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Most state-of-the-art control strategies for coping with arterial conges-
tion provide progression for heavy through-traffic flows. However, such 
strategies cannot tackle arterial congestion caused by both heavy turn-
ing and through-traffic flows, where turning-traffic volumes often spill 
over their designated bay length and cause link blockage. An effective 
approach is to offer a progression band to each of those critical path 
flows that can be identified from the arterial origin–destination (O-D) 
flow patterns. This study proposes three models for estimating such 
information from available traffic measurements. The estimated time-
varying O-D distributions yield both the number of critical path flows 
and their respective volume ranks for design of their progression bands. 
Based on the principle of flow conservations, the first model captures 
the relationships between link counts and dynamic O-D flows, whereas 
the second model directly takes turning flows at each intersection as the 
primary model input. To consider further the impact of traffic signal 
plans on O-D flow patterns, the third model incorporates a set of addi-
tional measurements—the time-varying queue length information— 
to improve the estimation accuracy. Comparisons of the actual O-D 
flows and the estimated results demonstrate the effectiveness of the pro-
posed models for identifying the heavy flow paths and their respective 
volumes.

Providing two-way signal progression for congested arterials has 
long been viewed by traffic professionals as one of the most effec-
tive control strategies. However, depending on the distribution of 
flow patterns, the signal plan designed to favor through traffic may 
cause unexpected traffic queue spillback at intersections that need to 
accommodate heavy turning volumes. For instance, serving mainly 
as connectors between a freeway corridor and a neighboring urban 
network, some arterials’ predominant traffic flows may not be for  
through movements only but are likely to combine both turning 
and through movements. To progress all traffic movements on such  
congested arterials experiencing multiple heavy path flows, Yang  
et al. proposed a multipath signal progression model to facilitate not 

only the through traffic but all identified critical path flows (1). The 
most critical information for design of such an effective multipath 
progression is the time-varying distribution of the arterial’s O-D flows.

A review of the related literature shows that few studies on esti-
mating O-D patterns for signalized arterials. Of those, Lou and Yin 
used detected link counts to develop a decomposition framework 
for estimating time-varying dynamic O-D flows on an arterial (2). 
Their proposed framework is to first decompose the entire arterial 
into a set of individual intersections and then to perform the estimation 
of turning flows with link counts, which in turn serve as the mea-
surements for the arterial O-D estimation. That pioneering work, 
however, did not address the impact of implemented signal plans 
on observable time-varying link flows and consequently on the 
estimation accuracy of the resulting O-D patterns. For estimating 
time-dependent turning fractions at intersections, Chang and Tao 
incorporated additional constraints from signal timing information 
in their enhanced model. The results of extensive simulation experi-
ments indicate that such methods can yield more accurate estimation, 
compared with the base model, without considering the impact of 
signal timings (3).

Despite the scanty literature on arterial O-D estimation, there 
is a large body of models for estimating O-D demands on general 
networks (4–6), and most of these fall into either of the two main 
categories: assignment-based (7–9) and nonassignment-based  
(10–13) models. The former category of studies is grounded in the 
prerequisite that a reliable prior time-varying O-D set and a dynamic 
traffic assignment model are available for model construction and 
estimation. To circumvent the prerequisite, some researchers have 
proposed nonassignment-based models, intending to use only the 
time series of available link volume counts for estimation, reducing 
the dependency of a dynamic traffic assignment model. However, 
none of these studies addressed the critical impacts of signal presence 
and different timing plans on the time-varying distributions of net-
work O-D flows. Aside from these two categories of studies, some 
researchers have taken advantage of additional information, mea-
sured from emerging sensing technologies, to increase the developed 
model’s observability. Examples of studies along this line are the use 
of automatic vehicle identification systems (14), vehicle plate scanning 
(15), sporadic routing data (16), GPS probe vehicles (17), and cell 
phone data (18).

