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Randomized Physics-based Motion Planning
for Grasping in Cluttered and Uncertain
Environments

Muhayyuddin', Mark Moll?, Lydia Kavraki?, Jan Rosell!

Abstract—Planning motions to grasp an object in cluttered and
uncertain environments is a challenging task, particularly when
a collision-free trajectory does not exist and objects obstructing
the way are required to be carefully grasped and moved out. This
paper takes a different approach and proposes to address this
problem by using a randomized physics-based motion planner
that permits robot-object and object-object interactions. The
main idea is to avoid an explicit high-level reasoning of the
task by providing the motion planner with a physics engine to
evaluate possible complex multi-body dynamical interactions. The
approach is able to solve the problem in complex scenarios, also
considering uncertainty in the objects’ pose and in the contact
dynamics. The work enhances the state validity checker, the
control sampler and the tree exploration strategy of a kinody-
namic motion planner called KPIECE. The enhanced algorithm,
called p-KPIECE, has been validated in simulation and with real
experiments. The results have been compared with an ontological
physics-based motion planner and with task and motion planning
approaches, resulting in a significant improvement in terms of
planning time, success rate and quality of the solution path.

Index Terms—Motion and path planning, manipulation plan-
ning, physics-based planning, planning under uncertainties.

I. INTRODUCTION

N the past decades, motion planning has been considered

under deterministic conditions, such as the positions of the
objects and the motion of the robots being precisely defined.
Recently, the incorporation of uncertainties and probabilistic
treatment of the planning problem has gained a lot of interest,
with the objective to compute robust motion plans for real
environments. In this line, planning the grasping motions
in unstructured and uncertain environments is a challenging
task, particularly when a collision-free trajectory from start
to goal does not exist. To tackle this issue, two approaches
are mainly followed: task and motion planning [1]-[5] and
clutter grasping [6]-[9]. The former breaks down the problem
into a repeated sequence of actions to remove the objects
obstructing the path towards the target: select an object to
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move, select the grasping points (or contact points to push)
on the object, compute a collision-free trajectory for grasping
(pushing), and find an appropriate position to place the grasped
(pushed) object. Finally, a collision-free trajectory is computed
to grasp the target object. On the other hand, clutter grasping,
the topic of this paper, is based on planning motions such that
interactions with the objects are allowed, in order to clear the
path to grasp the target object.

The task and motion planning approaches work well for
structured or semi-structured environments. However, cluttered
and uncertain environments raise challenging issues. On the
one hand, these approaches require the detailed semantic
description of the scene and the explicit reasoning about each
robot-object interaction (to carefully move objects in clutter).
On the other hand, uncertainty has to be also considered at
task level regarding the action effects, which leads to compu-
tationally intensive methods that may fail in highly cluttered
and uncertain environments, i.e., it may not be possible to
find a robust sequence of actions to free the path towards the
target object. These challenging issues could be tackled more
easily using clutter grasping approaches. These strategies free
the path towards the target object by pushing the objects
away without explicitly reasoning about each interaction. This
paper proposes to address the challenging issues of clutter
grasping by using a randomized physics-based motion planner
for grasping in the presence of uncertainty. The planner is not
constrained to straight-line motions and does not require any
preprocessing step.

Contributions: The main contribution of this paper is the
proposal of a physics-based motion planning strategy (framed
within sampling-based motion planning strategies) for grasp-
ing in cluttered and uncertain environments. The main compo-
nents of the paper are (1) A probabilistic control sampler that
samples controls and computes the belief about the validity
and the robustness of the sampled controls in the presence
of object pose uncertainty; (2) A tree exploration strategy
which integrates the computed belief with the planning data
structures, biasing the exploration towards the states that have
high belief; (3) An uncertainty handling strategy to cope with
the propagation to future states of the objects’ pose uncertainty
which arises from robot-object or object-object interactions.
To handle the environment dynamics, Open Dynamic En-
gine (ODE, www.ode.org) is used as state propagator. The
proposal has been implemented as a variant of the KPIECE
planner [10].

