
This paper is included in the Proceedings of the 

15th USENIX Symposium on Networked 

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-931971-43-0

Open access to the Proceedings of  

the 15th USENIX Symposium on Networked 

Systems Design and Implementation 

is sponsored by USENIX.

Elastic Scaling of Stateful Network Functions
Shinae Woo, KAIST, UC Berkeley; Justine Sherry, CMU; Sangjin Han, UC Berkeley;  

Sue Moon, KAIST;  Sylvia Ratnasamy, UC Berkeley; Scott Shenker, UC Berkeley, ICSI

https://www.usenix.org/conference/nsdi18/presentation/woo



Elastic Scaling of Stateful Network Functions

Shinae Woo?†, Justine Sherry‡, Sangjin Han?, Sue Moon†, Sylvia Ratnasamy?, and Scott Shenker?§

?University of California, Berkeley †KAIST ‡CMU §ICSI

Abstract

Elastic scaling is a central promise of NFV but has been

hard to realize in practice. The difficulty arises because

most Network Functions (NFs) are stateful and this state

need to be shared across NF instances. Implementing

state sharing while meeting the throughput and latency

requirements placed on NFs is challenging and, to date,

no solution exists that meets NFV’s performance goals

for the full spectrum of NFs.

S6 is a new framework that supports elastic scaling

of NFs without compromising performance. Its design

builds on the insight that a distributed shared state ab-

straction is well-suited to the NFV context. We organize

state as a distributed shared object (DSO) space and

extend the DSO concept with techniques designed to

meet the need for elasticity and high-performance in

NFV workloads. S6 simplifies development: NF writers

program with no awareness of how state is distributed

and shared. Instead, S6 transparently migrates state

and handles accesses to shared state. In our evaluation,

compared to recent solutions for dynamic scaling of

NFs, S6 improves performance by 100x during scaling

events [25], and by 2-5x under normal operation [27].

1 Introduction

The Network Function Virtualization (NFV) [13] vision

advocates moving middlebox functionality – called Net-

work Functions (NFs) – from dedicated hardware devices

to software applications that run in VMs or containers

on shared server hardware. An important benefit of the

NFV vision is elastic scaling — the ability to increase

or decrease the number of VMs/containers currently

devoted to a particular NF, in response to changes in

offered load. However, realizing such elastic scaling has

proven challenging and solutions to date come with a

significant cost to performance, functionality, and/or ease

of development (§3).

The difficulty arises in that most NFs are stateful, with

state that may be read or updated very frequently (e.g.,

per-packet or per-flow). Hence, elastic scaling requires

more than simply spinning up another VM/container

and updating a load-balancer to send some portion of the

traffic to it.

Instead, scaling can involve migrating state across NF

instances. Migration is important for high performance

(as it avoids remote state accesses) but its implementation

must be fast (to avoid long “pause times” during scaling

events) and should not be burdensome to NF developers.

In addition, elastic scaling must ensure affinity between

packets and their state (i.e., that a packet is directed to the

NF instance that holds the state necessary to process that

packet), and such affinity must be correctly enforced even

in the face of state migrations. A final complication is

that some types of state are not partitionable, but shared

across instances (see §2 for examples). In such cases,

elastic scaling must support access to shared state in

a manner that ensures the consistency requirements of

that state are met, and with minimal disruption to NF

throughput and latency.

The core of any elastic scaling solution is how state is

organized and abstracted to NF applications. Recent work

has explored different options in this regard. Some [33]

assume that all state is local, but neither shared or migrated

– we call this the local-only approach. Others [25,37] sup-

port a richer model in which state is exposed to NF devel-

opers as either local or remote, and developers can migrate

state from remote to local storage, or explicitly access

remote state – we call this the local+remote approach.

Still others [27] assume that all state is remote, stored in a

centralized store – we call this the remote-only approach.

The above were pioneering efforts in exploring the de-

sign space for NF state management. But, as we elaborate

on in §3, they still fall short of an ideal solution: the local-

only approach achieves high performance but is limited

in the NF functionality that it supports; the local+remote

approach supports arbitrary NF functionality but compli-

cates NF development and incurs long downtimes from

repartitioning state en bloc during scaling events; the

remote-only approach is elegant but imposes high perfor-

mance overheads even under normal operation.

In this paper, we propose a new approach to elastic

scaling in which state is organized as a distributed shared

object (DSO) space: objects encapsulate NF state and

live in a global namespace, where all NF instances can

read/write any object. While DSO is an old idea, it has not

to our knowledge been applied to the NFV context. In par-

ticular, DSO has not been shown to the meet the elasticity

and performance requirements that NFV imposes.