This study followed the research line of nonassignment-based 
methods and estimated the time-varying O-D matrix on a signal-
ized arterial. Depending on information availability in practice, this 
study proposed three models for capturing the relationships between  
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time-varying O-D flows and the observable measurements. Following 
the same notation of studies on estimating intersection turning ratios 
(19, 20), Model 1 extends the method to use link flows for arterial 
time-varying O-D estimation. To improve the estimation accuracy, 
other studies also used the turning movement counts as model input 
(6). Similarly, this study’s proposed Model 2 took the turning flows 
at each intersection as the primary model input. Because of the 
emergence of queue detectors for intersection signal control, this 
study further took the measurable queue information in the Model 3 
formulations because the evolution of time-varying queue patterns 
offers valuable information reflecting the interrelationships between 
the observable arterial’s O-D flows and its signal plans. More spe-
cifically, under the same level of traffic demand, the queue length at 
a given link is expected to be relatively short if most of its arriving 
flows are coordinated with neighboring traffic signals. Hence, by 
constructing the interrelationships between traffic counts from detec-
tors, the signal plan, and the observed queue length evolution, one 
can better estimate the origin of arriving flows (e.g., the turning traffic 
from side streets or through flows from upstream intersections) and 
their destinations with proper algorithms.

Model Development

To estimate the time-varying O-D flow pattern on the signalized 
arterial, this study developed three models based on data availability. 
Model 1 uses link counts as input, Model 2 takes the measurement of 
intersection turning flows, and Model 3 extends Model 2 by further 
using real-time queue length information.

Model 1 Formulations

Considering a signalized arterial of N intersections as shown in  
Figure 1, Model 1 takes its link counts as the primary input for its O-D 
estimation. All detectors are assumed to be placed at the upstream 
location of each link.

With the available link counts data during each time interval k, 
the information ready for use includes the time series of entering 
flows qi(k), leaving flows yi(k), and link flows ul

in(k) and ul
out(k). Then 

one can construct the following relationships, based on the flow 
conservations at each intersection, as shown in Figure 1:
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where fij(k) is the number of vehicles entering the arterial from origin 
node i to destination node j during time interval k, and bij(k) denotes 
the fraction of flow qi(k), which has the destination of node j.

Because of speed variations among drivers, those concurrently 
entering node i may take a different number of time intervals to arrive 
at node j. Assuming that the travel times of those drivers are distributed 
among multiple consecutive time intervals, one can then formulate 
the exiting traffic volumes as follows:
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where ρ ij
m(k) is the fraction of fij(k) vehicles that takes m time inter-

vals to reach a detector at node j during time interval k, and M is the 
maximum number of intervals for a vehicle to travel from origin to 
destination.

Also note that the flow measurements between neighboring 
intersections, ui(k), can provide additional valuable information to 
construct the following equations:
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where θ il
m(k) denotes a fraction of fij(k) vehicles that take m time 

intervals to arrive at intersection l during time interval k. Equations 1 
through 6 can be implemented to capture the dynamic relationships 
between the O-D patterns and link flows.

However, the above system formulations contain many state vari-
ables, that is, bij(k), ρ ij

m(k), and θ il
m(k). The number of these unknown 

parameters increases with the required M value (i.e., the maximum 
time intervals). As such, more information and refinement steps are 
necessary to ensure the computing efficiency and tractability of this 
proposed model.

To deal with the many unknown parameters, Chang and Wu 
simplified the formulations by assuming that the speeds of vehicles 
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FIGURE 1    Typical local arterial segment.
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entering the network at the same time interval are likely to be dis-
tributed in a small range (11). Following the same logic, this study 
assumed that the variation of vehicle travel times between nodes i  
and j is within an interval, [τ ij

k−, τ ij
k+]. In practice, the travel time would 

be time-dependent and be varied with different congestion levels. 
Hence, estimation of link travel time is required before the model is 
implemented. Denoting µij(k) as the average travel time from node i  
to node j during time interval k, Equations 3 to 6 can be rewritten 
as follows:
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Model 2 Formulations

Because of the indeterminate nature of the O-D estimation system, 
increasing the number of observable measurements can greatly 
enhance estimation accuracy. Lou and Yin derived a decomposition 

model to estimate O-D flows on signalized arterials, where the turning 
flows—estimated at the first stage—serve as the measurement for 
estimation at the second stage (2). However, the potential estima-
tion errors from Stage 1 estimation are likely to propagate to State 2  
computations. Since the technology for detecting intersection turn-
ing flows is available in practice, Model 2 focuses on modeling 
the interrelationships between the O-D patterns and intersection 
turning flows.