The rest of the paper is structured as follows. First, Sec. II
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provides an overview of the relevant literature, and Sec. III
formulates the problem and provides an overview of the
solution. Then, Sec. IV explains the proposed approach along
with the algorithms, and Sec. V describes the simulation set-
up and compares the proposed approach with others. Finally,
Sec. VI discusses the results of the work.

II. RELATED WORK

In a manipulation task, the main sources of uncertainty are
the imprecise knowledge of the initial state of the system
(sensing uncertainty), of the robot dynamics (motion uncer-
tainty) and of the future state of the environment when inter-
actions exist (environment uncertainty). Sensing uncertainty
is tackled, for instance, in [11] that describes the obstacle
map using Gaussian distributions, and constructs a road-map
with minimum probability of collision. Motion uncertainty is
considered in different ways. Some approaches [12] consider
the uncertainty in the robot dynamics and in the initial state of
the system as a zero mean Gaussian noise, and use a variant
of RRT [13] that, at each step, computes the distribution of
the state in a way such that the robot keeps a safe distance
from the obstacles. Others use a linear quadratic regulator to
maximize the probability to reach the goal or to minimize
an expected cost function [14], or rely on Markov Decision
Processes (MDPs) to compute the global control policy over
the environment to maximize the probability of success [15].
Uncertainty in the environment is considered in [16], which
treats the extension step of an RRT as a stochastic process,
simulating multiple times and using clustering techniques to
create nodes, thus finding inherently safer paths. Within the
scope of RRT planners, a metric is introduced in [17] to
guide the search towards more convergent trajectories, which
increases robustness, as demonstrated with a manipulator
rearranging objects. Uncertainty in rearrangement problems
is also tackled in [18] using a learned policy from user
demonstrations, and with a similar idea in [9] for grasping in
clutter. Learning from demonstrations avoid assuming explicit
knowledge of object or dynamics models, although this has
been done to include uncertainty while planning for clutter
grasping, assuming straight-line motions and quasi-static push
mechanics [6] [8].

Physics-based motion planning is a step further towards
physical realism in the planning process, and therefore useful
in manipulation tasks. It extends kinodynamic motion planners
(i.e., those planners that consider kinematic and dynamics
constraints) by incorporating the physics-based constraints,
and by allowing the robot-object and object-object interactions
during planning. These interactions are modeled based on
rigid body dynamics. Typically, sampling-based kindoynamic
motion planners (particularly tree-based planners) are used to
sample the states and to construct the solution path. The prop-
agation step is performed using a physics engine such as ODE.
Within this framework, approaches are proposed for problems
like motion planning among collisionable obstacles [19], re-
arrangement planning [20] [21], object placement [22], object
sorting [23] or bin picking [24]. This paper will tackle the
clutter grasping problem using a physics-based motion planner

able to cope with uncertainty in the initial state of the system
and in the poses of the objects as a result of robot-object or
object-object interactions.

III. PROBLEM FORMULATION
A. Problem Statement

Consider a motion planning problem that asks a robot to
grasp an object in a cluttered and uncertain environment,
where possibly no collision-free trajectory exists that moves
the robot from an initial configuration to a pre-grasping pose.
All the objects are assumed to have stable support surfaces
and be laying on a flat working region (e.g., a table). The
objective is to compute the sequence of robust controls and
their durations in such a way that, if applied to the system
in the presence of object pose uncertainty and imprecise
knowledge of contact dynamics, it moves the robot from the
start to the goal state (a pre-grasping pose), by pushing away
those moveable objects obstructing the path, while avoiding
collisions with fixed obstacles. Object-object interactions be-
tween moveable objects are allowed. Note that we are not
dealing with the rearrangement problem, i.e. the final pose of
the objects is not relevant.

Moreover, in order to ease the finding of a solution, the
following constraints are set: 1) no interaction is allowed with
the target object; 2) as a result of interactions the object’s
velocity must be less than a given threshold, and no object
should change its support surface or fall from the working
region.

