements enclaves.
The monitor’s correctness is ensured by a machine-checkable
proof of both functional correctness and high-level security
properties of enclave integrity and confidentiality. We show
that the approach is practical and performant with a concrete
implementation of a prototype in verified assembly code on
ARM TrustZone. Our ultimate goal is to achieve security
equivalent to or better than SGX while enabling deployment
of new enclave features independently of CPU upgrades.
The Komodo specification, prototype implementation, and
proofs are available at https://github.com/Microsoft/Komodo.

ACM Reference Format:

Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. 2017. Komodo: Using verification to disentangle secure-
enclave hardware from software. In Proceedings of SOSP ’17, Shang-
hai, China, October 28, 2017, 19 pages.
https://doi.org/10.1145/3132747.3132782

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP ’17, October 28, 2017, Shanghai, China

© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.

ACM ISBN 978-1-4503-5085-3/17/10...$15.00
https://doi.org/10.1145/3132747.3132782

287

Chris Hawblitzel

Microsoft Research

1 INTRODUCTION

Software guard extensions (SGX) [43] is a set of new instruc-
tions in recent Intel CPUs for strong isolation of software
enclaves. Compared to prior mainstream trusted comput-
ing hardware [2, 83], SGX includes strong physical security
(memory encryption) and supports multiple enclaves: any
number of enclaves may run concurrently without trust-
ing a kernel or hypervisor. Nevertheless, SGX supports a
familiar user-mode execution environment for enclave code,
and remains compatible with existing OSes and hypervi-
sors. In the short time since the SGX specification was pub-
lished, a wide range of applications have been devised [e.g.,
5, 8,9, 14, 21, 42, 65, 68, 75], and competing vendors are
developing similar features [48].

However, like most new hardware, SGX has been slow to
deploy and evolve. SGX version 2, which enables dynamic
memory management features essential to many enclave
applications [5, 8, 42], was specified in October 2014 [43],
but 3 years later there is still no announcement of CPUs
that will implement it. The slow pace of hardware devel-
opment is not new, but SGX is almost unique among CPU
features in that there is no alternative—other architecture
extensions boost performance, but it is usually possible to
achieve equivalent functionality using legacy instructions.
Moreover, as we detail in §2, the security of SGX rests on
an opaque implementation in microcode and silicon [18],
and already has known flaws, including security vulnerabil-
ities [61] and “controlled-channel” attacks that exploit the
OS’s ability to induce and observe enclave page faults to leak
enclave data [78, 88].

Given the slowing pace of silicon scaling [22, 79], it is
dangerous to tie critical security features like enclaves to
a hardware implementation. Each incremental change, for
example to correct security flaws like controlled channels
or even to add features like dynamic allocation, must wait
for the deployment of new CPUs, and hence will take many
years. Software is inherently more malleable than hardware,
and an effective split between the two would allow for new
features to be developed and flaws to be fixed independently
of new hardware. Hardware vendors could simplify the com-
plexity of their CPUs [7], reducing the validation effort and
risk of bugs, and focus on improving the capacity and per-
formance of hardware features such as memory encryption.

Bryan Parno
Carnegie Mellon University



SOSP ’17, October 28, 2017, Shanghai, China

In this paper, we aim to disentangle the management of
enclaves from underlying hardware mechanisms like protec-
tion, attestation, and memory encryption. Our core obser-
vation is that the security properties of SGX do not depend
on its implementation entirely as a CPU feature. Similar iso-
lation mechanisms have existed since the first multi-user
systems; what distinguishes SGX is memory encryption, in-
dependence from a large untrusted OS, and the folklore in-
tuition that hardware is more secure than software.

Komodo draws on ideas from SGX, but it replaces folk-
lore with formal verification. Like SGX, it relies on hardware
support for memory encryption and address-space isolation.
However, instead of enclave-manipulation instructions, Ko-
modo is implemented as a software reference monitor in
verified assembly code. In fact, the design of Komodo mir-
rors an internal separation in SGX between core hardware
and the instruction set. Since the monitor’s only role is to
protect enclaves, it is substantially simpler (and thus easier
to evolve) than a full verified kernel [35, 49, 89]. It can also
be readily updated. For example, after developing an initial
version of Komodo modelled after SGXv1, we added dynamic
memory management similar to SGXv2. We implemented
and verified this update in approximately 6 person-months.

We describe Komodo in detail in §4. In addition to formal-
ising its specification in §5, we prove in §6 that it protects
the confidentiality and integrity of enclaves from both other
enclaves and the untrusted OS. To our knowledge, no other
secure-enclave implementations provide such formal guaran-
tees. This proof holds for any correct implementation of the
specification, including the ARM TrustZone-based prototype
we describe in §7 and evaluate in §8.

Komodo does not support multi-processor execution—
while the OS may run on multiple cores, the monitor and
enclaves are restricted to a single core. Verification of low-
level concurrent code remains challenging, recent progress
notwithstanding [35], to which ARM’s weak memory con-
sistency [54] adds complexity. We leave this as future work.

The contributions of our work include:

o the identification of hardware requirements (§3) and a
design for implementing enclaves in software (§4);

e a formal model of a substantial subset of ARMv7, in-
cluding user and privileged modes, TrustZone, page
tables, and exceptions (§5.1);

e a high-level formal functional specification of Komodo
(§5.2), and a proof that it guarantees the confidential-
ity and integrity of enclave programs, formalised as
noninterference (§6);

e a verified prototype (§7) and evaluation (§8) showing
performance competitive with SGX;

o evidence for the hypothesis that verified software can
evolve faster than hardware (§7.3).

288

A. Ferraiuolo et al.

2 BACKGROUND AND MOTIVATION

Prior research efforts have focused on using hardware mech-
anisms to protect critical software, even if privileged soft-
ware (such as the OS or hypervisor) is malicious or compro-
mised [15, 16, 19, 26, 50, 57, 67, 82]. SGX is the first commer-
cial attempt at such protection, and its design is partly driven
by pragmatic implementation constraints, such as compati-
bility with existing OS resource-management mechanisms,
and avoiding changes to the processor’s fast paths [18]. In
this section, we provide a high-level overview of the SGX
design to the extent that it informs our own.

The SGX implementation consists of three components:
(i) encryption and integrity protection for a static region
of physical memory implemented by an encryption engine
within the memory controller, (ii) a set of instructions that
allow the creation, manipulation and execution of enclaves,
and (iii) changes to the processor’s TLB miss and exception
handling procedures that enforce enclave protections on
access to the encrypted memory region.

The basic approach taken by SGX is to act as a reference
monitor for actions taken by the untrusted OS and/or hy-
pervisor (we refer to both as the “OS”). Although it has no
direct access to encrypted pages, the OS allocates and maps
them to enclaves, and although it cannot directly manipulate
an enclave’s register state, the OS chooses when, and on
which CPUs, to execute enclave threads. OS management of
enclave pages is performed indirectly via SGX instructions
that manipulate the enclave page cache map (EPCM), a data
structure maintained in encrypted memory and inaccessible
to software. The EPCM stores metadata for every encrypted
page, including its allocation state, type, owning enclave,
permissions, and virtual address. Effectively a reverse map
of encrypted pages, the EPCM is also consulted on a TLB
miss to enforce enclave protections on memory—every page
table mapping must be consistent with the EPCM.

Since they update a complex data structure, SGX instruc-
tions are complex. For example, besides basic argument va-
lidity, the EADD instruction must check that a page being
added to an enclave is free and the enclave is in the correct
state, before updating both the new page’s EPCM entry and
the enclave control structure. In doing this, it must guard
against concurrent allocations of the page or modifications
of the enclave. Other SGX instructions have even greater
complexity—the process for validating a TLB shootdown be-
fore recycling EPC pages involves a series of epoch counters
maintained in enclave control structures. These instructions
are also not generally performance critical; indeed, based on
Intel’s patents [46, 60], Costan and Devadas [18, §2.14] claim
they are implemented entirely in microcode.

Regardless of how the instructions are implemented,
SGX’s security rests on their correctness. Intel has published



Komodo

details for the formal verification of a high-level SGX model
using an SMT solver [31, 44], and has verified the linearisabil-
ity of a (different) model of concurrent SGX operations [52].
However, there does not appear to be any formal connec-
tion between these models and the SGX implementation, in
which at least one security vulnerability has already been
patched [61]. We can expect more bugs to be found, as they
were in past CPU security technologies [86, 87].

Even assuming a correct implementation, SGX remains
vulnerable to a variety of attacks. Classic side-channel attacks
exploit shared hardware resources such as caches, branch
predictors and TLBs, and are not addressed by SGX [13, 76].
Enclaves must instead use (often expensive) mitigations, such
as avoiding secret-dependent memory accesses. Schwarz
et al. [76] observed that existing hardware support for cache
partitioning (Intel cache allocation technology [63]) could
defeat such attacks, if only it were activated on enclave entry,
but this is not a feature that SGX presently provides. One
of our goals in decoupling higher-level enclave implementa-
tions from hardware is to permit such fixes to be deployed
independently of hardware or architecture changes.

In addition to classic side channels, enclaves are vulnerable
to new “controlled-channel” attacks in which the OS exploits
its ability to induce and observe enclave page faults to de-
duce secrets [78, 83]. Mitigations exist, but (at a minimum)
they require recompilation of enclave code, prevent use of
dynamic paging, and carry a high performance cost [77, 78].

Overall, we argue that the limitations of SGX are systemic:
because its entire specification is part of the x86 architecture,
SGX is simply too slow to add features or respond to threats,
and further, the limitations of hardware implementation also
hobble its functionality [7]. In the following section, we
describe how to disentangle enclave-supporting hardware
from software, allowing them to evolve independently.

3 THREAT MODEL AND HARDWARE

3.1 Threat model

Like SGX, we seek to protect the confidentiality and integrity
of user-mode code executing inside an enclave from an at-
tacker who has full control over a platform’s privileged soft-
ware (OS and hypervisor). To preserve generality across
platforms, we consider two variants of this threat model,
based on whether physical attacks on memory are in scope.

We assume a software attacker who controls privileged
software. We also trust our verification tools (Dafny and Z3,
described later in §5), assembler, linker, and bootloader. On
the hardware side, we assume a correct CPU. The attacker
may inject external interrupts, and attempt to interfere with
I/O devices. If physical memory attacks are in scope, the
attacker may access any RAM external to the CPU package.
This includes bus snooping and cold-boot [36] attacks.

289

SOSP ’17, October 28, 2017, Shanghai, China

As with SGX, general side-channel attacks are out of scope.
Hardware isolation technologies such as cache partition-
ing [19, 63] are required to defeat these in a practical manner
for general-purpose code, and we anticipate that a future
version of Komodo could enable them. Komodo is immune to
controlled-channel attacks [88]; as our confidentiality proof
(§6) ensures, the OS learns only the type of exception taken,
and cannot induce an exception.

3.2 Hardware requirements

Our basic approach with Komodo is to implement a highly
privileged program in verified assembly code; its role mirrors
that of the enclave-management instructions in SGX: main-
taining an EPCM-like “database” of secure pages by acting as
a reference monitor for enclave manipulation and execution.
In order to implement enclaves in software, we rely on four
hardware primitives: isolated memory for monitor code/data
and enclave pages, protected execution environments for
both the privileged monitor and unprivileged enclaves, a
root of trust for attestation, and a source of randomness.

Isolated memory. Komodo requires a region of physical
memory whose confidentiality and integrity is protected
by hardware. Our design is agnostic to the exact memory
isolation mechanisms, which we expect will vary in different
applications depending on the hardware threat boundary.

