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Approximate Positive Correlated Distributions and Approximation Algorithms
for D-optimal Design

Mohit Singh*

Abstract

Experimental design is a classical area in statistics [21] and
has also found new applications in machine learning[2]. In
the combinatorial experimental design problem, the aim
iz to estimate an unknown m-dimensional vector r from
linear measurements where a Gaussian noise is introduced
in each measurement. The goal is to pick & out of the given
7 experiments so as to make the most accurate estimate
of the unknown parameter x. Given a set S of chosen
experiments, the most likelihood estimate " can be obtained

by a least squares computation. One of the robust measures
of error estimation is the D-optimality criterion [27] which
aims to minimize the generalized variance of the estimator.
This corresponds to minimizing the volume of the standard
confidence ellipsoid for the estimation errar » — »'. The

problem gives rise to two natural variants depending on
whether repetitions of experiments is allowed or not. The
latter wvariant, while being more general, has also found
applications in geographical location of sensors [19)].

We show a close connection between approximation
algorithms for the D-optimal design problem and con-
structions of approrimately m-wise positively correlated dis-
tributions.  This connection allows us to obtain a %—
approximation for the D-optimal design problem with and
without repetitions giving the first constant factor ap-
proximation for the problem. We then consider the case
when the number of experiments chosen is much larger
than the dimension m and show one can obtain (1 — €)-
approximation if k& > ET"‘ when repetitions are allowed and
ifk =024 :1-; -log 1) when no repetitions are allowed
improving on previous work.

1 Introduction

Experimental design is a classical area in statistics [5,
16, 17, 21, 27] and has also found new applications
in machine learning [2, 32]. In the combinatorial
experimental design problem, our aim is to estimate a
vector @ € B™ from linear measurements of the form
i = a?x + 1 where a; £ B™ characterizes the ith
experiment and 7 is an independent Gaussian noise
with zero mean and fixed variance 02 and 1 < i < n
indexes all candidate experiments. We are also given
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an integer k > m and the goal is to pick & out of the
given n experiments so as to make the most accurate
eatimate of the parameter z. If a set of experiments 5§
is chosen, the most likelihood estimate is given by

o (Z a.ﬂf)_l S v

s iEs

One of the most robust measures of error estimation is
the D-optimality Icril:erion where the goal is to maximize
det (Y ;.c@a] )™. This corresponds to minimizing
the volume of the standard confidence ellipsoid for the
estimation error r — ¥. In the problem description,
the same experiment may or may not be allowed to
chosen multiple times. We refer the problem as [3-
optimal design with repetitions if we are allowed to pick
an experiment more than once and D-optimal design
otherwise. The latter problem has also been studied as
the sensor selection problem [19] where the goal is to
find the set of sensor locations to so obtain the most
accurate estimate of certain parameter to be measured.
It is easy to see that D-optimal design with repetitions
is a special ease of the D-optimal design problem!.

1.1  Owur Results and Contributions Formally, in

the D-optimal design problem, we are given a collection
of voctors ay,...,a, € BE™ and integer & > m and

the goal is to pick a subset § C {1,...,n} of size k

to maximize .
det (Z ma?) .

=

In the D-optimal design problem with replacement, the
solution § ean be a multi-set. The D-optimal design
problem is known to be NP-hard [33] and our aim is to
design approximation algorithms for the problem.

Onur first contribution is to reduce the design of
approximation algorithms for the I)-optimal design
problem to finding distributions that are approximately
positively correlated. To make this connection formal,

TFor the reduction, introduce k copies of each vector in the
instance to construct an instance with nk vectors,
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we give the following definition. Also, we let [N] =
{1,....N} for any positive integer N.

DEFINITION 1. Given x € [0,1]" such that 1Tz = k
for integer k= 1, let p be a probability distribution
on subsets of [n] of size k. Let Xq,..., Xy denote the
indicator random variables of 1,. .., n respectively, thus
X =1ifi € & and 0 otherwise for ench 1 <1 < n where
random set S is sampled from p. Then Xy, ..., X, are
m-wise a-positively correlated for some 0 < a < 1 4f for
each T' C [n] such that |T'| < m, we have

FIT €8]z alT]] 2
ieT

With a slight abuse of notation, we call the dis-
tribution g to be m-wise a-positively correlated if the
above condition is satisfied. Observe that if o = 1, then
the above definition implies that the random variables
Xy, ..., XA, are m-wise positively correlated. We insist
on an approximate version where we relax the positive
correlation condition by a multiplicative factor. The
following lemma shows the crucial role played by m-
wise approximate positively correlated distributions in
design of algorithms for D-optimal design.

LeEMMma 1.1, For any o =< 1, the D-optimal design
problem has a mndomized o-approrimation algorithm
if for every x £ [0,1]" and integers m < k < n, such
that EiE[“] xy = k there erists an efficiently computable
distribution that is m-wise a-positively correlated.

The proof of Lemma 1.1 relies on the polynomial formm-
lation of a natural convex relaxation of the D-optimal
design problem. We show that a m-wise o-positively
correlated distribution leads to an randomized algo-
rithm for the D-optimal design problem that approx-
imates each of the coefficients in the polynomial for-
mulation. The convex relaxation and the proof of the
Lemmea is given in Section 2.

We then utilize the connection in Lemma 1.1 to
design an %-appmximatinn algorithm giving the first
constant factor approximation for D-optimal design
problem. Previously, eonstant factor approximations

were known only for restricted range of parameters [2,
6, 32| (see related work for details).

THEOREM 1.1. For any integers m < k < n and
x € [0,1]" such that 17z = k, there erists an efficiently
computable distribution p on subsets of [n] of size k
such that the indicator random variables of 1,....n
are m-wise 1/e-positively correlated.  Thus, there is
a El-appmmmatéan algorithm for the D-optimal design
problem,

The distribution g in Theorem 1.1 is the product
distribution where p(S8) = [[,. 5 7; for each & of size k.