B. World Modeling and State Validation

Let X be a differential manifold representing the state
space of the robot. At any time ¢ the state of the robot
xy € X is specified as z; = (q¢,q:), where g; and ¢
describes the configuration of the robot and its time derivative,
respectively. The objects in the workspace are classified as
fixed, movable and target object, and are represented as O =
{Otarget’ (/)inovable7 e O]\n}[ovable’ Oflixed’ e nged} with M and
F being the number of movable and fixed objects, respectively.
Their state space S consists of two components, S = {p, v}
with p representing the pose, and v the linear and angular
velocities. At any time ¢ the state space s; € S of the target and
movable objects is represented as S; = {Swarget, S1,-- -, SM}-
The state of the world is modelled as W = X x S.

The discrete-time dynamic model of the robot is:

Wit = fOWe, ), (D

where f: W xU — W is the state transition function, with
control space U representing all possible controls that can be
applied to the system, and u; € U a control input that is
applied at time t.

Let F be a state validity checker defined as
F : W x C — {true,false} where C' represents the set
of validity constraints C = {kinodynamic,interaction}.

The kinodynamic constraints refer to the workspace bounds,
the joints limits, bounds over the velocities, forces, and
torques. The interaction constraints refer to the set of
constraints that describe how the robot can interact with the
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environment, as described in the previous subsection. A state
is said to be valid if it satisfies all these validity constraints.

C. Modeling Uncertainty

The current work handles: 1) uncertainty in the initial state
of the environment, 2) uncertainty in the robot motions and 3)
uncertainty due to dynamic interactions.

1) The uncertainty in the initial pose of the objects can
be attributed to the process noise in the sensing of the
environment as measured, for instance, with a RGBD camera.
In this work object pose uncertainty is modeled as:

IJinit ~ N(pinit’ ,rninit)7 (2)

where A represents the multivariate Gaussian distribution
with p'"' being the mean representing the set of measured
initial poses of the objects, p™t = {piMit. .. pitit} "and m"! the
variance, m™t = {miMt. milit} Other uncertainty models
could be alternatively used as needed.

2) The stochastic discrete-time dynamic model of the robot
is described as:

Wit1 = gWr, ue, €4), 3

where g : W x U x & — VW is the state transition function,
with the disturbance vector space £ containing all possible
disturbances that can be applied to the system. Disturbance in
the robot controls is modelled as:

UE NN(O,’"’LE) (4)

The disturbance vector €; € & represents the control uncer-
tainty at time ¢, and is used to introduce uncertainty in the
control input at this instant of time.

3) The uncertainty in the future states is propagated when
robot-object and object-object dynamic interactions occur.
These dynamic interactions involve various dynamic param-
eters (such as friction, the pressure distribution under the
object surface, the contact forces and the inertial effects),
whose values greatly influence the behavior of the system.
Physics engines provide a good approximation of the actual
contact dynamics. ODE, in particular, does it with three
contact parameters D = {u,c,e}, with p being the vector
of friction coefficients between pairs of objects, ¢ a constraint
force mixing parameter to soften constraints and e an error
reduction parameter to relax the constraints satisfaction. The
uncertainty in the interactions will be modelled by setting
a multivariate Gaussian distribution around the predefined
approximated values:

Up ~ N(D**, mp), ®)

with mean values DX = {2ProX (APrOX aPX 1 and variance
mp = {m,, me,m.}. The values of these parameters are
tuned in simulation and are qualitatively evaluated; the asso-
ciated variances are small.

Fig. 1: Control selection process. The motions in green belong
to the tree, motions in black are the candidate motions and
the motions in blue are the particle motions that are used to
compute the belief of the candidate motions.

