
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tgis20

International Journal of Geographical Information
Science

ISSN: 1365-8816 (Print) 1362-3087 (Online) Journal homepage: http://www.tandfonline.com/loi/tgis20

A meta-modeling approach for spatio-temporal
uncertainty and sensitivity analysis: an application
for a cellular automata-based Urban growth and
land-use change model

Seda Şalap-Ayça, Piotr Jankowski, Keith C Clarke, Phaedon C Kyriakidis &
Atsushi Nara

To cite this article: Seda Şalap-Ayça, Piotr Jankowski, Keith C Clarke, Phaedon C Kyriakidis &
Atsushi Nara (2018) A meta-modeling approach for spatio-temporal uncertainty and sensitivity
analysis: an application for a cellular automata-based Urban growth and land-use change
model, International Journal of Geographical Information Science, 32:4, 637-662, DOI:
10.1080/13658816.2017.1406944

To link to this article:  https://doi.org/10.1080/13658816.2017.1406944

Published online: 29 Nov 2017.

Submit your article to this journal 

Article views: 167

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tgis20
http://www.tandfonline.com/loi/tgis20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/13658816.2017.1406944
https://doi.org/10.1080/13658816.2017.1406944
http://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tgis20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/13658816.2017.1406944
http://www.tandfonline.com/doi/mlt/10.1080/13658816.2017.1406944
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2017.1406944&domain=pdf&date_stamp=2017-11-29
http://crossmark.crossref.org/dialog/?doi=10.1080/13658816.2017.1406944&domain=pdf&date_stamp=2017-11-29


ARTICLE

A meta-modeling approach for spatio-temporal uncertainty
and sensitivity analysis: an application for a cellular
automata-based Urban growth and land-use change model
Seda Şalap-Ayça a,b, Piotr Jankowskia,c, Keith C Clarke b, Phaedon C Kyriakidisb,d

and Atsushi Naraa

aDepartment of Geography, San Diego State University, San Diego, CA, USA; bDepartment of Geography,
University of California Santa Barbara, Santa Barbara, CA, USA; cInstitute of Geoecology and
Geoinformation, Adam Mickiewicz University, Poznań, Poland; dDepartment of Civil Engineering and
Geomatics, Cyprus University of Technology, Lemesos, Cyprus

ABSTRACT
The paper presents a computationally efficient meta-modeling
approach to spatially explicit uncertainty and sensitivity analysis
in a cellular automata (CA) urban growth and land-use simulation
model. The uncertainty and sensitivity of the model parameters
are approximated using a meta-modeling method called polyno-
mial chaos expansion (PCE). The parameter uncertainty and sensi-
tivity measures obtained with PCE are compared with traditional
Monte Carlo simulation results. The meta-modeling approach was
found to reduce the number of model simulations necessary to
arrive at stable sensitivity estimates. The quality of the results is
comparable to the full-order modeling approach, which is compu-
tationally costly. The study shows that the meta-modeling
approach can significantly reduce the computational effort of
carrying out spatially explicit uncertainty and sensitivity analysis
in the application of spatio-temporal models.
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Introduction

Increasing urban population directly affects the pressure on the available urban and
suburban land with negative impacts on biodiversity in favor of urbanization. To represent
these land-use dynamics, a cell-based spatial diffusion approach called cellular automata
(CA) has been frequently used for urban growth and land-use change (UG-LUC) modeling
(De Almeida et al. 2003, Torrens and Nara 2007, Clarke 2008, Moreno et al. 2008, Van Vliet
et al. 2016). CA-based models mostly involve many input factors including variables and
structural elements (e.g. transition rules). Any confidence in the results depends highly on
these input factors. It is therefore expected that some of the initial conditions may be the
drivers of model uncertainty (Kocabas and Dragićević 2006, Li et al. 2014, Dahal and Chow
2015). In the same context, it is critical to evaluate the influence of input factors on model’s
output so as to provide decision makers with confidence in their actionable information. To
this end, uncertainty and sensitivity analysis offer a way forward.
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Uncertainty analysis (UA) quantifies the model output variability, and sensitivity
analysis (SA) investigates how this uncertainty is apportioned among the model input
factors (Saltelli et al. 2000, Crosetto and Tarantola 2001). In particular, an uncertainty
and SA (U-SA) approach that is both independent from model structure and capable
of handling interaction effects is important for complex, nonlinear models (Halls 2002,
Chen et al. 2010, Roura-Pascual et al. 2010, Moreau et al. 2013, Xu and Zhang 2013,
Saint-Geours et al. 2014). Moreover, for spatio-temporal models, where the simulation
results are spatially distributed, it is additionally important to identify not only the
source(s) of uncertainty but also its location(s) at a specific time (Herman et al. 2013,
Abily et al. 2016). The resulting uncertainty maps can assist in locating uncertainty hot
spots, and the sensitivity maps help further in identifying the spatial pattern of
influential input factors behind the areas of high uncertainty (Ligmann-Zielinska
2013, Şalap-Ayça and Jankowski 2016). However, the traditional Monte Carlo-based
methods for U-SA require a large number of model evaluations; such a requirement
makes these approaches intractable for computationally expansive models (Saltelli
et al. 2010).