If physical attacks on memory are in scope, the hardware
must include memory encryption and/or on-chip RAM. For
example, SGX performs encryption and integrity protection
of RAM. This offers strong protection against physical at-
tacks, at the cost of limited size and a performance penalty
for integrity protection [44]. Unfortunately Intel’s memory
encryption engine is accessible only by SGX, so Komodo
cannot make use of it. IBM SecureBlue [11] also includes
memory encryption hardware, but with limited public in-
formation it is difficult to be sure whether IBM’s design is
suitable. AMD recently published a proposal for hardware
memory encryption configurable by privileged software [48].
Since this proposal lacks integrity protection, it would scale
to large memories, at the cost of weaker security.

As an alternative to encryption, some “systems on a
chip” (SoCs) include scratchpad RAM, which is protected
against most physical attacks by virtue of its on-chip loca-
tion [41, 64]. Although size-limited, this may be effective for
secure embedded applications, since it avoids the complexity
and energy/performance overhead of encryption [17].

Finally, if physical attacks on memory are out of scope (as
is common in many pre-SGX applications), all that is needed
in hardware is an IOMMU-like filter to partition RAM and
prevent access by unprivileged software or devices.



SOSP ’17, October 28, 2017, Shanghai, China

Privileged environment for monitor. Komodo’s monitor
must be protected from malicious privileged code on the
platform, including the OS and hypervisor. This require-
ment includes a secure control transfer mechanism between
monitor code and normal execution, protection against un-
programmed control transfers within monitor code or access
to its intermediate states (e.g. registers). Note that we do not
assume another (costly) layer of memory translation—the
monitor requires access to isolated memory, but this can take
the form of a direct physical mapping or restricted segment
which is otherwise inaccessible.

A variety of architectures already include such an envi-
ronment. In SGX, it is effectively provided by the microcode
engine: the processor guarantees that the execution of mi-
crocode sequences is uninterruptible and protected from
interference. Other examples of a super-privileged restricted
environment include DEC Alpha PALcode [24] and RISC-
V machine mode [85]. Our prototype leverages the secure
monitor mode of ARM TrustZone, which we describe below.

Enclave execution environment. Komodo must be able to
control the execution of enclaves, protecting itself and other
code on the platform against a malicious enclave. A typical
user mode suffices, if it can also be protected from the OS.

One unique feature of SGX enclaves that we do not attempt
to emulate is their virtual memory layout. SGX enclaves
execute within the context of an untrusted user process—
memory outside the enclave region transparently reflects the
address space of its parent process. Instead, Komodo executes
each enclave in its own virtual address space, and memory
shared with an untrusted process must be established by
explicit mappings. In our experience, there are very few
applications that require uncontrolled ad-hoc access from an
enclave to an untrusted parent process. Not only would such
a feature require extra hardware support, it also arguably
reduces overall enclave security, since most of the enclave’s
virtual memory space is untrusted, as opposed to our model
where the entire virtual space is trusted except for well-
defined shared mappings.

Remote attestation. Komodo requires a hardware-backed
root of trust for remote attestation. Much like a TPM-based
trust chain, our expectation is that either hardware or an
early bootloader would attest to a secure hash of the monitor
(the monitor in turn implements enclave attestation). Such
attestation mechanisms are widely supported [70, 83].

Random number source. Finally, we require a hardware-
backed cryptographically secure source of randomness. This
could be an instruction (like the x86 RDRAND/RDSEED [45]) or
a hardware device accessible to the monitor.

We note that Sanctum [19] (a modified RISC-V CPU) meets
all the above requirements, with the caveat that physical

290

A. Ferraiuolo et al.

i Normal world

Secure world

User mode User mode

Privileged modes
F1Q IRQ Supv. Abort Undef

Priv. modes ‘-‘—* Monitor mode

Figure 1: ARM TrustZone modes and worlds

attacks are out of scope. Indeed, Sanctum shares much with
Komodo, with several key differences: it relies on significant
hardware modifications (per-enclave page tables); it calls
for a far more elaborate attestation mechanism than what
Komodo employs, and its security guarantees rely on the
correctness of an unverified monitor implemented in 5k lines
of C++. In this paper, we formally verify the correctness of
such a security monitor implemented on ARM TrustZone.
We discuss Sanctum further in §10.

3.3 ARM TrustZone

We prototype Komodo on TrustZone [2], a security tech-
nology in many ARM CPUs. TrustZone extends the core
architecture and peripherals such as memory controllers.

As shown in Figure 1, a TrustZone processor runs in one
of two worlds: normal world, where a regular OS and ap-
plications run, and secure world. Each world contains both
user mode and five different privileged modes; the latter are
used by different exceptions (e.g., page faults enter a different
mode from system calls) but are all equally privileged.! Se-
cure world has a sixth privileged monitor mode which is used
to switch worlds: a secure monitor call (SMC) instruction in
normal world can cause an exception taken in monitor mode.

Some system control registers are banked, with one copy
for each world. These include the MMU configuration and
page-table base registers, so a world switch may enter a dif-
ferent address space. TLB and cache entries are also tagged
according to world.I/O devices may also participate in Trust-
Zone. A secure bit in page-table entries is used to tag memory
references issued by secure-world code, and devices such as
a TrustZone-aware memory-controller or IOMMU may use
this to prevent normal-world access to secure-world mem-
ory or devices [1, 4]. The accessibility of memory between
worlds depends on the specific platform configuration; for
example, on some SoCs the secure world has exclusive access
to an isolated region of memory [17, 70].

We chose to prototype Komodo on TrustZone, because its
secure world satisfies our requirements for executing both

!Some ARM CPUs include virtualisation extensions, which add a hypervisor
mode to normal world with an additional level of translation. Komodo offers
the same functionality and security, regardless of whether these are present.



Komodo

SOSP ’17, October 28, 2017, Shanghai, China

Table 1: OS and enclave APIs to Komodo monitor

Secure monitor calls (SMCs, from OS):
GetPhysPages()—int npages

InitAddrspace(PageNr asPg, PageNr 11ptPg)
InitThread(PageNr asPg, PageNr threadPg, void *entry)
InitL2PTable(PageNr asPg, PageNr 12ptPg, int 11index)
AllocSpare(PageNr asPg, PageNr sparePg)

Return number of secure pages

Create address space (enclave) given two empty pages
Create thread

Allocate 2"-Jevel page table

Allocate spare page to given address space

MapSecure (PageNr asPg, PageNr dataPg, Mapping va, InsecurePg content) Allocate a data page, mapped at address and perms in va

MapInsecure(PageNr asPg, Mapping va, InsecurePg target)
Finalise(PageNr asPg)

Enter(PageNr thread, int argl, int arg2, int arg3)—int retval
Resume (PageNr thread)—int retval

Stop(PageNr asPg)

Remove (PageNr pg)

Map an insecure (shared) page at address and perms in va

Mark enclave final, compute measurement and allow execution

Enter enclave on an idle thread, passing parameters

Resume execution of a previously suspended thread

Mark enclave stopped, permitting deallocation

Deallocate any page in a stopped enclave or a spare page in any enclave

Supervisor calls (SVCs, from enclave):

GetRandom()—u32 val

Attest(u32 datal[8])—u32 mac[8]

Verify(u32 data[8], u32 measure[8], u32 mac[8])—bool ok
InitL2PTable(PageNr sparePg, int 11index)
MapData(PageNr sparePg, Mapping vaddr)

UnmapData(PageNr dataPg, Mapping vaddr)

Exit(int retval)

Hardware source of secure random numbers

Construct attestation of enclave’s identity

Check validity of an attestation

Create 2"-level page table from a spare page

Map spare page as zero-filled data page at address and perms in vaddr
Unmap data page, turning it back into a spare page

Return control to the OS

the monitor and enclave code: enclaves run in secure user
world, using a page table established by Komodo running in
secure privileged modes (mostly monitor mode). In addition,
the ARM ecosystem presently lacks enclave-like features;
existing TrustZone applications either assume that all secure-
world code is trusted [6, 30, 47] or rely on language-based
isolation for “trustlets” [74].

4 KOMODO DESIGN AND API

The Komodo monitor builds on the hardware described in
the previous section to implement enclaves. Like SGX, it
manages a region of isolated physical memory, making se-
cure pages available for constructing enclaves, and enabling
enclave execution while protecting enclave-internal state.
The API calls in Table 1 mirror SGX operations, but rather
than distinct instructions, they are invoked as monitor calls.

Page types and enclave construction. The monitor must
ensure consistent use of secure pages, preventing, for exam-
ple, double-mapping between distrusting enclaves. Komodo
tracks the state of secure pages using a data structure we
term the PageDB. This is roughly equivalent to the EPCM
of SGX; for every secure page, it stores the page’s allocation
state, and, if allocated, its type and a reference to the owning
enclave. The monitor does no allocations of its own—the OS
must choose pages it knows to be free, or API calls fail.

Each allocated page has one of six types: address space,
thread, first-level page table, second-level page table, data
page, and spare page. An enclave consists of an address space
with at least one thread. To begin constructing an enclave, the
OS calls InitAddrspace to create a new (empty) address space.

291

However, before it can populate the address space, the OS
must allocate a second-level page table using InitL2PTable.
Komodo’s API encodes a two-level hierarchical page table
with a granularity chosen to reflect ARM’s hardware page-
table format. The OS may allocate as many second-level
tables as it wishes, but for a mapping call to succeed at a
given virtual address the relevant page table must exist.

The OS may then populate the address space by mapping
one or more secure and insecure data pages. Secure data pages
are located within the isolated memory, and they are private
to an enclave. Their initial contents, virtual address and page
permissions are included in the attestation measurement de-
scribed below. Insecure pages are not protected by hardware
isolation, and are therefore accessible to the untrusted OS.
These may be mapped to the enclave to facilitate untrusted
communication channels with the OS or between enclaves.

For the enclave to be executable, the OS must also create a
thread, specifying its entry-point address. The enclave is then
explicitly finalised, preventing the uncontrolled mapping of
further pages/threads, before execution.

Enclave execution. A newly created thread belonging to a
finalised enclave may be executed by invoking Enter, which
causes the monitor to switch into secure-world user mode
and begin execution at the thread’s entry-point address with
the given parameters. The enclave thread then executes un-
til an exception occurs: either an interrupt, or an enclave-
triggered exception such as a page fault, undefined instruc-
tion, or a system call. On an interrupt, the monitor saves



SOSP ’17, October 28, 2017, Shanghai, China

register context in the thread page before reporting the in-
terrupt to the OS. The thread context is marked as entered,
to prevent a suspended thread from being re-entered.

Enclaves may also invoke the monitor via the supervisor
call (SVC) instruction. One such call, Exit, serves to explic-
itly pass a result back to the OS. In this case, the enclave’s
registers are not saved, permitting it to be re-entered.

If the enclave takes an exception, the thread simply exits
with an error code (but no other information, to avoid side-
channel leaks). Unlike SGX [88], the OS cannot induce en-
clave page faults. Our design is thus secure and also sufficient
for simple enclaves that do not emulate illegal instructions
nor handle page faults; we anticipate adding a mechanism
for enclaves to handle their own faults in future work.

Attestation. Komodo adopts a minimalist attestation de-
sign, inspired by previous work on local attestations [40, 58].
This important design choice makes it feasible for us to for-
mally verify the attestation mechanism, which would be
challenging with more complex schemes [19].

As the enclave is being constructed, the monitor constructs
a hash of the sequence of page allocation calls and their pa-
rameters; specifically: (i) the enclave virtual address, per-
missions and initial contents of each secure page; and (ii)
the entry point of every thread. Like SGX, the OS is free to
construct enclaves arbitrarily, but any change in an enclave’s
layout will be reflected in the hash. When the enclave is
finalised, this hash becomes the enclave’s immutable mea-
surement for attestation purposes.