IV. PROPOSED APPROACH
A. Solution Overview

The proposed approach considers the above stated motion
planning problem as an open-loop problem, i.e., it tries to de-
velop a robust strategy that absorbs the potential deviations in
the objects poses and in the results of the interactions occurring
during the planning process. The work presents a physics-
based motion planner with an underlying sampling-based
kinodynamic planner that incorporates a robust tree growing
strategy. This strategy works in two phases. The first one is
a control sampling phase, once the state from which the tree
will grow is selected, the algorithm applies randomly sampled
controls called candidate controls for some randomly sampled
time durations to generate valid motions called candidate
motions (as depicted in Fig. 1-a). No uncertainty is considered
in this phase. The second phase considers the uncertainty in
the system, as stated in Sec. III-C, to compute the belief about
the robustness and validity of the candidate motions. This is
done for each candidate motion by considering the uncertainty
and repeatedly applying the candidate control to obtain a set
of associated motions, called particle motions (as shown in
Fig. 1-b, where U,g, represents the uncertainty in the object’s
pose as introduced in Sec. IV-C2), and evaluating their validity.
This belief is used to select the best candidate motion (Fig. 1-
¢), thus enhancing the tree exploration process. Additionally,
a strategy to handle the uncertainty due to dynamic interaction
is included in the approach.

B. Kinodynamic Motion Planning

Kinodynamic Motion Planning by Interior and Exterior
Cell Exploration (KPIECE) [10], [25] is used to plan the
trajectory. It is a sampling-based kinodynamic motion planner,
particularly designed for systems with complex dynamics. A
recent benchmarking study [26] concluded that KPIECE is a
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very good choice (to plan efficiently) for physics-based motion
planing.

KPIECE grows a tree of motions. A motion is defined as
v = (x,u,d), where x is the start state of the motion, u
is the control vector that is applied at state x for a time
duration d. A key feature of KPIECE is how it estimates
coverage during exploration. In order to estimate the coverage,
the state space is projected into a low-dimensional space that
is partitioned into cells. As a result of the projection, motions
are classified into cells (each cell can contain several motions).
These cells are divided into interior and exterior, depending
on whether neighboring cells are occupied or not. The tree
growing procedure is based on first selecting a cell, then
selecting a motion of that cell and a state pertaining to it, from
where the tree will grow. The cell selection process for the tree
growth is based on a parameter called importance (cells with
high importance are preferred for expansion), defined for a
cell z as:

log(Z) - score
CVcell : (1 + |Nezgh(z)|) ’ COU(’Z) |

where 7 represents the planning iteration when the cell was
added to the grid, C, represents the number of times it has
been selected, Cov(z) represents the number of states in the
cell, [Neigh(z)| is the number of instantiated neighboring
cells, and score represents the exploration progress, a value
that is computed by evaluating the increase in the total
coverage and the time spent to achieve this increment in
coverage (when expanding from the cell). Once the cell is
chosen, a motion from that cell is selected using a half normal
distribution (over the indices of the motions, ordered starting
with the newest). Finally, a state is randomly picked from
the selected motion and a new motion is sampled from that
selected state. The process continues until the tree of motions
reaches the goal state.
The current proposal extends this algorithm with:

Imp(z) =

(6)

1) Strategies to handle the propagation of objects’ pose
uncertainty into future states resulting from robot-object
or object-object interactions (Sec. IV-C).

2) A motion sampling strategy that samples motions to
expand the tree and computes the belief about the
robustness of the sampled motions (Sec. IV-D).

3) A tree exploration strategy to modify the cell and motion
selection process according to these beliefs (Sec. IV-E).

The algorithm, inspired by the original KPIECE algorithm,

is presented in Algorithm 1. As input it takes the initial state
of the world W,,;:, the uncertainty in the initial pose of the
objects Uiy, a goal region Qgoq, a time threshold 15y,4,, the
number of candidate motions k to use, the number of particle
motions 7, to evaluate the robustness, the displacement thresh-
old d for evaluating interactions, and the validity constraints C'
that are to be used by the state validity checker. It starts with
19, a motion of zero duration representing the initial state.
Lines 1 to 3, 12 and 14 are the default steps of KPIECE. The
contribution of the current proposal is implemented in function
UpdatePoseUncertainty (line-13) that updates the object pose
uncertainty (Sec. IV-C2), in function MotionSampler (line-8)
that samples k£ motions and select the one that has highest

belief (Sec. IV-D), and in functions SelectMotion (line-7)
and UpdateCelllmportance (line-15) that, respectively, select
a motion from the selected cell to grow the tree and update
the cell importance (Sec. IV-E).