One approach to overcoming the computational bottleneck is high-performance com-
puting in the form of distributed and/or parallel computing (Tang and Jia 2014, Hu et al.
2015). Tang and Jia (2014) and Erlacher et al. (2017) accelerated U-SA with graphics
processing units (GPU) and Ligmann-Zielinska and Jankowski (2014) used a supercompu-
ter to overcome intractable models. Yet another approach without the need of access to
supercomputers or computationally powerful hardware is the use of surrogate or meta-
models (Saltelli et al. 2000). The meta-model, which is fitted to the model by a set of
experiments or model runs, replicates the behavior of the original model in the domain of
its influential input parameters (Oakley and Hagan 2000, Marrel et al. 2011).

Although it is common to calibrate and validate CA models for achieving a desirable land-
use pattern accuracy, only limited attention has been paid to spatially explicit U-SA. In this
study, we aim to contribute to the body of knowledge on spatio-temporal U-SA by using a
meta-modeling technique called Polynomial Chaos Expansion (PCE), which can reduce the
computational effort of performing a U-SA. We implemented our approach on a CA-based
model, called SLEUTH (Clarke et al. 1997), which has been widely used for simulating UG-LUC.
We also compared the results of PCE to the full-order Monte Carlo (MC) approach to show
how close the PCE reproduces uncertainty measures with fewer model computations than
MC. For the implementation, we first analyzed model output uncertainty on UA maps to
observewhere andwhen the range of variations ismost influential. We followed up on the UA
by studying sensitivity maps to identify the most influential inputs.

In the remainder of the paper, we provide background information on UG-LUC forecast-
ing, including SLEUTH modeling, and on the spatially-explicit approach to integrated U-SA.
In section three, we explain the basis of the PCEmethod. We then show, in section four, how
PCE can be applied in concert with U-SA to reveal the influence of the spatio-temporal
variations of input parameters on the model output.

Background

This section provides a brief introduction to CA as a simulation method for UG-LUC
modeling, followed by an introduction to U-SA and meta-modeling.
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CA-based urban growth and land-use forecasting

CA, pioneered by Ulam and Von Neumann (Ulam 1952, Von Neumann 1966), is based on
the generated dynamic behaviors under defined rules and constraints for certain con-
figurations (neighborhoods) (Holland 1999). Due to the similarity between CA and field
representations (i.e. a grid), especially for spatial systems based on grid representations,
the applications of CA proliferated in the understanding of complex geographical
systems (pioneering examples include: Tobler 1979, Couclelis 1985, White and Engelen
1993, 1994).

Within a set of regular cells, the cellular automaton, A, is defined by the set of states,
S, that change in discrete time steps based on transition rules, T, within a specified
neighborhood, N. Therefore, the basic formulation of a cellular automaton can be
written as:

A , leftðS; T;NÞ
For urban growth, the cell’s state is guided by transition rules, which reflect the

complexity of the environment. These rules act as a link between the spatial patterns
and the underlying spatial process. The transition rules are applied within the cell’s
neighborhood in temporal increments. The rules are not necessarily applied uniformly to
all cells since the evolution does not encapsulate each land form (i.e. water bodies in
UG-LUC modeling). However, the rules capture the intrinsic variability of the model’s
nature. As a result, CA model design is highly sensitive to the transition rules (White and
Engelen 1993, Torrens and O’Sullivan 2000, Ménard and Marceau 2005, Kocabas and
Dragićević 2006, Samat 2006, Yeh and Li 2006, Pan et al. 2010, Pontius and Neeti 2010).

SLEUTH for urban growth and land-use change modeling

SLEUTH is a widely used CA-based UG-LUC model, which is available along with a data
repository for various cities on the United States Geologic Survey (USGS) affiliated,
National Center for Geographic Information and Analysis (NCGIA) Project Gigalopolis
website (NCGIA n.d.). Comprehensive reviews on its usage and application areas can be
found in the literature (Clarke et al. 2007, Clarke 2008, Chaudhuri and Clarke 2013).

SLEUTH is the acronym for slope, land use, exclusion, urban extent over time,
transportation, and hill-shaded backdrop layers. The model is initialized with these 6
input layers and a scenario file containing all the necessary parameters for simulation
(i.e. UG forecast parameters and time steps for forecast) (Figure 1). The model is run for
each year of the simulation time frame [t1. . .tT] and the output is the urban growth/land
use for each year.

SLEUTH simulates UG by using four transition (growth) rules, which include sponta-
neous growth FS δ; γð Þ, new spreading center FNS β; γð Þ, edge growth FE χ; γð Þ and road
influenced growth FRðβ; ρ; δ; γ) where, δ symbolizes a value for diffusion, β breed, χ
spread, γ slope resistance, and ρ road gravity coefficients given as UG forecast para-
meters (Candau et al. 2000). Urban growth transition rules are bounded by suitability
defined by the exclusion layer and the slope gradient. The exclusion areas (such as water
bodies, preserved areas, or parks) or slopes greater than a critical level (often 21%) are
considered as less likely to be urbanized. The resulting urban growth, achieved with four
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different transition rules, serves as the basis for calculating the growth rate expressed by
the ratio of the number of growth pixels to the total urban pixel population in SLEUTH
(Clarke et al. 1997).

Uncertainty and global SA for complex system models

In spatial models, UA is usually referred to as error propagation, and SA is considered as
the analysis which aims to understand the behavior of the error/uncertainty and its
reflection on the predictions made by the models (Heuvelink 1989, 1998, Heuvelink and
Burrough 1993, 2002).