We present S6, a development and runtime framework

tailored to NFV. To meet the needs of NFV workloads,

S6 extends the DSO concept as follows: (1) for space

elasticity, we introduce dynamic reorganization of the

DSO keyspace; (2) to minimize the downtime associated

with scaling events, we introduce a “smart but lazy” state

reorganization; (3) to reduce remote access overheads, we

introduce per-packet microthreads and; (4) to optimize
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performance without burdening developers, we expose

per-object hints via which the developer can inform the

DSO framework about appropriate migration or caching

policies. S6 hides all those internal complexities of

distributed state management under the hood, simplifying

NF development.

We present three elastic NFs implemented on top of

S6: NAT, PRADS (a network monitoring system [6]),

and a subset of the Snort IDS [8]. We show that NFs on

S6 elastically scale with minimal performance overhead,

and compare them to NFs built using prior approaches. A

local-only system like E2 [33] cannot support two of our

use-cases (NAT and PRADS) because it does not support

shared state. Compared to OpenNF [25], a state-of-the-art

framework based on the local+remote approach, S6

achieves 10x - 100x lower latency while sustaining 10x

higher throughput during scaling events. Compared to

StatelessNF [27], a state-of-the-art framework based

on a remote-only approach, S6 achieves 2x - 5x higher

throughput under normal operation.

2 Background: NF State Abstractions

The difficulty of elastic scaling arises in how to handle

NF state appropriately. NFs keep state about ongoing

connections (e.g., TCP connection state, last activity time,

number of bytes per user-device, a list of protocols used

at a given IP address). NFs read and update a state while

processing a packet and reuse the updated state to process

subsequent packets. Stateful NF instances should main-

tain correct NF state collectively to prevent the inconsis-

tent or incorrect behavior. Also, the system must handle

general forms of state sharing among instances, as we

will present in this Section. Such NFs’ behavior requires

significantly more care than merely spinning up another

NF instance and sending some portion of traffic to it.

We categorize NF state based on whether it is parti-

tionable. We say that state is partitionable if it can be

distributed across NF instances in a way that state is

only locally accessed, assuming a certain traffic load

balancing scheme. For example, per-flow state (such as

state for individual TCP connections) is partitionable, if

traffic is distributed on a flow basis. On the other hand, a

counter for the total number of active flows is an example

of non-partitionable state, since all NF instances need to

update the counter.

Whether state is partitionable or not is important

since it determines both the mechanisms needed to

manage that state and the achievable performance levels.

With partitionable state, we can collocate state with the

NF instance that processes it, and hence efficient state

migration is key to achieving high performance. If state

is not partitionable, high performance requires a different

set of techniques: e.g., caching state (when its consistency

Apps \ State Partitionable Non-partitionable

NAT -
Address mapping entry

Available address pool

Firewall Connection context -

Load

balancer [11, 21]

Connection - server

mapping
Server pool usage statistics

Traffic

Monitoring [6]
Connection context

Per-host context;

Statistics for packets,

used protocols and host

IDS/IPS

[8, 10, 34]
Connection context

A set of certificates, malicious

servers, or infected hosts;

Per-host port scanning counter

Web proxy [9] Connection context Statistics for cached entry

EPC [3] User state SLA/Usage per device/plan

IMS [5] SIP / RTP sessions Usage accounting per user

Table 1: Examples of state in popular NF types

semantics allows it), placing state to minimize remote

accesses, and minimizing the cost of remote state access.

Most non-partitionable NF state also provide oppor-

tunities for efficient sharing. We can categorize state by

whether it is updated mostly by a single or multiple in-

stances. From our observation, single-writer state tends to

be read-heavy, thus caching or replication can be effective.

When the state is updated by multiple writers simultane-

ously (e.g., global counters), looser consistency is often

tolerable so as to trade freshness of data for performance.

Table 1 lists examples of partitionable and non-

partitionable state found in some real-world NFs. We see

that both forms of state are common in real-world NFs.

For example, traffic monitoring systems [6] maintain

state at both the connection (partitionable) and the

host (non-partitionable1) levels. We also note that state

variables, whether partitionable or not, typically relate to

each other forming complex data structures. For example,

traffic monitoring systems manage a global table of hosts,

each referencing a list of its active connections.

3 State Management for Elastic Scaling

State management for elastic scaling of stateful NFs in-

volves many design options, such as where to place state

and when to initiate migration. They all affect the overall

NF performance, in terms of throughput and latency.