Like SGX, Komodo implements local (same machine) attes-
tation as a monitor primitive, and defers remote attestation to
a trusted enclave (that we have yet to implement). A Komodo
attestation is a message authentication code (MAC) using a
secret key generated at boot from a cryptographically secure
source of randomness. The MAC is computed over (i) the
attesting enclave’s measurement, and (ii) enclave-provided
data, which may be used to bind a public key-pair to the
enclave and hence bootstrap encrypted communication with
code outside the enclave [56]. The monitor provides calls for
enclaves to create and verify attestations.

Dynamic allocation. Komodo includes support for dy-
namic management of enclave memory, comparable to
SGXv2 [43]. At any time, the OS may allocate spare pages to
an enclave using the AllocSpare monitor call. These do not
alter the enclave’s measurement, since they do not become
accessible until the enclave issues either a MapData or an
InitL2PTable SVC to map them as data pages or page tables.
The enclave may also unmap data pages (turning them back
into spare pages), and the OS may reclaim spare pages. As a
result, the OS may infer that spare pages have been allocated
(since attempts to remove them will fail), but it cannot tell
whether the enclave has used them as data or page-table

292

A. Ferraiuolo et al.

pages. This is in contrast to SGXv2, where the OS remains in
control of the type, address and permissions of all dynamic
allocations. We are not aware of attacks on this side-channel,
but nevertheless saw no reason to mirror it.

Deallocation. Before an enclave’s pages can be freed, the
OS must call Stop. This prevents further execution, and per-
mits the use of Remove to deallocate secure pages. The address
space is reference counted, and must be removed last.

5 SPECIFICATION

We specify and verify Komodo using Dafny [51], a
general-purpose verification language. This section describes
our trusted Dafny specifications of ARM assembly lan-
guage (§5.1) and of Komodo’s overall correctness (§5.2). We
increase our confidence in the Komodo specification by prov-
ing several high-level lemmas: that it maintains consistency
invariants on page state (described in §5.2) and that it guaran-
tees enclave confidentiality and integrity (§6). Dafny checks
the validity of these lemmas with the help of the Z3 SMT
solver [23].

5.1 ARM machine model

Our hardware specification, written in Dafny, covers a subset
of the ARMv7 architecture [3]. We model execution as a
series of machine states, where a state includes everything
visible about a machine (e.g. registers and memory). Our
model includes core registers R0-R12, stack pointer (SP),
link register (LR), portions of the current and saved program
status registers (CPSR and SPSRs), privilege modes, control
flow, interrupts, and exceptions. We model the semantics
of 25 instructions, including integer and bitwise arithmetic,
and access to memory and control registers.

At present, our model must be fully trusted, but this could
be avoided by proving its correctness against another formal
model for ARM [29, 71, 72]. To help ensure trustworthiness,
we adopt the methodology termed idiomatic specification
by Ironclad [38]: we specify only the features that a Ko-
modo implementation needs, and write the specifications
such that the implementation cannot trigger other unspec-
ified behaviours. For example, a verified implementation
cannot execute unspecified instructions.

To simplify reasoning about control flow, we do not ex-
plicitly model the program counter (PC) register. Instead,
our model encodes a limited form of structured control
flow: if statements, while loops, and subprocedure calls. This
avoids the verification burden of reasoning about PC updates
and the effects of control-flow instructions like conditional
branches. However, we do model the side-effects of two
control transfers crucial to the correctness of Komodo: the
branch from privileged code to user-mode (a MOVS PC, LR in-
struction, which branches to the link register and updates



Komodo

the mode and flags), and the switch back into privileged
mode when an exception occurs, which preserves the pre-
exception PC value in LR. The Komodo specification can
therefore use its value to refer implicitly to the PC at the
time of an exception.

The 32-bit ARM architecture includes a register banking
feature that we also model: the SP, LR and SPSR registers are
banked according to the current mode—user-mode accesses
to SP refer to a concrete register SP_usr, whereas monitor-
mode code accesses SP_mon, etc. We model all the banked
registers, with the exception of those banked only in FIQ
mode (which is not needed).

Memory. In designing our memory model, we made sev-
eral design decisions that proved crucial to building a scalable
proof. For example, our machine state models memory as
a mapping from word-aligned addresses to 32-bit values;
reasoning only about aligned memory accesses simplifies
proofs, since accesses to distinct addresses are independent.

We do not directly model virtual memory translation—load
and store instructions directly manipulate the contents of
the memory map at the address specified by their operands.
This allows us to define address validity solely based on
the effective address value, not on the overall machine state.
This expedites verification since the prover readily sees that
validity is not affected by state changes.

The Komodo specification (§5.2) ensures valid address re-
gions for the monitor’s stack, global variables, and secure/in-
secure enclave pages. §7.2 later describes how these are pro-
vided by the bootloader using a static page table.

User-mode execution. Besides the privilege separation of-
fered by ARM user-mode, Komodo’s design does not con-
strain the code that can be run in an enclave. To model
enclave execution, we might therefore need to model ev-
ery permissible user-mode instruction, along with its effects
on the machine state. This would imply specifying a large
number of instructions, along with a more complete model
of machine state and virtual memory translation. However,
we do not seek to verify the code that runs in enclaves, and
such a model would needlessly bloat our trusted computing
base (TCB) and increase verification times.

Instead, we model only the aspects of user-mode execu-
tion necessary to reason about Komodo’s correctness, in-
cluding a limited view of virtual memory: when user code
executes, it havocs (trashes) all user-mode registers and all
user-writable pages before taking an exception. Writable
pages are found by walking page tables starting from the
page-table base register, and translated into the monitor’s
memory map. Essentially, we specify that the monitor ex-
ecutes in a 1:1 mapping of physical memory at some fixed
virtual offset (established by the bootloader, per §7.2). We

293

SOSP ’17, October 28, 2017, Shanghai, China

model the effects of user-mode code by translating writable
pages into the memory map using the offset.

As another example of idiomatic specification, ARM sup-
ports many page table formats, but we model only one: 4 kB
“small” pages in the short descriptor format. If an unrecog-
nised page-table entry is encountered, the model says noth-
ing about the results of user execution—this forces the imple-
mentation to prove that its page tables meet the specification
in order to reason about states after user-mode execution.

As well as page tables, we also model TLB consistency. Ex-
ecuting a TLB flush instruction marks the TLB as consistent.
Loading the page-table base register, or executing a store to
an address in either the first-level or any second-level page
table, marks the TLB as inconsistent. This gives the imple-
mentation freedom to either simply flush the TLB whenever
consistency is required, or else to prove that its stores did not
modify the page table. For simplicity, we model only flushes
of the entire TLB (not tag- or region-based flushes).

Exceptions. Our strategy for dealing with exceptions is
primarily to avoid them. For example, preconditions on
the load and store instructions prevent the possibility of
a page or alignment fault in verified code. However, we must
model the CPU interrupt-enable flags (we describe why later,
in §7.2). Our core specification for instruction evaluation
states that if interrupts are enabled, and if an interrupt (non-
deterministically) occurs, then the instruction executes only
after first running the interrupt handler, which is modelled as
an arbitrary implementation-specific predicate. This forces
a correct implementation to prove either that interrupts re-
main disabled, or else to implement an interrupt handler
and prove that the pre-conditions of any instruction exe-
cuted with interrupts enabled are satisfied by the handler’s
postcondition.

Limitations. Our model precludes the implementation
from using many features irrelevant to Komodo, including
I/O devices, most co-processor registers, floating point and
vector state, and unaligned memory accesses. Since we do
not support multi-core execution, we do not model caches
or memory consistency.

5.2 Komodo specification

In addition to the ARM model, we must also trust our high-
level behavioural specification of the Komodo monitor, also
written in Dafny. We increase our confidence in this spec-
ification by proving that it maintains internal consistency
invariants (described below) and guarantees high-level se-
curity properties (described in §6). At the core of this speci-
fication is an abstract representation of the PageDB: a map
from page numbers to entries, each of which has one of the
six types described earlier in §4.



SOSP ’17, October 28, 2017, Shanghai, China

The PageDB representation abstracts away implementa-
tion details irrelevant to most of the specification; for exam-
ple: page tables are represented as entries in an abstract data
type, and the enclave measurement established for attesta-
tion is represented by an unbounded sequence of words. The
contents of memory and registers are of course significant
when an enclave executes, so the specification includes a
predicate describing the contents of enclave-visible regis-
ters, memory, and page tables at the time of execution. The
implementation is free to choose its own in-memory repre-
sentation of the PageDB, as long as it can prove that when
an enclave executes, the contents of registers and virtual
memory match the abstract PageDB.

The top level of our specification is a predicate describing
the SMC handler. It relates the concrete machine and abstract
PageDB states just after taking an SMC exception from the
OS, to the final states (s' and d') just prior to returning:

predicate smchandler(s: state, d: PageDb,
s': state, d': PageDb)

Of all the monitor calls in Table 1, only two involve en-
clave execution: Enter and Resume. We specify the body of
the rest as pure functions that, given an input PageDB and
call parameters, compute an error/success code and result-
ing PageDB. The top-level smchandler predicate holds if the
resulting PageDB and error code match the appropriate func-
tion (based on the call number and argument registers), and
also that certain invariants hold across every SMC: non-
volatile registers are preserved, other non-return registers
are zeroed (to prevent information leaks), insecure memory
is invariant, and we return in the correct mode.

The specifications for Enter and Resume are also modelled
as predicates relating two states and PageDBs. The specifica-
tions for these calls forces the implementation to enter user-
mode (which it can only satisfy by executing MOVS PC, LR)
from a highly constrained state. Specifically, the page-table
base register must be loaded with the address of the enclave’s
page table, its representation in memory must match the ab-
stract page table encoded in the PageDB, and the TLB must
be consistent. The contents of secure data pages must equal
those in the PageDB (either the contents at the time the en-
clave was created, or as modified by enclave execution). The
user-visible registers must be loaded from the PageDB: for
entry, the PC is set to the entry-point and other registers
are zeroed; for resume, the user-visible registers are restored
from context saved in the thread’s PageDB entry.

By constraining the concrete machine state only at the
time of entry to user-mode, we maintain a significant degree
of implementation freedom. For example, an implementation
may maintain its data structures in any format it chooses, as
long as it can prove that the user-mode execution environ-
ment satisfies the specification.

294

A. Ferraiuolo et al.

The specifications of SVCs from an enclave are logically
nested inside the definition of Enter and Resume. After user-
mode execution, an exception is taken, and the specification
then determines the results of the call and final PageDB based
on the exceptional state. If the exception taken was for a non-
Exit SVC that returns to the enclave, then the specification
describes how to compute the results of the call, and return to
executing the enclave (using a recursively defined predicate).
All other exceptions update the PageDB and return results
from the SMC handler; for example, the PageDB’s data pages
are updated to reflect any changes made by the enclave, and
if an interrupt was taken, the user-mode context must be
saved in the PageDB and the thread marked as entered.

A valid PageDB satisfies invariants guaranteeing internal
consistency: e.g., reference counts are correct, internal ref-
erences (including page table pointers) are to pages of the
correct type belonging to the same address space, and all leaf
pages mapped in a page table are either insecure pages or
data pages allocated to the same address space. To increase
our confidence in the specification, we prove that each SMC
and SVC preserves the PageDB invariants. These invariants
then form the basis of our security proofs in the next section.

