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Abstract—The emerging technology of connected vehicles
generates a vast amount of data that could be used to enhance
roadway safety. In this paper, we focused on safety applications
of a real field connected vehicle data on a horizontal curve. The
database contains connected vehicle data that were collected
on public roads in Ann Arbor, Michigan with instrumented
vehicles. Horizontal curve negotiations are associated with a great
number of accidents, which are mainly attributed to driving
errors. Aggressive/risky driving is a contributing factor to the
high rate of crashes on horizontal curves. Using basic safety
message data in connected vehicle data set, this paper modeled
aggressive/risky driving while negotiating a horizontal curve. The
model was developed using the machine learning method of
random forest to classify the value of time to lane crossing (TLC),
a proxy for aggressive/risky driving, based on a set of motion-
related metrics as features. Three scenarios were investigated
considering different TLCs value for tagging aggressive driving
moments. The model contributed to high detection accuracy
in all three scenarios. This suggests that the motion-related
variables used in the random forest model can accurately reflect
drivers’ instantaneous decisions and identify their aggressive
driving behavior. The results of this paper inform the design
of warning/feedback systems and control assistance from unsafe
events which are transmittable through vehicles-to-vehicles and
vehicles-to-infrastructure applications.

Index Terms— Aggressive driving, connected vehicle data,
horizontal curves, random forest, traffic safety.

I. INTRODUCTION

ITH the advent of connected vehicles (CV) technol-

ogy, there will be an unprecedented opportunity for
applications of vehicles-to-vehicles (V2V) and vehicles-to-
infrastructure (V2I) communications. Applications of CV tech-
nology focus on four main objectives: improving safety,
enhancing mobility, improving operational performance, and
reducing environmental impacts. Focusing on safety applica-
tions such as work zone alerts, stop sign violation warnings,
and curve speed warnings [1], it is expected that V2V com-
munication systems could potentially address approximately
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80% of all police-reported crashes annually [2]. Soon, as the
technology becomes more available, affordable, and acceptable
by the public, it will be implemented in an increasing number
of vehicles, providing a large volume of data. Intelligence
obtained from such “big data” has the potential to enhance
safety by providing immediate feedback to drivers as well
as informing advanced driver-assistance systems. Research
on CV technology and applications is a relatively new area
of study. Test beds utilizing CV technology in the US are
located in Virginia, Michigan, Florida, Arizona, California,
and New York [3]. There are CV test beds and pilot programs
in other countries such as UK, Germany, China, and others as
summarized in [4].

CV applications greatly depend on basic safety mes-
sages (BSM), also referred to as ‘“heartbeat” messages and
defined in the Society of Automotive standard J2735, Ded-
icated Short Range Communications (DSRC) Message Set
Dictionary [5]. In this study, we take advantage of the big
data collected through the real field CV study of Ann Arbor
Safety Pilot Model Deployment [6], and explore this core
data transmitted through V2V and V2I technology. The BSM
is used to examine driver behavior and style of driving
(e.g. aggressive/risky driving). Modeling driver behavior has
various applications ranging from understanding the human
factor aspects of the driving task to designing driving assistant
systems. Depending on the research need, different measures
of driving behavior such as perception reaction time, decision
dynamics, desired speed/acceleration, lane-keeping behavior,
and biometric measures have been targeted in research studies.

The focus of the study presented in this paper is to identify
aggressive/risky driving behaviors on horizontal curves using
real field BSM data. Development of connected vehicles appli-
cations to improve safety of the horizontal curves is crucial
since the average accident rate for horizontal curves is approxi-
mately three times that of highway tangents [7] and about 25%
of fatal crashes occur along horizontal curves [8]. Of these
fatal crashes, around 76% are single-vehicle crashes where the
vehicle left the roadway and hit a fixed object or overturned [9]
attesting to drivers’ loss of control in negotiating curves.