Existing approaches cause high performance overhead,

either during scaling events (i.e., instances join and leave)

or under normal operations (i.e., no ongoing scaling

events). In this section, we discuss the limitations of their

approaches in §3.1 and propose our new approach in §3.2.

3.1 Limitations of existing approaches

Figure 1 shows the typical components of an NFV

architecture as assumed by prior research [27, 27, 33, 37]

and industry efforts [13]. An NFV controller [24, 33]

manages NF instances that run on servers, while an SDN

1No load balancing scheme can ensure data locality of state for both

source and destination hosts at the same time.
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3.2 Our approach: Distributed shared state

The limitations of the aforementioned approaches lead us

to consider a new approach, the distributed shared state

model, which is familiar from distributed computing.

Here, state is distributed among the NFs, and can be

accessed by any NF. However, the NF developer makes

no distinction between local vs. remote state. Instead,

all state variables reside in a shared address space and

the state management framework transparently resolves

all state access. The framework is also responsible for

deciding where state is placed and migrating state across

NF instances when appropriate.

Done right, this model can achieve throughput and

latency comparable to the local-only model by migrating

state to be co-located with the NF instances that access it.

This model can also avoid the long pause-times incurred

by the local+remote approach. Because there is no

distinction between local and remote state, no proactive

migration is required during scaling events. The overhead

of migration is gradually amortized as packets arrive;

e.g., for the same PRADS scenario above, the pause-time

can drop to under 1 millisecond (§7). For the same reason,

state migration no longer needs tight coordination with

traffic load-balancing, hence reducing the system com-

plexity associated with the local+remote model. Finally,

the distributed shared state model simplifies NF devel-

opment. Developers can write NFs on top of a uniform

interface for state access, local or remote, outsourcing

the underlying details of state lookup, remote access, and

migration to the state management framework.

To the best of our knowledge, we are the first to

apply distributed shared state to NFV. We highlight two

challenges distinct from other application domains. NFs

have distinct performance requirements from traditional

cloud applications [18,31]. Furthermore, elasticity makes

it more difficult, dynamically reorganizing the structure

of state space into the new set of NF instances.

Achieving high performance: NFs have I/O intensive

workload, requiring very high throughput on the order of

millions of packets/s with sub-millisecond latency. Given

these requirements, only a few hundreds or thousands of

CPU cycles are available for every packet.

The key to achieving high performance is twofold.

Firstly, we should reduce the number of remote accesses

by leveraging the state-instance affinity and supporting

efficient sharing. As each type of NF state has different ac-

cess patterns and consistency requirements [28], the ques-

tion is how to leverage the information while minimizing

developer’s burden. Secondly, we need to minimize the

cost of remote access when it is unavoidable. While we

can hide the latency by processing other packets in the

meantime, it must be done so without increasing program-

ming complexity. The framework should be able to handle

data dependency detection and context stashing [15, 42].

Supporting elastic scaling: As explained above, scaling

events at runtime must not incur significant performance

degradation. Membership change in NF instance group

involves two potential sources of service disruption. First,

as input traffic is distributed across the new set of NF in-

stances, a subset of state variables must migrate to main-

tain locality. Second, in addition to the state variables

themselves, their location metadata must be reorganized

as well, for scalability of the shared state space. The chal-

lenge is how to perform these operations in a distributed

fashion, in order to avoid a single point of performance

bottleneck. Furthermore, the framework must ensure con-

sistent state access during the process, while minimizing

delay in packet processing.

4 S6 Design

S6 is a development and runtime framework for elastic

scaling of NFs. S6 makes the following assumptions,

which are general enough to apply to a wide variety of

deployment scenarios and environments. First, an NF

runs as a cluster of virtualized instances, such as VMs

and containers. Second, the network somehow distributes

input traffic across instances. Lastly, an external NFV

controller/orchestrator triggers scaling events to adapt to

load change.

S6 does not demand any particular network load

balancing mechanism or NFV controller behavior for

correctness. Therefore they are out of the scope of this

paper. One desirable property is that input traffic be

distributed across instances on a flow basis as like most

of load-balancers and switches already are doing, so that

S6 can leverage the state-instance affinity for high perfor-

mance. S6 differs from the existing NF state management

solutions [25, 37], all of which require sophisticated run-

time coordination across NFV controller, SDN controller,

and NF instances. S6’s decoupling from the load-balancer

and SDN controller reduces system complexity.

We summarize the main design components: 1) S6

provides the global DSO shared by all NF instances.

We choose ‘object’ as a basic unit of state. An object

encapsulates a set of data and its associated operations,

allowing access control and integrity protection of state.