For CA-based UG-LUC models, early examples of SA focused on cell by cell inspection
(White et al. 1997), finding an optimum neighboring size and type (Ménard and Marceau
2005, Kocabas and Dragićević 2006), investigating the variations in the output by
applying different cell sizes and cellular configurations (Chen and Mynett 2003, Samat
2006, Pan et al. 2010) or comparing different scenario maps for land-use change and
validating results with historical data (Pontius and Neeti 2010) . However, relatively little
attention has been paid to the transition rules.

SLEUTH, like any other CA model, is subject to various uncertainties associated with
the transition rules. The model employs a calibration process to define the best fit range
for each forecast parameter used in the transition rules, however, the parameter values
highly depend on the data and the user’s expertise. The reliability of SLEUTH simulations
depends on the forecast parameters, the model’s sensitivity to these parameters and
their interactions. A simple one-at-a-time (OAT) approach or (mono-looping) approach
to quantifying the influence of different forecast parameter values on simulation results
fails to catch the higher-order effects resulting from parameter interactions nor does it

Figure 1. SLEUTH workflow.
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reveal their partial contribution to the overall variance of the model results. In light of
the above mentioned studies, U-SA is essential to increase the credibility of the UG-LUC
models, as well as to test the model robustness in producing realistic outputs for future
implementations (Jantz et al. 2003, Jantz and Goetz 2005, Kim 2013). Additionally, a
spatially-explicit approach is also crucial for spatial models that do not entirely depend
on scalar inputs but that are also affected by spatial relationships (Herman et al. 2013,
Abily et al. 2016),

Variance, which is a central measure in error propagation and SA, allows partitioning
the effects of uncertainty in the input factors on model output (Kyriakidis and Goodchild
2006). There is a range of different theoretical and methodological approaches to
variance-based SA in the literature. Generally, SA is discussed under two categories:
local and global (Saltelli et al. 2000, Helton and Davis 2002). In a local approach, one
investigates the input variations by estimating partial derivatives of model input factors
as varying one and keeping others constant (OAT approach) (Crosetto and Tarantola
2001). OAT is computationally efficient and it does not need a large number of model
executions. However, since it only investigates individual variations, it is mostly applied
when no higher-order interactions are expected (Crosetto et al. 2000, Gómez-Delgado
and Tarantola 2006, Lilburne and Tarantola 2009).

Interactions among model inputs and nonlinear output responses can be addressed
by global SA (GSA) techniques where the sensitivity of the model input factors is not
only determined individually (first-order effects), but also as overall interactions (total-
order effects). Specifically, in variance-based GSA, the model factors influence on model
output variability is represented by first-order (S) and total-order (ST) sensitivity indices.
The first-order index (S), sometimes referred to as the main effect sensitivity, estimates
directly the selected single variable’s portion of the overall variance (Sobol’ 2001). The
total-order index (ST) measures the total contribution of pairs of factors, i.e. first- and
higher-order interactions of the selected single variable (Saltelli et al. 2010, Saint-Geours
et al. 2014). Since CA models are characterized by interactions among input factors and
non-linear output responses, the variance-based GSA is potentially an attractive SA
method for different types of spatio-temporal models, including for the CA-based
SLEUTH, where higher-order interactions result from the transition rules.

Variance-based global SA and polynomial chaos expansion

GSA variance-decomposition-based methods (e.g. Fourier Amplitude Sensitivity Test
(FAST) (Cukier et al. 1973), Extended FAST (E-FAST) (Saltelli et al. 1999), Sobol
Decomposition (Sobol’ 1993)) use MC simulation (Metropolis and Ulam 1949) as a
sampling method during uncertainty propagation to draw multiple random samples
from a given input distribution. A model is then run for each random sample set to
obtain simulated outputs. The computational cost of input sample generation
(required to run MC) is insignificant in comparison to the cost of model simulations
(required to quantify the output uncertainty), especially for complex models with large
input datasets (Crosetto et al. 2000). Consequently, the high number of simulations
results in an expensive uncertainty evaluation and SA becomes impractical (Helton
1993, Heuvelink 2003).
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As a practical solution to this problem, meta-models can evaluate a model’s response
by using a mathematical model approximation. SA based on meta-modeling starts with
the selection of the ranges and distribution for each input factor and continues with the
development of the experimental design to define the combinations of factor values, on
which the model evaluation will be based. Therefore, although the sequence of steps
seems to be exactly the same as in the comprehensive SA, the experimental design that
uses the selection of design points (points representing parameter values in sampling
space) makes the meta-model approach distinct (Saltelli et al. 2000). The approximation
is based on these design points and their selection is determined according to the
presence of higher-order effects, the number of variables under consideration, and the
computational effort required to evaluate the model. Different types of experimental
designs are available such as multiple linear, nonlinear regression (e.g. Ratto and Pagano
2012), neural networks (e.g.Villa-Vialaneix et al. 2012), cubic splines (Rutherford et al.
2015), Gaussian processes (e.g. Marrel et al. 2011), and orthogonal polynomials (e.g.
Sudret 2008).

