
User-Profile-Based Analytics for Detecting Cloud

Security Breaches

Trishita Tiwari∗, Ata Turk∗, Alina Oprea†, Katzalin Olcoz ∗‡ and Ayse K. Coskun∗

∗Electrical and Computer Engineering, Boston University, Boston, MA, USA

Email: {trtiwari,ataturk,acoskun}@bu.edu
†Computer and Information Science, Northeastern University, Boston, MA, USA

Email: a.oprea@northeastern.edu
‡Computer Architecture and Automation, Universidad Complutense de Madrid, Spain

Email: katzalin@ucm.es

Abstract—While the growth of cloud-based technologies has
benefited the society tremendously, it has also increased the
surface area for cyber attacks. Given that cloud services are
prevalent today, it is critical to devise systems that detect intru-
sions. One form of security breach in the cloud is when cyber-
criminals compromise Virtual Machines (VMs) of unwitting
users and, then, utilize user resources to run time-consuming,
malicious, or illegal applications for their own benefit. This
work proposes a method to detect unusual resource usage trends
and alert the user and the administrator in real time. We
experiment with three categories of methods: simple statistical
techniques, unsupervised classification, and regression. So far, our
approach successfully detects anomalous resource usage when
experimenting with typical trends synthesized from published
real-world web server logs and cluster traces. We observe the best
results with unsupervised classification, which gives an average
F1-score of 0.83 for web server logs and 0.95 for the cluster
traces.

Index Terms—Cloud Security, Virtual Machine Resource Us-
age, Machine Learning

I. INTRODUCTION

Cloud users are increasingly becoming lucrative targets for

cyber attacks. A few examples of recent attacks in the cloud

include the iCloud data breach that leaked private images

from celebrity accounts [1], botnets used for crypto-currency

mining in Amazon cloud services [2], malware that stole credit

card information from Chipotle servers [3], and the hack on

Sony pictures in 2014 [4]. Indeed, the number and diversity

of attacks on cloud-based services continue to expand. The

prominent attack vectors used in cloud breaches involve com-

promise of a user’s resources, such as account compromise

due to stolen credentials, or VM infection with malware [5].

According to a recent report, 15% of users accessing cloud

applications have their accounts compromised [6]. As such, it

becomes critical that cloud providers institute more effective

security mechanisms to detect and prevent compromise of

cloud resources of users.

A. Background and Related Work

Standard security protections implemented by cloud

providers (e.g., data encryption, data replication, trusted hard-

ware, and others) offer protection of the cloud infrastructure,

but fail to prevent against breaches of user credentials or user

computing resources. While other methods such as two-factor

authentication attempt to protect cloud users, they are not

effective once an account is already compromised. Intrusion

Detection Systems (IDS, such as Snort [7]) are typically

deployed by cloud providers to detect network-level attacks

(such as denial of service and communications with malicious

destinations), but they are agnostic to cases in which attackers

obtain access to a user’s cloud resources. This leaves users

of the cloud exposed to new attack vectors, currently largely

undetected with existing defense mechanisms.

Machine learning and statistical techniques for attack de-

tection have shown great promise to complement traditional

defenses in enterprise settings and private clouds (e.g., [8], [9],

[10]); thus, we believe that they can be used for proactive cyber

attack detection in public clouds. While there has been some

work in using machine learning to improve IDS systems [11],

[12], [13], [14], they mainly explore network-related metrics.

Other research in this domain includes profiling what a user

enters on the terminal and determining which out-of-character

commands can be flagged [15]. However, such studies are not

targeted towards cloud users and do not explore resource usage

data as a means to detect breaches. Even though machine

learning and statistical techniques have been applied before

in the context of cloud computing to detect performance

anomalies [16], [17], [18], optimize resource allocation [19],

and reduce energy usage [20], these approaches have not, to

the best of our knowledge, been implemented to defend against

resource compromises in public cloud.

B. Our Contributions

In this paper, we take the first steps in applying machine

learning and statistical methods for detecting resource com-

promises in public clouds. We propose the use of anomaly

detection techniques in user behavior profiling with the goal

of detecting various types of breaches that end up with a user’s

VM’s resources being acquired by the attacker. Our method-

ology involves continuous monitoring of resource usage data

(e.g., CPU, disk, memory usage, etc.) and representing it

as time-series data. Our algorithms then intelligently analyze

the user’s short and long-term typical behavior and identify

not only extreme outliers, but also many other subtle usage







(a) Original data (b) Synthetically generated data

Fig. 3: CPU usage from Google trace and synthetically gen-

erated CPU usage data.

and weekend trends. Figure 2b shows what the generated data

looks like for a 1 week window.