All objects in the space are accessible with a uniform API,

regardless of where the objects physically reside. 2) Our

object abstractions provide NF developers with knobs to

specify object access patterns. The S6 framework uses

this information to improve performance by reducing

the number of remote state accesses. 3) When remote

state access is inevitable, S6 mitigates its cost by hiding

latency with microthreads; NF worker instances can

keep processing other flows only if they have no data

dependency on outstanding accesses to remote objects.
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Node	A
(Requester)

Node	B
(Key	owner)

Node	C
(Object	owner)

object	space

key	space where(Key1)=C

.......

get(Key1)
.......

NF	app
hash(Key1)=B

ObjectKey1
migrationable

Figure 2: DHT-based Distributed Shared Object Space

4) Upon scaling events, S6 reorganizes the space, while

keeping the workers processing traffic. S6 minimizes

service disruption with the smart but lazy migration of

objects and their metadata. We explain each component

in greater detail below.

4.1 DHT-based DSO space architecture

In the DSO space, state objects are uniquely identified

with a key. Keys can be of any type, such as 5-tuples, host

names, and URLs as necessary. When an NF instance re-

quests an object with some key (e.g., extracted from pack-

ets), S6 returns a reference to the object, rather than the ob-

ject binary itself. With the reference, the instance can read

or update the state by invoking object methods. S6 con-

structs the DSO space as a DHT-based two-layer structure

(Figure 2) of a key layer and an object layer [40]. Both lay-

ers are distributed over NF instances. The key layer keeps

track of the current location of every object, rather than di-

rectly storing objects. This layer of indirection offers great

flexibility in object migration; no broadcast is necessary

to locate an object, although it may reside (if it exists) on

any instance at the moment. The object layer stores the ac-

tual binary of objects. A reference to an object guarantees

accessibility, no matter where the object currently is.

When an instance accesses an object for the first time,

it hashes the key to identify the key owner, the instance

who knows the current object location, the object owner.

The object access request is sent to the key owner first,

then the key owner forwards the request to the object

owner. Once the location of the object is resolved, the

instance caches it so that subsequent object requests can

go directly to the object owner. When an object migrates

to another instance, the key owner must be notified.

The key owner updates the location of the object and

invalidates the cached location in workers.

The key owner takes charge of object creation,

deletion, and its reference creation; Those requests are

serialized and sequentially processed at the key owner.

Once the key owner receives object deletion request,

it rejects subsequence object access requests until new

object creation request comes.

Note that this two-layer structure is only internally

managed. S6 hides the complexity of placing and locating

objects from NF developers, so that they can focus on the

application logic itself.

4.2 Object abstractions: Per-object optimization

We provide an object abstraction that allows developers to

hint to the framework about what caching, migration, and

optimization strategies are appropriate for each object.

Different objects hence have different consistency guar-

antees depending on their usage. While state management

is a generic problem in distributed systems, we focus on

NFs’ distinct state characteristics and access patterns that

we can leverage to achieve good performance.

We first categorize object types into two types depend-

ing on whether the object permits updates from multiple

flows (thus multiple instances): partitionable objects

and non-partitionable objects. Based on the different

characteristics for each state type in §2, we introduce

appropriate optimization strategies for each object type.

APIs in detail and usage examples are in covered in §5.

Partitionable: leveraging state-instance affinity Parti-

tionable objects are primarily used for state that is updated

by a single flow; up to one writable reference to the ob-

ject is allowed. If an instance is holding the writable refer-

ence, other instances have to wait for their turn to acquire a

writable reference. This is enforced at the key owner since

it is a natural serialization point for all reference requests

to the object.

In NF contexts, while partitionable objects have high

affinity on a single instance, but occasionally, its state

affinity may move to other instances. For example,

per-flow objects’ affinity is decided based on the traffic

load-balancing policy of the network, which is not

controlled by S6. As NFs frequently update partitionable

state, often on a per-packet basis, keeping high state-

instance affinity is the key to achieving high performance

for partitionable objects.

Partitionable objects are gradually migrated between

instances when affinity changes. S6 uses a new request

for writeable access from other instances as an affinity

change indicator. When a key owner for a partitionable

object gets an object access request other than the current

object owner, it initiates the object migration process. The

current object owner voluntarily releases the reference

when the local reference count for the object reaches

to zero, then the object is transferred, and the instance

becomes a new object owner. Now in the new object

owner, all accesses to the object locally happens as the

reference points to the object binary in the memory.