One of the most frequently used meta-modeling techniques, Polynomial Chaos
Expansion (PCE), originally proposed by Norbert Wiener in 1938, propagates uncertainty
(which the ‘chaos’ term refers to) by expanding a complex function into orthogonal
polynomials that could be solved for relatively more easily than the original function
(Wiener 1938). These polynomials are selected from a family of polynomials which are
orthogonal with respect to the probability distribution of the corresponding input
parameter (Burnaev et al. 2017). For example, Legendre polynomials, which are defined
over the range [−1, 1], are orthogonal to a uniform distribution. Therefore, if PCE is
applied for an input parameter set that has a uniform distribution, Legendre polynomials
are used for expansion. PCE is preferable compared to other meta-modeling methods
due to its applicability for dynamic stochastic systems, where there is an unavoidable
uncertainty term in the system parameters. Theoretical studies with different polynomial
functions and the applicability of various probability density functions are discussed by
Xiu and Karniadakis (2002), Sudret (2008), and Crestaux et al. (2009).

Since PCE reduces the computational expense of uncertainty propagation, it has
been widely applied in complex environmental problems including water quality
modeling (Moreau et al. 2013), large scale socio-hydrologic modeling coupled with
Agent-Based Models (Hu et al. 2015), groundwater hydrogeological modeling (Deman
et al. 2016) and in other dynamic modeling examples such as crop modeling (Lamboni
et al. 2009) and seawater intrusion (Rajabi et al. 2015). Moreover, an extensive review
of basic principles and applications of PCE in computational fluid dynamics was
conducted by Najm (2009). PCE has also been used in the geostatistical literature
under the term bivariate isofactorial models in the context of disjunctive kriging
(Wackernagel 2003). The objective in those applications was to decompose a bivariate
distribution into a series of orthogonal polynomials, therefore, finding isofactorial
representations which help later to determine recurrence relations between factors
(Armstrong and Matheron 1986, Chiles and Delfiner 1999).

There are only a few studies that have employed PCE in spatio-temporal modeling. In
one study, PCE was applied for a CA-based lava flow forecasting model to evaluate the
model’s input parameters (Bilotta et al. 2012). They improved the use of the forecasting
model by assessing the impact of measurement errors on the results of simulation and
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subsequently identified the model’s critical parameters. In another study, a PCE-based
SA was combined with high-performance computational techniques for a spatially
explicit, large-scale socio-hydrological model developed by Hu et al. (2015). The combi-
nation of the PCE with high-performance computing made possible the analysis of the
effect of spatio-temporal variations of the input parameters on the output of a model
even with big multi-dimensional data (Hu et al. 2015). Their result of PCE-based variance
decomposition helped to identify the influential parameters, quantify their interactions,
and prioritize the factors.

The polynomial chaos expansion method

PCE starts with the selection of input parameters where the largest uncertainty is
expected, or to which the model is suspected to be most sensitive. The number of
selected input parameters is represented by M, which determines the dimension of the
random variable matrix X. The random variables are independently defined based on a
probability distribution (e.g. uniform, normal, log-normal, etc.) and the model output Y is
defined as Y ¼ f Xð Þ. This expansion can be represented by a series of independent
random variables and orthogonal polynomials (Wiener 1938):

Y ¼ f Xð Þ � fPC Xð Þ ¼
XP�1

j¼0

βjψj Xð Þ (1)

where ψj denotes the type of the j-th (out of P-1) orthogonal polynomials, βj denotes the
unknown response coefficient, and P is the number of unknown response coefficients (β)
to be estimated. The variable set β is also referred to as the design points and these
coefficients are used during the post-processing stage when calculating the results for
SA. A β matrix is calculated as in Equation (2):

β0
..
.

βP

�������
�������
P; mxnð Þð Þ

¼ AT
�� ��

P;Nð Þ Aj j N;Pð Þ
� ��1
����

����
P;Pð Þ

� AT
�� ��

P;Nð Þ � Yj jðN; mxnð Þ (2)

where (mxn) is the model output size (m = number of columns and n = number of rows)
for a single run, A is the experimental matrix and Y is the output matrix coming from N
model simulations (i.e. the number of runs necessary to solve β coefficients). PCE is
applied in this work at the local spatial level, which means calculation is done for each
pixel independently in matrix Y. Following Equation (2), SA results depend on the
specific model output type, and presumably, they can be different for different model
output constituents. Likewise, the order of importance of input factors could vary for
different output constituents.

The value selected for N (number of model runs) should at least be equal to
k�Pwhere k 2 2; 3½ �(the selection of k is explained in detail in Sudret 2008) where

P ¼ Mþ p
p

� �
¼ Mþpð Þ!

p!M! which means that the number of unknown coefficients to be

solved depends on the number of input variables under interest (M) and the
experimental degree of the polynomial (p).
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Therefore, to build the meta-model which approximates the full approach and to
calculate the estimated mean and variance for U-SA, there are five key steps:

(1) Determining the input parameters and the probability distribution functions for
the selected parameters (which also defines the orthogonal polynomials)

(2) Selecting an experimental design degree, p, and calculating the number of
unknown response coefficients, P

(3) Forming the experimental matrix, A and calculating the unknown response
coefficients, β

(4) Computing mean and total variance for UA
(5) Computing Sobol indices

Orthogonal polynomials

The type of orthogonal polynomials, ψj , is derived from the orthogonal bases of input
factor probability density functions (PDFs). This affords the reduced dimensionality by
taking advantage of the resemblance of weight functions (i.e. inner product vector) to
the PDF of certain random distributions (Xiu and Karniadakis 2002). Therefore, depend-
ing on the PDF of input parameters, a corresponding orthogonal polynomial scheme is
selected for PCE. The most frequently used orthogonal polynomials are Legendre for the
uniform and Hermite for the Gaussian (normal) distribution, and these polynomial
functions for a 5th degree model are given in Table 1 (Xiu et al. 2002, Sudret 2014).