We show that it is approximately positively correlated
with the claimed parameters. The technieal ingredient
in the proof are wvarious inequalities on symmetrie
polynomials [34]. We also show how to derandomize the
above algorithm and obtain a deterministic algorithm
achieving the same guarantee. We also remark that
the bound % is best possible for the parameter o in
m-wise a-positively correlated distributions. The proof
of Theorem 1.1 appears in Section 3.

While in general, the bounds are tight, we show that
they ean be improved when & is larger than m, a case
that has been considered in previous work as well [2, 32].

Indeed, in this case we obtain substantial improvements.

THEOREM 1.2, For any tntegers m < k < n such that
and x € [0,1]" such that 3., = = k., there evists
an efficiently computable dwtrgbutian L on subsets of
[n] of size k such that the indicator random variables
of 1,....n are m-wise (1 — ¢)-positively correlated if
E=0(%log(L)+2). Thus there exists a (1 — €)-
approzimation for the D-optimal design problem when
k=0 (Flog(c)+ 7).

To obtain the claimed distribution in Theorem 1.2,
we start with an independent randomized rounding with
marginals given by vector x. If the random set thus
obtained has size more than k, we apply a simple
contention resolution method by selecting a random
sot of size k of the selected elements. The proof of
Theorem 1.2 appears in Section 4.

As remarked earlier, the D-optimal design with
repetition i3 a special case of the D-optimal design
problem. Therefore, all the above results apply to this
case as well. But, for the case when & is larger than m,
we can obtain improved bounds.

THEOREM 1.3. Thus for any integers m < k < n, there
erists a (1 — €)-approzimation for the D-optimal design
problem with repetition when k > 2™,

The randomized algorithm for Theorem 1.3 Te-
lies on a simple randomized algorithm similar to that
in Nikolov [24]. The proof differs significantly from
Nikolov [24] and relies on relationships between condi-
tional Poisson sampling and multinomial distributions
as well as Poisson limit theoroms. The proof of Theo-
rem 1.3 appears in Section 5.

1.2 Related Work As remarked earlier, experimen-
tal design is a classical area in Statistics; we refer the
reader to Pukelsheim|27], Chapter 9 on details about D-
optimality criterion as well as other related (A, E,T)-
criteria. The eombinatorial version, where each expoeri-
ment needs to chosen integrally as in this work, is also
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called exact experimental design and the D-optimality
criterion is NP-hard [33]. In contrast, if the experiments
are allowed to be picked fractionally, then D-optimality
criterion reduces to a convex program(see for example
[100) and [28] give methods to solve the convex program
fast. There has also been work on heuristic methods,
such as local search and its variants, to obtain good
solutions [17].

From an approximation algorithm viewpoint, the
problem has received attention lately. Bouhou et al. [9]

1

wive a (%}:—appm}cimmiﬂn algorithm. Wang et al. [32]
building on [6] give a (1 + e)-approximation if & >
mTE_ Recently, Allen-Zhu et al [2] use the conneetion
of the problem to sparsification|[7, 29] and use regret
minimization methods [3] and gave O(1)-approximation
algorithm it & > 2m and (1 + €)-approximation when
k= O(%). We also remark that their results also apply
to other optimality criteria.

A eclosely related problem is the largest j-simplex
problem. This problem is equivalent to the following:
(Given a set of n vectors ay, ..., 4y € B™ and integer k <
m, pick a set of § of k vectors to maximize the k*-root
of the pseudo-determinant of X = Zié a ﬂ,‘ﬂ?, L.e., the
geometric mean of the non-zero cigenvalues of X. The
problem has received much attention recently [20, 24,
31] and Nikolov[24] gave a L-approximation algorithm.
Observe that the special case of & = m of this problem
coincides with the speecial case of & = m for the D-
optimal design problem. Indeed, Nikolov's algorithm,
while applicable, results in a —i -approximation for
the D-optimal design pnri:nl'}ln?.rnfarrl Recently, matroid
constrained versions of the largest j-simplex problem
have also been studied [4, 25, 30].

The [D-optimality criteria is also closely related
to constrained submodular maximization, a elassi-
cal problem [23], for which there has been much
progress recently[14]. Indeed the set function f(S) :=
logdet (3,5 a:a! ) is known to be submodular. Unfor-
tunately, the submodular function f is not necessarily
non-negative, a prerequisite for all the results on con-
strained submodular maximization and thus these re-
sults are not applicable. Moreover, for a multiplicative
guarantee for the det objective, we would aim for an
additive gnarantee for log det objective.

Sampling k objects out of n with given marginals
has been studied intensely and many different schomes
have been proposed [12]. Indeed most of them exhibit
negative correlation of various degrees [11]. Here we
are interested in schemes which exhibit approximate
positive correlation and thus allow the marginals to be
satisfied approximately. We expect that the concept of
approximate positive correlation as well the rounding

methods proposed in the paper will be of independent
interest.

Notations: we let B, (3, Z, denote the sets of pos-
itive real numbers, rational numbers and integers, re-
spectively. Given a positive integer NV and a set J, we
lot [N]:={1,..., N}, Nl = [[ign i, |Q| denote its car-
dinality and {ﬁ] denote all the possible subsets of @
whose cardinality equals to N. Given a matrix A and
two sets K, T, we let det(A) denote its determinant if
A is a square matrix, let Ag 7 denote a submatrix of
A with rows and columns from sets B, T, let A; denote
ith column of matrix A and let A denote submatrix of
A with columns from set B, And we use S to denote a
random set.

2 Convex Relaxation and Positively Correlated
Distributions

In this section, we introduce a convex relaxation for the
problem that has been extensively studied [19, 28] and
prove Lemma 1.1,

2.1 Convex Relaxation We first note that the D-

optimal design problem can be formulated as a mixed
integer convex program below:

(2.1)

-
max wew = |det Z:n.,-a;a;r ?th=k ;
el i) ie]

ki
where [d‘—‘t (Eaepq rimza] )| is concave in x (£, [8]).
A straightforward convex relaxation of (2.1) is to relax

the binary vector r as continuous one, i.e., x € [0, 1]",
which is formulated as below

(2:2)

max wew < |det r.a.a)
re|0,1]™,w - Z i

,Z:I.';-=k:

ie(n ic(n]

(2.2) is a convex program, which can be solved effi-
ciently. Hecently, in [28], the authors proposed a second
order conic program (SOCP) formulation for (2.2) for
which a more effective interior point method ean be used
to solve it.