For convenience of discussion, this study redefined the notation 
for turning flows at each intersection. As shown in Figure 2, ηL

il, ηT
il, 

and ηR
il denote the flows of left-turn, through, and right-turn movements 

for leg i at intersection l.
Then, one can construct the following relationships between 

the O-D flows and the turning flows for Approaches 1 and 3 of 
intersection l with the notation shown in Figure 2:
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As well, one can construct the relationships between the O-D 
flows and the turning flows for Approaches 2 and 4 of intersection l 
with the following equations:
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FIGURE 2    Notation used in Model 2 for intersection l and turning flows.
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Model 3 Formulations

The number of measurements in both Model 1 and Model 2 is always 
less than the number of parameters to be estimated [(2N + 2)(5N + 4)].  
Hence, creatively identifying additional observable relationships to 
augment the system’s observability is essential to increase the accu-
racy of such dynamic O-D estimation models. A new set of system 
relationships proposed in Model 3 is to formulate the interrelation-
ships between the observable intersection and the arterial signal plans, 
which may vary with the time-varying O-D distributions.

Figure 3 shows a typical arterial segment, consisting of two adjacent 
intersections. The target link, connecting these two intersections, has 
three source flows: ηR

1,l, ηT
2,l, and ηL

3,l; and three outflows: ηL
2,l−1, ηT

2,l−1, 
and ηR

2,l−1. To hold the flow conservations using traffic counts, one can 
reach the following relationships:
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where m′ is the travel time from intersection l to intersection l − 1.
Conceivably, any O-D flow patterns, consistent with Equation 24, 

could be the same set of feasible solutions yielded by Models 1 and 2.  
However, if queue detectors have been deployed, the relationships 

between the queue variation and signals offer another set of con-
straints with which to improve model estimation; different O-D flow  
patterns may result in different queue lengths on the connecting 
links because of the impact of traffic signals. With the through queue 
in Figure 3 as an example and assuming that the signal progression 
is provided to the through traffic along the arterial, Figure 4 shows 
the discrepancy on traffic queue patterns between two scenarios in 
which the same numbers of vehicles per cycle arrive at the inter-
section but come from different origins. In practice, video sensors 
with image processing algorithms and radar sensors with some 
embedded estimation function satisfy the data collection need in 
this model.

Figure 4a illustrates the queue formation patterns when most queu-
ing vehicles are from the turning source flows, such as ηR

1,l and ηL
3,l. 

In contrast, Figure 4b shows the resulting queue patterns when most 
of those vehicles are from the upstream through flows ηT

2,l. Since 
the progression is for through movements on the arterial traffic, 
the through flows from intersection l are most likely to encounter 
a green phase at intersection l − 1, whereas the turning flows will 
experience mainly the red phase. Hence, depending on the contrib-
uting sources of vehicles that constitute the arriving flow patterns, the 
resulting queue pattern may differ significantly even with the same 
number of arrivals. More specific, the time-varying queue patterns 
at an intersection are highly correlated with the O-D flows and 
intersection signal timings. As such, one may consider incorporat-
ing such additional information in formulating the intersection O-D 
estimation model.

With the link shown in Figure 3 as an example, the enhanced model 
formulations, using the additional time-varying queue information, 
are as follows:
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where

	δ i
l,l−1(k)	=	queue length at the end of a red phase on lane group i,
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l,l−1(k)	=	queue length at the start of a red phase on lane group i,
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FIGURE 3    Flow diverging and conservation at two adjacent intersections, 
l and l - 1.
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	 ϕi	=	� lane use factor for lane group i that accounts for the 
uneven distribution of flows on different lanes, and

	 ξ j
i,l	=	� ratio of flows ηm

i,l that will join the downstream flows 
η j

2,l−1, where
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and φ j
i,l is the progression duration within one time interval.

For convenience of computation, this study set the common 
cycle length to equal the length of estimation time interval, letting 
the value of r j

i,l be fixed in a pretimed signal control system.
On the basis of Equations 12 to 23, one can further reformulate 

Equations 25 to 27 as follows:
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Equation 30 is derived for the outbound flows from intersection l 
to l − 1. For the inbound flows from intersection l to l + 1, one can 

derive the same relationships between δ i
l,l+1(k) and O-D parameters 

as follows:
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Estimation Algorithm

As used in most existing approaches, the dynamic O-D parameters 
bij(k), ρ−

ij(k), and θ−
il(k) are assumed to follow the random walk pro-

cess between successive time intervals, as shown in the following 
equations:

1 1 ; 2 2 (32)( ) ( ) ( )+ = + ≤ ≤ +b k b k w k i j Nij ij ij
b

1 1 ; 2 2 (33)( ) ( ) ( )ρ + = ρ + ≤ ≤ +− − ρk k w k i j Nij ij ij

1 1 2 2;1 (34)( ) ( ) ( )θ + = θ + ≤ ≤ + ≤ ≤− − θk k w k i N l Nil il il

where the random terms wb
ij(k), w ρ

ij(k), and wθ
il(k) are independent 

Gaussian white noise with zero means. These error terms of O-D 
parameters do not typically follow a Gaussian distribution because 
a Gaussian distribution extends infinitely in both directions. However, 
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FIGURE 4    Formation of through queue by arrival pattern.
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one can use a transformation to convert the non-Gaussian data to a 
Gaussian distribution.

To facilitate the presentation, define the parameters of Model 1 
as follows:

(35)
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where

2 2 12[ ]( ) ( )= ( )+ ×
B k b kij N

2 2 12[ ]( ) ( )= ρ ( )
−

+ ×
P k kij N

Q k kil N N[ ]( ) ( )= θ ( )+ ×2 2 1

and

, , and matrices of error terms.k k k( ) ( ) ( ) =q pW W Wb

Hence, one can obtain the matrix form of Equations 12 to 14 as 
follows:

1 (37)( ) ( ) ( )+ = +X X Wk k k

With the above transformation for B(k), the observation system in 
Equations 8 to 12 can be restructured into the following matrix form:

1 (38)Z H X ek k k ki( ) ( ) ( ) ( )+ = +

where Z(k) = [q1(k), q2(k), . . . , q2N+2(k), y1(k), y2(k), . . . , y2N+2(k), 
u2(k), u3(k), . . . , u2N−1(k)]T. In the equation, Z(k) is a column vector 
of dimension 2(2N + 2) + (2N − 2), and e(k) is an observation noise 
vector of the same dimension, which can be taken as Gaussian white 
noises with zero mean and covariance matrix R.

Denote h(.) as the measurement functions, shown by Equations 1, 
7, 9, and 10; then H(x) is the Jacobian matrix of partial derivatives 
of the function, h(.), with respect to the estimation state x:
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X

So far, a canonical state–space system model, Equations 36 to 40, 
has been established. Because of the nonlinear nature of the formu-
lations and for computing efficiency, this study used the extended 
Kalman filter algorithm to perform the sequential estimation. A 
step-by-step illustration of the estimation algorithm is presented 
in Equation Box 1. A similar solution algorithm can be applied to 
Models 2 and 3.

Numerical Example

Experimental Design

To assess the proposed models’ potential for field applications, this 
study used an arterial segment of Guangming 6th Road in Chupei, 
Taiwan, for a case study. The geometric layout of the target arterial 
and its topology are shown in Figure 5. The arterial consists of five 
intersections, 12 nodes, and 34 links. Also, both Intersections 3 and 4 
contain one freeway on-ramp and one off-ramp. Hence, the number 
of O-D flows to be estimated is reduced to 48 per time interval.

To replicate the field traffic conditions, this study used Vissim as 
the simulation platform and used the observed intersection queues and 
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Step 0. Initialize.

Set the length of time interval .

Initialize the parameters 0 , 0 , and 0 .

Step 1. Compute the mean travel time as follows:

where is the travel distance between node and ;

is the average travel speed; is the set of

intersections included in the path to ; and is the

average delay at intersection , which can be estimated

with existing models, such as that in the

.

Step 2. Compute the linearized transformation matrix .

e.g., ; 1;

Step 3. Initialize the extended Kalman filtering.

Set 0 0 0 0 ;

Set 0 and Q; where is the covariance matrix

of and is the variance matrix of .

Step 4. Extended Kalman filtering iteration.

4.1 Set the priors: 1 ; 1

4.2 Update the filter:

4.3 Estimate the posts:

4.4 Update the matrix:

Step 5. Go back to Step 1 for next interval.

out

,

1

Q

EQUATION BOX 1    Estimation Algorithm Using Extended 
Kalman Filter
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link volumes from 16:30 to 21:30 on April 24, 2013, for calibration. 
Because a simulated system is meaningful only if it can faithfully 
reflect actual traffic patterns, this study performed the calibration by 
minimizing the differences between simulated and field-collected 
queues and turning flow rates at intersections. The calibrated simula-
tion was then used to generate simulated scenarios for model evalu-
ation. Table 1 summarizes the demand patterns from each source 
generated with the simulated system, in which the simulation period 
is 2 h and four time periods (30 min each). The phasing plan, signal 
timings, and original phase sequence at each intersection are presented 
in Figure 6. The common cycle length was 150 s.