Experimental design degree and expansion terms

For a full analytical solution, experimental design degree equals model degree. The
difference between full-order solution, where P is calculated as M = p, and any p value
where p < M, gives the overall computational gain. Sudret (2008) suggested a two-step
strategy starting with a low-order expansion degree for factor prioritization, then con-
tinuing with a higher-order design degree to compute the main sensitivity indices. The
relative error between the full analytical solution and its approximation can be obtained
by experimenting with different p values (several functional model comparisons are
presented in Sudret (2008)). However, increasing p values does not necessarily guaran-
tee that the distribution is well approximated (O’Hagan 2011). Therefore, we checked
the PCE approximation results with MC simulation for estimated mean and standard
deviation surfaces.

Experimental matrix and computation of the response coefficients

After selecting p and calculating N, a random sample set of � ¼ �1; . . . ; �nf g from the

corresponding distribution function of each input parameter X ¼ � 1ð Þ; . . . ; � Nð Þ� �
is

generated, and the model is evaluated for each sample to produce the output

Y ¼ Y � 1ð Þ	 

; . . . ; Y � Nð Þ	 
� �

. Then, for each pixel, the experimental matrix Aij can be
computed using the previously defined orthogonal polynomials (Table 1) as follows:
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Aij ¼ ψj xnð Þ n ¼ 1; . . . ;M; i ¼ 0; . . . ; P� 1 and j ¼ 1; . . . ;N

Aij ¼
ψ0 x1; x2; x3; x4; x5ð Þ 1 . . . ψP�1 x1x2; x3; x4; x5ð Þ1

..

. . .
. ..

.

ψ0 x1; x2; x3; x4; x5ð ÞN . . . ψP�1 x1; x2; x3; x4; x5ð ÞN

�������
������� for M ¼ 5

Finally, after calculating Aij and gathering simulation results as Y, response coefficients
can be estimated from Equation 2. From the first response coefficient, β0, the estimated

mean, μ ¼ E
PP�1

j¼0
fiψj Xð Þ

" #
, can be obtained at almost no additional cost, since μ ¼ β0.

Computation of Sobol sensitivity indices for variance decomposition

Sobol’s variance-based decomposition (usually referred to as Sobol decomposition)
decomposes the output variance into fractions so that the contribution of each input
can be traced with the first-order and total effects (Saltelli et al. 2010). Sensitivity indices
derived from PCE are also referred to as PCE-based Sobol indices (SU) (Sudret 2008). First-
order SU and total-order SUT PCE-based Sobol indices can be computed using Equations (3)
and (4). The first-order index represents the main influence of the ith term on the total
variance for all the input parameters from (i1; � � � ; isÞ set and the SUT is the influence from
higher-order interactions among all the parameters from the integer sequence of
J j1;���;jtð Þ ¼ ði1; � � � ; isÞ; j1; � � � ; jtð Þ � i1; � � � ; isð Þf g (for more details see Sudret 2008):

SUi1;���;is ¼
X

α2ψi1 ;���;is

f 2α E ψ2
α

� �

DPC (3)

SUT
j1;���;jt ¼

X
i1;���;isð Þ2I j1 ;���jt

SUi1;���;is (4)

where DPC corresponds to the total variance determined with PCE and can be computed
from Equation (5):

Table 1. Orthogonal polynomials for selected probability distribution types (Sudret
2014).
Distribution type Orthogonal polynomials First five polynomials

Uniform Legendre Pk xð Þ P0 xð Þ ¼ 1
P1 xð Þ ¼ x
P2 xð Þ ¼ 1

2 3x2 � 1ð Þ
P3 xð Þ ¼ 1

2 5x3 � 3xð Þ
P4 xð Þ ¼ 1

8 35x4 � 30x2 þ 3ð Þ
P5 xð Þ ¼ 1

8 63x5 � 70x3 þ 15xð Þ
Gaussian (Normal) Hermite Hk xð Þ H0 xð Þ ¼ 1

H1 xð Þ ¼ x
H2 xð Þ ¼ x2 � 1
H3 xð Þ ¼ x3 � 3x
H4 xð Þ ¼ x4 � 6x2 þ 3
H5 xð Þ ¼ x5 � 10x3 þ 15x
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DPC ¼ Var
XP�1

j¼0

fiψj Xð Þ
" #

¼
XP�1

j¼1

f 2i E ψ2
j Xð Þ

h i
(5)

Application of PCE-based GSA in a probabilistic CA-based UG-LUC model

SLEUTH set-up

Santa Barbara, California was selected for the case study due to: (1) availability of data, and (2)
the authors’ familiarity with the study site. SLEUTH produces distributed (spatially-explicit)
output for each time step selected in the forecast scenario. UG in SLEUTH takes place in a three-
step cycle: setting up the growth coefficients, applying the growth rules, and finally evaluating
the growth rate. The general function governing SLEUTH simulations can be written as:

y tð Þ ¼ f x; ε; tð Þ
where x represents the vector of input variables (input layers), ε is the vector of behavior
control parameters (forecast parameters) and t is the time step (each year in time span T).
The input vector (x) is composed of an array of size (486x2074) for the Santa Barbara area
and kept constant for every simulation. ε is replaced by the X quasi random-sample
matrix. The forecast period, T, is set from 1999 to 2016 (18 years).