A large body of literature has focused on horizontal curve
safety issues (for examples see [10]-[13]). Proper speed
and accurate steering maneuvers are the two important fac-
tors associated to the safe navigation of a horizontal align-
ment. The impact of excessive speed on crash occurrences
is well documented. Approximately 30% of fatal crashes are
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speed related [14]. On curves, the inappropriate selection
of speed results in the inability to maintain lane position
and potentially could lead to crashes [14], [15]. The initial
speed of a vehicle before entering a curve has a statistically
significant effect on the probability of successfully navigating
the curve [16]. Speed reduction while traversing a curve
impacts the frequency and severity of crashes as well [17];
it has been shown that the mean accident rate decreases almost
linearly with the mean speed reduction [18]. Selection of
vehicle speed affects vehicle path trajectory throughout the
curve, which are both attributed to driver behavior and style
of driving. Recognizing driver behavior and curve negotiation
style supports the development of intelligent driver assistant
systems which can offer a personalized feedback to enhance
traffic safety on curvy roads.

A two-level process has been defined for steering control
through curves; namely, an open loop anticipatory control
process in far regions which provides cues for predicting
curvature and steering angle, and a closed-loop compensatory
control process providing cues for correcting deviations from
path [19]. However, path decision behaviors such as curve-
cutting needs further investigation. Drivers’ trajectory and
path decisions depend on several factors such as perceived
curvature, estimate of vehicle characteristics, driver psycho-
logical and physical states, and visibility. It is documented
that drivers tend to cut curves to compensate for excessive
speed and improper steering angle at curve entry [20], [21].
Approximately, 33% of drivers cut left-hand curves and 22%
cut right-hand curves [22]. Higher crash rates are corre-
lated with vehicle path radius at the point of highest lateral
acceleration [9].

Understanding driving style helps with the evaluation of
vehicle performance such as energy consumption [23] and
traffic safety [24]. Taubman-Ben-Ari ef al. [25] divided the
driving style into eight categories: dissociative, anxious, risky,
angry, high-velocity, distress reduction, patient, and careful.
Although there is no consensus regarding “aggressive driving”
definition in the literature [26], there is a consensus on the
negative effect of aggressive driving style on crash occurrence.
However, classifying a particular driver is difficult since the
collective driving data of an aggressive driver may include
only isolated instances of aggressive driving behavior. The
variance in driving styles is affected by disturbances from
driving environments and driver physical or psychological
factors. Also, it should be noted that the aggressive threshold
value is different for individuals [27].

A number of studies [28]-[33] have employed smart-
phone sensors such as accelerometers and gyroscopes to
analyze driver behavior and style in order to identify
aggressive driving. Johnson and Trivedi [31] collected more
than 200 driver events (e.g. aggressive right turns, aggressive
lane change, aggressive braking, etc.) by three different vehi-
cles and three different drivers. One of their findings was
that the combination of accelerometer and gyroscope data
significantly improves the detection accuracy of driving events.
In another smart phone study, Hong et al. [30] defined ground
truth for aggressive/non-aggressive driving by two approaches:
self-reports of accidents and a driving style questionnaire.
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Machine learning techniques have been applied to the
driving style classification problem. Wang and Xi [34] used
a driving simulator data with 8 participants and applied
SVM and k-means methodologies to classify drivers into
aggressive or moderate when negotiating. They also labeled
each participant as aggressive or moderate before running the
tests through a questionnaire completed by the participants.
In terms of model variables, they employed speed and throttle
opening. A review paper [35] on driving style analysis found
Fuzzy Logic inference systems, Hidden Markov Models, and
Support Vector Machines as promising artificial intelligence
algorithms.

Acceleration has been used as an intuitive measure to
identify aggressive driving. For example, De Vlieger defined
a range of 0.85 to 1.1 m/s2 as aggressive driving. However,
speed is a critical variable that affects the capability of vehicles
to accelerate/decelerate and, thus, aggressive driving based
on acceleration should be defined differently for different
speed ranges [26]. Motion-related variables such as accel-
eration/deceleration and vehicular jerk were used in [26] to
identify aggressive driving (volatile driving in their termi-
nology). A behavior is considered aggressive if accelera-
tion/deceleration or vehicular jerk go beyond one standard
deviation across all data points for a certain speed range.
This identifies a particular moment of driving as aggressive
behavior. They also aggregated these aggressive moments
on an individual basis to identify subjects with the highest
percentage of aggressive behavior.

In addition to motion-related variables, time-to-lane cross-
ing (TLC) is a factor that can be used to assess risky
driving behavior while negotiating curves. TLC has been
suggested as a driver-imposed risk/performance management
criteria that acts as a satisficing control [36]. That is, drivers
attempt to maintain driving within an acceptable range of
acceptable TLCs. TLC can be considered a measure of risk
since it indicates the time available to execute a corrective
action. The viability of lane departure warning systems using
TLC has been demonstrated, but they typically utilize onboard
cameras [37], [38] or GPS/mapping devices [39] rather than
CV data and do not focus on identifying aggressive driving.
A benefit of the TLC metric is that it allows for a moment
by moment classification of aggressive driving in real time,
as opposed to requiring the full data set to identify aggressive
driving.