Algorithm 1: Probabilistic KPIECE
inputs : Initial State W;,;;, initial pose uncertainty Uy,
goal region Qg,q;, maximum time 754,
candidate motions k, particle motion n,,
displacement threshold d, validity constraints C'
output: A sequence of motions that move the robot to
the goal region
1o = Winit
G.empty()
G.AddMotion(vo)
Urgn = Mnil
while 7', . do
cell = SelectCell(G)
v= SelectMotion(cell)
Unew=MotionSampler(v, k, ny, d, C, Uyn)
if Unew € Qgoal then
| return path to vo

11 if Vpew! =NULL then
12 G.AddMotion(vnew)
13 U, <UpdatePoseUncertainty(Uygn)

14 UpdateParameters()
15 UpdateCelllmportance(cell)

6 re?turn NULL

D-I-CIEE B N N N

-
=

-

C. Handling Uncertainty Propagation

To handle uncertainty, the most robust motion should be
chosen, i.e., those with higher chance to reach a valid state.
For this purpose, the robustness of the candidate motions is
evaluated by generating a set of particle motions. The belief of
the candidate motions is computed as a function of the validity
of the motion particles. This section explains how the particle
motions are generated and used to update the uncertainty pose
of the objects when interactions take place.

1) Particle Motion Generation: Particle motions are gen-
erated to evaluate a nominal candidate motion. Each particle
motion is generated by sampling the initial state, the dynamic
interaction parameters and the control to be applied: a) the
initial state is sampled from the PDF function associated to
the initial state of the nominal candidate motion (initially rep-
resented by Eq. (2)); b) the dynamic parameters are sampled
using the PDF function described in Eq. (5); c¢) the control is
determined by randomly adding noise to the nominal candidate
control using Eq. (4). Then, a particle motion is obtained
by applying the selected control to the chosen initial state
and considering the sampled dynamic interaction parameters.
Each particle motion will be evaluated using the state validity
checker F.

2) Updating Object Pose Uncertainty: Once interactions
take place, the object pose uncertainty of the displaced objects
is recomputed (objects may collide several times with the
robot and/or with other objects). The poses of the objects
as a result of interaction are highly variant depending on the
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contact regions and interaction force directions. Therefore, the
resultant poses of the objects after applying several particle
motions, can be modelled using the Gaussian Mixture Model
(GMM), which is a convenient way to model the data that
comes from different sources [27]:

Uien = Zaj -N(cj,m;) with a; >0, Zaj =1 ()
j=1 j=1
Eq. (7) is computed using Expectation-Maximization (EM)
algorithm.

Algorithm 2: MotionSampler(v, k,n,,, d, C, Uygn)

1 M «SampleCandidateMotions(v, k)
2 foreach v; € M do

3 W, < Propagate“(v;)

4 if StateValidityChecker(W,., C) then

5 Vstate = Vi, = 0

6 for j = 1ton, do

7 p +GetObjectPoses(WV.)

8 SampleObjectPose(p, Uren)

9 SampleDynamicParameters(Up)
10 W, < Propagate”(v;)

1 validg «+StateValidityChecker(W,, C)
12 validr +InteractionEvaluator(W,, disp, d)
13 if valids then

14 L Ustate = Ustate + 1

15 if validr then

16 L Vint. = Vint. + 1

17 Ple + Vstate / Top

18 PZ’Lnt < 'Ujm_/np

19 b,, +ComputeBelief(Ply,;., Pl;.)
20 AddMotionBelief(v;, b,,)

21 ExistValidMotion=true

22 if ExistValidMotion then

23 if GenerateRandom(0,1) > bias then

24 | return v; <SelectMotion(max(b.,))
25 return v; <SelectRandom(M)

6 return NULL

]

D. Probabilistic Motion Sampler

The function MotionSampler (Line-8, Algorithm 1) is used
to select a robust motion to expand the tree. It is a probabilistic
motion sampler that samples & candidates, computes the belief
abut their validity, and returns the one that has the highest
belief to be added to the tree data-structure. The process is
summarized in Algorithm 2 and uses the following functions:

« SampleCandidateMotions: Samples a set M of k candi-
date motions by first randomly choosing a single state
from the input motion, and then by randomly sampling
k controls and durations.