Non-partitionable: consistency/performance trading

Non-partitionable objects are concurrently accessed from

multiple flows simultaneously; multiple writable refer-

ences to an object may exist. Supporting shared state with

high performance in distributed systems is generally dif-

ficult or impossible to achieve—if an object is very fre-

quently updated by multiple flows in a strongly-consistent

manner, it does not scale and S6 cannot help it. Fortu-
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nately, we found that the majority of non-partitionable

state in NF applications does not require frequent updates

(e.g., one update per flow) or allow trading consistency for

performance, as shown in Table 1. S6 provides three op-

timization mechanisms for non-partitionable objects that

NF developers can leverage.

First, S6 supports object access via method call ship-

ping, rather than migrating objects. This prevents objects

from bouncing between instances, to avoid wasting

in-flight time. The method calls are applied serially in the

order of request arrival at the object owner, preserving the

internal object consistency. For such non-partitionable

objects, NF developers need to design the objects to be

commutative, i.e., any order of methods calls should pro-

duce an acceptable result. Additionally, S6 supports un-

tethered update, which allows remote object update with-

out blocking if there is no need to wait for its completion.

Second, S6 supports abstractions to design objects to

enable trade-off between consistency and performance. If

a read method on an object class is tolerant of stale results,

instances can cache the results of the method locally. NF

developers can bound the staleness for each read method,

so that S6 can periodically refresh the cached results with

newer ones.

Third, S6 supports object replication, so that multiple

instances can update their local replica. Those replicas are

regularly merged to the main object at the object owner.

NF developers are expected to provide this merge func-

tion since it is very object-specific. Shared counters are

a prime use case of this local update and merge. Frequent

updates are done locally, while (infrequent) reads on the

counter cause local numbers to be merged globally.

4.3 Microthreads: Hiding the cost of remote access

Even with above optimizations for objects, blocking

remote access is necessary when waiting for migrating

objects, refreshing the cache, or dealing with objects with

strong consistency. The cost of remote state access is

high. Suppose that an NF instance issues an RPC request

and waits for its response, in order to process a packet.

Assuming 10us round-trip time between NF instances,

the latency translates to 30,000 cycles on a 3 GHz

processor. We can hide this latency with concurrency; the

NF can process other pending packets to keep the CPU

busy, as long as they do not have data dependency on

the RPC or introduce packet reordering in a flow. Once

its response arrives, the NF continues processing the

packet(s) that were blocked on it.

We adopt a multi-threaded architecture in favor of

ease of NF development to maintain execution contexts

of blocked flows. The other option was an event-driven

architecture, but it hurts programmability since de-

velopers must manually manage to save and restore

contexts [15, 42] for every state access. Another issue

is that whether a method call would block or not must

be visible to the NF developers, which adds additional

complexity to the application logic. In contrast, with

multi-threaded architecture, developers can program

packet processing easily while all thread scheduling is

automatically done by the S6 runtime.

To minimize the performance overhead of multi-

threading, S6 utilizes cooperative, user-space “mi-

crothreads”. User-level microthreads are much more

lightweight than kernel threads, since non-preemptive

scheduling is significantly simpler, and context switching

does not involve kernel/user boundary crossing. It also

scales up to millions (not thousands) of microthreads

thanks for their small footprint.

S6 manages a pool of microthreads to avoid thread

construction/destruction cost. A microthread runs for

each received packet. Whenever the thread is about to

block (e.g., an object is remote and/or in migration, cache

entry is being refreshed, data dependency is detected as

another microthreads is holding a reference, etc.), the

microthread yields to other pending threads and wait to

be rescheduled after the blocking condition has been re-

solved. This non-preemptive scheduling is automatically

done by S6 and transparent to the NF developer. When

multiple microthreads are ready to resume, S6 schedules

one with the longest wait time to avoid packet reordering

within a flow and to minimize latency jitter.

4.4 Smart but lazy DSO keyspace reorganization

When the membership of NF instances changes—due

to scaling events or node failures—S6 must reorganize

the DSO space for the new set of instances. This reor-

ganization involves both object space and key space. As

we illustrated in §4.2, the object space is repartitioned

automatically and gradually for new state-instance

affinity, as NF instances access state objects. Assum-

ing reference locality—most state access is done to a

small number of objects—frequently accessed objects

are quickly migrated to new object owners, incurring

minimal performance impact.