B. CPU and Memory Data: Google Traces

Users tend to run specific types of jobs on their machines,

which consequently result in certain patterns in their resource

usage data. In order to capture this, we used published user

level data collected from a Google 12.5k-machine cluster.

The trace spans a month-long period in May 2011 [22].

Each trace included hashed usernames (of Google engineers)

and timestamps for mean CPU usage rate, canonical memory

usage, and mean disk I/O time, etc., and so it was possible to

extract a user level time-series for each of these metrics. Out

of these available metrics, we used CPU and memory usage

for our analysis, as suggested by the documentation for the

traces. Figure 3a shows a sample of CPU usage for a user in

the trace that spans 4500 seconds.

Interestingly, the pattern shown in Figure 3a seems to be

prevalent for many users, each application run appears in

the form of a peak in CPU usage, interspersed by times of

inactivity. Furthermore, these patterns observed in CPU usage

also manifest themselves in the memory usage data.

Similar to the previous dataset on Web-servers, we had to

synthetically emulate this data in order to get a dataset large

enough to train models. We used the following equation that

generates one peak (representing a single application run):

x−2 + 1000log(x− 720) + 1000

Again, noise was added to all parameters of this function

as well in order to simulate real world variations in the

dataset. This specific combination of a negative exponent and

logarithmic functions was chosen because the first part of

each application run shows a logarithmic like increase, and

the second part shows a decay that could be modeled by x−2.

Figure 3b shows what the generated data looks like for CPU

usage of a different number of application runs.

C. Anomalous Data

To generate anomalous time-series, we varied each param-

eter one-by-one in the generating function in 10% increments

(starting from -100% variation, to -90% variation, all the way

up to -30%. We then did the same for the positive variations,

i.e., we started at +30% variation, then 40% variation, going

all the way up to +100% variation). We created 500 anomalous

datasets per variation. Each dataset had 1440 data-points.

Note that we omitted parameter variations in the range -

30% to +30% as such small variations would typically be

characteristic of healthy data, not anomalous data.

IV. EXPERIMENTS AND RESULTS

In this section we present the results obtained for the three

classification methods applied to the two test cases. All of

the data generation and experimentation was conducted on an

Ubuntu 16.04 LTS machine with 4 CPUs and 8GB memory.

A. Implementation Details

For our One-Class SVM classifier we used Python Scikit

Sklearn library [23]. We trained the classifier with numerous

instances of regular time-series data, and tested it with both

regular and anomalous datasets. Our LSTM model has 1 input

layer, 1 hidden layer with 4 neurons, and 1 output layer. Each

neuron uses the sigmoid activation function. This network

has been implemented with the Keras library [24] using

the TensorFlow [25] backend. The statistical techniques are

implemented using the Numpy [26] and Scipy [27] libraries

in Python.

B. Classification: One-Class SVM

For One-Class SVM, features were extracted from all 500

instances of each group of anomalous datasets and also from

500 instances of regular datasets used for testing. These 1000

feature sets were then fed one-by-one to the SVM, which

then labeled each one as regular or anomalous. This process

was repeated for time-series spanning a number of different

windows for both test cases, as outlined below.

1) Classifying Web-server logs: The classifier was tested

with three windows of data for this use case: (1) daily, (2)

five consecutive week days, and (3) weekly data.

2) Classifying user application runs: Here, we train the

SVM on 2 windows: datasets representing (1) one application

run, and (2) multiple consecutive application runs.

We train separate models for each of dataset window (for

both web server data and application runs), and each model

is trained with 1000 datasets of 1440 data points each. For

instance, with daily web server data, each model is trained

with 1000 generated datasets, with each dataset representing

one day’s web server traffic. We also ensured that all 1000

datasets had sufficient variation by varying each parameter

(amplitude, offset, period, etc.) in the generating function from

0-30% (parameters were varied randomly). Each group of

testing datasets included 500 instances of regular data (healthy,

without anomalies), and 500 instances of anomalous data. The

anomalous datasets were generated by systematically varying

the same parameters of the generating function (amplitude,

period, offset, etc.) by more than 30%, as outlined in section

III C.

Figure 4 shows the F1-score as a function of variations

in each parameter for the one day window of web server







REFERENCES

[1] D. Chronicle., “The fappening’s list of celebrities whose
private pics got leaked,” Aug 2017. [Online]. Available:
http://www.deccanchronicle.com/technology/in-other-news/270817/the-
fappenings-list-of-celebrities-whose-private-pics-got-leaked.html

[2] A. Greenberg, “How hackers hid a money-mining botnet in
the clouds of amazon and others,” Jun 2017. [Online].
Available: http://www.wired.com/2014/07/how-hackers-hid-a-money-
mining-botnet-in-amazons-cloud/

[3] J. Renfeldt, “Chipotle hit with malware that stole credit cards,” Jun
2017. [Online]. Available: http://www.jr-tech.com/2017/06/12/chipotle-
hit-with-malware-that-stole-credit-cards/

[4] A. Peterson, “The sony pictures hack,
explained,” Dec 2014. [Online]. Available:
https://www.washingtonpost.com/news/the-switch/wp/2014/12/18/the-
sony-pictures-hack-explained/?utm term=.8c5a0634122d

[5] Cloud Security Alliance, “The notorious nine: Cloud computing top
threats in 2013,” Report available from www.cloudsecurityalliance.org,
2013.