The uncertainty-SA

Quasi-random sequences produce random numbers but the selected numbers ‘know’ the
positions of previously sampled numbers and therefore, they do not form clusters or gaps in
the sample space. Since there is no a priori information about the distribution of these
parameters, each is assumed to be uniformly distributed. The lower and upper bounds for
each parameter are used as ranges for the uniform distribution for quasi-random sample
generation. The quasi-random sample matrix is generated based on the ranges in Table 2.
The uniform distribution is also used when selecting the polynomial basis for PCE, which
corresponds to Legendre orthogonal polynomials. The samples generated with the quasi-
random sampling scheme are normalized to a [−1, 1] uniform distribution interval.

The model is run for N times for (mxn) pixels and produce the urban growth land-use
extent for each year of the simulation time frame [t1. . .tT] as output . The model outputs
are collected to analyze urban growth and change by comparing the intermediate
simulation results. Since we are interested in how the forecasted urban growth changes
at each time step, the volume of data required to estimate the Sobol sensitivity indices
at each particular pixel at each time step is T x N. The variance decomposition is
expected to show the influence of forecast parameters on the urban land-use output.

Table 2. Selected input parameters for SA.
Diffusion Breed Spread Slope Road

Calibrated/Optimum 40 41 100 1 23
Lower Bound 36 36.9 90 0.9 20.7
Upper Bound 44 45.1 110 1.1 25.3
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Calculation of PCE-based Sobol sensitivity indices

Since there are five forecast parameters (diffusion, breed, spread, slope and road
gravity), the degree of the model becomes M = 5, and if we select our experimental
design degree as p = 3 and take k = 2, the number of model simulations necessary
to solve the unknown coefficients becomes ¼ k � P ¼ 2 � 5þ3ð Þ!

3!5! ¼ 112 yielding the Y
output matrix of (112*(486(rows)*2074(columns))) size. Therefore, for PCE-based U-SA,
112 runs are enough to calculate the sensitivity indices for the time period (which
yields 18*112 = 2016 model outputs). For a full-order approach, where p = 5, N will

be ¼ k � P ¼ 2 � 5þ5ð Þ!
5!5! ¼ 504; which requires 78% more computations for each pixel.

Another comparison can be made for the Monte Carlo-based variance-decomposition
described by Saltelli et al. (2010), where the number of simulations required to
compute the Sobol indices equals (k + 2) *N where k is the number of uncertain
model factors, and N is the number of factor samples. N is recommended to be large
enough (≥ 1000) to give reliable estimates for the sensitivity indices. However, large
values for N are computationally expensive and require more processing memory
and time. Even for the number of samples N = 112 used in PCE-based approximation,
at least N = 5þ 2ð Þ � 112 ¼ 784 simulation samples would be required to perform
the full variance-based decomposition described by Saltelli et al. (2010).

Although 112 simulations were found to be enough to conduct PCE-based U-SA,
SLEUTH was run 1000 times to have enough runs to compare the PCE approximation
with the sample-based MC simulation for the mean and total variance. After solving the
polynomials and calculating coefficients for the five input parameters, the PCE-based
Sobol decomposition resulted in the calculation of first, second, third, fourth and fifth-
order indices, which were summed to yield the total Sobol indices.

Results and discussion

Uncertainty analysis

For PCE, 112*18 simulation outputs were used to compute statistical moments of
estimated mean, total variance, first-order and total-order indices. Figure 2 depicts an
example of these outputs for 2016 just showing the urban land-use class extent. Starting
with the initial land-use layer, the urban extent was calculated from the cumulative
result of equally probable growth cycles completed in SLEUTH.

For the mean value comparison, the first (1999), middle (2008) and the last simulation
year (2016) were selected to show the PCE-based estimated mean compared with the
mean resulting from 1000 MC model simulations. Figures 3–5 show that the estimated

Figure 2. Forecast Urban Extent for 2016.
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Figure 3. The estimated means for the probability of a cell to change into urban land use for the
year 1999: PCE-based Estimated Mean (top), MC-based Estimated Mean (middle), difference between
the PCE-based Estimated and MC-based Estimated Mean Surfaces (bottom).

Figure 4. The estimated means for the probability of a cell to change into urban land use for the
year 2008: PCE-based Estimated Mean (top), MC-based Estimated Mean (middle), difference between
the PCE-based Estimated and MC-based Estimated Mean Surfaces (bottom).
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mean surfaces, calculated from only 112 model simulations, is a very close approxima-
tion to the mean of the 1000 simulations. As can be seen in the difference maps in
Figure 3 (bottom) to 5 (bottom), the maximum value of the difference between the two
approaches is 0.4, which is only observable for less than 10% of the urban pixels. Still,
the accuracy of the estimated mean can be enhanced by experimenting with different p
values for PCE approximation. Increasing p values will require a higher number of model
simulations, which results in longer computational time. There is a trade-off between the
computational time required to execute 1000 simulations and the desired accuracy of
PCE-based approximation of mean and standard deviation, which can be assessed.