In this paper, we develop a model using a machine learning
approach to identify motion-based factors that can predict
aggressive driving for horizontal curve negotiation. The model
is trained using the basic safety message (BSM) data from
a real field connected vehicle study. Modeling and analysis
of driver behavior in a realistic manner using the emerging
technology of CV is a vital step towards the development of
countermeasures to increase safety on curvy roads. To our
knowledge, the present paper is among the first efforts to use
real-world CV data focusing on driver behavior modeling on
horizontal curves.

The remainder of this paper is organized as follows: The
next section provides the description of data and study site.
Then, research methodology is discussed including variable
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Fig. 1.

Study site.

selection logic, aggressive driving tagging process, and classi-
fication method. Later, the results of the developed model are
described followed by conclusions and future directions.

II. DATA DESCRIPTION AND STUDY SITE

The data used in this study are a part of the Safety
Pilot Model Deployment (SPMD) study that were obtained
through a transportation data sharing system, Research Data
Exchange, provided by the U.S. Federal Highway Admin-
istration [40]. The data were collected during two months
of October 2012 and April 2013 in Ann Arbor, MI from
over 2,700 vehicles, equipped with CV technology. The
SPMD study makes available a rich database for research on
CV technology to explore the potential of this “big data” for
CV applications.

This study used BSMs sent and received by vehicles
and roadside equipment participating the SPMD. The BSM
includes data on vehicle’s state of motion and location such
as current location, speed, heading, etc. that is transmitted with
a frequency of 10 Hz. More specifically, the "BsmP1" file in
the SPMD dataset for April 2013 was used. The “BsmP1”
contains Part I elements of the BSM and a limited number of
elements of Part II. The “BsmP1” was collected through the
vehicle’s Controller Area Network (CAN) bus and transmitted
via an onboard Wireless Safety Unit (WSU). This immense
dataset is available in a compressed CSV format with the size
of 51.9 GB expanding to 204 GB with around 1.5 billion
rows of data. Scripting in the R programming language was
used to process and extract information. For descriptions of
the data elements in the “BsmP1” file, readers are referred to
the metadata files [41], [42].

Eastbound of a horizontal curve on Plymouth Rd
in Ann Arbor, Michigan, with latitude and Ilongitude
of 42.299487 and —83.725144 (curve midpoint) was selected
for the study site (shown in Fig. 1). The SPMD study area
included a small number of horizontal curves. An eastbound
curvature on Plymouth Rd was chosen due to its isolation
and a relatively few number of access roads throughout the
curvature to minimize the effect of road environment factors.
No advisory speed is posted for the curve, and posted speed
limit on the approaching tangent is 56 km/h (35 mi/h). The
curve length and radius are 274 m and 180 m, respectively.
Vehicle trajectories along with motion information (i.e. speed,

acceleration, etc.) provided by BSMs were extracted for use
in identifying aggressive/risky driving as vehicles negotiate
this curve. Access roads are present beyond the midpoint of
the curve. The presence of the access roads likely affects
curve negotiation behavior as drivers use and react to other
drivers using them. To avoid this influence all data points
east of (42.299469, —83.724666) (i.e. study end point) were
eliminated from consideration.

III. METHODOLOGY

Time to lane crossing (TLC) was used to tag risky driving
behavior while negotiating a curve, which provided target
classes to perform supervised learning analysis. In addition,
motion-related variables such as longitudinal acceleration,
speed, and longitudinal jerk were used to identify aggressive
driving. Another important class of factors that were consid-
ered is roadway design characteristics. Intuitively, a certain
deceleration value for a horizontal curve may not be consid-
ered as aggressive, but the same value for a highway seg-
ment could reflect an aggressive behavior. Therefore, focusing
on specific roadway sections (curves, highway section, etc.)
while defining aggressive, greatly reduces this generalization
error. Below we discuss how TLCs and motion-related vari-
ables were explored and applied in this study’s methodology.
Subsequently, our classification method based on these metrics
are discussed.