6 PROVING SECURITY

We formally prove that the Komodo specification described
above protects the confidentiality and integrity of enclave
code and data from other software on the machine. Because
the implementation is verified to satisfy the specification,
these security proofs extend to the concrete Komodo code
as well. In particular, we prove that an enclave’s contents
cannot be modified by any software other than that enclave,
and that an enclave’s contents do not leak to other enclaves,
the OS, or other non-enclave code, unless the enclave itself
chooses to leak them either directly (e.g., by writing to inse-
cure memory) or indirectly (e.g., via the pattern of insecure
memory addresses to which the enclave chooses to write).
More formally, we establish Komodo’s security proper-
ties by proving that enclaves are noninterfering [32] with
an adversary who controls the OS and colludes with an en-
clave. Modulo a limited set of declassification operations
(§6.2), we establish two separate results for confidentiality
and integrity which are respectively: (i) enclave state is non-
interfering with state observable outside the enclave, and
(ii) state which can be influenced by software outside the
enclave is noninterfering with enclave state. Our model of
enclave state is sufficient to show that the confidentiality and
integrity of both enclave data and execution are preserved.
From the confidentiality perspective, noninterference re-
quires that all adversarially observable outputs during the
execution of the system are determined purely by the ad-
versarially supplied inputs. In other words, public outputs



Komodo

are never influenced by secrets. This is a strong end-to-end
security property: it precludes secrets from affecting public
outputs even indirectly through control flow. Integrity is
dual to confidentiality [10], and requires that trusted outputs
are purely determined by trusted inputs.

By modelling a strong adversary who controls both the OS
and an enclave, our results generalise to simpler attackers
such as an OS or enclave acting alone. In short, we prove
formally that enclave secrets do not leak to, and that enclaves
cannot be influenced by, any software other than the monitor.

We do not aim to prove that enclaves use Komodo correctly.
An enclave may leak information directly through its return
code, writes to insecure memory, or the use of SVCs for
dynamic allocation (a side-channel we formally characterise
in §6.2). It may also leak indirectly through hardware side-
channels (e.g., via cache effects). The enclave’s integrity may
be compromised, for example, if it fails to sanitise values
passed as parameters or read from insecure memory. Work
complementary to ours provides security guarantees for SGX
enclaves [33, 80, 81], and could be adapted for Komodo.

6.1 Specification

Komodo executes on a single core, so attackers on that core
(including potentially malicious enclaves) cannot observe
machine state concurrently with Komodo. However, as de-
scribed in §5.1, we do permit concurrent execution of the OS
on a different core. The OS cannot observe registers or secure
memory, but it may access insecure memory concurrently
with Komodo execution. Our hardware model prevents infor-
mation about Komodo’s execution from leaking to insecure
memory by prohibiting the implementation from writing to
insecure memory (it has no reason to do so).

We take advantage of the fact that attackers can only make
observations while they are executing to simplify our proofs.
It is sufficient for us to reason about the states that transition
between different entities in the system (normal world, the
Komodo monitor, and enclaves), because it is impossible for
adversaries to observe intermediate states (e.g., while a non-
malicious enclave is executing). Reasoning about states at
these transition points is simpler than reasoning about entire
execution traces.

The transition points in our system are at the beginning
and end of SMCs and enclave execution. We prove our nonin-
terference theorems for each monitor call, and as we discuss,
this is sufficient for guaranteeing security at the start and
end of enclave execution. By carefully structuring the pre-
and post-conditions so we make no assumptions about the
initial state that do not also hold of the final state, we ensure
that our result generalises to an infinite sequence of SMCs.

295

SOSP ’17, October 28, 2017, Shanghai, China

We consider states (s, d) which comprise a concrete ma-
chine state, s, and an abstract PageDB, d, such that s is an im-
plementation of d. Our confidentiality result roughly states
that publicly observable outputs depend solely on publicly
observable inputs. Our integrity result states that trusted
outputs depend solely on trusted inputs.

We formalise both results with a relation, ~;, that char-
acterises the observational power of some observer L—two
states are related by ~p if the states appear the same to L.
The definition of ~ depends on the observer under consid-
eration. For the proof of confidentiality, the observer is an
adversary, adv, who models an OS colluding with an enclave.
For the integrity proof, the observer is a trusted enclave, enc.

Address-space pages in the PageDB are linked to all pages
belonging to an enclave. Therefore, enc is an address-space
page that identifies an enclave, and the definition of ~,,
characterises the observational power of that enclave. To
define =, we rely on an auxiliary relation =, that relates
PageDB entries and characterises pages that look the same
to the enclave when they are outside its address space enc:

DEFINITION 1 (WEAK-EQUIVALENCE OF PAGES =pc).
PageDB entries ey, e; are related by e; =y ez iff:

(e;.DataPage? A e;.DataPage?)
V(e;.SparePage? A e;.SparePage?)
V(e;.Thread? A e;.Thread? A e;.entered = e,.entered)
V((e;.L1PTable? V e;.L2PTable? V e;.Addrspace?) A e; = ez)

where e;.DataPage? denotes that e; has the type data page.
In other words, an enclave cannot observe data page contents
or thread context unless those pages belong to it.

DEFINITION 2 (OBSERVATIONAL EQUIVALENCE X¢p.). Let
d[i] denote page i in PageDB d. Let 7 (d) denote the set of pages
i such that d[i] is not allocated. Let Aqp.(d) denote the set of
pages i such that d[i] belongs to the address space enc in d.
Then two PageDB states, dy, da, are observationally equivalent
from the perspective of an enclave enc, written di ~epn. dz iff:

7_-(dl) = 7:(dZ) A ﬂenc(dl) = ﬂenc(dz)
AVi ¢ ﬂenc(dl) . dy [l] =enc dZ[i]
/\VJ € ‘ﬂenc(dl) . dl [.]] = dZD]

To characterise the observational power of a malicious OS
colluding with an enclave, we also define ~,4,. Since this
adversary has more observational power than an enclave
alone, for states to be related by ~,4,, they must also be
related by ~.,., where enc represents a malicious enclave.
The additional requirements on =44, further restrict the set
of pages that look equivalent to the adversary, and hence
characterise the observational power of the OS. In particular,
the OS adversary can directly observe the registers to which
it has access and the entire insecure memory. Hence, two



SOSP ’17, October 28, 2017, Shanghai, China

states are related by ~,4,, if in addition to the requirements
imposed by =, all of the following are the same for both
states: the general-purpose registers, the banked registers
(excluding monitor mode), and the insecure memory.

We formalise our noninterference properties as:

THEOREM 6.1 (NONINTERFERENCE). Let execution of the
SMC handler beginning in state (s, d) and returning in state
(s’,d’) be denoted as smchandler(s,d,s’,d’). Then,

V(SI, dl)s (329 dz), (S£7 d{)y (Sé, dé) . (31, dl) XL (829 dz)
A smchandler(sy, dy, s, d]) A smchandler(sy, d, s, d;)
= (s1,d) ~1 (55, d;)

We prove a relaxation of this theorem, and we discuss the
way in which our result relaxes this theorem in Section 6.2

For the proof of integrity, ~.,. is used, and enc denotes a
trusted enclave. For the proof of confidentiality, ~,4,, is used,
and the enc implicit in the definition of ~,4, is a malicious
enclave. Although the definition of =, is concise and does
not directly constrain the concrete state, both proofs of non-
interference ensure strong guarantees when combined with
our correctness specification. Proving these noninterference
theorems entails proving that the contents of registers and
all memory reachable by the enclave at both the start and
end of its execution are determined purely by PageDB entries
allocated to the enclave prior to the Enter or Resume call.

6.2 Declassification

Enclaves release a small amount of information to the OS
during normal execution: the type of exception or interrupt
that ends enclave execution, the return value passed to Exit
and the fact that an exit call was made. Enclaves that use
dynamic memory allocation also leak through a side channel,
since the OS can observe which spare pages have been allo-
cated and which data pages have been freed by the enclave
during execution. As is conventional for any practical sys-
tem that enforces noninterference, we rely on declassification
to permit the communication described above, that would
otherwise be precluded by the information flow policy. Our
effort to precisely control what information is declassified
most closely resembles the delimited release model [73].
Declassification is incorporated into our proofs through
four axioms which each have preconditions that precisely
control the state transitions during which they can be used.
The axiom for releasing the exception or interrupt taken by
the enclave can be invoked to reason about states immedi-
ately following the execution of enclave code in user-space.
For example, the SVC call number is stored in register R0, and
the axiom for releasing it can only be invoked to reason about
the state after taking an SVC exception from user-mode—
this prevents, for example, leaking the enclave’s R0 value
when an interrupt occurs. Other declassification axioms are

296

A. Ferraiuolo et al.

predicated on certain SVC calls being invoked. The dynamic
memory management calls release information about the
pages that are allocated or deallocated by the enclave. The
OS can distinguish these by design, because it is permitted
to Remove deallocated pages.

6.3 Proofs and non-determinism

Our proofs use bisimulation; we reason about two executions
beginning from initial states that are related by ~, and our
proof goal is to show that the final states are also related by
~r. Our proof is then structured into smaller bisimulation
proofs about each monitor call and each SVC. One exception
is that we cannot prove that output states are related by =,
if the call is Remove(enc), as the relation is undefined for an
observer whose only page was just removed.

Because =, is used to characterise both the trusted state
during the integrity proof and the observational power of
a malicious enclave during the confidentiality proof, many
lemmas are re-used between the two proofs.

The Enter and Resume proofs are the most complex since
they involve enclave execution. In order to satisfy the
PageDB refinement relation, handling the case where both
executions are of the observer enclave requires that the en-
clave’s secure pages and register context are updated in the
same way. However, enclave execution is not determinis-
tic. We do not know what the enclave code will do; we can
merely model what portions of the state it might affect.

Our specification models the non-determinism by updat-
ing each part of the enclave state with an uninterpreted
function specific to the updated state. Each function takes at
least two inputs: (i) all of the user-visible state including the
general-purpose registers, the PC on entry to the enclave,
and all of memory accessible with the current page table and
(ii) a source of non-determinism modelled as an unknown
integer seed. For both noninterference proofs, we require
that the seeds in the initial states are the same for successful
executions of the observer enclave. This allows us to prove
that updates happen deterministically. However, in order
to do so, we must prove that the user-visible state on entry
to the enclave and on updates to the seed are equivalent.
The registers, insecure memory pages, and secure memory
pages that Komodo presents to the enclave must be purely
determined by that enclave’s pages in the PageDB.

The confidentiality proof must show that secret enclave
state is not leaked to the adversary through the registers
which it can observe during monitor calls or through inse-
cure pages of memory. For calls involving enclave execution,
we must show that updates to the registers and insecure mem-
ory at the end of the call are purely determined by public
state. The enclave is permitted to write to insecure memory.
However, correct enclave code should not write anything



Komodo

Annotated code
(Vale)

/

Vale tool

Instruction defs
(Vale)

Trusted specs
(Dafny)

Manual proofs
(Dafny)

Generated proof Generated AST

(Dafny) (Dafny)
Dafny/Z3 ‘ Assembly
verifier printer
komodo.S

Figure 2: Verification/implementation tools. Shaded
boxes indicate trusted components.

secret to insecure memory. To model the fact that insecure
memory is public, enclave updates to it are handled differ-
ently from secure memory: they are still non-deterministic,
but do not depend on user state.

7 IMPLEMENTATION
7.1 Vale language

Figure 2 shows the tools used to implement and verify Ko-
modo. Our implementation uses the Vale [12] programming
language. Vale programs, shown in the “annotated code” box,
consist of assembly language instructions together with an-
notations, such as preconditions, postconditions, and loop
invariants, that describe the behaviour of the instructions.