On the other hand, like the object space, S6 ensures

that the key space reorganization is also done gradually

so as to minimize performance impact. Suppose that we

reorganize the DSO key space from Si to Si+1, which use

hi(key) and hi+1(key) as lookup hashes for finding key

owner respectively. Reorganization must not break the

coherency of the keyspace, such that any key record is

neither lost nor owned by multiple key owners. At the

same time, we do not want to pause the entire system

for coherency; instead NF instances lazily migrate key

ownership from hi(k) to hi+i(k) in the background

as necessary. Our keyspace reorganization algorithm

ensures coherency even in the middle of scaling process.
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When the scaling process starts, new key access

requests go to hi+i(k). The new owner hi+1(k) check if the

previous owner hi(k) has a record for k, and if so, the new

key owner pulls the record. During the scaling process,

every new key lookup requires two-hop routing. After

the keyspace converges to Si+1 (all key record migration

is completed), key lookups can be done with the normal

one-hop routing again.

Dealing with race conditions: One challenge comes

from the fact that we cannot assume that all nodes start

and finish the scaling process exactly at the same time. For

example, if two nodes A (previous owner of k, hi(k)) have

not been notified the scaling process and run in ‘normal’

operation but B (next owner of k, hi+1(k)) start ‘scaling’

operation, both two nodes would claim the ownership for

k. This corner case may result in two key records for k

created in both node A and B.

To prevent such conflict, S6 performs scaling in two

stages: pre-scaling and scaling stages. The workers

transition to scaling stage only if the controller has

confirmed that all workers are in pre-scaling state. This

barrier ensures that nodes in the ‘normal’ and nodes in

the ‘scaling’ stage do not coexist. Nodes in pre-scaling

stage do not actively transfer key ownership yet, while

being aware that other nodes may be in scaling process.

Ensuring that there is always a single key owner exists,

but not two or none, is done with the following rules:

R1 Preventing double ownership Suppose that node A

(prev owner, hi(k)) is in ‘pre-scaling’ and node B (next

owner, hi+1(k)) is in ‘scaling’. In this case, hi(k) should

be the single owner for k.

Since pre-scaling nodes can coexist with nodes still in

‘normal’ stage, node A should serve hi(k). Meanwhile,

node B hi+i(k) have more contexts about scaling process

than A. Until node A goes into ‘scaling’ stage, it defers

claiming the ownership for k, but keeps forwarding

requests to A.

R2 Preventing lost ownership Suppose that node A

(prev owner, hi(k)) is in ‘scaling’ and node B (next owner,

hi+1(k)) is in ‘pre-scaling’. If k is for a new object,

hi+1(k) should be the single owner. If k is for an existing

object, hi(k) should be the single owner.

In this case, no one claim the ownership of k, and the

two node forward requests on k to each other. We need to

prevent such loop. Let’s assume that A receives a request

on k. If k is for existing objects and A owns the key since

B hasn’t claimed the ownership. A keeps serving the

requests on k, until B claims ownership of k. If k is for

new objects, then B doesn’t have any information of k.

Therefore B would forward the request to A. A potential

loop is prevented by attaching version number to the

forwarded requests.

Category API Description

Object
SingleWriter Exclusive writeable

MultiWriter Concurrent writeable

Method

const stale Cached read

untethered Untethered update

merge(Object&) Merge two objects

Data

Structure

S6Map<Key, Object> Define a map in DSO

S6Ref<Object> Reference to an object

S6Iter<Object> Iterator of collections

S6Map

(DSO)

create(Key&,Flag&) Create an object

get(Key&) Retrieve an object

remove(S6Ref<>&) Remove an object

Table 2: S6 Programming API

State Type Examples
Object

Annotation

Method

Annotation

Partitioned
UDP/TCP

connection state
SingleWriter -

Non-partitioned

freq update

Performance

statistics
MultiWriter

untethered

stale

merge

Non-partitioned

read-heavy

NAT mapping

entry
SingleWriter stale

Collection of

multi-type

state objects

linked-list

hashtable

Non-intrusive data structures

(§8.1)

Table 3: Common types of NF state and their annotations

5 Using S6

We introduce our programming model (§5.1) and provide

some examples of various NFs (§ 5.2).

5.1 S6 Programming model

Table 2 summarizes the S6 API. From a user’s perspec-

tive, S6’s core components are the shared object space

and tasks.

We provide two types of objects depending on whether

the object permits update from multiple writers (NF in-

stances). SingleWriter allows exclusive writes from

a single instance. MultiWriter allows concurrent

writes from multiple instances simultaneously. Methods

on objects can be annotated appropriately to allows more

optimization such as cached read (const stale),

update-and-forget (untethered), or regularly pushing

merged local updates (merge) into the object owner.