A. Aggressive Driving Tagging Using Time to Lane Crossing

Time to lane crossing (TLC) can be calculated as either
straight-line TLC, which is defined as the time to leave
the lane if the current heading and speed are maintained or
curved TLC, which is the time to leave the lane if the current
yaw rate is maintained. This research considers only straight-
line TLC, as it is generally considered more accurate and
easier to calculate. [36]. For simplicity, conditions such as
vehicle vibration and external disturbances, which have been
shown to have an effect on TLC in simulation studies [43],
have been ignored.

The calculation of TLC requires knowledge of the location
of lane boundaries, which is not provided with the BSM
data. Using Google Earth, an attempt was made to extract
the GPS coordinates of the lane boundaries; but when plotted,
many of the vehicle trajectories appeared to be located outside
of the road. This nonsensical finding is likely due to an
incompatibility between the GPS recording devices in the
two systems. To eliminate this issue, the lane boundaries
were assumed to be the 99% confidence interval (CI) of all
vehicle trajectories. Because the points at which the vehicles
were assessed were non-uniform, to determine the 99% CI,
trajectories were interpolated into curves sharing uniform
independent variable (x) positions. This was done by fitting
a cubic smoothing spline to each curve with the longitude
measurement serving as the independent variable (x) and the
latitude serving as the dependent variable (y). Each spline
was then evaluated at a common set of points L = {l j}, for
j =1...60 such that /; was the minimum longitude value
over all trajectories, /gn was the maximum longitude value over
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Fig. 2. Three boundary crossing scenarios along with the number of instances
of each case in the BSM dataset.

all trajectories, and all other /;’s were evenly spaced between
[1 and l¢p. (l s f il j)) represents the interpolated point of the
i trajectory evaluated at / ;. Denote the 0.005 and 0.995 quan-
tile of fi ({;) over all i’s as ij and ij, respectively. The
sets of points (lj,fAjL) and (lj,fAjU) for j = 1...60 trace
out the lower and upper bounds, respectively, of the 99%

CI trajectory. The mean path (l s fj), where f; is the mean
over all i’s of f(l;), was also calculated. In analyses outside
the scope of this paper, sixty interpolation points were found to
produce a smooth curve without being unduly computationally
expensive.

With the lane boundaries established, the TLC was able
to be calculated as follows. Let o! be the ™ observation of
the i™ vehicle trajectory. Each of has an associated vehicle
position, speed, and heading. Using the direction provided by
the heading, a straight line was extended from the position
of each o! and the location of the intersection of this line
with the lane boundary was calculated. The lane boundary is
described non-parametrically so a numerical routine was used
to identify the point of intersection. Because vehicles were
traveling east, only intersections east of the vehicle position
(longitude greater than the vehicle’s position) were consid-
ered. There were three possible scenarios for lane boundary
intersection: (1) intersect the left boundary (upper 99% CI)
first, (2) intersect the right boundary (lower 99% CI) first, or
(3) intersect neither boundary. There were 551,326 instances of
the first scenario, 2,629 instances of the second scenario and
zero instances of the third scenario as illustrated in Fig. 2;
therefore, only TLCs associated with intersecting the left
boundary are considered hereafter as it is, by far the most
common lane departure scenario. Let d’ be the distance from
the position associated with o! to its intersection point with the
road boundary and s/ be the speed associated with of. Then

TLC! = Csl—f is the TLC of the ™ observation of the i vehicle
t

trajectory. For a small number of observations s,i was equal
to 0; TC; for these cases was undefined.

Summary metrics of TLCs are now provided. Observations
with undefined TLCs were not included in this analysis.
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Fig. 3. a) Distribution of TLC values, and b) distribution of mean TLCs for
each driver.

mean_TLC

Long

Fig. 4. Mean trajectory around the curve colored by the average TLC value.

Additionally, TLCs greater than 10 sec were also disregarded
since the large value likely represented either device mal-
function or low speeds that did not fit our focus on curve
negotiation. The mean TLC over all observations was 1.72 sec.
A kernel density estimate, illustrated in Fig. 3a, of the distri-
bution of TLC values was calculated via the density function
in the R Statistical Software package using the default options
of a Gaussian kernel and the nrd0 rule for the section of the
bandwidth. TLCs were also summarized by individual driver,
as shown in Fig. 3b, which illustrates a kernel density estimate
of the distribution of mean TLCs for each driver.