Using the well-calibrated Vissim network, the study took advan-
tage of the following information for model assessment: (a) GPS 
data with a 1-s time interval for each vehicle and (b) loop detector 
and queue detector data. Then, one can use GPS data to track the 
trajectory of each vehicle and subsequently identify the ground-truth 
O-D flow patterns. The three proposed models required different 
sets of detectors. For Model 1, each link upstream was installed with 
one loop detector for flow data collection; and loop detectors were 
installed downstream of each link in Model 2 to capture the turning 
flows at each intersection. For Model 3, four additional queue detec-

tors were needed at those four links between neighboring intersections 
(i.e., Intersections 2 and 3 and Intersections 4 and 5).

Model Evaluation and Results

To evaluate the effectiveness of the proposed three models, the 
dynamic O-D flows estimated with the different models were com-
pared with the ground-truth O-D flows obtained with GPS data. 
Model 1 was treated as a benchmark for measuring the benefits of 
the other two enhanced models. Comparisons of estimation accuracy 
were based on three key outputs: link flow counts, turning flows at 
all intersections, and dynamic O-D flows.

The quality of accuracy is measured with the following indicators: 
mean absolute error (MAE), mean absolute percentage error (MAPE), 
and root mean square error (RMSE). All performance indicators are 
defined as follows:
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FIGURE 5    Geometric layout of study site.

TABLE 1    Time-Varying Entry Flows from Each Source Node

Time Period 
(s)

Node Number

1 2 3 4 5 6 9 10 11 12

0–1,800 560 210 210 753 547 882 1,470 420 490 840

1,800–3,600 640 240 240 860 625 1,008 1,680 480 560 960

3,600–5,400 720 270 270 968 703 1,134 1,890 540 630 1,080

5,400–7,200 640 240 240 860 625 1,008 1,680 480 560 960

Note: Demand unit: vehicles per hour.
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MAPE
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where xi and x̂i are the estimated and the ground-truth values, and 
N is the number of estimated states.

Table 2 summarizes all the performance indicators for O-D flows, 
link flows, and turning flows given by the models. According to the 
results, Model 1 can produce an accurate estimate of link flows, and 
its resulting MAPE is about 15.86%. Link flows are the major mea-
surements in Model 1, and the estimation results are corrected with 
a Kalman filter over subsequent time intervals. However, Model 1 
cannot yield a sufficiently reliable estimate for both turning flows 
and O-D flows, as shown in Table 2, where the errors can reach as 
high as 42% in MAPE. The target arterial with Model 1 has 28 avail-
able measurements for estimation but has more than 300 unknown 
parameters.

With turning flows at each intersection as the measurements, 
Model 2 outperforms Model 1 in estimating O-D patterns. As shown 
in Table 2, the MAPE of turning flows and O-D flows with Model 2  
have been reduced to 18.27% and 33.20%, respectively. The sum 
of turning flows at each link equals the collected link flows when 
travel time impact is neglected. However, a comparison of the 
results between the two models shows that increasing the number of 
observable measurements can improve estimation accuracy.

As shown by the results in Table 2, Model 3 can produce the most 
accurate estimates compared with the other two models. The estimated 
accuracy with respect to link flows, turning flows, and O-D flows, 
based on MAPE, is 15.92%, 17.46%, and 28.11%, respectively. 

Model 3 takes real-time queue information at several critical links 
as the additional measurement over Model 2. Comparing the results 
of Model 2 and Model 3 confirms the effectiveness of incorporating 
the queue information. For instance, according to the data in Table 2, 
the improvements for O-D flow estimation by Model 3 compared with 
Model 2 with respect to MAE, MAPE, and RMSE are calculated as 
15.07%, 15.33% and 21.21%, respectively.

Identification of Critical Path Flows  
by Using Estimated O-D Patterns

A reliable estimate of arterial O-D flows offers essential informa-
tion for identifying the critical traffic paths (O-D pairs) for design 
of signal progression. Therefore, the critical paths identified with 
the three O-D models are compared next. Those critical paths were 
identified by ranking the O-D volumes and eliminating those pairs 
spanning only one intersection.