Listing 1 shows a simple Vale procedure used in Komodo.
This two-instruction procedure copies a banked register to
a general-purpose register and then stores it to memory
at a given base address and offset. Its preconditions (the
requires clause) include a valid memory address and regis-
ter allocation—the general-purpose register tmp cannot alias
the base address nor stack pointer. Its postconditions (the
ensures clause) guarantee to the caller that only the tmp reg-
ister is modified, and that memory is invariant except the
single word at base+of's which equals the banked register.

The Vale tool generates two intermediate Dafny-language
objects: an abstract-syntax-tree (AST) representation of the
instructions, and a purported proof about the behaviour of
the instructions (e.g., that the instructions ensure the post-
conditions in the annotations). If the annotations or code are
wrong, this proof will be invalid.

Since Komodo consists of low-level assembly code, we do
not rely heavily on Dafny’s features for executable code. In
fact, the only executable Dafny code is a simple pretty-printer
that turns the instruction ASTs into GNU assembly format.

297

SOSP ’17, October 28, 2017, Shanghai, China

procedure MRS_STR(operand src:sreg, operand base:reg,
operand ofs:word, out operand tmp:reg)
requires
SaneState(this) && ValidMem(base + ofs);
@tmp != OSP && @tmp != @base && @tmp != @ofs;
modifies mem;
ensures
SaneState(this);
MemContents(this.m, base + ofs) == src;
MemPreservingExcept(old(this), this, base + ofs,
base + ofs + WORDSIZE);
{
MRS(tmp, src);
STR(tmp, base, ofs);
3

Listing 1: Vale procedure to store a banked register

This printer, along with Dafny and the trusted specifications,
constitute Komodo’s trusted computing base for verification.
The Vale tool is not part of the trusted computing base; a
bug in Vale could create incorrect ASTs or invalid proofs,
and Dafny would reject such ASTs or proofs for failing to
correctly fulfil the specifications.

Each Vale procedure is encoded as an AST that when ex-
ecuted takes an input state, and (if the preconditions are
satisfied) produces an output state. Following earlier work
with Vale [12], we do not model labels and jumps directly,
but rather define structured control constructs: conditionals,
loops, and subprocedures. The trusted printer then turns
these into labels and jumps. All subprocedure calls are in-
lined; for most of Komodo the complexity of stack-based
call/return is unwarranted, but we plan to add this for large
procedures (e.g., hash functions) in future work.

7.2 Implementation details

Hardware platform. Our prototype runs on a Raspberry
Pi 2, which is widely available and includes a TrustZone-
capable CPU and hardware random-number generator, but
lacks support for isolating secure-world memory or perform-
ing hardware-backed attestation. Instead, we simply assume
the existence of a statically configured isolated memory re-
gion and hardware-derived attestation secret, and rely on
the bootloader to provide them. This means that our pro-
totype unfortunately offers no practical security; however,
porting it to an ARM platform that included these features
would alter neither its performance nor the proof, since both
features affect only boot-time configuration.

Exception-handler procedures. One of the biggest chal-
lenges faced by the implementation is a mismatch between
the linear control-flow modelled by Vale, which automates



SOSP ’17, October 28, 2017, Shanghai, China

Interrupt
handlers

Exception
handlers

jdnuiajuy

SVC, Abort,
Undef. Instr.

return

Enclave
execution

Enter enclave

Figure 3: State transitions and top-level procedures

verification of procedures with a single starting and ending
state, and the exception-driven style of execution inherent
in kernel code. Komodo lacks a single top-level procedure;
instead it is implemented by handlers invoked from a table of
hardware exception vectors. These include the SMC and SVC
handlers invoked for API calls by the OS and enclave respec-
tively, handlers for ARM’s two different kinds of interrupt
(“FIQ” and “IRQ”), and exceptions for undefined instructions
and data aborts (page faults).

As Figure 3 illustrates, these handlers form a state machine
which is nested inside the top-level SMC handler and con-
strained by its specification. We model the state transitions
explicitly in Dafny, proving that whenever an exception may
occur, its preconditions are satisfied and its handler estab-
lishes the conditions required by the next state. We then rely
on trusted wrappers in the assembly printer to link these pro-
cedures together; for example, the “instruction” used to begin
enclave execution prints as MOVS PC, LR followed by a label.
The exception handlers are all printed with a jump to the la-
bel at the end. To ensure this control flow is sound, we prove
in a Dafny lemma that the state after user execution start-
ing from the above instruction satisfies the preconditions of
any of the exception handlers, and that their postconditions
satisfy the postconditions of the user execution instruction.

Interrupts. Whenever possible, the monitor executes with
interrupts disabled. This allows us to reason about most in-
structions in isolation, which is a reasonable tradeoff since
all operations are bounded-time (the longest-running mon-
itor call, MapSecure, initialises and hashes a single page of
memory). Interrupts are enabled when executing an enclave,

298

A. Ferraiuolo et al.

and disabled automatically when taking either an SMC or in-
terrupt exception. However, it is possible to take an interrupt
after entering the handler for a system call, abort, or unde-
fined instruction. Our exception handlers immediately dis-
able interrupts, but there is an unavoidable single-instruction
window in which a nested exception may occur.

The interrupt handler’s behaviour depends on the prior
state of the system. If the interrupt was taken in user-mode, it
locates the current thread page, and saves the user-mode reg-
ister context before branching to the continuation. However,
if the interrupt was taken in privileged mode, it simply sets
a flag to record that the interrupt occurred, before restoring
execution with registers and memory preserved and inter-
rupts disabled. To keep the code simple, the Vale procedures
for all instructions in our machine model require that inter-
rupts are disabled, with one exception: the instruction used
to disable interrupts which is written such that the inter-
rupt handler may have been executed prior to instruction
completion. Again, we prove in Dafny that these pre- and
post-conditions match between the different procedures, so
the only gaps in our trusted computing base are the jumps
emitted by the printer at the end of each interrupt handler.

Enclave execution. The implementation of Enter and
Resume must execute the enclave an unbounded number of
times, until either an Exit SVC or an exception occurs. The
natural way to implement this (as in an early unverified pro-
totype), is to have the SMC handler push its PC on the stack
for later return prior to dispatching the enclave. When the
SVC handler is invoked, it can handle the SVC and return
directly to the enclave, unless the call is Exit, in which case
it branches back to the SMC handler’s return path. This ar-
rangement, however, is impractical to verify in our model
of linear control flow. As we mentioned above, we print a
single branch after the instruction that initiates user-mode
execution, so that any exception handler can unambiguously
return to it. This in turn requires that user-space entry occurs
at only one point, leading to a loop of the form:

while (!done) {
MOVS_PC_LR(); // enter user—mode,
// handle exception, branch back
3

However, because at the point of the done test every user-
visible register is live (and even testing a global variable
would require a spare register), we were forced to use the
least-significant-bit of the monitor’s SP register as the done
flag. Our insight here is that polluting part of the implemen-
tation with ugly (but verified) code is preferable to added
complexity in our execution model (and thus our TCB).



Komodo

SOSP ’17, October 28, 2017, Shanghai, China

TTBRO TTBR1 Table 2: Line counts
f T 1
Enclave c/c\)/:i[:/]'ijt;)tra Physical memory 1:1 Seacu;: ‘ Component Spec  Impl Proof Assembly
pag (source lines of code) (instructs.)
0 1GB 2GB
ARM model 1,174 112 985
Figure 4: Secure-world virtual memory map Dafny libraries 588 806
SHA-256, SHA-HMAC 250 415 3,200 170
Komodo common 775 358 3,078 136
Memory map. Figure 4 shows the secure-world virtual SMC handler 91 1,082 4,493 284
. SVC handler 204 612 2,509 233
memory layout. We make use of an ARM architectural fea- Other exceptions . 940 .
ture to decouple the monitor’s page table from the one used Noninterference 175 2 644
by enclave address spaces—the enclave’s page table is loaded Assembly printer 650
into the TTBRO control register, which is configured to map
Total 4,446 2,710 18,655 875

only the first 1GB of virtual address space (the upper address
limit for enclaves). The remaining address space is mapped
by a separate static page table in TTBR1 created by the boot-
loader. This latter region is restricted to privileged modes,
and includes mappings for the monitor’s code and data (stack
and global variables), and a large direct mapping to physical
memory. This in turn includes the isolated memory allocated
by the bootloader, and is where enclaves live.

The only regions of its virtual address space that the mon-
itor directly loads and stores are its stack, global variables,
and secure pages. Additionally, it reads from the OS insecure
pages when initialising enclave pages. As described in §5.1,
this allows us to reason about the contents of memory while
largely ignoring address translation.

Attestation and cryptography. Komodo borrows the core
ARM SHA-256 implementation from previous work with
Vale [12]. As a result, we benefit from good hashing perfor-
mance, since the code mirrors the optimised SHA routines
from OpenSSL, and a proof of freedom from digital (cache
and timing) side channels. We extended the prior implemen-
tation to a complete SHA-256 in ARM assembly, including
initialisation and finalisation routines which previously re-
lied on a high-level Dafny implementation. We also imple-
mented a SHA-256-based MAC for generating and checking
attestations. In our implementation, we leverage a precondi-
tion that Komodo only invokes SHA on block-aligned data
to significantly simplify reasoning about padding.

7.3 Code size and verification effort

Table 2 shows a breakdown of the number of physical lines
of code, excluding comments and whitespace, in Komodo.
Specification lines include all trusted Dafny code: our ma-
chine model and Komodo functional specification (§5) along
with the helper Dafny libraries used to define them (common
data types, bitwise functions, etc.), cryptographic algorithms,
noninterference properties (§6) and finally the pretty-printer
for assembly output. Implementation lines are assembly in-
structions, procedure calls and control-flow we write in Vale.

299

Proof lines are annotations that help the verifier, such as pre-
and post-conditions, loop invariants, assertions, and lemmas.

The table also reports the number of ARM instructions ap-
pearing at the Vale source level. Due to our use of structured
control flow, this does not include comparisons and branches,
which are added by the pretty-printer. After printing, which
also adds labels and symbol declarations, and performs inline
expansion of procedure calls, the verified prototype is emit-
ted as a 26,800-line assembly file. This could be substantially
reduced if Vale supported function call/return.

The complete end-to-end verification of Komodo takes
4 core-hours. However, it is highly parallel, and supports
distributed verification. Furthermore, the typical developer
works on one procedure or lemma at a time, and most of
these take well under a minute to verify.

Excluding the core SHA implementation that we inherited
from prior work [12], we spent a total of about 2 person-
years specifying and implementing Komodo. We began with
the specification of the ARM model, then specified and imple-
mented a simplified version of Komodo using static memory
management modelled on SGXv1. Building this first version
took around 1.5 person-years, including a steep learning
curve for the primary developers who were unfamiliar with
the verification tools (at the time under active development).

In the process of developing this first version, we iter-
ated through several phases in which we refactored the core
definitions (e.g., the ARM machine model) to make them
more amenable to automated verification, and to model pro-
gressively more complex features such as exceptions and
interrupts. Each such iteration required revising existing
proofs to maintain new invariants. As with any engineering
project, and in line with the experience of the selL4 devel-
opers [49, §7.4], the more pervasive the model or invariants
changed the more work it was to re-establish the proofs.