We first note that Fig. 3a justifies the non-inclusion of TLCs
> 10s, as the distribution is essentially flat from approximately
5s onwards. Fig. 3b indicates that there is a bimodality in
the distribution of driver mean TLCs, despite the fact that
the distribution of all TLCs is approximately normal. The
bimodality suggests that drivers generally stratify two well-
defined categories — either large TLCs, associated with drivers
exercising a high degree of caution or small TLC associated
with less caution. A greater number of drivers fall into the
latter category.

Geospatial effects of TLC were also observed by examining
the TLC of observations that were situated near each other.
To do this, 60 bins were created, each one centered at an /;
with a width equal to I — [;. Each observation was placed
into the bin where its Longitude measurement fell and the
mean TLC value per bin was calculated. Fig. 4 illustrates the
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Fig. 5. Classification of aggressive and normal driving based
on a) longitudinal acceleration, b) longitudinal jerk, c) yaw rate, and d) angular
jerk.

mean trajectory, fj, around the curve colored by the average
TLC value. As expected, the highest TLC values are located
at the apex of the curve. As this part of the curve is reached,
there is a gradual increase in TLC values. This figure serves
as confirmation that the TLC calculations yield reasonable
results.

The correlation between TLC and each driver’s average
speed around the curve was also calculated and was found
to be —0.025, indicating essentially no correlation. Even
though TLC is inversely proportional to speed, the TLC metric
captures information about driving behavior that is not possible
by examining speed alone.

In this study, we used the calculated TLCs as a tagging
variable for aggressive versus normal driving classification.
Further explanation is provided in the classification method
section below.

B. Variables Selection Using Motion-Related Metrics

Aggressive driving has been attributed to motion-related
variables. Most existing studies used a single value as a
threshold for identifying aggressive driving. Wang et al. [26]
took a step further in defining aggressive driving by includ-
ing the variation of acceleration/deceleration for different
speeds. Aggressive driving was defined as longitudinal acceler-
ation or longitudinal jerk exceeding one (or two) standard devi-
ation above or below the mean [26]. The longitudinal jerk is
the derivative of longitudinal acceleration with respect to time,
which can reflect instantaneous driver decisions (i.e. abrupt
movements).

Using this definition, Fig. 5a and Fig. 5b illustrate how
acceleration and vehicular jerk, respectively, can be used to
distinguish aggressive driving behavior from normal driving
behavior for different speeds using this study’s dataset. For
example, if a vehicle acceleration at a certain speed range is
greater than the mean acceleration plus two standard deviations
for that specific speed range, that moment is marked as

aggressive, as shown in Fig. 5a. As can be seen in Fig. 5a and
Fig. 5b, the standard deviation of either acceleration or jerk is
larger at lower speeds. These figures show that many driving
moments especially between speeds of 14 m/s and 22 m/s are
labeled as aggressive.

As the focus of this study is on navigating horizontal curve,
another important variable that can reflect instantaneous driver
decisions is the yaw rate, also known as the rotational (angular)
acceleration. In horizontal curves, the vehicular jerk based on
the yaw rate, known as angular jerk, can also be considered as
a factor reflecting an instantaneous driver decision. Aggressive
driving can be differentiated from normal driving based on
these metrics in a similar fashion as was shown for acceleration
and longitudinal jerk as shown in Fig. 5¢ and Fig. 5d. Due
to high variability of yaw rate, a wide range was found
indicating normal driving moments as shown in Fig. 5c. Unlike
other variables, standard deviation of angular jerk as shown
in Fig. 5d, was not sensitive to the speed, and thus normal
driving behavior is associated with almost constant range for
different speeds.

To extend the investigation of other factors that might con-
tribute to identifying aggressive driving behavior, we selected
a variety of motion-related variables as predictors to be
included in the aggressive driving detection model. Two types
of motion-related variables were assessed: (1) variables with
explicit values, and (2) variables that were defined based on
standard deviations of the variable associated with relevant
speed ranges. The predictors examined in modeling aggressive
driving behavior are summarized in appendix. The monitoring
period used in defining the predictors refers to a time period
immediately before an observation during which variables
such as speed and acceleration were extracted. More detailed
about the monitoring period and the variables are provided in
the classification method section below.