As shown in Table 3, both Model 1 and Model 2 can identify only 
three of six actual critical paths. However, Model 3 can identify 
all six critical paths with the correct rankings. Therefore, one could 
argue that the enhanced model is more reliable for identifying major 
path-flow patterns in the design of a multipath signal progression 
system. Verifying the effectiveness of incorporating real-time queue 
information in O-D flow estimation, Figure 7 compares estimated 
and actual O-D flows.

As shown in Figure 7, a and b, all three models can capture the 
pattern of the first two critical O-D flows (7→10 and 6→10), and 
produce acceptable estimates. Figure 7, c and d, indicates that both 
Model 1 and Model 2 do not yield sufficiently reliable estimates for 
two key O-D flows (7→1 and 6→4). In contrast, Model 3 can still 
capture the flow patterns from these two O-D paths. Further investi-
gation of such estimation discrepancies shows that both Node 1 and 
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FIGURE 6    Signal timings and initial phase sequences.

TABLE 2    Estimation Accuracy of O-D Flows

Model 1 Model 2 Model 3

Flow MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE

Link 4.54 18.56 5.48 4.10 16.31 5.21 3.99 15.92 4.99

Turning 4.02 42.39 5.54 2.75 18.27 4.07 2.70 17.46 3.92

O-D 1.885 42.02 3.075 1.473 33.20 2.512 1.251 28.11 1.979

Note: The unit of MAE and RMSE is vehicle.
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TABLE 3    Ground Truth and Identified Critical Paths from Proposed Models

Ground Truth Basic Model 1 Basic Model 2 Enhanced Model

O-D Pair Total Flows O-D Pair Total Flows O-D Pair Total Flows O-D Pair Total Flows

9→12 1,390 9→12 1,658 9→12 1,372 9→12 1,480

6→12 765 6→12 985 6→12 860 6→12 784

9→1 756 9→4 649 9→4 727 9→1 722

6→4 729 4→7 497 4→7 571 6→4 642

12→7 553 4→8 465 12→8 544 12→7 540

12→1 472 9→1 427 9→1 531 12→1 452
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FIGURE 7    Time-dependent flows for critical O-D pairs: (a) 7 ã 10 and (b) 6 ã 10.
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Node 4 have high exiting flows. Also, there are two major source 
flows (from Node 6 and Node 9) that may contribute to those exit 
flows. In the ground-truth flow patterns, most exit flows via Node 4  
are from the source node, Node 6. However, both Models 1 and 2 
fail to capture such relationships and underestimate the O-D flows 
(7→1) but overestimate the O-D flows (6→4). Since the existing 
signal plan at this study site was designed to coordinate the through 
traffic from Intersection 3 to Intersection 1, the high O-D flows 
(6→4) and (7→1) caused a long right-turn queue but a relatively 
short through queue. Hence, taking real-time queue information as 
the additional measurements in Model 3 can produce a much more 
reliable estimate.

Conclusions

This paper presented three models for estimating the dynamic O-D 
flows on a signalized arterial. Model 1 uses link counts as the main 
measurements, whereas Model 2 directly takes intersection turning 
flows as its primary input. Recognizing the impacts of O-D patterns 
and signal plans on the intersection queue distribution, Model 3 
further incorporates the real-time queue patterns as additional mea-
surements to improve the estimation accuracy. All three models 
can be solved with a sequential algorithm based on the extended 
Kalman filter.

On the basis of the actual arterial flows and O-D information, 
the study conducted extensive numerical experiments to assess the 
performance of these proposed models, especially with respect to 
their ability to identify critical arterial path flows, based on their 
respective volumes. The comparison results show that Model 3, 
which incorporates time-varying intersection queue information, 
can yield the best estimation accuracy and can correctly identify and 
rank all critical path flows according to their respective volumes. 
Such promising results offer valuable information traffic engineers 
can use to design a multipath signal progression system, rather than 
the conventional through-flow-based progression (1).

Although increasing the number of queue detectors on arterial 
links would increase the number of measurements and could con-
sequently improve estimation accuracy, it also would require much 
higher installation and maintained costs. Hence, extensions of this 
study will focus on advancing the proposed models to select the most 
critical links that need queue detectors, whereas estimation accuracy 
could still be guaranteed.
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