[6] Netskope, “Cloud report,” Report available from
www.netskope.com/netskope-cloud-report, 2015.

[7] B. Caswell, J. Beale, and A. Baker, Snort intrusion detection and

prevention toolkit, 2007. [Online]. Available: https://www.snort.org/
[8] T.-F. Yen, A. Oprea, K. Onarlioglu, T. Leetham, W. Robertson, A. Juels,

and E. Kirda, “Beehive: Large-scale log analysis for detecting suspicious
activity in enterprise networks,” in Proc. 29th Annual Computer Security

Applications Conference (ACSAC), 2013, pp. 199–208.
[9] T. Nelms, R. Perdisci, and M. Ahamad, “ExecScent: Mining for new

command-and-control domains in live networks with adaptive control
protocol templates,” in Proc. 22nd USENIX Security Symposium, 2013.

[10] A. Oprea, Z. Li, T.-F. Yen, S. H. Chin, and S. Alrwais, “Detection
of early-stage enterprise infection by mining large-scale log data,” in
Proc. 25th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), 2015.
[11] R. Sommer and V. Paxson, “Outside the closed world: On using machine

learning for network intrusion detection,” in Security and Privacy (SP),

2010 IEEE Symposium on Security and Privacy. IEEE, 2010, pp. 305–
316.

[12] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin, “Intrusion detection by
machine learning: A review,” Expert Systems with Applications, vol. 36,
no. 10, pp. 11 994–12 000, 2009.

[13] T. Ahmed, B. Oreshkin, and M. Coates, “Machine learning approaches
to network anomaly detection,” in Proceedings of the 2nd USENIX

workshop on Tackling computer systems problems with machine learning

techniques. USENIX Association, 2007, pp. 1–6.
[14] U. Fiore, F. Palmieri, A. Castiglione, and A. De Santis, “Network

anomaly detection with the restricted boltzmann machine,” Neurocom-

puting, vol. 122, pp. 13–23, 2013.
[15] T. Lane and C. E. Brodley, “An application of machine learning to

anomaly detection,” in Proceedings of the 20th National Information

Systems Security Conference, vol. 377, 1997, pp. 366–380.

[16] H. Nguyen, Y. Tan, and X. Gu, “PAL: Propagation-aware anomaly
localization for cloud hosted distributed applications,” in Proc. ACM

Workshop on Managing Large-Scale Systems via the Analysis of System

Logs and the Application of Machine Learning Techniques (SLAML),
2011.

[17] D. Dean, H. Nguyen, and X. Gu, “UBL: Unsupervised behavior learning
for predicting performance anomalies in virtualized cloud systems,” in
Proc. ACM International Conference on Autonomic Computing (ICAC),
2012.

[18] D. J. Dean, H. Nguyen, P. Wang, X. Gu, A. Sailer, and A. Kochut, “Per-
fcompass: Online performance anomaly fault localization and inference
in infrastructure-as-a-service clouds,” IEEE Transactions on Parallel and

Distributed Systems (TPDS), 2015.
[19] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource manage-

ment with deep reinforcement learning,” in Proc. 15th ACM Workshop

on Hot Topics in Networks (HotNets), 2016.
[20] F. Farahnakian, P. Liljeberg, and J. Plosila, “Energy-efficient virtual ma-

chines consolidation in cloud data centers using reinforcement learning,”
in Parallel, Distributed and Network-Based Processing (PDP), 2014

22nd Euromicro International Conference on. IEEE, 2014, pp. 500–
507.

[21] J. Dumoulin, “Nasa http webserver logs.” [Online]. Available:
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

[22] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format + schema,” Google Inc., Mountain View, CA, USA, Technical
Report, Nov. 2011, revised 2014-11-17 for version 2.1. Posted at
https://github.com/google/cluster-data.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in python,” J. Mach.

Learn. Res., vol. 12, pp. 2825–2830, Nov. 2011. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1953048.2078195

[24] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[25] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[26] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: a
structure for efficient numerical computation,” Computing in Science &

Engineering, vol. 13, no. 2, pp. 22–30, 2011.
[27] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific

tools for Python,” 2001, [Online; accessed today]. [Online]. Available:
http://www.scipy.org/