Then, S6 supports appropriate optimization on behind

based on object type as explained in previous section

§4.2. Figure 3 shows an example implementation of an

object class used in PRADS [6]. It is exactly same as

normal object oriented design only except the additional

annotations we introduce. In fact, from our survey of

popular NFs in Table 1, we found that most of NF state

falls into one of four types shown in Table 3.

S6 provides two types of tasks: data-plane and control-

plane. Data-plane tasks perform packet processing

on input network traffic. Control-plane tasks perform

out-of-band operations, such as updating configurations
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class HostAsset: public MultiWriter {

public:

void update_service(Service s) untether;

void update_os(OS os) untether;

uint64_t first_detect_time() const stale;

uint64_t last_detect_time() const stale;

void merge(HostAsset local);

private:

addr_t ip;

uint64_t first_detect_time;

uint64_t last_detect_time;

List<Service> service_list;

List<OS> os_list;

};

Figure 3: A sample S6 object definition of PRADS’s

per-host network asset object

S6Map<IPKey, Asset> g_asset;

S6Map<FlowKey, Connection> g_conn;

// data-plane task

FlowKey fkey(sip, dip, sport, dport);

S6Ref<Connection> c = g_conn.create(fkey);

...

if (new_os_asset) {

S6Ref<Asset> asset = g_asset.get(sip);

asset->update_os_asset(new_os_asset);

}

...

// control-plane task

S6Iter<Asset> *it = g_asset.get_iterator();

while (it->next())

log_asset(it->key, it->value);

Figure 4: A sample implementation of PRADS tasks

or processing user queries. Both types of tasks have

access to the shared object space with a uniform interface.

Figure 4 shows an application implementation including

one data-plane task for packet processing and one

control-plane task for logging the per-host assets.

5.2 Programming NFs

5.2.1 Sample applications

We have chosen various applications to implement or

port. Table 4 lists the state objects in those NFs.

Network Monitoring System (PRADS) PRADS [6] is

a Passive Real-time Asset Detection System in Linux. It

allows network administrators to access real-time data on

types of protocols, services, and devices on their network.

Intrusion Detection System (Snort-rule) We implement

IDS which monitors packets using Snort [8] rules. We bor-

row the rule compilation and detection code from the orig-

inal Snort code base.

NAT We implement NAT (Network Address Translator)

by following the algorithm described in statelessNF [27],

so that have the same per-packet/per-flow access patterns

with their implementation.

NF State Size (B)* Update Access Frequency

PRADS

Flow 160 Exclusive Per-packet RW

Statistics 208 Concurrent Per-packet RW

Asset 112+64n Concurrent
Rarely R

Per-packet W

Hashtable of flows 40n Concurrent Per-flow RW

Hashtable of assets 32n Concurrent Per-flow RW

IDS

Flow context 160 ∼ 32k Exclusive Per-packet RW

Whitelisted host 16 Exclusive Per-packet RW

Malicious server 12+28n Concurrent Per-flow RW

Hash table of

Malicious server
32n Concurrent Per-flow RW

Hash table of

whitelisted host
32n Concurrent Per-flow RW

NAT
Address Pool 8k per IP Exclusive Per-flow RW

NAT entry 8 Exclusive
Per-packet R

Per-flow W

* n is the number of elements in the structure.

Table 4: States, update patterns, and access frequencies

of NF applications we use.
.

5.2.2 Experiences of porting NF applications

We begin with the assumption that the NF application

to port is in an OOP (Object-Oriented Programming)

model. Since the baseline code of PRADS is in C, a

non-OOP language, our first step is to convert structs

to C++ objects. Then we start porting these objects in our

S6 programming interface.

Porting States Objects: To convert the existing object

classes to S6-compatible object classes, we need to (1)

identify globally accessible objects, (2) analyze their up-

date patterns, and (3) check the applicability of loose con-

sistency.

In Table 4 we list the states we have identified to be

globally accessible and their update patterns: four simple

objects (Flow, Statistics, Asset, and Configuration) and

two collections of objects (Flow hashtable and Asset

hashtable). After identifying the simple objects, we de-

cide their types as SingleWriter or MultiWriter

according to the update pattern. We useS6Map to support

hash tables for flows and assets, and S6Iter to iterate

through the list of assets. In case of more complex applica-

tions, StateAlyzr [28] can help identifying state variables

which need to be shared and their update patterns.

Now the application is compatible with S6 and should

run correctly. Next, we turn to performance improvement

by loosening the consistency level on objects. We design

the Asset and Statistics objects to be commutative, and all

their reads as cached reads and all updates as untethered.