« Propagate®: Uses Eq. (1) to compute the state resulting
from applying motion v; (i.e., sampled control w at the
selected state x for the time duration d).

o Propagate?: Uses Eq. (3) to compute the state resulting
from applying motion v;.

o StateValidityChecker: Evaluates the resultant state of the
world, W,., using the state validity checker F. If W,

satisfies all the validity constraints, F will return true, and
false otherwise. The validity constraints are explained in
Sec. III-B.

o GetObjectPoses: Retrieves the object poses from W,.

o SampleObjectPose: Samples the object poses using
Eq.(2) or Eq.(7), depending on whether the object is still
at its initial pose or has been moved due to interactions.

o SampleDynamicParameters: Samples the dynamic pa-
rameters using the probability distribution function de-
scribed in Eq.(5).

o InteractionEvaluator: Returns true if |disp| < d or false
otherwise, where disp is the displacement vector contain-
ing the displacement(s) covered by the object(s) in the
result of interaction and d a given threshold (experiments
showed an increase in success rate if object pose uncer-
tainty was reduced by avoiding very large displacements
in highly cluttered scenes).

o ComputeBelief: Compute the belief of a motion as
bi =P, Pl

state™ int.

o AddMotionBelief: Add the belief into the corresponding
motion data structure in M.

« SelectMotion: Selects the motion from M that has the
highest belief, although with a given small probability,
it is replaced by SelectRandom that selects a motion
randomly regardless of its belief value.

E. Tree Exploration Strategy

The main parameters that control the tree exploration in
KPIECE are the cell selection process and the motion selection
from the selected cell. In order to enhance the exploration
strategy to make the tree to grow through robust regions, our
approach modifies these processes as follows.

o The definition of a motion is modified by incorporating
the motion belief, i.e., v = (W, u,d,b,), where W is
the state of the world and b, represents the belief about
the robustness of v.

o A belief value is associated with the cells, according to
the beliefs of the motions they contain. It is computed as
the mean value of the beliefs of the motions normalized
for all the cells, i.e.:

1
by = — with b, == > b, ®
b

n
Veellj “v Vv, Ecell

e The Imp parameter is modified by integrating b in
order to favour those cells with higher belief (the strength
of this bias being controlled by a heuristic parameter f,
set equal to the number of cells):

(1+ fbeeu) - log (Z) - score

M) = & T+ [Neigh(2)]) - Coul?)

€))

Then, once a cell is chosen for the exploration, the motion
from that cell is selected based on b,,. If several motions have
the same belief, a random motion will be selected from them.
In order to explore the less certain regions, with a fixed small
probability, the selection is done as in the standard KPIECE.
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(b-1) (b-2) (b-3)

Fig. 2: Sequence of the snapshots of the execution with:
a) YuMi; b) Kuka-LWR. Videos: https://goo.gl/RzLVil and
https://goo.gl/socxhb

1) ) 3)

Fig. 3: Sequence of snapshots of the execution on the real
YuMi robot. Video: https://goo.gl/bHspjZ

V. EVALUATION

The proposed approach described in the previous section
results in a planner that enhances the power of KPIECE by
considering uncertainty, object interactions and by favoring
the tree exploration towards safer areas, allowing to plan
motions in cluttered and uncertain environments. The main
parameters of the algorithm are evaluated in this section, where
comparisons with other approached are also done.