C. Risky/Aggressive Driving Classification Method

An aggressive/risky or normal driving moment at time ¢
for the i’ driver (M) was defined based on the use of the
TLC metric as ground truth. Intuitively, as the TLC decreases
the driver has less time to make adjustment in order to avoid
lane crossing. The selection of a specific TLC threshold to
identify a risky and normal moment would be suboptimal,
and somewhat arbitrary, as it does not account for differences
between drivers. Thus, this study uses multiple TLC values to
label these moments. Assuming the threshold is denoted by #,
the driving moments with TLC exceeding & are labeled as nor-
mal driving moments, and the ones less than ., were labeled as
risky driving moments. Therefore, for each o!, M/ is defined
as a binary variable with a value of either risky or normal.
This variable serves as the response variable in model devel-
opment. Once a risky or normal driving moment is labeled,
the monitoring period immediately before this moment is
considered during which motion-related variables that can
reflect aggressive behavior were extracted. For example, if the
length of the monitoring period is 7' seconds including p data
points, AL]:F p represents vehicle longitudinal acceleration
of p points over the monitoring period immediately before
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TABLE I
PREDICTORS EXAMINED IN CLASSIFICATION MODELING

Motion-related variables over the monitoring period
A;—l:t—p =Ar1, At 'Aé—p
Al_,: longitudinal acceleration of the it" driver at time t — 1
Ytl_—l:t—p =Y Y2 Yy
Y ,: yaw rate of the i** driver at time t — 1
L]tl_—l:t—p =Lji1 Lo ---'L]é—p
LJ{_,: longitudinal jerk of the i*" driver at time t — 1
R];.—l:t—p =RJi-1RJi 2 "'!A;—p
RJ}_;: rotational jerk of the i*" driver at time t — 1

oﬁ (i.e. AL] , ALQ, e A;_p). Other motion-related variables
extracted from monitoring periods are presented in Table I.
Statistical measures, namely maximum (.), minimum (.),
and variance (.), were used to create predictors associated
with monitoring periods. The statistical measures applied over
monitoring periods can capture aggressive driving indicators
such as hard braking (i.e. minimum(D"_lzt_p)) or swerving

71%17)). Random forest classification [44],
an ensemble learning method, was employed to classify a
driving moment as either risky or normal based on the
predictors. Random forest has been shown to produce results
as good as other powerful methods such as SVM [45], [46].
The random forest method essentially proceeds by implement-
ing a collection of decision trees. Each tree is grown from a
root node, where the entire data set is divided into two parts
(nodes) by applying the recursive binary splitting method.
This procedure continues to grow the tree. At each node,
the data is divided into the next two nodes using different
criteria. The stratification at each node is specified by the
Gini index criterion, which is recommended in [46], and it
was applied in the present study. Equation (1) shows the Gini
index formulation. To classify an observation, the majority
vote of all tree outputs is used with ties broken at random.

(varianc (RJ;

K
G:Zp;fu—P,;") (1)
=1
where,
1
Pkm=ﬁ Z 1()’?1=k)
ofeo’”
P Proportion of class k observations in node m
N Number of observations received at node m
(M;)™  The response value corresponding to the tth
observation of the ith vehicle trajectory at node m
o Observations received at node m
o0} the tth observation of the ith vehicle trajectory
k Class (aggressive or normal)

To define risky/aggressive moments three TLC thresholds were
investigated (1.5, 1, and 0.5 seconds). As the TLC threshold
decreases the number of moments identified as risky decreases,
which results in imbalanced data. For example, using TLC
threshold of 0.5 seconds, approximately 15,000 moments were
labeled as risky, meaning that the minority class (i.e. risky
moments) constitutes less than three percent of the entire data.
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Fig. 6. Random forest parameter optimization: a) impact of number of trees
on error assuming number of features used is 5 b) impact of number of features
on error assuming number of trees used is 100.

TABLE 11
PERFORMANCE SUMMARY OF CLASSIFICATION MODELS

TLC threshold 1.5 1.0 0.5
OOB error 7.30% 9.46% 3.56%
Misclassification rate ~ 7.23% 9.47% 3.57%
AUC 97.11% 94.74%  95.34%

Imbalanced data can result in poor performance since the
minority class may not sufficiently be present in bootstrap
samples in random forest procedure. Balanced random for-
est [47] that uses stratified bootstrapping was applied to deal
with imbalanced data issue. It was assumed that the monitoring
period as defined earlier is three seconds in all scenarios. As a
result, the driving moments up to three seconds from the start
of each trajectory were excluded because there was insufficient
data to perform the analysis. The randomForest package [48]
was adopted to implement our procedures. Optimizing random
forest models requires two parameters to be tuned; number of
trees and number of variables (features) used in tree nodes.
The tuning process is shown in the results section below.