We also remark that in Lemma 1.1, we can replace
a by the optimal solution to the continuous relaxation
of D-optimal design problem (2.2). This allows us to
establish approximation bounds.
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2.2 Proof of Lemma 1.1 Before proving
Lemma 1.1, we wounld like to introduce some use-
tul results below. The following lemmas follows from
Cauchy-Binet formula [13] and use properties of de-
terminants as a polynomial in entries of the matrix,
The proofs appear in the appendix. For any set X and
integer k, we let (}) = {¥ C X : |¥| = k} denote the
set of subsets of X of cardinality k.

LEmya 2.1, Suppose a; € B™ for i € T with |T| = m,
then

Y det (Zagaf).

se(n)  \ies

(2.3) det (Zﬂia;r) =

T
Lemma 2.2, For any x € [0,1)7, then

(2.4)

act Y waal | = 3 Hm,.ﬂm(zm)

ie[n) ge(ln) tes =)

Now we are ready to prove the main Lemma 1.1,

Proof. (Proof of Lemma 1.1) Suppose that x is the op-
timal solution to (2.2). We consider the distribution p
given by Lemma 1.1 for this x which satisfies the condi-
tions of Definition 1. We now consider the randomized
algorithm that samples a random set & from this distri-
bution g and returns this as the solution. We show this

randomized algorithm satisfies the guarantee claimed in
the Lemma. All expectation and probabilities of events

are under the probahility measure g and for ease of no-
tation we drop it from the notation.

i
Since [det (E*Ew ryaga, )] ™ is at least as large as

the optimal value to D-optimal design problem (2.2),
we only need to show that

fs

or equivalently

n 1
det (Z ﬂ,‘ﬂtT ):| } > o |det Z m,-a.ia;r

= ic[n)

(2.5) E ldet (Z a,.-,a.;r)j| = o det Z Ty,

=0 ie(n]

This indeed holds since
Z P[S = 5] dat (Za,;af)

E |det (Zaia;r)] =
= SE{I:]} =
= Y PIS=49 Zdet(Zﬂ, )

L]
gc lHJ} (: ieT

= > P[T C8]det (Za,-a;r)
TE(I:,]:] iceT

=™ Z ]_-[:c;det (Zaia-;r)
Te ()T €T

= o™ det Z Iiﬂiﬂ;r

ign]
where the first equality is because of definition of
probahility measure g, the second equality is due to
Lemma 2.2, the third equality is due to the interchange
of summation, the first Inequality is due to Definition 1
and the fourth equality is because of Lemma 2.2,

3 Approximation Algorithm for D-optimal
Design Problem

In this section, we will propose a sampling proce-
dure and show the approximation ratio based upon
Lemma 1.1 to prove Theorem 1.1, We also develop an
efficient way to implementing this algorithm and finally
we will remark that this sampling algorithm can be de-
randomized.

3.1 Analysis of Sampling Scheme In this subsec-
tion, we will develop and analyze a sampling procedure.
I this sampling procedure, we are given x € [0, 1]™ with
Z:._-E[n] z; = k. Then we randomly choose a size-k subset
& such that

H;i'ES T

5= ESE@} [lics =i

(3.6) PlS =

for every § € (7).

We are going to derive approximation bounds on
positive correlation for the measure induced by this
sampling procedure. The key idea is to derive lower
bound for P[T C S| for any T € ([::1]) in comparison to
ILicr =:. Observe that we have

Zse{':‘}:ﬂ;s [Lies
2oseen licaz

Observe that the denominator is a degree k poly-
nomial that is invariant under any permutation of [n].

F[T c&]l=
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Moreover, the numerator is also invariant under any
permutation of T as well as any permutation of [n]\ T.
This observation will allow us to use inequalities on sym-
metric polynomials and reduce the worst case ratio of
PT € 8] with [[;-p 7 to a single variable optimiza-
tion problem as shown in the following proposition. We
then analyze the single variable optimization problem
to prove the desired bound.

Before proving the main proposition, we first intro-
duce two well-known results for sum of homogeneous
and symmetric polynomials.

Lemma 3.1, (Maclaurin's inequality [22]) Given a set
8, an indeger s € {0, 1,--- , |9} and nonnegative vector
T e Rl_fl, we must have

l—;l(;m) > " (|1T|} QEZ(: I =

icg)

And

Lemma 3.2, (Generalized Newton's inequality [34])
Given a set S, two nonnegative positive integers 3,7 €

Ey such that 2,7 < |S| and nonnegative vector ¥ € RlSl
then we have

(Zﬂéif]‘ nJ‘ER :ﬂi) (Eﬂe[f} HiERIi)
(%) (%)
ZQE (air) 'EQ Ti
- (5

Now we are ready to prove the main proposition.

ProrosiTioN 3.1. Suppose S is the random variable
as defined in (3.6). Then for any T C [n] such that
|T| = m, we have

PICS]2 s I =
}‘iET
where
(3.7)
glm,n. k) =
v Ui (n—m)mr () m
mk Sy < m}-
mn

Proof. According to Lemma 1.1 and sampling proce-
dure in (3.6), we have

>R ALy ILicr=;
PTCS =[]z ) 5
T Es.;([“l} [Tica

ERE(IHI\T'} HJ-.;R Ij

=K
Jlél" }Zm—nZwE{ )erwl’- (EQE{I"IU}HtEQ :"'!-)

where the second equality uses the following identity

(2)- e (e (221}

We now let

(3.8a)
2ormo Lwe(7) Miew =i (qu(l:l_\:) [Ticq Ii)

AT(IL’:I =
2 re(piny Hjer s

Aceording to Definition 1, it is sufficient to find a
lower bound to I'I;EIT_I;IP[T C 8], ie.,

1
glm.n, k)
< min ! BT C 8= ! Dy mi=k
o] | [Lier = =7 Ar(x) e

Or equivalently, we would like to find an upper
bound of Ar(x) for any r which satisfies 3
k.x e [0,1]", Le., show that

icin] Ti

(3.8b)  glm,n. k) = A

Ar(z): Z =k

ic[n|

In the following steps, we first ohserve that in
(3.8a), the components of {z;}icr and {z;};cpp 7 are
hoth symmetrie in the expression of Ap(x). We will
show that for the worst case, {z;};c7 are all equal and
{Zibigpnpr are also equal. We also show that =; < =
for each i € T and j € [n] "\ T. This allows us to reduce
the optimization problem in R.H.S. of (3.8b) to a single
variable optimization problem, i.e., (3.7). The proof is
now scparated into following three claims.