A. Simulation Setup

The simulation setup is implemented in The Kautham
Project [28], a C++ based open-source tool for motion plan-
ning. It provides the flexibility to plan under geometric, kino-
dynamic and physics-based constraints. It uses Open Motion
Planning Library (OMPL) [29] as a core set of sampling-based
planning algorithms. OMPL provides the integration with the
Open Dynamic Engine that can be used as state propagator to
handle the physics-based constraints. A variant of KPIECE has
been implemented that includes all the extensions described
above. All experiments were run on an Intel Core 17-4500U
1.80GHz CPU with 16 GB memory.

The proposed approach has been tested with two different
robots: the 14 degree-of-freedoms (DOF) ABB YuMi and the
7 DOF KUKA-LWR, both of them with 2-finger grippers. The
example scenarios are presented in Fig. 2. The scene shown in
Fig 2-a consists of movable objects (red cans) and the target
object (wine glass). The goal is to move the robot to a pre-
grasp configuration to grasp the wine glass, by pushing away

those cans obstructing the path. The scene depicted in Fig 2-
b consists of movable objects of arbitrary shapes (boxes and
bottle) and the target object (cyan cylinder). Moreover, the
approach is also validated with the real YuMi robot, and a
sequence of snapshots of the execution is depicted in Fig. 3.

B. Benchmarking

The current approach is benchmarked against two ap-
proaches: 1) an ontological physics-based motion planner,
introduced in [30], that enhances KPIECE for physics-based
motion planning (it will be referred as o-KPIECE); 2) a task
and motion planning approach for grasping in clutter proposed
in [2], [3]. We run 30 simulation for each scenario.

1) Algorithmic Parameter Evaluation: The current ap-
proach always generates more efficient solutions in terms of
memory. Extensive tests showed that the number of gen-
erated states in p-KPIECE is always less than o-KPIECE.
This implies that the number of generated cells is also less.
Since the cell parameters are updated after each propagation
step, p-KPIECE will update them faster, as compared to
0o-KPIECE. Fig. 4 shows the histograms of the average number
of generated states and cells during planning, using o-KPIECE
and p-KPIECE. The comparison between planning time of
both planners using different levels of clutterness is shown in
Fig. 5. Since p-KPIECE considers uncertainty, it performs an
additional step that is robustness evaluation of each generated
state, which makes it computationally expensive as compared
to the o-KPIECE. As a result, for clutter scenes, the planning
success rate of p-KPIECE is higher, as shown in Fig. 6.
The robustness evaluation depends on the number of particle
motions that are used to compute the belief, the larger the
number of particle motions the more robust the plan. However,
the computational time increases with the number of particle
motions, shown in Fig. 7, and this may drop the planning
success rate for not being able to find a solution on time,
as shown in Fig. 8. Another parameter that may affect the
planning process is the cell size used by KPIECE, that must
be properly set. Big cell sizes do not ease the identification
of the relevant regions of the workspace and fail to guide the
tree growth, resulting in long unrealistic paths. On the other
hand, smaller cell sizes better guide the search, thus enhancing
the planning efficiency. Too small cell sizes, however, may
increase the computational time required due to the huge
number of cells generated. This effect on the planning time
is depicted in Fig. 9, where cell size is represented as a
percentage of the side length with respect to the side of the
cube that models the workspace. In this work the state space
is projected to the workspace, using the end-effector position.

2) Comparison with Task Planning: The current proposal is
also compared with the task and motion planning approaches
(TMP) for grasping in the clutter without and with uncertainty
[2], [3], respectively. We have generated a qualitatively similar
setup as that in those references, as shown in Fig. 10. Since the
TMP approach presented in [2] does not consider uncertainty
in the environment, in order to be fair with the comparison, we
have assumed that the uncertainty in the environment is almost
negligible, and then one particle motion is enough to evaluate
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motions.