IV. RESULTS

Here we discuss the results of the three scenarios.
As shown in Fig. 6, as the number of trees increases the
Out-Of-Bag (OOB) error and misclassification rate decreases.
After approximately 80 trees no significant improvement can
be observed. To ensure that the model achieves the best
possible performance, a large value of 400 trees was used
knowing that increasing the number of trees would not have
a negative impact. Increasing the number of variables used in
each decision tree may not necessarily result in better accuracy.
As a rule of thumb, the square root of total number of variables
should be a good value [49]. Having a total of 23 variables
suggests using 4 or 5 for this parameter. As shown in Fig. 6,
using more than one variable led to similar performances.
It should be noted that the OOB error was very close to the
test error on Fig. 6b so the respective curves are on top of
each other. In the final random forest model, the value of 4
was selected to use.

Misclassification rate based on the test data and the
OOB error for all three scenarios (i.e. TLC threshold =
0.5, 1, and 1.5) are presented in Table II. Relatively small error
rates were found in all scenarios suggesting that motion-related
variables examined over a short monitoring period are good
indicators in identifying aggressive/risky driving moments,
as defined by TLC. As an example, when using a TLC
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Fig. 7. ROC and AUC for the three scenarios.
Scenario 1 Scenario 2 Scenario 3
Actual Actual Actual
= = =
% risky inorm F_.; risky inorm % riskyinorm
3 risky 541705193 S risky 211448939 3 irisky 3109:4143
& normi4512 170309 | & normi3776 1100325; AL normi644 126288
Fig. 8. Confusion matrices for the three scenarios (cut-off point = 0.5).

threshold of 1.5, more than 250,000 moments were labeled as
risky resulted in a fairly balanced data. The misclassification
rate and the OOB error were found to be 7.23% and 7.30%,
respectively.

In addition, receiver operating characteristic (ROC) curves
and the associated area under the curve (AUC) are shown
in Fig. 7. In all three cases, the AUC was very high, but it
should be noted that there is a tradeoff between high true
positive rates and low false positive rates. After calculating
probabilities of each class, a cut-off point is used to decide
if an observation is predicted as risky or normal. The default
cut-off point is 0.5, which means if the class probability of a
new observation for risky class is more than 0.5, it is predicted
as risky and normal if is less than 0.5. The confusion matrices
associated with the default cut-off point for the three scenarios
are shown in Fig. 8. True positive rates, false negative rates
and other similar metrics can be calculated using the confusing
matrices. For instance, the confusion matrix of scenario 3 as
shown in Fig. 8, leads to a false negative rate of 17.16%,
which means 17.16% of the time an actual risky moment
was misclassified as normal. Also, 3.17% of the time an
actual normal moment was misclassified as risky (i.e. false
positive rate) for the same scenario. High false negative (or low
true positive) rates show that the system performs poorly as
it frequently fails to correctly detect risky behaviors. The
ROC curve indicates that there exist scenarios with a high true
positive rate that also have a high false positive rate, which
could negatively impact users’ trust in the system.

A great advantage of random forest method is that it
internally calculates variable importance that conveys the
strength of each variable towards predictions within the model.

Scenario 1 Scenario 2 Scenario 3
Y_MPmin o Y_MPmin 9 JY_MPmax |
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Fig. 9. Variable importance for the three scenarios.

Fig. 9 illustrates variable names in the order of importance for
all three scenarios. The importance was calculated based on
the Gini index averaged over all trees. Minimum yaw rate
and maximum rotational jerk over the monitoring period were
found to be the two most important variables in identifying
aggressive behavior in both scenario 1 and 2 as shown
in Fig. 9. The third most important variable was maximum
yaw rate and minimum rotational jerk in scenario 1 and 2,
respectively. In scenario 3, the top three variables were max-
imum rotational jerk, minimum speed, and maximum speed
over the monitoring period. In all three scenarios, maximum
rotational jerk was found to be either the most or the second
most important variable. This variable can be interpreted as
how fast a steering wheel is turned by the drivers, which log-
ically should have a critical effect when navigating horizontal
curves. In all three scenarios, the variables that were created
based on standard deviation of variables (e.g. A_MPI1SD,
J_MP2SD, etc.) were among the least important variables.