For example, we discovered that reasoning about word
alignment was excessively costly for Z3, and was indirectly



SOSP ’17, October 28, 2017, Shanghai, China

causing verification timeouts. We therefore changed the core
definition of a word-aligned address, which was originally:

const WORDSIZE:int := 4;
predicate WordAligned(x:int) { x % WORDSIZE == @ }

In the new definition, WordAligned is an opaque function (for
which the prover doesn’t see the definition), and we prove
selected lemmas about it, for example that addition of two
word-aligned values, or the computation of a word-offset (i.e.,
x+nxWORDSIZE), always results in a word-aligned value. This
required changing all our procedures that perform memory
access or manipulate addresses to use the new declarations
and lemmas, leading to a week’s worth of semi-mechanical
refactoring but resulting in much improved proof stability.
Given improvements like this, we estimate that repeating
the effort to rebuild the first version now with stable tools
and specifications would require much less than 1 year.

We then extended the spec and implementation with dy-
namic memory management; this totalled 6 person-months
of extra work, including 3 person-weeks for updates to the
noninterference proofs. This work included major changes to
the specification, such as modelling TLB consistency, weak-
ening various PageDB invariants to reason about spare pages,
and permitting non-trivial changes to the PageDB in an SVC
handler. In the process of implementing the new SVCs, we
also refactored much of the implementation of the core page-
table management code to permit its use in either SMC or
SVC handler contexts. This required reasoning about flexible
register allocations. For example, the procedure to write a
page-table entry previously used a hard-coded register al-
location with each operand passed in a specific machine
register; this simplifies the verifier’s job (and thus permits
verifying longer procedures with fewer annotations) because
it can trivially see that modifications of one operand do not
affect the others. However, to permit calling the procedure
in different contexts, this procedure and many others like it
were changed to take arbitrary register operands in the style
of Listing 1 (but with more operands, and thus many more
preconditions for disjointedness).

Although most of the memory-management code changed,
other significant portions of the implementation did not, in-
cluding most of the enclave entry/resume path and top-level
SMC handler. Thanks to our use of automated verification
tools, the proofs for these were largely unaffected, even by
changes in the core specification.

8 EVALUATION

8.1 Microbenchmarks

We tested our prototype on a Raspberry Pi 2 Model B with a
900MHz ARM Cortex-A7 CPU. To do this, we implemented
a simple bootloader that loads the monitor in secure world,

300

A. Ferraiuolo et al.

Table 3: Microbenchmark results on Raspberry Pi

Operation Notes Cycles
GetPhysPages Null SMC 123
Enter + Exit  Full enclave crossing (call & return) 738
Enter only (no return) 496
Resume only  (no return) 625
Attest Construct attestation 12,411
Verify Verify attestation 13,373
AllocSpare Dynamic allocation 217
MapData Dynamic allocation 5,826

setting up its memory map and exception vectors. The boot-
loader was implemented in unverified C and assembly for
expedience, but we could use the same approach to also
specify and verify it (it runs to completion without taking
exceptions, so it is much simpler than the monitor). The boot-
loader also reserves a configurable amount of RAM as secure
memory, before switching to normal world to boot Linux. As
mentioned in §7.2, the hardware lacks support for memory
isolation, so our prototype is not secure against a malicious
OS, but it performs equivalently. Once Linux boots, a kernel
driver issues SMCs to create and run enclaves.

We performed the microbenchmarks reported in Table 3.
The prototype monitor is entirely unoptimised. It conser-
vatively saves and restores every non-volatile register—a
needless cost for trivial SMCs like GetPhysPages. On enclave
entry, it also saves and restores every banked register, al-
though some are known to be preserved, and flushes the
TLB, although this could be avoided for repeated invocation
of the same enclave (even for distinct enclaves with the use of
TLB tags). These are all optimisations that we aim to add, but
only after proving their correctness; for example, by proving
in Dafny a lemma that the banked registers for FIQ and IRQ
modes are unchanged by enclave execution, we can call that
lemma in our implementation rather than needlessly saving
and restoring the registers.

Despite the lack of optimisations, Komodo’s performance
compares favourably to SGX. Orenbach et al. [66, §2.2] report
EENTER and EEXIT latencies of about 3,800 and 3,300 cycles
respectively, or 7,100 cycles for a full enclave crossing. Of
course, the x86 runs at a higher clock rate (2GHz vs. 900MHz)
and includes memory encryption, but the Komodo result
represents an order of magnitude improvement. We can only
speculate about the reasons, but there is clearly no inherent
penalty for implementing enclaves in software.

8.2 Notary enclave

To test Komodo with a real enclave, and help convince our-
selves of the completeness of its API, we ported the trusted



Komodo

80
70
60 -
501
401
301
20+

Time (ms)

Komodo enclave

= Linux process
32 64
Input size (kB)

16

Figure 5: Notary performance

notary application from Ironclad [38, §5.1]. The notary as-
signs logical timestamps to documents so they can be conclu-
sively ordered. We reimplemented the notary as a standalone
3700-line C program compiled for the Komodo enclave API.
When first entered, it constructs an RSA key pair, initialises a
monotonic counter, and constructs and returns an attestation
of its initial state. On subsequent calls, it hashes the provided
document with the current value of the counter and signs
it with its RSA key before incrementing the counter and re-
turning the signature. The notary’s total memory footprint
is 145 kB. Performance measurements (Figure 5) show that,
since its execution is dominated by CPU-intensive hashing
and signing, the notary performs equivalently in an enclave
to a native Linux process.

9 DISCUSSION

9.1 Lessons learned

A small code base is no substitute for verification. Before
embarking on the verification of Komodo, we had previously
implemented an unverified version in C and assembly, as
a way to gain familiarity with the TrustZone design. The
unimplemented monitor comprised only about 650 lines of
C and 300 lines of assembler (it did not support attestation),
and yet it still contained critical security bugs which came to
light in the process of specifying and implementing Komodo.

For example, InitAddrspace takes two page numbers. The
unverified implementation checked that both were free, be-
fore proceeding to allocate them and initialise the address
space. Only after writing the specification for this call and
failing to prove that it maintained PageDB invariants did we
discover that we hadn’t considered the case when the two
arguments are the same page.

As a more subtle problem, when checking the validity of
insecure memory pages, we had failed to account for the
fact that the monitor’s text and data exist in direct-map
physical as well as virtual memory (see Figure 4). To check

301

SOSP ’17, October 28, 2017, Shanghai, China

whether an insecure physical address passed to the moni-
tor for MapSecure or MapInsecure is valid, it is not sufficient
merely to check that it does not refer to secure pages; in-
stead, it must also avoid any of the monitor’s own pages. We
discovered this discrepancy in the process of formalising our
model of virtual memory—an example of how the process of
writing a specification forces clarity.

Trusted components require extra diligence. In verifying
any system, one must choose what to trust and what to
verify, and against what specification. We discovered bugs
in our code when we ran it; unsurprisingly, they were all in
trusted code or under-specified portions of our system [28].
For example:

e abug in the assembly printer caused all instructions in-
tended to operate on banked SPSR registers to instead
use the current mode’s SPSR;

e we were missing barriers (DSB and ISB instructions)
when accessing certain control registers;

e inconsistencies in the configuration of caches and page
attributes between the bootloader, monitor and Linux
driver resulted in incoherent caches for normal-world
and secure-world views of shared pages.

Our conclusion is that while verification has great value
in eliminating entire classes of errors, it cannot prevent a
developer from making any unwarranted assumptions, at
least not without a complete and correct formal specification
of CPU behaviour. Besides the obvious issues such as mem-
ory consistency (which we explicitly chose not to model),
modern CPUs include a seemingly endless number of control
registers that alter system behaviour and could lead to viola-
tions of our ARM model. In this respect, we are encouraged
by recent progress on connecting a formal specification of
the ARM architecture to its implementation [71, 72].

Opportunities remain to improve verification tools. Past
work on verifying systems software [38, 39] extended Dafny
with features for information hiding and modular reason-
ing such as opaque functions. More recent improvements
to Dafny have included support for constants, bitvectors,
and refinement types (such as 32-bit unsigned integers). We
benefited from all these improvements, but still found that
Dafny struggled with complex systems such as Komodo.

The most frustrating recurring problem was proof insta-
bility. For simple lemmas, Dafny will either report success or
a concrete failure, such as an assertion violation. However,
as proof complexity increases, solver time may increase ex-
ponentially. This happens easily in Komodo wherever we
are reasoning about procedures with many instructions (and
thus many state transitions) or complex specifications. To
avoid an endless search, Dafny implements a time limit be-
fore reporting failure. Timeouts are challenging to debug,



SOSP ’17, October 28, 2017, Shanghai, China

because the solver generally fails to provide useful feedback.
Instead, the developer must simplify the proof and/or add
assertions to reduce the complexity. However, even once
fixed, the proof may easily timeout again due to minor per-
turbations. Worse, minor changes can trigger timeouts in
seemingly unrelated proofs. Proofs involving bitwise opera-
tions or the modulo operator proved particularly unstable.
The only reliable way to remove timeouts in a given piece of
code was generally to refactor it into smaller subprocedures
with their own explicit pre- and post-conditions, but this
leads to inelegant and hard-to-maintain code.

9.2 Future work

While we believe Komodo represents a significant step to-
wards practicality, and many applications (e.g., in embedded
systems) are already in reach, more work remains.

Dispatcher interface. Komodo is not vulnerable to
controlled-channel attacks [78, 88] merely by virtue of the
fact that it does not yet support demand-paging of enclave
memory. We hope to evolve our current thread-based in-
terface where enclave threads are either started anew, or
saved/restored transparently into a LibOS-style dispatcher
interface [55] with explicit user-mode upcalls to resume a
thread or report an exception. This will permit the use of
enclave self-paging to manage memory [37, 66], without
exposing page faults to the untrusted OS.

Multi-core support. Komodo’s biggest remaining limita-
tion is undoubtedly multi-core support. There are several
avenues to close this gap, but the simplest is a single shared
lock around all monitor activities, which would preserve
the sequential (Floyd-Hoare) reasoning used in our current
proofs. Experience with microkernels even suggests that this
may not unduly harm performance [25].

10 RELATED WORK

Hardware. A wide range of systems have used hardware to
isolate sensitive code from an untrusted OS [15, 16, 26, 27, 50,
53, 67, 82]. These vary in their resilience to hardware attacks,
size of the software trusted computing base, and granularity
of protection. However, to our knowledge none has a formal
specification nor a proof of security. SGX [43, 59] is unique
mainly because of its implementation in x86.

The most closely related system to Komodo is Sanc-
tum [19]. Like Komodo, Sanctum consists of simple hard-
ware extensions to support a trusted security monitor that
in turn manages and protects enclaves. Unlike Sanctum, the
Komodo prototype runs on readily available hardware (ARM
TrustZone) and includes machine-checked proofs of both
functional correctness and noninterference properties that
guarantee enclave integrity and confidentiality.

302

A. Ferraiuolo et al.

Sanctum and Komodo also differ in their approach to attes-
tation. Sanctum computes measurements in the monitor, but
delegates attestation to a privileged signing enclave to avoid
side-channel leaks involving the attestation key. We instead
implement local attestation directly in the monitor. Our at-
testation algorithm (HMAC-SHA256) is data-independent in
its address trace, and we could prove this using techniques
previously developed for Vale [12]. We feel that this is a good
verification-complexity tradeoff compared to specifying and
implementing the IPC mechanisms that Sanctum uses to
support attestation in an enclave.

Software. Other systems have sought to use commodity
hardware to provide enclave-like isolated execution environ-
ments in software. However, the majority of these did not
provide formal guarantees [e.g., 57, 58, 69].