the robustness, i.e., k = 1. Whereas, to compare with [3], the
value of k is set to 15. The higher the value of £ the higher the
confidence in the planner exploring safer regions, but the lower
the computationally efficiency. The chosen value will depend
on the problem; & = 15 worked well in the example scenarios
presented in this paper. Table I summarizes the results of the
comparison. The data regarding the TMP approaches has been
obtained from [2] and [3], being generated with an Intel Core
17-4770K machine with 16 GB RAM (i.e., a faster processor
than the one used in the current study). The task and motion
planning approach requires explicit reasoning to perform each
action, i.e. repeatedly selects an object to pick, computes
the collision free trajectory to grasp it, finds and appropriate
placement location and moves the object to that location.
In contrast, the current proposal does not require explicit
reasoning about the complex dynamic multi-body interactions
for moving in the clutter. At each step, the objects must satisfy
the global set of constraints, that are easy to evaluate. This
process makes it easy to compute the robust plan efficiently,
even in the presence of uncertainty.

C. Qualitative Analysis

The quality of the solution path computed by p-KPIECE
is improved as compared to the o-KPIECE. Since o-KPIECE
does not evaluate the post-effect of dynamic interactions and
the results of object-object interactions, that leads to the
unreasonable results. For cluttered scenes, in most of the
cases, it displaces the target object or drops the objects from
the table surface, whereas p-KPIECE carefully evaluates the
post-effect of dynamic interactions, interaction velocity and

Fig. 9: Histogram of average planning
time of 60 runs by varying the cell size.

(b-1) (b-2) (b-3)

Fig. 10: Sequence of the snapshot of the executions with the
YuMi and the Kuka-LWR, for the comparison with the task
and motion planning approach. Videos: https://goo.gl/ZorqCF
and https://goo.gl/FAfZVL

Success rate % Av. planning time (s)

Obj. | TP | TPU | pKP | pKPU | TP | TPU | pKP | pKPU
5 - 95 100 100 - 89 2.89 9.88

10 - 95 100 100 - 162 5.96 14.52
15 100 83 100 90 32 135 9.15 29.43
20 94 70 100 86 57 | 229 | 16.78 | 47.61
25 90 68 96 73 69 166 | 26.09 | 72.28
30 84 48 90 66 77 122 | 41.21 | 103.07
35 67 - 73 53 41 - 49.62 | 134.94
40 63 - 60 40 68 - 71.64 | 182.19

TABLE I: Comparison of p-KPIECE with task and motion
planning approaches. Obj. represents the number of objects
used, TP and TPU represent the approaches presented in [2]
and [3], respectively. pKP and pKPU represent the p-KPIECE
with and without uncertainty, respectively.
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displacement covered by the object in the result of interactions,
greatly increasing the planning success rate. Moreover, the
incorporation of robustness evaluation phase results in the
more stable and robust motion plans, i.e. the integration of
the results of robustness evaluation within the planning data
structure allows the search to be guided towards the regions
that are safer, thus increasing the success in the final execution
of the planned paths.

The solution computed by p-KPIECE is also qualitatively
different from the TMP solution. The TMP solution is gener-
ated by integrating several move, pick and place actions. Each
motion planning query is set to move the robot to a particular
place (for picking or placing an object); these local queries do
not consider the final goal. In contrast, p-KPIECE computes
the solution in a more natural way, it launches a single query
and moves away the objects obstructing the path.

Currently, no smoothing operation over the trajectory is
applied, although it can easily be added by using deterministic
control sampling strategies or by applying post processing over
the computed path as presented in [14].

VI. CONCLUSIONS

This study proposes a randomized physics-based motion
planner for planning the grasping motions in cluttered and un-
structured environments. The developed framework takes into
account the uncertainty in the objects’ pose and in the contact
dynamics. The KPIECE planner is enhanced by: a) introducing
a motion sampler, for the extension of the tree, that samples
motions and evaluates the belief about their robustness in the
presence of uncertainty; b) biasing the tree exploration strategy
based on the computed beliefs. The proposed planner enables
single actions to move multiple objects, thereby avoiding the
combinatorial explosion in the task planning part of TMP. The
work is validated in simulation and in real environment against
other approaches, such as ontological physic-based motion
planner and task and motion planning approach. The results
show significant advantages in terms of planning time, success
rate and the quality of the computed solution path.
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