V. CONCLUSIONS

This study employed real field connected vehicle data to
identify aggressive driving behavior while negotiating horizon-
tal curves. Aggressive driving moments were defined based
on a TLC metric that generated three different scenarios.
A random forest methodology was used to develop an aggres-
sive driving detection model. This model contributed to high
detection accuracy in all three scenarios. This suggests that
motion-related variables used in the random forest model can
accurately reflect drivers’ instantaneous decisions. Variable
importance analysis was assessed via the random forest model;
maximum yaw rate, maximum rotational jerk, minimum rota-
tional jerk, maximum speed, and minimum speed over the
monitoring period were among the most important variables.
The importance of yaw rate in all three scenarios implies that
abrupt turns of steering wheel is likely the most critical event
on horizontal curves. On the other hand, a group of variables
created based on standard deviation of other motion-related
variables were found less significant in identifying aggressive
driving.

It is expected that in near future vehicles will be
able to communicate with each other and with intelligent
infrastructure such as traffic signs at horizontal curves.
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TABLE III
PREDICTORS EXAMINED IN CLASSIFICATION MODELING
Variable Description
Type 1 variables

A_MPmax Maximum acceleration experienced over the monitoring
period

A _MPmin Minimum acceleration experienced over the monitoring
period

A_MPvar Acceleration variance over the monitoring period

S MPmax Maximum speed experienced over the monitoring period

S MPmin Minimum speed experienced over the monitoring period

S MPvar speed variance over the monitoring period

Y MPmax Maximum yaw rate experienced over the monitoring
period

Y _MPmin Minimum yaw rate experienced over the monitoring
period

Y MPvar yaw rate variance over the monitoring period

J MPmax Maximum longitudinal jerk experienced over the
monitoring period

J_MPmin Minimum longitudinal jerk experienced over the
monitoring period

J_MPvar longitudinal jerk variance over the monitoring period

JY MPmax  Maximum angular jerk experienced over the monitoring
period

JY MPmin Minimum angular jerk experienced over the monitoring
period

JY MPvar angular jerk variance over the monitoring period

Type 2 variables

A_MPISD Percentage of time over the monitoring period where
acceleration exceeds 1 standard deviation below or above
its mean

A_MP2SD Percentage of time over the monitoring period where
acceleration exceeds 2 standard deviations below or above
its mean

Y MPISD Percentage of time over the monitoring period where yaw
rate exceeds 1 standard deviation below or above its mean

Y MP2SD Percentage of time over the monitoring period where yaw
rate exceeds 2 standard deviations below or above its
mean

J MPISD Percentage of time over the monitoring period where
longitudinal jerk exceeds 1 standard deviation below or
above its mean

J_MP2SD Percentage of time over the monitoring period where
longitudinal jerk exceeds 2 standard deviations below or
above its mean

JY MPISD  Percentage of time over the monitoring period where
angular jerk exceeds 1 standard deviation below or above
its mean

JY MP2SD  Percentage of time over the monitoring period where

angular jerk exceeds 2 standard deviations below or above
its mean

The communication capability opens the door for more intel-
ligent driver warning systems which alarm the risky behaving
drivers on curves of their unsafe actions and prevent crashes.
This information can also be communicated to the drivers to
provide feedback so the drivers could modify their driving
behavior. Future work includes application of unsupervised
learning algorithms to define aggressive driving, assessment of
monitoring period length, and aggressive driving identification
on other roadway environment.

The machine learning algorithm described within this paper
is unique in its ability to, in theory, identify aggressive/risky
driving in real time. It also has the ability to be personalized to
an individual driver’s history of TLC values or distribution of
motion-based variables. The viability and effects of this type
of personalization remain to be explored. Because our analyses
did not use actual, streaming data, practical considerations

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

such as the optimal frequency of assessment, required compu-
tational resources, and topography of driver alerts have yet to
be investigated. We are confident, though, that CV technology
will eventually lead to adaptive, data-centric systems that will
ultimately protect drivers. The work within this manuscript
represents a step towards this imagined future.

APPENDIX

This appendix provides Table III that summarizes all the
predictors that were defined and examined in classification
modeling.
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