Porting Tasks: PRADS has a simple loop processing

packets using libpcap which is straightforward to port

to S6’s data plane task. PRADS has other out-of-band

tasks from network administrators like generating a log

of current assets. We implement these out-of-band opera-

tions as control-plane tasks.

306    15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association









8.2 Fault-tolerance

Fault tolerance for middleboxes and network functions

has been addressed by prior systems like Pico [36] and

FTMB [39]. These systems promise that when an NF fail

in a non-scaled out environment, a new NF quickly come

back online – with all of the state of the failed NF – and

resume processing data.

The most straightforward remediation is to adopt

Pico’s (checkpoint-based, per-state snapshot) or FTMB’s

(checkpoint and replay-based, VM snapshot) algorithms

at on per node basis. Both systems interpose on accesses

to middlebox state during packet processing; these

systems also have the ability to interpose on accesses

made by S6’s RPC calls from other NF instances. Both

Pico and FTMB have efficient backup strategies, in that

one ‘backup’ instance can serve as a standby for multiple

‘hot’ NF instances. S6’s knowledge about object access

patterns and consistency gives more opportunity to op-

timize per-object snapshot, balancing between snapshot

frequency and amount of logging operations on it.

An alternative approach to fault tolerance could be to

extend S6’s state management with classic DHT-based

failover recovery. Key ownership—and perhaps even data

itself—could be replicated thrice across multiple DHT

nodes. Hence, if any individual node failed, the rest of the

cluster could immediately continue processing incoming

flows, accessing the remaining replicated state. Nonethe-

less, this approach triples intra-cluster traffic, and likely

increases read/write latencies. We leave exploration of

this approach, its design details, and trade-offs, to future

work.

9 Related Work

In §3, we have discussed E2 [33], Split/Merge [37],

StatelessNF [27], and OpenNF [25]. We do not revisit

them here. There are some specific (not general) NF im-

plementations that internally support horizontal scaling

including Maglev (load-balancer) [21], Protego (IPSec

gateway) [41], and Bro Cluster [34]. These systems

leverage each NF-specific techniques, but cannot be

generalized for other types of NFs.

The design and implementation of S6 are heavily

inspired by previous work. There are many systems

adopting the concepts of DSO to build distributed sys-

tems. RPC frameworks such as (CORBA [1], DCOM [2],

and RMI [4] provide state access in a uniform manner

across heterogeneous languages and software. Thor [17]

is a distributed database system that takes care of object

distribution, sharing, and caching. Fabric [29] is a dis-

tributed application building framework, which focuses

on guaranteeing information security among distrust

users. All of above systems provide uniform access

to objects distributed across nodes, guarantee object

consistency, and provide high availability. Yet, none

of the above focuses on supporting high-performance

requirements such for NFs and elastically adjusting the

number of instances on the cluster with minimal inter-

rupts. S6 extends the DSO to support elastic scaling and

optimal performance both for under normal operations

and during scaling events. We also acknowledge that use

of lightweight multi-threading for masking remote access

latency can be found in other application domains, e.g.,

distributed graph processing [31].

Distributed shared state can exist at different levels

of abstraction from low-level memory to a higher-level

object-oriented model. Distributed key-value stores

provide a wider range of state abstractions such as

blobs [19, 23, 32] and abstracted data types [7], with

properties from ACID to eventual consistency [19]. Par-

titioned Global Address Space (PGAS) allows multiple

machines to share the same virtual address space for

their physical memory [16, 20, 26]. This abstraction is

useful in supporting machine-level optimizations (e.g.,

dirty page tracking [16], RDMA [20]) but is too low-level

for our context. A single page may contain multiple

state variables each with different affinity or consistency

semantics, making it impossible to migrate state for

optimal state-operation affinity. We choose objects to

abstract state, because it allows easy to program various

requirements of objects; it is easy to program integrity

and control accesses to its encapsulated set of data.

10 Conclusion

We presented S6, a framework for building elastic scaling

of NF. S6 extends the DSO model to support elastic scal-

ing of NFs without compromising performance, while

the object abstraction transparently hides the complex

details of data locality, consistency, and marshaling.

S6 introduces a various mean to meet the performance

requirements of NFs: “smart but lazy” reorganization

of DSO space to minimize the performance overhead

during scaling events; micro-threaded architecture to

mitigate remote access latency; and programming model

to trade performance with freshness per object require-

ments. Compared to previous work, S6 shows minimal

performance overhead during scaling events (10-100x

than OpenNF [25]) as well as during normal operations

(2-5x than StatelessNF [27]. Our code is available at

https://github.com/NetSys/S6.
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