(i) First, we claim that
Craim 1. The optimal selution to (3.8b) must

satisfy the following condition - for each i € T
and j € n|\T, z; < ;.
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Proof. We prove it by contradiction. Suppose that
there exists i' € T and j' € [n|\T, where x;; < z4.
By collecting the coefficients of 1,z rp, zpxy,
we have

b + bazi + baxye + bazpay
€1 + CoT4r

Ar(z) =

where by, ba, by, 1, £o are all non-negative numbers

with
h= ¥ =
Fe(IMia' ) ieS
b= > =
Se(IMNia' ) eS8
b= > 1=
Se (M ) ies
a= > L=
Re(MTelirhy JeR
a= > =
RE““QT:ETH]jER
Note that

1 P
TirTjr < (:c;r +xp) .

Therefore, Ar(x) has a larger value if we re-

place zy,xp by their average, lLe.  xyp =
% (zir + iE.‘jr) y L1 1= % (zy + .'I.‘_ja].

Next, we claim that

Crama 2. for any feasible = to (3.8h), and for

each § C [n] and s € {0,1

> [Mw<ls () (ZI) |

Qe(3)ieQ ics

S|}, we must have

Proof. This directly follows from Lemma 3.1.

And also

Cram 3. for each T C [n] with |[T| = & and
e {01, ,m},

S Qo< )

P
Qc [|“£‘.:} i} {n" m] k—m

S - (zmj_-

e ([ilnl'l.“:} JeEf ic[n\T

2245

Proof. This can be shown by Claim 2 and
Lemma 3.2

(T

(n—m)m™7

k_m)

5 mw(zm)
re(ick ) \sclalir

{'I"I-—'I"l"l

— ‘.'li —m

HE{[:]\! ) JER
= H Iy

QE[ ﬂIU :| ieQ

> =

se(iphy)des

where the first inequality is due to Claim 2, and
the last inequality is becanse of Lemma 3.2,

(iii) Thus, by Claim 3, for any feasible x to (3.8b),

Arp(z) in (3.8a) can be upper bounded as

Th {ﬂ. m}
g{n mm—7 (0™

k—m
m—T
Y] X -
ic[m]\ T WEG’} =

{Z m @

“ (n— m}f“ T(k m} mT

BRS¢

v LS (n—mymor (G20) mT

(k=)™ ()" ?lfk <y< m-} = g(m,n, k)

where the second inequality is due to Claim 2, and
the last inequality is because we let y = 3, eT Ti
which is no larger than m, maximize over it and
Claim 1 yields that y/m = (k — y)/(n — m), i.e
% < ¢ < m. This completes the proof.

Next, we derive the upper bound of g{m, n, k) in

(3.7), which is a single-variable optimization problem.
In the proof below, we first observe that for any
given (m, k) with m < &, g(m,n, k) is monotone
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non-decreasing in n.  This motivates us to find an
upper bound on lim,,_, . g{m. n, k), which leads to the

proposition below,

ProrosiTioN 3.2, For any n = k > m, we have

(3.9)  [g(m,n, k)] < min {e,l + %ﬂm}

Proof. (i) First of all, we prove the following claim.
Cramg 4. For anym < k <n, we have

g(m,n, k) < g(m,n+ 1,k).

Proof. Let y* be the maximizer to (3.7) for any
given m < k < n, lLe.,

P N =) B ¢

& (n—mym () m
(k=g )" T (W)

Clearly, y* is feasible to (3.7) with pair (m,n +
1, k). We only need to show that

(m,n. k) < v ﬂil':m} @
IR = 2 (1 — mym— (") ‘mr
k=) W)

In other words, it is sufficient to show for any
0<r<m,

ll__T (ﬂ+1 m

—my = — +1
(n mm T{nm {n+1 jmrﬂ mm.

which is equivalent to prove

n—k n—k-—1 n—k—-m+7+1

n-m n-m n—m
n+l—k n+l-k-1

“n+l-m n+l-m
n+l—k-m+7+1

N n+l—m ’

The above inequality holds sinee for any positive

integers p, ¢ with p < ¢, we must have £ < .;%

(ii) By Claim 4, it is sufficient to investigate the
bound limge o, g(m, n', k), which provides an up-
per bound to g(m,n, k) for any integers n = k >
m. Therefore, from now on, we only consider the
case when n — oo for any fixed k& > m.

2246

Note that for any miven i,
s G G)g o pmeryr s the

coefficient of * in the following polynomial:
Ry (t) :
k—m . L— 1T m
(1 B 2
) m

(k— y}k m(km T — M

which is upper bounded by

(n —m)k—m

k=g ()
(122t 1 (22 )
(1+ Low g (294

_ )k-m R
G [—ﬂy}ﬂ o () (+)

because of the inequality €” = 1+r+ 3r*+... for
any r and t = 0. Therefore, we also have

Ralt) 1= ¢

1 dERy(1)
T

t=10

I (h7) 7) ety
Y g e

'I"t!‘]"l:

—E&Z (n = -m:rm )

1

S Sy

T=0  i,e8 ViEn| FEm] "3
Se[n—m] B TET

el n—m] =T
MAX e [n] >2

1 1
(m—m)m=7 (Lo mT
1 d*Ry(t)

nooo k! dik =0

B Kk (n—m)km

e KL (k—u)Fm ()
< lim L (n _m}k—m

" e B (k=m0

kY (k—m)!