The comparison can be extended by plotting the model’s forecast accuracy over the
simulation time interval. For this comparison, the difference between the mean com-
puted with 1000 Monte Carlo samples and the mean obtained with 112 PCE samples
was calculated and plotted against the simulation time interval (Figure 6). The graph
shows that the difference between the means is converging throughout the forecast
period and ranges from 0 to 0.2. To better understand this difference, one can examine
the distribution of pixels comprising the study area. The number of pixels with the
observed difference greater than 0.12 is less than 1000 and for the overall urban area,
this difference of 1.3% can be considered negligibly small.

Another interesting observation can be drawn from the decreasing pattern of differ-
ences. Neither the parameters nor the procedure to calculate the PCE or MC measures
differ as the simulation progresses. As expected, the differences occur in places where

Figure 5. The estimated means for the probability of a cell to change into urban land use for the
year 2016: PCE-based Estimated Mean (top), MC-based Estimated Mean (middle), difference between
the PCE-based Estimated and MC-based Estimated Mean Surfaces (bottom).

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 649



SLEUTH forecasts a high probability of a cell changing its state to urban. As discussed in
the methodology section, PCE estimation is based on the produced output to approx-
imate the model. Therefore, the differences between MC and PCE estimates not only
depend on the characteristics of the methods but also on the model output as well.

The estimated mean maps are helpful to locate the regions where urban growth is
expected to occur. They summarize the forecasting results of all simulations based on
the calculated mean for each pixel. Similar to the mean maps, the simulation years 1999,
2008 and 2016 were selected to depict the uncertainty (represented by standard devia-
tion from the mean) resulting from transition parameters (Figures 7–9). The uncertainty
maps, showing a similar pattern, can be further investigated in concert with the mean
maps.

In order to categorize the study area based on high/low probability of change to
urban land use and high/low uncertainty (standard deviation) of the change, a catego-
rical map can be compiled to show four distinct categories: (1) high probability of
changing into the urban class with high uncertainty (HH), (2) high probability of chan-
ging into the urban class with low uncertainty (HL), (3) low probability of changing into
the urban class with high uncertainty (LH), and (4) low probability of changing into the
urban class with low uncertainty (LL) (Ligmann-Zielinska and Jankowski 2014). The
thresholds for high/low probability and high/low uncertainty can be selected by exam-
ining the logarithmically scaled histograms of mean probability for land-use change
(Figure 10) and standard deviation (Figure 11) for years 1999, 2008, and 2016. A thresh-
old value of 0.5 was selected for the mean probability (Figure 10), and the value of 0.5
was selected for the standard deviation (Figure 11). The selection is based on the
distributions of mean urban land-use change probability and standard deviation of
the mean urban land-use change probability; however, the ultimate selection of thresh-
olds is an arbitrary choice (reflecting the mean value of the frequency distribution) made
by the analyst.

The regions (pixels) falling into the 2nd category (HL) are considered as reliable
predictions (low uncertainty) of urban land-use change. The regions falling into the

Figure 6. The comparison of difference between PCE-based estimated mean and MC-based mean.
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Figure 7. The standard deviations of the forecasted urban land-use change for the year 1999: PCE-
based Uncertainty (top), MC-based Uncertainty (middle), difference between the PCE-based and MC-
based Uncertainty Surfaces (bottom).

Figure 8. The standard deviations of the forecasted urban land-use change for the year 2008: PCE-
based Uncertainty (top), MC-based Uncertainty (middle), difference between the PCE-based and MC-
based Uncertainty Surfaces (bottom).
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3rd and 4th categories can be discarded due to low confidence in the result (LH) and
low probability of land-use change (LL). For SA, the analysis continues by investigating
the regions in the 1st category (HH) to establish how the relatively high uncertainty in
these regions is apportioned to the transition parameters.

Figure 9. The standard deviations of the forecasted urban land use for the year 2016: PCE-based
Uncertainty (top), MC-based Uncertainty (middle), difference between the PCE-based and MC-based
Uncertainty Surfaces (bottom).

Figure 10. Mean land-use change probabilities for years 1999, 2008 and 2016.
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After applying the threshold values, categorical maps were produced for three
selected simulation years (Figure 12). The clusters of the high probability of land-use
change accompanied by high uncertainty are depicted in red and these zones are
particularly important when evaluating the results of SA due to the first and total-
order interactions of transition parameters. An area in the lower-right of the map
(Figure 12) where the HH category seems clustered, was selected for further investiga-
tion with SA.

Sensitivity analysis

Sobol first and total-order sensitivity indices were computed for the five forecast para-
meters for each simulation year resulting in 90 maps (5 parameters * 18 years) per each
sensitivity index. To reduce the cognitive load of visualizing 90 maps, each sensitivity
index is represented by its mean value with the confidence intervals and plotted for the
simulation period for each analyzed parameter (Figure 13). After having compared these
indices, one can return the produced spatial sensitivity maps for each year for each
parameter to see spatial patterns of sensitivities. For different forecast years, the effect of
each input parameter on the model’s output varies. The effect of breed, slope and road
parameters is relatively small (the model is insensitive to these parameters when taken
singly or in isolation from one another) during the simulation time interval. This cannot
be said about diffusion and spread parameters, which show much larger and oscillating
influence on the model’s output. Moreover, one can observe that during the forecast

Figure 11. Standard deviation of mean land-use change probability for years 1999, 2008 and 2016.
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period, most of the parameters show a steady dispersion after 2010. For the simulation
period before 2010, diffusion and spread show a decreasing pattern, whereas breed,
slope and road show an increasing pattern.