Our verification methodology builds on the tools and
techniques developed in Verve [89], Ironclad [38] and Iron-
Fleet [39], however the most closely related verified sys-
tems are the kernels selL4 [49], CertiKOS [34, 35] and
iiberSpark [84]. Komodo might even be viewed as a microker-
nel with an unusual APL, but this comparison has its limits:
Komodo does not handle interrupts nor support device dri-
vers, not even for the system clock or interrupt controller; it
does not implement a scheduler nor perform resource man-
agement; it lacks an IPC mechanism. It does, however, per-
form attestation and run alongside an untrusted OS. Like Ko-
modo, seL4 and CertiKOS also benefit from proofs of security
properties based on noninterference [20, 62]; seL4’s formali-
sation is more complex since it includes general-purpose IPC.
Ultimately the advantage that Komodo gains from simplic-
ity and automated verification tools is adaptability: we can
rapidly evolve Komodo while preserving its security guar-
antees, whereas complex kernels like seL4 and CertiKOS
represent substantially more human effort.

11 CONCLUSION

Komodo is the first formally verified implementation of an
SGX-like enclave isolation mechanism. Its design decouples
enclave hardware primitives from security-critical but for-
mally verified software, enabling independent evolution of
the two. We used noninterference to prove high-level guar-
antees of confidentiality and integrity, we showed that the
approach is feasible, that Komodo can evolve more quickly
than SGX, and that it can even outperform SGX.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and our shepherd
George Candea for valuable feedback, and Rustan Leino and
Jay Lorch for help with Dafny.

This work was supported in part by the National Science
Foundation and VMware under Grant No. CNS-1700521.



Komodo

REFERENCES

[1] PrimeCell Infrastructure AMBA 3 TrustZone Protection Controller (BP147)

Technical Overview. ARM Limited, Nov. 2004. Ref. DTO 0015A.

[2] Building a Secure System using TrustZone Technology. ARM Limited,

Apr. 2009. Ref. PRD29-GENC-009492C.

[3] ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

[4

(5

[10

[11

[12

(13

(14

(15

[16

(17

= O

—

=

—

=

—

—_

=

=

—

—

ARM Limited, May 2014. Ref. DDI 0406C.c.

ARM CoreLink TZC-400 TrustZone Address Space Controller Technical
Reference Manual. ARM Limited, Feb. 2014. Ref. DDI 0504C.

S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers,
R. Kapitza, P. Pietzuch, and C. Fetzer. SCONE: Secure Linux containers
with Intel SGX. In 12th USENIX Symposium on Operating Systems De-
sign and Implementation, pages 689-703, 2016. ISBN 978-1-931971-33-1.
URL https://www.usenix.org/conference/osdil6/technical-sessions/
presentation/arnautov.

A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,
and W. Shen. Hypervision across worlds: Real-time kernel protection
from the ARM TrustZone secure world. In 21st ACM Conference on
Computer and Communications Security, pages 90-102, 2014. ISBN
978-1-4503-2957-6. doi: 10.1145/2660267.2660350.

A. Baumann. Hardware is the new software. In 16th Workshop on Hot
Topics in Operating Systems, HotOS 17, pages 132-137, 2017. ISBN
978-1-4503-5068-6. doi: 10.1145/3102980.3103002.

A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an
untrusted cloud with Haven. In 11th USENIX Symposium on Operating
Systems Design and Implementation, pages 267-283, Oct. 2014. ISBN
978-1-931971-16-4. URL https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/baumann.

J. Behl, T. Distler, and R. Kapitza. Hybrids on steroids: SGX-based high
performance BFT. In EuroSys Conference, pages 222-237, 2017. ISBN
978-1-4503-4938-3. doi: 10.1145/3064176.3064213.

K. J. Biba. Integrity considerations for secure computer systems. Tech-
nical Report ESD-TR-76-372, USAF Electronic Systems Division, 1977.
R. Boivie. SecureBlue++: CPU support for secure execution. Technical
Report RC25287, IBM Research, May 2012. URL http://researcher.
watson.ibm.com/researcher/view_group.php?id=7253.

B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,
B. Parno, A. Rane, S. Setty, and L. Thompson. Vale: Verifying high-
performance cryptographic assembly code. In 26th USENIX Secu-
rity Symposium, Aug. 2017. URL https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/bond.

F. Brasser, U. Miiller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R.
Sadeghi. Software grand exposure: SGX cache attacks are practical. In
11th USENIX Workshop on Offensive Technologies (WOOT 17), Aug. 2017.
URL https://www.usenix.org/conference/woot17/workshop-program/
presentation/brasser.

S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt, M. Lorenz, C. Fetzer,
P. Pietzuch, and R. Kapitza. SecureKeeper: Confidential ZooKeeper us-
ing Intel SGX. In 17th International Middleware Conference, pages 14:1-
14:13, 2016. ISBN 978-1-4503-4300-8. doi: 10.1145/2988336.2988350.
D. Champagne and R. B. Lee. Scalable architectural support for trusted
software. In 16th IEEE International Symposium on High-Performance
Computer Architecture, Jan. 2010. doi: 10.1109/HPCA.2010.5416657.
S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic. SecureME: a
hardware-software approach to full system security. In International
Conference on Supercomputing, pages 108-119, 2011. ISBN 978-1-4503-
0102-2. doi: 10.1145/1995896.1995914.

P. Colp, J. Zhang, J. Gleeson, S. Suneja, E. de Lara, H. Raj, S. Saroiu, and
A. Wolman. Protecting data on smartphones and tablets from memory

attacks. In 20th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 177-189, 2015.

303

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

SOSP ’17, October 28, 2017, Shanghai, China

ISBN 978-1-4503-2835-7. doi: 10.1145/2694344.2694380.

V. Costan and S. Devadas. Intel SGX explained. Cryptology ePrint
Archive, Report 2016/086, Feb. 2016. http://eprint.iacr.org/2016/086.
V. Costan, I. Lebedev, and S. Devadas. Sanctum: Minimal hard-
ware extensions for strong software isolation. In 25th USENIX Se-
curity Symposium, pages 857-874, Aug. 2016. ISBN 978-1-931971-
32-4.  URL https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/costan.

D. Costanzo, Z. Shao, and R. Gu. End-to-end verification of information-
flow security for C and assembly programs. In 37th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages
648-664, 2016. ISBN 978-1-4503-4261-2. doi: 10.1145/2908080.2908100.
S. Crosby. Using Intel SGX to protect on-line credentials,
Aug. 2016. URL  https://blogs.bromium.com/2016/08/09/
using-intel-sgx-to-protect-on-line-credentials/.

I Cutress. Intel’s “Tick-Tock’ seemingly dead, becomes ‘Process-
Architecture-Optimization’. AnandTech, Mar. 2016. URL http://www.
anandtech.com/show/10183.

L. de Moura and N. Bjerner. Z3: An efficient SMT solver. In 14th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), pages 337-340, Mar. 2008. ISBN
978-3-540-78800-3. doi: 10.1007/978-3-540-78800-3_24.

PALcode for Alpha Microprocessors System Design Guide. Digital Equip-
ment Corp., May 1996. Order No. EC-QFGLC-TE.

K. Elphinstone, A. Zarrabi, A. Danis, Y. Shen, and G. Heiser. An
evaluation of coarse-grained locking for multicore microkernels. CoRR,
abs/1609.08372, Oct. 2016. URL http://arxiv.org/abs/1609.08372.

D. Evtyushkin, J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh,
and R. Riley. Iso-X: A flexible architecture for hardware-managed
isolated execution. In 47th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-47, pages 190-202, 2014. ISBN 978-1-
4799-6998-2. doi: 10.1109/MICRO.2014.25.

C. W. Fletcher, M. v. Dijk, and S. Devadas. A secure processor archi-
tecture for encrypted computation on untrusted programs. In 7th
ACM Workshop on Scalable Trusted Computing, pages 3-8, 2012. ISBN
978-1-4503-1662-0. doi: 10.1145/2382536.2382540.

P. Fonseca, K. Zhang, X. Wang, and A. Krishnamurthy. An empirical
study on the correctness of formally verified distributed systems. In
EuroSys Conference, Apr. 2017. doi: 10.1145/3064176.3064183.

A. Fox and M. O. Myreen. A trustworthy monadic formalization of
the ARMv7 instruction set architecture. In Ist International Conference
on Interactive Theorem Proving, pages 243-258, July 2010. ISBN 978-3-
642-14052-5. doi: 10.1007/978-3-642-14052-5_18.

GlobalPlatform Device Technology TEE System Architecture v1.1. Glob-
alPlatform, Jan. 2017. Ref. GPD_SPE_009.

A. Goel, S. Krsti¢, R. Leslie, and M. R. Tuttle. SMT-based system
verification with DVF. In 10th International Workshop on Satisfiability
Modulo Theories, pages 32-43, 2012. URL http://smt2012.loria.fr/paper2.
pdf.

J. A. Goguen and J. Meseguer.
models. In IEEE Symposium on Security and Privacy, 1982.
10.1109/SP.1982.10014.

A. Gollamudi and S. Chong. Automatic enforcement of expressive
security policies using enclaves. In 2016 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and Applications,
OOPSLA 2016, pages 494-513, 2016. ISBN 978-1-4503-4444-9. doi:
10.1145/2983990.2984002.

R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N. Wu, S.-C. Weng,
H. Zhang, and Y. Guo. Deep specifications and certified abstraction
layers. In 42nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 595-608, 2015. ISBN 978-1-4503-3300-9.
doi: 10.1145/2676726.2676975.

Security policies and security
doi:



SOSP ’17, October 28, 2017, Shanghai, China

(35]

(36]

(37]

(38

[t

(39

[

[40]

[41]

(42]

[43

[t

(44

=

[45

—

[46]

(47]

(48

=

[49

—

(50]

R. Gu, Z. Shao, H. Chen, X. N. Wo, J. Kim, V. Sjéberg, and D. Costanzo.
CertiKOS: An extensible architecture for building certified concurrent
OS kernels. In 12th USENIX Symposium on Operating Systems Design
and Implementation, Nov. 2016.

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we
remember: Cold boot attacks on encryption keys. In 17th USENIX
Security Symposium, pages 45-60, July 2008. URL https://www.usenix.
org/legacy/event/sec08/tech/full_papers/halderman/halderman.pdf.
S. M. Hand. Self-paging in the Nemesis operating system. In 3rd
USENIX Symposium on Operating Systems Design and Implementation,
pages 73-86, New Orleans, Louisiana, USA, 1999. ISBN 1-880446-39-1.
URL https://www.usenix.org/events/osdi99/hand. html.

C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill. Ironclad apps: End-to-end security via automated full-
system verification. In 11th USENIX Symposium on Operating Sys-
tems Design and Implementation, pages 165-181, Oct. 2014. ISBN
978-1-931971-16-4. URL https://www.usenix.org/conference/osdil4/
technical-sessions/presentation/hawblitzel.

C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. Setty, and B. Zill. IronFleet: Proving practical dis-
tributed systems correct. In 25th ACM Symposium on Operating
Systems Principles, pages 1-17, 2015. ISBN 978-1-4503-3834-9. doi:
10.1145/2815400.2815428.

J. Howell, B. Parno, and J. R. Douceur. Embassies: Radically refactoring
the web. In 10th USENIX Symposium on Networked Systems Design
and Implementation, pages 529-545, 2013. ISBN 978-1-931971-00-3.
URL https://www.usenix.org/conference/nsdil3/technical-sessions/
presentation/howell.

G. Hunt, G. Letey, and E. Nightingale. The seven properties of highly
secure devices. Technical Report MSR-TR-2017-16, Microsoft Re-
search, Mar. 2017. URL https://www.microsoft.com/en-us/research/
publication/seven-properties-highly-secure-devices/.