Tk (k—m)Fm

T} (k y}m—r T

3

— (k- Ty

= Ha(m., k)

where the first inequality is due to the non-

negativity of the second term of £ %ﬁﬂ) , the
=0
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second and third equalities are becanse of two
equivalent definitions of Ry(t), the last inequality
is due to ¥y < m and the fourth equality holds
becanse of n— oo,

Note that Ri(m, k) is nondecreasing over & €
[m, o). Indeed, for any given m,

log sl b+ 1) =klng(1+%)

RS{m:kj
1
— (k—m)log (1+ {k—m]) ;

whose first derivative over £ is equal to

1 1 1
lug(1+E)—m—log(l+m)
1

+—=0,
Fn m+1
ie., Mgﬁ‘k%‘mi}}ﬂ is nonincreasing over k. There-
fore,
Ha(m, k+1) 1
log ——— =kl 1+ =
%8 " Ry(m, %) “g( H-)
1
—(k—-m)l 1
( mj%('ﬂk—mﬂ
R E+1

i N )

Thus, Ra(m,k) is upper bounded when & — oo,
ie.,

Ry(m,k) < lim_ Ry(m, )

. i
- [0 F)
R e

k' —1)--- (K —m+1) :

Him
Tm

where the last equality is due to  the

. ) i
fact that limp o (1-3)"™ = e and
L :
1My o0 frgprag ey = 1. Therefore,
nllﬂ,[g m,n, kj]
= lim |max T
s e S
(2) -
m ™
T e )T T <y <
k)T <y< m}

(iii) We now compute another bound 1+ £ for

[glm.n, k}]ﬁ, which can be smaller than e when &
is large. By Claim 4, we have
y}m—rﬁr} i

Note that 0 < y << m, thus & —y < k. Therefore,

glm,n k) < lim g(m,n’, k)

n' o

(k—m)! (7)
ﬂ{y{m {Z —‘T}r m7 k B

we have
llm glm,n, k) ﬁz%km_
m—T k m
E;}(k—m+1) :(1+-‘5—‘m+1) ’

where the last inequality is due to —E&_—?T-%I— =

m—T
1 1
(=S UETESE (k—m+1) '

Therefore, we have

[g(m, n, k)] =
[ {gmrwwwﬂg
gy Ty < m}f

for any m < k < n.

Theorem 1.1 directly follows from Proposition 3.2 when
n=k>m.

We also note that when k is large enough, the
sampling algorithm is a near 0.5-approximation.

Cororrary 3.1, For any integers m < £ < n such
that and x € [0,1]* such that 3, =: = k, there exists
an efficiently computable distribution p on subsets of
[n] of size k such that the indicator random variables of
1,...,n are m-wise 0.5—e-positively correlated ifk > .
Thus there exists a (L5 — €)-approcimation for the D-
optimal design problem when k > 7.

Proof. As 0 < e < 1, from Proposition 3.2, let

ke 1
< .
k—m+1—05—c¢

1+

Then the conclusion follows,
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3.2  Efficient Implementation In this subsection,
we propose an efficient implementation (i.e., Algo-
rithm 1) for the sampling procedure proposed in the
previous subsection. We first observe a useful way to
computing the probabilities in Algorithm 1 efficiently.

OpsErvaTioN 1. Suppose © & B and integer 0 < r <
t, then ESE{[‘I} [lics x: is the coefficient of t™ of the

pelynaormial Hieltl (14 x;t).

The main idea of the efficient implementation is to
sample elements one by one and update the conditional
probability distribution. We show how to sample from
these updated distributions efficiently. For any given
x € [0,1]" with z__.E[n] x; = k and a size-k subset § = §
such that |§] = k, we need to compute the probability
FlS = S| in (3.6) efficiently. Indeed, this probability
can be computed sequentially: piven that a subset of
chosen elements 5 with | S| < k and a subset of unchosen
elements T with |T| < n — k, then probahility that
4 & (5UT) will be chosen is equal to

7 (ZSEE":N’E?;?} Ires 1‘)
F[j will be chosen|5,T] =

Algorithm 1 Sampling Algorithm with Constant Fac-
tor Approximation

(Sseerpegmy Mees )

The denominator and numerator can be computed
efficiently based on Observation 1. If § is chosen, then
update S = 5§ U {j}: otherwise, update T := T U {j}.
Then go to next iteration until |S] = k. By applying
sequential conditional probability, we have

e H;:'GSI;J'
F8 = 51= ESE{I"]} njES ;'

k

The detailed implementation is shown in Algorithm 1.

3.3 Deterministic Implementation In this sub-
section, we will present a deterministic Algorithm 2,
which is a derandomization of Algorithm 1 using the
method of conditional expectation. The main challenge
is to show that we can compute the conditional expec-
tation cfficiently. We show how to do this by evaluating
a determinant of a n x n matrix whose entries are linear
polynomials in three indeterminates.

In this deterministic Algorithm 2, suppose we have
two disjoint subsets S5, T, where 5 is a chosen subset
and T is a unchosen set such that |S| = s <k, |T| =t <
n—kSNT ={. Then the expectation of mth power

1: Given z € [0,1]" with } ;. = k and w =

i
[dt‘.‘t (z:eln] :ﬂfﬂ*ﬂ;r)] "
2: Initialize chosen set § = () and unchosen set T' =
3: Two factors: A, = ESEU‘:J:I Hief Ti,Aa =10
4: for j=1,...,n do

5: if |&§| ==k then
f: break
T: else if |T| =n — k then
&: S=[n\T
o break
10: end if
11: Lot Ay = (ESE(H"'}E'{;?} [l es mr)
12: Sample a (0, 1) uniform random variable I7
13: it z;42/A4; < U then
14: Add j to st 8§
15: Ay = Ag
16: else
17: Add j toset T
18: Ay =4 — IJ'AQ
19: end if
20: end for
« 21: Output &

of objective funetion given these two subsets is

(3.11)

H(S,T):=E [dm (Z MI)

s
nj'EU Iy

) Loe(riysony Iliew #i

SCS.TNS =

e (IS

- det (Z ﬂ,-a.;r + Zﬂ;ﬂ?)
icll ics
-1

>, =

e ([-q I‘iff:"ﬂ} Jel

-| ¥ -

e (rrq I'i.if:-_'ﬂ} el

Y e (ZM,T)
Re(Vs ich
—1

| v 1= >

Oe(MET)IE0 | Re(UT) IRS| ks

BT 7S D ol | O

JER\S ich WE{h]Hk[f:-j'rum}jew
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where the first equality is a direct computing of the
conditional probability, the second equality is due to
Lemma 2.1 and the third one is because of interchange
of summation.