To visualize the interaction among forecast parameters and interaction dynamics,
higher-order interactions, calculated as the difference between total-order indices and
first-order indices, were plotted (Figure 14). The relatively high values represent high
interactions among the parameters. For the interval 1999 – 2010, the higher-order
interactions follow an increasing trend for diffusion, slope and road parameters and a
decreasing trend for the breed and spread parameters. After 2010, there is no change in
the level of interactions among the parameters. These graphs show that the sensitivity
of slope and road parameters increases as the simulations progress for both SA mea-
sures. However, for diffusion, breed and spread, the sensitivity dynamics change
between no interaction and interaction measures.

In order to understand the spatial pattern of parameter sensitivity, we also examined
the sensitivity maps for a region located in the lower-left of the study area, where the

Figure 12. Categorical maps based on the probability of land-use change (High/Low) with the
associated uncertainty (High/Low) for years 1999, 2008, and 2016.
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model prediction has high uncertainty. The reason of this selection is the HH category
pixel cluster for this region. We mapped the dominant sensitivity indices for years 2005,
2007 and 2010 where the forecast parameters change behavior (Figure 15) (Ligmann-
Zielinska and Jankowski 2014). Out of five parameters, spread has the major influence on
the output variability when the first-order indices are considered. For higher-order
indices, diffusion dominates the other parameters in influencing output variability.
Spread is a parameter driving edge growth and diffusion is effective during spontaneous
growth and road influenced growth. One possible explanation for the dominance of
spread and diffusion is a cyclical pattern of urbanization driven by edge and road
influenced growth. The road parameter, associated with road influenced growth, is the

Figure 13. PCE-based Sobol first-order indices for years 1999 to 2016.

Figure 14. PCE-based Sobol higher-order indices (ST-S) for years 1999 to 2016.
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second single (no interaction) most influential model parameter after spread (see the
First-Order Dominance Maps in Figure 15).

Following the examination of the sensitivity maps, the contributions of the model
parameters to the model output variance can be considered during model calibration,
especially considering small perturbations in the value range of input parameters
resulting in different levels of model output variance. For the HH zones (high probability
of land-use change and high uncertainty – Figure 12), to increase the confidence in the
model output, attention must be paid to the diffusion and spread forecast parameters
since they have shown the most variability within the simulation time interval.

Figure 15. First-order and higher-order dominance maps for 2005, 2007 and 2010.
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Limitations and future work

As discussed in the methodology section, PCE is a model approximation based on
design points. Compared with an analytical solution, which includes every high-order
interaction, PCE approximation only takes into account the subset of interactions
defined by the design points. Therefore, the decimal accuracy of the indices may be
lower than that for the full-order-based variance decomposition. However, given the
results of tests for various models (Sudret 2008), PCE can be a good guide to prioritize
input factors with smaller computational cost compared to full-order variance decom-
position. For a higher level of accuracy, the experimental design can be reset with higher
p values, resulting in higher-order polynomials in the expansion.

In addition to sensitivity index accuracy, another limitation of the work presented is
the visualization of U-SA outputs for spatio-temporal models. Future research efforts
should focus on effective means of visualizing parameter sensitivity both in space and
time including the capability of examining spatial patterns for any time period.
Additional topics for future research include:

● Further parallelization of the integrated U-SA approach to reduce computation cost
for larger datasets.
Applying the PCE-based Sobol decomposition to a different type of CA neighbor-
hood (Von Neumann) to investigate whether there is a neighborhood effect on the
model forecasts.

● Changing the experimental design size (N) and polynomial degree (p) to test the
effect of different N and p values on the accuracy of the SA results.

● Comparing the output sensitivity indices of PCE-based Sobol decomposition with
Quasi-Monte Carlo-based Sobol decomposition to examine the convergence of
analysis results obtained with these two model variance decomposition methods.

● Examining in detail the regions with the most and least sensitivity and uncertainty,
to test for and explain spatial autocorrelation in the modeling results.

Conclusions

SA, especially in its global approach, has received much attention in the research
community over the past decade. However, the main challenge lies in the implementa-
tion stage due to the increasing amount of data and model complexity. These issues also
highlight the problem of computational cost, which is especially high for spatially
explicit, integrated U-SA for dynamic models. The proposed meta-modeling approach
based on PCE-enabled model variance decomposition is an attractive alternative to
conducting U-SA for nonlinear, non-monotonic, and high-order spatio-temporal models.
The PCE implementation presented in the paper is also valuable in terms of its applic-
ability to any spatio-temporal model due to its model-independent workflow. For high
dimensional models with potentially interacting input parameters that can influence the
overall model variability, in particular, PCE can be applied as an initial screening
approach to find the most influential variables. This enables further experiments with
a smaller subset of model parameters.
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