T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan: A distributed
sandbox for untrusted computation on secret data. In 12th USENLX
Symposium on Operating Systems Design and Implementation, pages
533-549, 2016. ISBN 978-1-931971-33-1. URL https://www.usenix.org/
conference/osdil6/technical-sessions/presentation/hunt.

Software Guard Extensions Programming Reference. Intel Corp., Oct.
2014. Ref. #329298-002 https://software.intel.com/sites/default/files/
managed/48/88/329298-002.pdf.

SGX Tutorial at ISCA 2015. Intel Corp., June 2015. Ref. #332680-002
https://software.intel.com/sites/default/files/332680-002.pdf.

Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel
Corp., Dec. 2016. Ref. #325462-061US.

S. P. Johnson, U. R. Savagaonkar, V. R. Scarlata, F. X. McKeen, and C. V.
Rozas. Technique for supporting multiple secure enclaves, Dec. 2010.
US Patent 8,972,746.

U. Kanonov and A. Wool. Secure containers in Android: The Samsung
KNOX case study. In 6th Workshop on Security and Privacy in Smart-
phones and Mobile Devices, pages 3-12, 2016. ISBN 978-1-4503-4564-4.
doi: 10.1145/2994459.2994470.

D. Kaplan, J. Powell, and T. Woller. = AMD memory encryp-
tion.  http://developer.amd.com/wordpress/media/2013/12/AMD _
Memory_Encryption_Whitepaper_v7-Public.pdf, Apr. 2016.

G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski,
and G. Heiser. Comprehensive formal verification of an OS microkernel.
ACM Transactions on Computer Systems, 32(1):2:1-2:70, Feb. 2014. ISSN
0734-2071. doi: 10.1145/2560537.

R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang.
Architecture for protecting critical secrets in microprocessors. In 32nd
International Symposium on Computer Architecture, pages 2—13, 2005.

304

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

A. Ferraiuolo et al.

ISBN 0-7695-2270-X. doi: 10.1109/ISCA.2005.14.

K. R. M. Leino. Dafny: An automatic program verifier for functional
correctness. In 16th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR-16), pages 348—370, Apr.
2010. ISBN 978-3-642-17511-4. doi: 10.1007/978-3-642-17511-4_20.

R. Leslie-Hurd, D. Caspi, and M. Fernandez. Verifying linearizability
of Intel software guard extensions. In 27th International Conference
on Computer Aided Verification, pages 144-160, July 2015. ISBN 978-3-
319-21668-3. doi: 10.1007/978-3-319-21668-3_9.

D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and
M. Horowitz. Architectural support for copy and tamper resistant
software. In 9th International Conference on Architectural Support
for Programming Languages and Operating Systems, Nov. 2000. doi:
10.1145/356989.357005.

L. Maranget, S. Sarkar, and P. Sewell. A tutorial introduction to the
ARM and POWER relaxed memory models. Draft revision 120, Oct.
2012. URL http://www.cl.cam.ac.uk/~pes20/weakmemory/.

B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P. Markatos. First-
class user-level threads. In 13th ACM Symposium on Operating
Systems Principles, pages 110-121, 1991. ISBN 0-89791-447-3. doi:
10.1145/121132.344329.

J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and A. Seshadri. Min-
imal TCB code execution (extended abstract). In Proceedings of the
IEEE Symposium on Security and Privacy, May 2007.

J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki.
Flicker: an execution infrastructure for TCB minimization. In Eu-
roSys Conference, pages 315-328, 2008. ISBN 978-1-60558-013-5. doi:
10.1145/1352592.1352625.

J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Per-
rig. TrustVisor: Efficient TCB reduction and attestation. In IEEE
Symposium on Security and Privacy, pages 143-158, May 2010. doi:
10.1109/SP.2010.17.

F. McKeen, 1. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar. Innovative instructions and
software model for isolated execution. In 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, 2013.
ISBN 978-1-4503-2118-1. doi: 10.1145/2487726.2488368.

F. X. McKeen, C. V. Rozas, U. R. Savagaonkar, S. P. Johnson, V. Scarlata,
M. A. Goldsmith, E. Brickell, et al. Method and apparatus to provide
secure application execution, Dec. 2009. US Patent 9,087,200.
MITRE. CVE-2017-5691, July 2017. URL https://nvd.nist.gov/vuln/
detail/CVE-2017-5691.

T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein. seL4: From general purpose to a proof
of information flow enforcement. In IEEE Symposium on Security and
Privacy, pages 415-429, May 2013. doi: 10.1109/SP.2013.35.

K. T. Nguyen. Introduction to Cache Allocation Technology in the
Intel Xeon Processor E5 v4 family, Feb. 2016. https://software.intel.
com/en-us/articles/introduction-to-cache-allocation-technology.
NXP. i.MX 7Solo, i.MX 7Dual applications processors, 2017. URL
http://www.nxp.com/iMX7.

O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa. Oblivious multi-party machine
learning on trusted processors. In 25th USENIX Security
Symposium, pages 619-636, 2016. ISBN 978-1-931971-32-
4. URL https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/ohrimenko.

M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein. Eleos: ExitLess
OS services for SGX enclaves. In EuroSys Conference, Apr. 2017. doi:
10.1145/3064176.3064219.

E. Owusu, J. Guajardo, J. McCune, J. Newsome, A. Perrig, and A. Va-
sudevan. OASIS: On achieving a sanctuary for integrity and secrecy



Komodo

(68

=

[69

-

(70

[t

(71

—

(72

—

(73

[t

(74

[l

(75

[’

[76]

(77]

on untrusted platforms. In 20th ACM Conference on Computer and
Communications Security, pages 13-24, 2013. ISBN 978-1-4503-2477-9.
doi: 10.1145/2508859.2516678.

R. Pires, M. Pasin, P. Felber, and C. Fetzer.
routing using Intel software guard extensions. In 17th International
Middleware Conference, pages 10:1-10:10, 2016. ISBN 978-1-4503-4300-
8. doi: 10.1145/2988336.2988346.

H. Raj, D. Robinson, T. B. Tariq, P. England, S. Saroiu, and A. Wolman.
Credo: Trusted computing for guest VMs with a commodity hypervisor.
Technical Report MSR-TR-2011-130, Microsoft Research, Dec. 2011.
H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fen-
ner, K. Kinshumann, J. Loeser, D. Mattoon, M. Nystrom, D. Robinson,
R. Spiger, S. Thom, and D. Wooten. fTPM: A software-only imple-
mentation of a TPM chip. In 25th USENIX Security Symposium, pages
841-856, 2016. ISBN 978-1-931971-32-4. URL https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/raj.

A. Reid. Trustworthy specifications of ARM v8-A and v8-M system
level architecture. In Formal Methods in Computer-Aided Design, pages
161-168, Oct. 2016. doi: 10.1109/FMCAD.2016.7886675.

A.Reid, R. Chen, A. Deligiannis, D. Gilday, D. Hoyes, W. Keen, A. Pathi-
rane, O. Shepherd, P. Vrabel, and A. Zaidi. End-to-end verification
of ARM processors with ISA-formal. In 28th International Confer-
ence on Computer Aided Verification, pages 42-58, July 2016. ISBN
978-3-319-41540-6. doi: 10.1007/978-3-319-41540-6_3.

A. Sabelfeld and A. C. Myers. A Model for Delimited Information
Release, pages 174-191. Springer, Oct. 2004. ISBN 978-3-540-37621-7.
doi: 10.1007/978-3-540-37621-7_9.

N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using ARM TrustZone
to build a trusted language runtime for mobile applications. In 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 67-80, 2014. ISBN 978-1-4503-
2305-5. doi: 10.1145/2541940.2541949.

F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-
Ruiz, and M. Russinovich. VC3: Trustworthy data analytics in the
cloud using SGX. In IEEE Symposium on Security and Privacy, May
2015. doi: 10.1109/SP.2015.10.

M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Mal-
ware guard extension: Using SGX to conceal cache attacks. In 14th

Secure content-based

International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), pages 3-24. Springer, July 2017.
ISBN 978-3-319-60876-1. doi: 10.1007/978-3-319-60876-1_1.

M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: Eradicating
controlled-channel attacks against enclave programs. In Annual Net-
work and Distributed System Security Symposium (NDSS), Feb. 2017.

305

(78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

(88]

[89]

SOSP ’17, October 28, 2017, Shanghai, China

S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing page
faults from telling your secrets. In 11th ACM Asia Conference on
Computer and Communications Security, pages 317-328, 2016. ISBN
978-1-4503-4233-9. doi: 10.1145/2897845.2897885.

T. Simonite. Intel puts the brakes on Moore’s Law. MIT Technology
Review, Mar. 2016. URL https://www.technologyreview.com/s/601102.
R. Sinha, S. Rajamani, S. Seshia, and K. Vaswani. Moat: Verifying
confidentiality of enclave programs. In 22nd ACM Conference on Com-
puter and Communications Security, pages 1169-1184, 2015. ISBN
978-1-4503-3832-5. doi: 10.1145/2810103.2813608.

R. Sinha, M. Costa, A. Lal, N. P. Lopes, S. Rajamani, S. A. Seshia, and
K. Vaswani. A design and verification methodology for secure isolated
regions. In 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’16, pages 665-681, 2016. ISBN 978-
1-4503-4261-2. doi: 10.1145/2908080.2908113.

J. Szefer and R. B. Lee. Architectural support for hypervisor-secure
virtualization. In 17th International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 437-450,
2012. ISBN 978-1-4503-0759-8. doi: 10.1145/2150976.2151022.

TPM Main Specification Level 2. Trusted Computing Group, Mar. 2011.
Version 1.2, Revision 116.

A. Vasudevan, S. Chaki, P. Maniatis, L. Jia, and A. Datta. iiberspark:
Enforcing verifiable object abstractions for automated composi-
tional security analysis of a hypervisor. In 25th USENIX Se-
curity Symposium, pages 87-104, 2016. ISBN 978-1-931971-
32-4.  URL https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/vasudevan.

A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanovi¢.
The RISC-V instruction set manual volume II: Privileged architecture
version 1.7. Technical Report UCB/EECS-2015-49, UC Berkeley EECS,
May 2015.

R. Wojtczuk and J. Rutkowska. Attacking Intel TXT via SINIT code
execution hijacking. http://invisiblethingslab.com/resources/2011/
Attacking_Intel TXT_via_SINIT_hijacking.pdf, Nov. 2011.

R. Wojtczuk, J. Rutkowska, and A. Tereshkin. Another way to circum-
vent Intel Trusted Execution Technology. http://invisiblethingslab.
com/resources/misc09/Another%20TXT%20Attack.pdf, Dec. 2009.

Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Determinis-
tic side-channels for untrusted operating systems. In IEEE Symposium
on Security and Privacy, May 2015. doi: 10.1109/SP.2015.45.

J. Yang and C. Hawblitzel. Safe to the last instruction: Automated veri-
fication of a type-safe operating system. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 99-110,
2010. ISBN 978-1-4503-0019-3. doi: 10.1145/1806596.1806610.



	Abstract
	1 Introduction
	2 Background and motivation
	3 Threat model and hardware
	3.1 Threat model
	3.2 Hardware requirements
	3.3 ARM TrustZone

	4 Komodo design and API
	5 Specification
	5.1 ARM machine model
	5.2 Komodo specification

	6 Proving security
	6.1 Specification
	6.2 Declassification
	6.3 Proofs and non-determinism

	7 Implementation
	7.1 Vale language
	7.2 Implementation details
	7.3 Code size and verification effort

	8 Evaluation
	8.1 Microbenchmarks
	8.2 Notary enclave

	9 Discussion
	9.1 Lessons learned
	9.2 Future work

	10 Related work
	11 Conclusion
	Acknowledgements
	References