Note that denominator term in (3.11) can be com-
puted efficiently according to Observation 1. Next, we
show that the mimerator in (3.11) can be also computed
cfficiently below.

ProrosiTION 3.3. Suppose r € RY a; € B™ for each
i € n| withm < n and A = [aq,...,a,|. Consider the
Sfollowing function

(3.12) F(ty,ta,ty) = det (I,
. . 1 .
+1 diag(y)7A" Adiag(y)* + dlag{y}) :
where {1, 1a,iz € B,y € B" are indeterminete and

ts, ific &
¥i= 0, ifieT
xita,  otherwise

Then, the coefficient of t’l"t’;_gtg in Fty,ta,ty) equals
o

(3.13) z H xjdet (Zaia;r)

Re("\T),IR\S|=r <k —s JER\S ieR

S II =

we (ML) JEW
Proof. First of all, we can rewrite F(t;,tg, t3) as
= det (I, + diag(y)) det (I,,+
t, diag(e +y)~# diag(y)F A" A diag(y)? diagle + 1))

=[[a+t) J] +azitz)det(l,+t.B"B)
eS8 ic|n]y[SuT)

Ftq,t2,13)

where the ith column of matrix B is

t e
i ifies
B; = 0, itieT

gty o 1
V Ty i otherwise

Note that the coefficient of ¢ in det (I, + t; B B) is
equal to the one of H‘iElﬁ]{l +1t1A;), where {A;}icn are
the eigenvalues of B' B. Thus, the coefficient of t]* is

> TIxn= Y det((B"B)rs)

Rre(InT) i€k Re(Th
= Z det (ZBBT) Z det (ZB BT)
RE[M] ic R Re [HI\.T) icH

where Prr denotes a submatrix of P with rows and
columns from sets R, T, the first equality is due to the
property of the eigenvalues (Theorem 1.2.12 in [18]),
and the second inequality is because the length of each
column of B is m, and the third equality is because the
determinant of singular matrix is (.

Therefore, the cocfficient of t’f‘t?"“tg in F(tq,ia,1g)
is equivalent to the one of

[T+ ] Q+zita)

icS L]\ (SUT)

> det (ZB B!

HE('"&I i

By Lemma 2.2 with n = m and the definition of matrix
B, the coefficient of r"‘ “Ft3 in Fty,ta,tg) is further
equivalent to the one c:rf

[T+t JI (1+mt2)
ied iE[n]".,fSLJT}
f.'lﬂ.
Z H ‘l'fz:l'J H 1+53

RE{I“]U ] JERNS
- det (Zﬂ._-a;r)

ich
=t Z tlgﬂl"gltlfﬂsl (1+33]|S~"Rl

Re("0)

H (14 mtg) H xjdet (Zaia.;r)
ic[n]\(SUTUR) FER\S icR

which is equal to (3.13) by collecting coefficients of
trk—ags,

The Algorithm 2 proceeds as follows. Given a
subset of chosen elements 5 with |S5| < k and a subset
of unchosen elements T with |[T| < n — k is not
chosen, and j ¢ (SUT), we compute the expected mth
power of objective function that j will be chosen or not
HSuiT)L,H(ETuj). W HSUT) = H(STUj),
then j is chosen, then update 5 := 5 U {j}; otherwise,
update T ;= T {j}. Then go to next iteration.

The approximation result for Algorithm 2 is identi-
cal to Theorem 1.1 and Corollary 3.1.
4 TImproving  Approximation  Bound in

Asymptotic Regime
In this section, we propose another sampling Algorithm
3 achieves asyvmptotic optimality, i.e. the output of
Algorithm 3 is close to optimal when k/m — =c. In
Algorithm 3, we are given 2 € [0, 1]" with 5,0 2 = k,
a positive thrcshuld ¢ > 0 and a random permutation N’
of [n]. Then for each j € N, we select j with probability

ﬂ_-’;, and let & be the set of selected elements. If |§| < k,
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Algorithm 2 Deterministic Algorithm

1 Given « € [0, 1]" with Z:e[rq i = k and w =

[d.et (Eié[n] r;a.a] )] "
2. Initialize chosen sot S = @ and unchosen sot T =0
3 forj=1,...,ndo

4: if |§| ==k then

& hreak

&: else if |T'| =n — k then
T: = [ﬂ,] VT

B: end if

o0:  if H(SU4,T) > H(S,TU{) then
100 Add § to set &

11: else

12 Add § to set T

13: end if

14: end for

15: Output &

then we can add & — |S| more elements from [n] Y S.
On the other hand, if |S] > E, then we apply a simple
contention resolution method, ie., choose & elements
uniformly from sot §.

To analyze sampling Algorithm 3, we first show the
following probability bound. The key idea is to prove
the lower bound i Eli _‘I‘!P{T Z &} by using Chernoff

Bound [15].

Lemua 4.1, Let € > 0 and § C [n] be & random
set output from Algorithm 3. Given T C [n| with
|T| =m < n, then we have

_fek—(14e}m 2
41  am>(1+e ™ (1_E e )

where o is in Definition 1. In addition, when k& =

Am 4 12 log(L), then

€

(4.15) a™ > (1—e™

Proof. We note that & C [n] is a random set, where
each i € [n] is independently sampled according to
Bernoulli random variable X; with the probability of
suceess ——— . Aecording to Definition 1, it is sufficient to

T+e-
El-,- T P{T C &}. Then from Algorithm 3,

lower bound

m El.,. +P{T C 8} is lower bounded by

[Lier l’ip{T =5h= icT IiP{T =SSR
N H..-.:Txf-P{T CSCSIS|2k+1)
=1+e™™P¢ > Xi<k-m

i€ [n\T
LY prcscsmes,si-i)

]:['iET L4 j=k+1
P{T C &8 =j}

='[1-|—E}““P{ > X gk—m}

ic[n\T

1+f}—‘“Z{(j} {Zx—; }

=k+1 ie[n\T

2{1+E}‘mP{ d X gk—m}

ic[n\T
where the first inequality is because we are ignoring the
greedy step in Algorithm 3 when |S| < k, and the second
inequality is due to ¥ {3, 1 1r X; =j—m} > 0.

Therefore, we would like to bound the following
probability

P Y Xi<k-m
ig[n\T

Since X; € [0,1] for each i £ [n], and JE[Z:t-E[n].,‘T X =
T > ig[n\7 Li- According to Chernoff bound [15], we
have

P Xi>(1+9E
ic[m\T

> X

iEm\T
< E_%E[E@mm-xi]l

where £ is a positive constant. Therefore, by choosing

£= “H”k_':_] — 1, we have
EE[n]y T =T

(4.16) (1+€)™P

Y Xi<k-m

ic[n\T

raz'LEn Ty
z(1+f}-m(1—e-—nﬁdrr- = )
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Note that k—m <37, qnr Xs <k e—(1+€)F <

€ < eand ek — (1 + eym < Ez__.E[n],kT zy < ek —m).

Suppose that & = %m, then the left-hand side of

(4.16) can be turther lower bounded as
(146 ™ (1 - e‘%ﬁuﬁ_{)
>(1+e™ (1 —e‘%ﬁﬁﬁi) .
To prove(4.15), we only need to show
| — e SEEHE > (1= e)(1+0)™,

or equivalently,

(k= (1+e)m)?
k(2+€)(l+e)

(417) o[t - (1-¢)7] >

which holds if

k> (1+%) (ﬁm— (l-l-%)lug [1—{1—52)’“]),

We mnote that —log[l—(1—¢*)"] is non-
inereasing over m = 1, therefore is upper bounded by
2log(1). Hence, (4.17) holds if k = 22 + %:fflug{%]l,

Algorithm 3 Asymptotic Sampling Algorithm

1: Given = € [0,1]" with 37,2 = k and w =

1
[det (Eie[n] Tiaa, )] -
: Initialize & = @ and a positive number ¢ > 0
. Let set A be a random permutation set of {1,. .., n}
for j € N do
Sample a (0,1) uniform random variable [T
if 7 < ﬁ_‘; then
Add j to set S
end if
: end for
:if |&] = k then
uniform sampling
Select a subset T uniformly from set S

FREREDITSD NN

[

= Fix the case when |&| = & by

—
[

12: Let §:=T
13: end if
14: while |§] < & do & Greedy step to enforce S| = &

-
oom

Add j* to set &
: end while
: OQutput &

=
[ |

5  Approximation Algorithm for D-optimal
Design Problem with Repetition

For the D-optimal design problem with repetition, it
can be reformulated as

(5.18)

max
TEL] w

w:w = |det Zria,-a;r
iE[n] i)

where the decision variable x is general integer rather
than binary. Hence, similar to (2.2) except that = > 0,
its convex relaxation is

(5.10)
a
L I . . T L —
mé'?ufffw w:w = |det (z Tilllhy ) , z =k
ic|n| ie[n]

In [24], the anthor suggested to obtain k-sample set
& with replacement, ie. & ean be a multi-set. The
sampling procedure can be separated into & steps. At
each step, a sample s is selected with probability F{s =
i} = %, given that x € R} with 3 ,_ = = k. The
detailed deseription is in Algorithm 4. This sampling
procedure can be interpreted as follows: let {X;}icq
be independent Poisson random variables where X; has
arrival rate r;. We note that conditioning on total
number of arrivals equal to & (i.e., Zié[n] Xi = k), the
distribution of { X }ic[n) is multinomial [1], where there
are k trials and the probability of ith entry to be chosen
is Ekt We terminate this sampling procedure if the total
mimber of arrivals equals to &,

|

Algorithm 4 Sampling Algorithm for D-optimal De-
sign with Repetition

T 1y 18 end for
Let j* € arg max;jcpups [det (3,5 a0 + a;a; )] "

1: Given r € R} with 3 .2 = & and w =

Ak
[dt‘.‘t (z:eln] Titlidl; )]

2: Initialize chosen multi-set & = §} and vector & =0 £
Rﬂ-
T forj=1,...,kdo

4 Sample s from [n] with probability distribution

P{s =i} =3
5: Let S=81U{s} and T, =%, + 1

& Output (T, w)

Now Theorem 1.2 follows directly from Lemmas 1.1
and 4.1.

2251

To analyze Algorithm 4, we propose another Algo-
rithm 5 which will be arbitrarily close to it. In Algo-
rithms 5, we first assume that without loss of generality,
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T is a nonnegative rational vector (i.e., r € (J7) since
set of all nonnegative rational vectors is dense in the sot
of all nonnegative real vectors. Then we let g be a com-
mon multiple of the denominators of rational numbers
T1yenesTp, 1.8 T, ...,qT, € £y, Next, we create a
multi-set A, which contains gr; copies of vector a; for
cach i € [n], i.e. [A| = gk. Finally, we sample a subset
Az of k items from set .4 uniformly, i.e. with probabil-
ity [q,:‘}_l, The detailed description is in Algorithm 5.
In this case, the sampling procedure can be interpreted
as below. As sum of ii.d. Bernoulli random variables
is Binomial, hence we let {X;},c[,) be independent bi-
nomial random variables where X has number of trials
gr; and probability of success % for each i € [n]. We
terminate the sampling proeedure if the total number
of succeeded trials equals to k.

LEMMA 5.1, Let (T,40) and (T, 7] be &utp-uts of Al-

govithms § and 5, respectively. Then 1.'; L F, ie. the
probability distribution of T, converges to T as ¢ — oo.

Proof. Consider independent random — wvariables
Xikigm, {X }ligm), where X; is Poisson random
variable with arrival rate z; for each i € [n] and X]
is binomial random variable with number of trials gz
and probability of suecess % for each i € [n].

Given an integer vector s £ Z7 | clearly, and 5, we
have

P{.‘i‘g =5, ¥i € [ﬂ,]}

=P X; =35;.¥i € [n]

Y Xi=k

ie(n]

2{Xi= 5,0 € 0], 5, cp Xi =
]P{Eiem Xi = ’f}

Hieht]u]l{x' = St'}

iE[n] I {Zié[n] Xi= k}

where the first equality is from the deseription of
Algorithm 4, the second equality is by the definition
of conditional probability, the third equality is beeause
{Xiligjny are independent from each other and I{(-)
denotes indicator function. Similarly, we also have

er[n] P{X] = s}

P{z{=s,Vich]}=1>_ si=k)

i€[n] P {Eié[n] Xi= -"} L

Followed by the well-known Poisson limit theorem
(c.f. [26]), X; and X! have the same distribution as
q — oo for any i € [n]. Therefore,

P{z, =&, Vi€ n|} = P{x; = 5,¥i € [n]},

Algorithm 5 Approximation of Algorithm 4

1: Given x € Q% with ziem] T = k and w =
]

@ COMTNoNn multlple of the denominators of

ratmnal mumbers Ty, ..., Ty, L8, gT,..., 0T € £

3: Duplicate gz, copies of vector a; for each i € [n| as
sot A, Le. |A| =

4: Sample a subset Ag of k items from set A with
probability [“f}_l

5: Initialize 7; = 0 and set (7); = 3 4.4, I(b = ai)
for each i € [n]

6: Let @y = ['j t E@é[n](f;}fa"ia;r)]%
T Dutput [ ! )

b

when g — oo, i.e., the outputs of Algorithm 4 and 5
have the same distribution when g — co.

Now we are ready to present our approximation
results for Algorithm 4. The proof idea is base on
Lemma 5.1, ie, we first analyze Algorithm 5 and the
result holds for Algorithm 4 by letting g — oo,

ProposiTion 5.1. Given = € BT with =k

; ic[n] Ti
and w = |det mt-a,,-n.T - T,10) be the outpit
ic[n]

af Algorithm J. Then (E[w™])™ = g{m E)y~Llw, where

(5.20)

glm, k) = [W] - < min {e.., k—Lﬂ’H-l} .

Proof. We will first show the approximation ratio of
Algorithm 5 and then apply it to Algorithm 4 by
Lemma 5.1 when g — oo,

(i) Let (zg,w5) be output of Algorithm 5. Similar to
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(iif)

the proot of Theorem 3.1, we have
- 1
]E[('LUG} ] = Z q_kdﬂt (Z ﬂ-i_ﬂ;r)
se(lg) { k } ics
_a 1 T
= @ z q_det' (Z il )

Se Elukkl} icS

Er D e (L)

u*l} TE[: } icT

;)
{'?:: m} Z —det (Z il )
(%) Te(l94]) " iET

.

)
TS det Z :r._-r::t-a,‘T
(%) i€(n]

where the first and second equalities are due to
Algorithm 5, the third equality is because of
Lomma 2.1 and k& > m, the fourth equality is
due to interchange of summation and the last
equality is becanse of the identity EiE[“] :r:in.,a;r =

1 T
2 ic(qk| %% -

From Lemma 5.1, we know that the output of
Alporithm 5 has the same distribution of the
output of Algorithm 4 when g —. Thus, we have

E[(w)™] = lim E[{w® }*“]

f— o
{qk m
= lim ey Tia;0,
j—r 00 { & ) 1%]
L T
(k —m)lkm )
T k—mum
Henee, lot
4
(k —m)lkm] =
g(m, k) — [T ;

and we would like to investigate its bound.
First note that

o (S50) )

which is nondecreasing over k € [m, oc). Thus,

glm,k+1)
"’g( o(m, %) )

. gim, k" + 1])
< lim log (— =10
glm, k) ’

i l
ie., glm,k) < glm,m) = [27]™ <e

On the other hand, since *3™ < 1 thus
- k
k = .
g(m. k) < [(Fs: +1}f“] E-m+1

Henee, g(m, k] < min {E~ %H}

From Proposition 5.1, we note that when k is large

enough, the solution of Algorithm 4 is almost optimal.
This proves Theorem 1.3,

Proof. (Proof of Theorem 1.3) Let (%, @) be the output
of Algorithm 4.For any ¢ ¢ (0,1), from Propaosition 5.1,

let.

4
F-my1— &

, ; 2
Then the conclusion follows by letting k > ==
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6  Omitted Proofs
Proof. [Proof of Lemma 2.1]Suppose that T =

{i1s .. sipp ). Let matrix A = [a;,,..., 85, ], then
(6.22a) det (Z a.a; ) = det (4A 7).
ieT

Next the right-hand side of (6.22a) is equivalent to

dot (AAT) = 3 det (4s)

se(r)

= ) det(dsAg) = Y

Sen) sel.n)

det (Z a.:a,T ) ,

ies

where Ag is the submatrix of 4 with eolumns from
subset 5§, the first equality is due to Cauchy-Binet
Formula [13], the second equality is because Ag is a
square matrix, and the last inequality is the definition
of AgAL.

Proof. [Proof of Lemma 2.2]Let P = diag(z) € R**"
be the diagonal matrix with diagonal vector equal to x
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and matrix A = [a1,..., ). By Lemma 2.1, we have

(6.23a) det (Z m,afai)

P[]

= det Z (vTias) (vTia:) |

ic[n|
Z det. (Z .'r.ia,.-,ﬂ;-r) .
se(t) ic8

Note that 3, ¢ ra; u = AgPzAL, where Ag is
the submatrix of 4 with cc:rlu.m.us tfrom subset S, and
Pg is the square submatrix of P with rows and columns
from 5. Thus, (6.23a) further yields

(6.23b) det (Z x;-a.-a?)

ie|n)

Z det (Zz.a,a: )
se(in) icd

= ) det(AsPsA])
se('n)
3" det (Ag)? dot (Ps)
se()
Z H.-I.' det (Zﬂﬂ )
SEI:"'J iES iES

where the third and fourth equalities are because the
determinant of product of square matrices is equal to
the product of individual determinants,
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